6第六讲、第二章 弹性力学平面问题(6、7、8)

合集下载

弹性力学 第二章 平面问题的基本理论 ppt课件

弹性力学 第二章 平面问题的基本理论 ppt课件
4
§ 2-1 平面应力问题与平面应变问题
·平面应力问题
♢ 工程实例
平板坝的平板支墩
深梁
5
§ 2-1 平面应力问题与平面应变问题
·平面应变问题
♢ 几何特征 无限长的柱形体, 横截面不沿长度变化 ♢ 面力与约束 作用于柱面,平行横截面,不沿柱体长度方 向变化; ♢ 体力 作用于柱体内,平行横截面,不沿柱体长度 方向变化;
6
§ 2-1 平面应力问题与平面应变问题
·平面应变问题
♢ 简化分析
截面、外力、约束沿z不变,外力、 约束平行 xy面,柱体无限长
任何截面都是对称面
w=0, u、v ≠0
εz=0
τzx=0、 τzy=0
γzx=0、 γzy=0
εx 、εy 、γxy ≠ 0
★ 应变只存在平面应变,所以称为平面应变问题
·推导
(2) 坐标轴方向合力为0
方程两边同除dxdy 同理,ΣFy=0
平衡微分方程
12
·总结
§ 2-2 平衡微分方程
平衡微分方程
* 3个未知量,2个方程,还需另外方程 * 基于连续性、小变形假定 * 弹性体内任意区域都精确成立 * 平面应力和平面应变问题都适用
13
§ 2-3 平面问题中一点的应力状态
tanα2 = -
τxy σ1 - σx
∴ tanα1·tanα2 = -1
∴ σ1⊥ σ2
20
§ 2-3 平面问题中一点的应力状态
·最大最小正应力
O
x
σ2
由(2-4)式,得
σ1
σ1
y
σ2
τxy = 0 σx = σ1 σy = σ2
σn = l2 σx + m2 σy + 2lmτxy = l2 σ1 + m2 σ2 = l2 σ1 + (1 - l2) σ2 = l2 (σ1 – σ2) + σ2

弹性力学第二章平面问题理论

弹性力学第二章平面问题理论



n
)。
1、首先求斜截面应力分量( px ,py )由三角形微分
体的平衡条件可得
px l x m yx , p y m y l xy
2、分别计算( px ,py )在斜面法向和切向的投影,
求得斜面上的正应力和切应力:
n lpx mpy l2x m2 y 2lm xy
x
y
O
因为任一横截面都可以看作对称面 所以各点都只能沿x 和y 方向移动,即w=0。 只要u,v位移分量。因此,此问题可称为 平面位移问题。
由对称性,
0, z 0, zx 0, zy 0( zx 0, zy 0) 只有平面应变分量 x , y , xy存在,
形变和位移间的关系 刚体位移
1、如果物体的位移确定,则形变完全确定。从物理 概念可知,当物体变形后各点的位置完全确定时,任 一微分线段上的形变(包括伸缩、转角)即完全确定。 从数学推导也可看出,由位移函数求形变是一个求导 过程,所以位移确定,形变即唯一确定。
2、如果形变分量确定,位移分量并不完全确定。从 物理概念可知,物体在保持内部形变不变的条件下还 可以做刚体运动(平移和转动)。从数学角度看,由 形变求位移是一个积分过程,在常微分中,要出现一 个任意常数;在偏微分中,要出现一个与积分变量无 关的任意函数。这些未定项正是刚体的平移和转动。
u
dy
y
所以
xy




v x

u y
(c)
平面问题中的几何方程:
x

u x
y

v y

xy

v x

u y
几何方程适用于 两类平面问题。

第二章 弹性力学

第二章 弹性力学

x , y , xy x , y , xy T u, vT
T
3个应力分量 3个应变分量 2个位移分量
但是其余的非独立未知分量却不完全相同: z 0; z x y ; xz 0; 平 平 xz 0; 面 面 yz 0; yz 0; 应 应 z 0 力 z E x y 变 xz 0; 问 问 xz 0; 题 题 yz 0; yz 0; w0 w0
0
xy yx
§2.2 平衡微分方程
第二章 弹性平面问题的基本理论
故平面应力问题的平衡方程为: x yx X 0 x y y xy Y 0 y x 注:1. 在平面应力问题的平衡方程中,包含三个基本未知 量 x , y , xy yx ,但平衡方程只有两个,故还必须要 考虑形变和位移,才能求解此问题。 2. 对于平面应变问题,在微元体上还有作用于前后面 的正应力 z ,但由于它们自成平衡,不影响面内的平 衡方程,故平面应力问题和平面应变问题具有相同的 平衡微分方程。 3.平面问题的平衡方程是一阶微分方程,求解需要给 出相应的应力边界条件。


第二章 弹性平面问题的基本理论
§2.2
平衡微分方程
弹性力学中,分析问题一般从静力学、几何学和物理学 三方面来考虑;本节首先考虑平面问题的静力学方面。根据 微元体的平衡条件,可以导出应力分量和体力分量之间的关 系,此即为平面问题的平衡微分方程。 首先考虑平面应力问题: y
D B dy A P dx
§2.3 几何方程、刚体位移
ox y
P
x
y 弹性体在外力作用下,一般其内部各点都会产生位移,位 移主要是由弹性体的变形引起的,本节从几何学方面考虑 弹性力学平面问题中任意一点的位移和变形之间的关系。 表示位移和应变之间关系的方程被称作几何方程。

弹性力学(第二章平面问题的基本理论)

弹性力学(第二章平面问题的基本理论)
弹性力学

大 第二章 平面问题的基本理论
安伟
长 任 授课教师: 任 伟
2013年3月
弹性力学

大 内容提要
安 伟 1、平面应力问题与平面应变问题
2、平衡微分方程
长 任 3、平面问题中一点的应力状态
弹性力学
学 2—1 平面应力问题与平面应变问题
大 任 何 一 个 实 际 的 弹 性 力 学 问 题 都 是 空 间 问
长 y
任dx
τ yx
+∂τ yxdy ∂y
σy
+∂σ ydy ∂y
(σ x
+
∂σ x
∂x
dx)
dy
×1
−σ xdy ×1
+(τ yx
+
∂τ yx
∂y
dy)
dx
×1
−τ yxdx ×1
+
fxdxdy ×1 =
0
弹性力学
2—2 平衡微分方程
∑ 学 Fx = 0
大 ( σ x
+
∂σ x
∂x
dx)
dy
×1
−σ xdy ×1+( τ yx
+
∂τ yx
∂y
dy)dx ×1
−τ yxdx ×1
+
fxdxdy ×1 =
0
∂σ x
安 伟 ∂x
+
∂τ yx

0
长 任 ∂τxy ∂x
+
∂σ y
∂y
+
fy
=
0
弹性力学
学2—2 平衡微分方程
∂ σx + ∂ τ yx + f = 0

弹性力学第二章平面问题的基本理论

弹性力学第二章平面问题的基本理论
应力边界条件:
在应力约束 面上: 设 面法线与x轴正向夹角
的余玄为l,与y轴正向夹角
的余玄为m。
混合条件:
位移约束与应力约束的组合。
边界条件举例
x
y q
x
y
p
圣维南原理及其应用
圣 维 南 ( Adhémar Jean Claude Barré de Saint-Venant , 1797~1886)原理:如果把物体的一小部分边界上的面力, 变换为分布不同但静力等效的面力(主矢量相同,对于同 一点的主矩也相同),那么近处的应力分布将有显著改变, 但是远处所受的影响可以忽略不计。
— 边界条件
按位移求解平面应力问题(5)
— 小结
按位移求解平面问题需要:
1. 位移分量满足微分方程:
2.边界条件:
按位移求解平面问题(5)
— 举例
x
ρg
y=h y
按位移求解平面问题(6)
— 举例
x
ρg
y=h y
按应力求解平面应力问题(1)
— 用位移表达应变(几何方程)
形变协调方程或相容方程 连续体的形变分量不是相互独立的,它们之间必须满足 相容方程,才能保证真实的位移分量存在。
因此,由 中第一式:
最后得到:
由 中第二式:
常体力情况下的简化(5)
— 平衡方程的解
通解
特解
常体力情况下的简化(6)
— 艾里应力函数表示的相容方程
应力调和方程 代入
得到:
简写为:
常体力情况下的平面问题
常体力情况下的平面问题需要满足:
1.艾里应力函数表示的相容方程:
2.边界条件
3.位移单值条件
弹性力学第二章平面问题的基本理论

弹性力学第二章平面问题的基本理论

弹性力学第二章平面问题的基本理论

圣维南定理
总结词
圣维南定理是弹性力学中的一个重要定理,它表明在弹性体的局部区域,改变内力的分布不会影响该 区域以外的应力分布。
详细描述
圣维南定理指出,在一个弹性体上施加一个集中力或分布力,只会影响该力作用点附近的应力分布, 而不会影响远离作用点的应力分布。这个定理在解决弹性力学问题时非常重要,因为它可以帮助我们 忽略某些局部细节,从而简化问题。
04
弹性力学的基本方程
平衡方程
平衡方程描述了弹性体在受力作用下的平衡状态,其数学表达式为:$frac{partial sigma_{xx}}{partial x} + frac{partial sigma_{xy}}{partial y} = 0$,其中 $sigma_{xx}$和$sigma_{xy}$分别为应力分量。
几何方程反映了物体在变形过程中满足连续性和均匀性的条 件,是解决弹性力学问题的重要基础。
本构方程
本构方程描述了应力与应变之间的关系,其数学表达式为: $sigma_{xx} = lambdaepsilon_{xx} + 2muepsilon_{xx}$, 其中$lambda$和$mu$分别为拉梅常数,$epsilon_{xx}$为 应变分量。
平面应变问题的应用场景
1 2 3
土木工程
在桥梁、建筑等土木工程结构中,常常需要考虑 平面应变问题,以分析结构的稳定性、承载能力 和抗震性能。
机械工程
在机械零件和设备的设计中,如板、壳等结构, 也需要考虑平面应变问题,以确保其在使用过程 中的安全性和稳定性。
地球科学
在地质工程、地震工程等领域,平面应变问题也 是重要的研究内容,用于分析地壳的应力分布、 地震波传播等。
弹性力学第二章平面问题的 基本理论

弹性力学第二章平面问题的基本理论

弹性力学第二章平面问题的基本理论
应力边界条件对于确定物体在受力作用下的变形和位移非常 重要,特别是在解决工程实际问题时,这些条件对于预测结 构的响应和稳定性至关重要。
位移边界条件
位移边界条件描述了物体边界上的位 移情况,即位移函数。这些条件规定 了物体在某些特定方向上的位移限制 ,例如固定、自由或受限制的位移。
位移边界条件对于确定物体的变形和 应力分布具有重要意义,特别是在解 决结构分析问题时,这些条件有助于 确定结构的刚度和稳定性。
平衡方程的数学表达式为
div F = 0,其中 F 是应力向量,div 是散度算子。
几何方程
它由两个部分组成
一部分是位移引起的形变,另一部分是应力引起的形变。
几何方程的数学表达式为
grad u = 0,其中 u 是位移向量,grad 是梯度算子。
物理方程
它由两个部分组成
一部分是线性弹性关系,另一部分是材料常数。
物理方程的数学表达式为
sigma = D*epsilon,其中 sigma 是应力矩阵,D 是弹性矩阵,epsilon 是应变矩阵。
03
平面问题的边界条件
应力边界条件
应力边界条件描述了物体边界上的应力分布情况,即应力函 数。在弹性力学中,应力边界条件通常由应力分量来表示, 这些分量与物体表面的外力有关。
近似法
近似法是通过近似的方式来 求解弹性力学平面问题的一
种方法。
1
它通常适用于无法通过解析 法和数于弹性力学的基本 方程和边界条件,通过物理 模型、经验公式等方式进行 近似求解。
近似法的优点是简便易行, 能够快速得到近似解,但缺 点是精度难以保证,可能存 在误差较大的情况。
地震工程
在地震工程中,弹性力学用于研究地震波在结构 中的传播和响应,为抗震设计和减震措施提供依 据。

弹性力学平面问题总结

弹性力学平面问题总结

P
思考题
① 试证明微分体绕 z 轴的平均转动分量是
1 2 v x u . y
② 当应变为常量时,x=a, y=b, xy=c, 试 求对应的位移分量。
第二章 平面问题的基本理论
2-1 平面应力问题与平面应变问题 2-2 平衡微分方程 2-4 几何方程 刚体位移 2-5 物理方程
物理方程
物理方程描述应力分量和应变分量之间
z
x
y
z
x
y
xy
zx
zy
1 G 1 G 1 G
xy ,
xy
) E
0,
xy ,
zx ,
zx
zy .
zy
0.
物理方程
平面应力问题的物理方程:
x
y
1 E 1 E 2(1
x
y
, ,
y
x
) E
xy
xy .
此外, z
E
x
y
,
zx
zy
0.
平面应力问题,虽然 σz=0,但一般 εz≠0。
物理方程
平面应变问题: z
0,
(在V 中)
xy 存在。
故只有平面应力 σx , σy ,
平面应力问题
(2) 由于板为等厚度,外力、约束沿 z 向不变, 故应力 x , y , xy 仅为 f x , y 。
所以归纳为平面应力问题:
a.应力中只有平面应力 x , y , xy 存在;
b.且仅为 f x , y 。
几何方程
平面问题中的几何方程:
x
u , x
y
v , y
xy
v x
u . y
当弹性体的位移分量完全确定时,应变分 量即完全确定。反之,当应变分量完全确定时, 位移分量却不能完全确定。

《弹性力学》第二章_平面问题的基本理论

《弹性力学》第二章_平面问题的基本理论

o
xy
x
y
P
yx
y
A
XN
x
设AB面在xy平面内的长度为dS, 厚度为一个单位长度,N为该面的外 法线方向,其方向余弦为:
B
N
N
N
cos(N , x) l , cos(N , y) m
9
YN S
图2 - 4
斜面AB上全应力沿x轴及y轴的投影分别为XN和YN。由PAB 的平衡条件 Fx 0 可得: X N dS xldS yxmdS
2.主应力的方向
1 与 2 互相垂直。
11
§2-4
几何方程、刚体位移
在平面问题中,弹性体中各点都可能产生任意方向的位移。 通过弹性体内的任一点P,取一单元体PAB,如图2-5所示。弹性 体受力以后P、A、B三点分别移动到P′、A′、B′。 一、P点的正应变
u (u dx) u u x x dx x
二、P点的剪应变
线段PA的转角:
同理可得线段PB的转角:
u y
所以
xy
v u x y
13
因此得到平面问题的几何方程:
u x x v y y v u xy x y
由几何方程可见,当物体的位移分量完全确定时,形变 分量即可完全确定。反之,当形变分量完全确定时,位移分 量却不能完全确定。
z

E
( x y )
16
二、平面应变问题的物理方程 1 2 x ( x y ) E 1 1 2 y ( y x ) E 1 2(1 ) xy xy E 三、平面应力的应力应变关系式与平面应变的关系式之间的 变换关系 1 ( ) y 将平面应力中的关系式: x E x

弹性力学第六章__平面问题直角坐标解答

弹性力学第六章__平面问题直角坐标解答
界条件即可。平面问题的静力边界条件为:
(6-13) 显然,式(6-6)、式(6-12)、式(6-13)都不含弹性常数。 因此,对于单连域物体,当边界上没有给定的位移约束 条件,且体力为常量或可忽略时,其应力状态与材料的性质 无关。这就是平面光弹性实验应力分析的理论依据。
§6-2 平面问题的应力解法 · 应力函数 (续4)
u,v


x , y , xy yz z x 0
x , y , xy


x , y , xy
yz zx 0
z 0
x , y , xy
w0 yz z x 0 z 0 yz z x 0
x、 y、 xy ,故两类问题
(4) 两类问题中的物理方程形式相同。关于平面应变问 的 E、 换成 E1、1 即可。
题的物理方程,只须将平面应力问题的物理方程中
两类平面问题及其特征
平面应力问题 名 位 称 移 平面应变问题
未知量
已知量
未知量
已知量
u, ,v u v
w0
z ( x y ) z E ( x y ) E
应力函数求解问题基本思路、基本方程和基本解
题技巧。 三:按应力求解平面问题的应用举例。
主要内容
§6-1 平面应变问题 · 平面应力问题
§6-2
§6-3 §6-4 §6-5 §6-6
平面问题的应力解法· 应力函数
用多项式解平面问题 悬臂梁一端受集中力作用 简支梁受均匀分布荷载作用 应力函数确定的“材料力学方法”
变形协调方程 为:
( x y ) 0
2
(6-12)

弹性力学平面问题教学课件

弹性力学平面问题教学课件
弹性力学平面问题教学课件
contents
目录
• 弹性力学基础 • 平面问题的基本概念 • 弹性力学平面问题的解析方法 • 弹性力学平面问题的数值解法 • 弹性力学平面问题的实例分析
01
弹性力学基础
弹性力学简介
弹性力学定义
弹性力学是研究弹性物体在外力作用下变形和内力的规律的科学 。
弹性力学的发展历程
有限差分法的优点在于简单 直观,适用于规则区域的问
题,且精度可调。
有限差分法的步骤包括建立离 散化的网格、选择合适的差分 格式、建立差分方程、求解离
散化的方程等。
边界元法
边界元法是一种将弹性力学问题转化为边界积分方程,然后通过离散化的 方式求解该边界积分方程的数值方法。
边界元法的优点在于精度高,适用于规则区域的问题,且对于复杂边界条 件处理能力强。
1. 初始化解的近似值。
在此添加您的文本16字
2. 根据迭代公式计算新的近似值。
在此添加您的文本16字
3. 检查收敛性,如果满足收敛条件则停止迭代,否则返 回步骤2。
在此添加您的文本16字
特点:简单易行,但收敛速度较慢,需要多次迭代才能得 到较为精确的结果。
牛顿-拉夫森法
• 概念:牛顿-拉夫森法是一种基于牛顿定理 的迭代方法,通过构造迭代公式来逼近真 实解。
从17世纪的材料力学到20世纪的有限元方法,弹性力学在理论和 实践方面都取得了重要进展。
弹性力学的重要性
在工程领域,弹性力学是解决复杂结构问题的基础,对于保证工程 安全和优化设计具有重要意义。
弹性力学的基本假设
01
02
03
连续性假设
假设物体由无数微小的单 元组成,每个单元之间没 有间隙。

弹性力学平面问题

弹性力学平面问题
第二章 平面问题的基本理论
空间问题的数学描述
已知的几何参数和载荷(表面力和体积力),一般都与三 已知的几何参数和载荷(表面力和体积力),一般都与三 ), 个坐标参数x、 、 有关 有关; 个坐标参数 、y、z有关; 15个未知函数 — 6个应力分量: x , σ y , σ z ,τ xy = τ yx ,τ yz = τ zy ,τ zx = τ xz 个应力分量: 个未知函数 个应力分量 σ 6个应变分量 ε x , ε y , ε z , γ xy = γ yx , γ yz = γ zy , γ zx = γ xz 个应变分量 3个位移分量: u、v、w, 个位移分量: 、 、 , 个位移分量 一般都是三个坐标参数x、 、 的函数 的函数; 一般都是三个坐标参数 、y、z的函数; 基本方程式是三维的,但若某一方向变化规律为已知时, 基本方程式是三维的,但若某一方向变化规律为已知时, 维数可相应减少。 维数可相应减少。
第二章 平面问题的基本理论
根据微元体处于平衡的条件,可以得到三个平衡微分方程。 根据微元体处于平衡的条件,可以得到三个平衡微分方程。 的合力矩为零, (一)作用于体心M的合力矩为零,即 作用于体心 的合力矩为零
∑M
σy +
z
=0
∂τ xy ∂τ yx dx dx dy dy dx dy i + τ xy dy i − τ yx + dy dxi − τ yx dxi = 0 τ xy + ∂x 2 2 ∂y 2 2
t/2 o x
t/2 z
y
y
第二章 平面问题的基本理论
因为板面上不受力, 因为板面上不受力,所以 σ z = τ zx = τ zy = 0, z = ± t 由于剪应力互等, 由于剪应力互等,有 τ xz = 0,τ yz = 0 这样,只有平行于oxy平面的三个应力分量,即 这样,只有平行于 平面的三个应力分量, 平面的三个应力分量

弹性力学的平面问题解法

弹性力学的平面问题解法

弹性力学的平面问题解法摘要:本文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段、方法,体会弹性力学的魅力,并为其它力学学科的学习打下基础。

着眼于弹性力学求解方法中一些方法,通过其在平面问题中的应用来介绍几种方法的研究思路,研究方法以及优缺点。

弹性力学作为固体力学的一个重要分支,它的研究对象是板、壳、实体以及单根杆件,它是研究弹性固体由于受外力作用,边界约束或者温度改变及其他一种或多种外界条件作用下产生的应力、应变和位移。

它的研究对象是板、壳、实体以及单根杆件。

关键词:弹性力学;平面问题;解法前言:弹性力学是材料力学问题的精确解,是结构力学,塑性力学等力学学科的基础,其广泛应用于土木工程、航空航天工程及机械工程等多个学科领域。

并且随着科学技术手段的进步,电子计算机得以应用到弹性力学的计算分析中,这极大地促进了弹性力学问题的分析计算更加深入,促使了有限单元法得以实现。

本文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段、方法,体会弹性力学的魅力,并为其它力学学科的学习打下坚实的基础。

1 问题解法1.1解析法解析法是根据研究对象在结构中的静力平衡条件,几何关系和物理关系建立边界条件,平衡微分方程,几何方程和物理方程,并以此求解应力分量,应变分量和位移分量的一种平面问题的精确解法。

按求解时的基本未知量选取不同可分为按位移求解的位移法和按应力求解的应力法。

第一个位移法:以位移为基本未知量时的基本方程如下:位移边界条件如下从上面的公式可以看出位移法求解平面问题时的基本未知量只有两个,与应力法的三个基本未知量相比求解简单很多,并且不但能求解位移边界条件,还能求解应力边界条件与混合边界条件。

第二个应力法:应力法以应力分量作为基本未知量,由此平面问题的平衡微分方程,几何方程,物理方程以及边界条件经过推导可变为如下形式:基本方程:应力边界条件:值得注意的是按应力求解时边界条件应全部为应力边界条件。

《弹性力学》第二章平面问题的基本理论

《弹性力学》第二章平面问题的基本理论

平面问题研究方法
01
02
03
解析法
通过弹性力学的基本方程 和边界条件,求解出满足 条件的应力、应变和位移 分量。
数值法
利用计算机进行数值计算, 如有限元法、差分法等, 求解出弹性体的应力、应 变和位移分布。
实验法
通过实验手段,如光弹性 实验、应变电测实验等, 直接测定弹性体的应力、 应变和位移。
02 基本方程与定解条件
物理方程反映了材料的力学性质,是弹性力学中的重要基础。
03
定解条件(边界条件与初始条件)
01
02
03
定解条件是弹性力学问 题中必须满足的附加条 件,包括边界条件和初
始条件。
边界条件描述了物体边 界上的应力、位移等物 理量的已知情况,是求 解弹性力学问题的重要
依据。
初始条件描述了物体在 初始时刻的应力、位移 等物理量的已知情况, 对于动态问题和瞬态问
04 平面问题解法及实例分析
按位移求解平面问题
位移边界条件
在位移边界上,物体受到的约束可以 转化为在给定位移边界上各点的位移。
平衡微分方程
根据弹性力学的基本方程,可以建立 以位移表示的平衡微分方程。
应力边界条件
在应力边界上,物体受到的面力可以 转化为应力边界上各点的应力分量。
求解方法
通过联立平衡微分方程和应力边界条 件,可以求解出位移分量,进而求得 应力分量。
复杂应力函数求解技巧
复杂应力函数的特点
复杂应力函数可能具有复杂的数学形式和边界条件,求解难度较大。
求解技巧
针对复杂应力函数的求解,可以采用变量分离法、积分变换法、复 变函数法等数学工具进行简化处理,降低求解难度。
实例分析
以一个复杂的弹性力学问题为例,介绍如何运用上述技巧求解复杂 应力函数,并给出相应的应力分量分布图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 1)
AC 边界:
∴ A 点处无应力作用
代入应力边界条件公式,有
例5 图示楔形体,试写出其边界条件。
例6 图示构件,试写出其边界条件。
例5 图示楔形体,试写出其边界条件。 上侧:
下侧:
例6 图示构件,试写出其应力边界条件。 上侧:
N

下侧:
ZS《Rock Mass Mechanics》
2016/2/18
图(a):
—— 位移边界条件
—— 应力边界条件
图(b): —— 应力边界条件
—— 位移边界条件
平面问题的基本方程:
(1)平衡方程:
(3)物理方程:
(2-2) (2-15) (2)几何方程: ——平面应力问题 (2-9) (4)边界条件: (1) ——位移边界条件 (2)
——应力边界条件
ZS《Rock Mass Mechanics》
(1)平衡方程: (3)物理方程:
(2-2) (2-15)
(2)几何方程:
未知量数:
方程数: 结论: 8个 8个
(2-9)
在适当的边界条件下,上述8个方程可解。
2. 边界条件及其分类
边界条件: 建立边界上的物理量与内部物理量间的关系。 是力学计算模型建立的重要环节。 (1)位移边界 边界分类 (2)应力边界 (3)混合边界 —— 三类边界 O q P x
(3)两类平面问题物理方程的转换:
(2-15)
(2-16)
—— 平面应力问题的物 理方程 (1) 平面应力问题 平面应变问题
—— 平面应变问题的物 理方程 (2) 平面应变问题 平面应力问题
材料常数的转换为:
材料常数的转换为:
ZS《Rock Mass Mechanics》
2016/2/18
ZS
1. 弹性力学平面问题的基本方程
2016/2/18
ZS
平面问题的基本方程
1. 平衡微分方程 3. 物理方程
(应力问题) 4. (2-9) 边界条件 (2-17)
位移:
应力: (2-18)
ZS《Rock Mass Mechanics》
2016/2/18
ZS
下一讲再见!
ZS《Rock Mass Mechanics》
(1)位移边界条件
位移分量已知的边界 —— 位移边界
y
用us 、 vs表示边界上的位移分量, 表示边 界上位移分量的已知函数,则位移边界条件可表达为: 说明: (2-17) 称为固定位移边界。
—— 平面问题的位移边界条件
(2)应力边界条件
给定面力分量 由前面斜面的应力分析,得 边界 —— 应力边界
左侧面:

由应力边界条件公式,有
右侧面:
例4 图示薄板,在y方向受均匀拉力作用,
证明在板中间突出部分的尖点A处无应 力存在。
解: —— 平面应力问题,在 AC、AB
力作用。即 AB 边界:
边界上无面
由应力边界条件公式,有 ( 2)
∵A 点同处于 AB 和 AC 的边界, ∴满足式(1)和(2),解得
2.、圣维南原理 (Saint-Venant Principle)
原理:若把物体的一小部分边界上的面力,变换为分布 不同但静力等效的面力,则近处的应力分布将有 显著改变,而远处所受的影响可忽略不计。 P P/2 P P/2
P
3.圣维南原理的应用
(1) 对复杂的力边界,用静力等效的分布面力代替。 (2) 有些位移边界不易满足时,也可用静力等效的分布面力代替。
注意事项:
(1) 必须满足静力等效条件;
(2) 只能在次要边界上用圣维南原理,在主要边界上不能使用。
如: 主要边界 B
A
P
次要边界
ZS《Rock Mass Mechanics》
2016/2/18
ZS
例7 图示矩形截面水坝,其右侧受静水 压力,顶部受集中力作用。试写出 水坝的应力边界条件。
左侧面:
ZS
物理方程:平面问题中应力与应变的关系
物理方程也称:本构方程、本构关系、物性方程。
1. 各向同性弹性体的物理方程
在完全弹性和各向同性的情况下,物性方程即为材料 力学中的广义虎克(Hooke)定律。
(2-13)
其中:E为拉压弹性模量;G为剪切弹性模量;μ为侧向收 缩系数,又称泊松比。
(1)平面应力问题的物理方程
ZS
问题的提出:
求解弹性力学问题时,使应力分量、 形变分量、位移分量完全满足8个基本方程 相对容易,但要使边界条件完全满足,往往 很困难。 如图所示,其力的作用点处的边界条 件无法列写。
P
P
P
1. 静力等效的概念
两个力系,若它们的主矢量、主矩相等,则两个力系 为静力等效力系。 这种等效只是从平衡的观点而言的,对刚体来而言完全正 确,但对变形体而言一般是不等效的。
(2-7)
(2-8) 表明:σ1 与 σ2 互相垂直。
τmax、 τmin 的方向与σ1
( σ2 )成45°。
(2-9) ——几何方程
O x P
说明:
u
dx A
v
dy B y
ZS《Rock Mass Mechanics》
2016/2/18
7
ZS《Rock Mass Mechanics》
2016/2/18
O q
x P
式中取:
y
得到:
(2-18) O P A px
x
—— 平面问题的应力边界条件 式中:
l、m 为边界外法线关于 x、y 轴的方向
余弦。如: y B
dx dy ds
垂直 x 轴的边界: 垂直 y 轴的边界:
py
N
(3)混合边界条件
(1) 物体上的一部分边界为位移边界,另一部为应力边界。 (2) 物体的同一部分边界上,其中一个为位移边界条件,另一为 应力边界条件。如:
2016/2/18
ZS
例1 如图所示,试写出其边界条件。
(1)
q
h h
x
(2) (4)
a
y
(3)
例2 如图所示,试写出其边界条件。
(1) AB段(y = 0): A 代入边界条件公式,有 N l C p(x) B
p0
x
h
y
(3)
AC段(y =x tan β):
(2) BC段(x = l):
例3 图示水坝,试写出其边界条件。
由于平面应力问题中
(2-15)
—— 平面应力问题的物 理方程
注:
(1)
—— 物理方程的另一形式 (2)
(2)平面应变问题的物理方程
由于平面应变问题中
由式(2-13)第三式,得
(2-16)
—— 平面应变问题的物 理方程
注: (1) 平面应变问题中
,但
(2-13)
(2)
平面应变问题 物理方程的另一形式:
ZS《Rock Mass Mechanics》
ZS《Rock Mass Mechanics》
2016/2/18
2
(1)斜面上的应力
O (2-3) (2-4) P dx dy ds A px
x
(2-5) y (2-6)
B py
p
N
(2-18)
—— 平面问题的应力边界条件
(2)一点的主应力、应力主向、最大最小应力
yx
y
代入应力边界条件公式
右侧面:
对O点的力矩等效:
代入应力边界条件公式,有
x方向力等效:
上端面: 为次要边界,可由圣维南原理求解。
注意:
y方向力等效: 必须按正向假设!
上端面:(方法2) 取图示微元体, 由微元体的平衡求得,
x
y
注意:
可见,与前面结果相同。 必须按正向假设!
ZS《Rock Mass Mechanics》
相关文档
最新文档