物理化学第五章相平衡.ppt
合集下载
2020高中化学竞赛—物理化学(基础版)-第五章 化学平衡(共72张PPT)
rGm ,3 rGm ,1 2rGm ,2
K
3
K1
/
K
2
2
上一内容 下一内容 回主目录
返回
(1) N2 (g) 3H2 (g) 2NH3(g)
rGm ,1 RT ln K1
(2) 1/ 2N2 (g) 3 / 2H2 (g) NH3 (g) rGm ,2 RT ln K2
rGm ,1 2rGm ,2
vB( g )
B
上一内容 下一内容 回主目录
返回
证明
aA(g) bB(l) yY (g) zZ (s)
B
(cd
)
B
(cd
)
rGm aA bB yY zZ
a(
A
RT
ln(
pA
/
p ))
b
B
y(Y
RT
ln(
pY
/
p ))
zZ
a
A
bB
yY
zZ
RT
ln
( (
pY pA
/ /
p ) y p )a
B
B
B
rGm
v
B
B
vB RT ln( pB / p )
B
B
Jp:压力商
rGm rGm RT ln J p 理想气体反应等温方程
已知反应温度T时的
r
G
m
和各气体的分压pB,即
可求出该温度下的 rGm
上一内容 下一内容 回主目录
返回
Jp:压力商
aA bB yY zZ A,B,Y,Z均为气体
上一内容 下一内容 回主目录
返回
p(CO2): CO2的平衡压力,亦称碳酸钙的分解压力 分解压力越小,稳定性越高
第五章 多相平衡PhaseEquilibrium 物理化学课件
故系统中共有5种化学物种,2个独立反应, 则 C=5–2=3。设固体不互溶,即共4相,故F=3–4+2=1 。系统强度变量为T, p, p(CO), p(CO2), p(Zn),5个强 度变量中只有1个是独立的。
(2) 相律的推导
现设该独立变量为温度,则根据纯液态锌的克拉佩 龙-克劳休斯方程,p(Zn)=f (T), 在一定温度下有确 定的p(Zn),上面第一个方程表示如下的平衡
ZnO(s) + C(s) = Zn(g) +CO(g) 因其平衡常数在定温下为定值,有K1=p(Zn)·p(CO) 于是p(CO)有定值。再根据第二个化学平衡,其平衡 常数在定温下为另一定值K2=p(CO2)/p2(CO),因此 p(CO2)也有定值。故一个强度变量的值可确定其它四 个强度变量的值,F=1,同样若先确定另一强度变量 的值,例如p(CO)为某值,同样可推论出其它强度变 量的值。
(2) 相律的推导
设有 S 种物质在 P 个相中, 描述一个相的状态要 T,p,(x1, x2, …xs)
(S–1)种独立变量 所以总变量数= P(S –1) + 2
(2) 相律的推导
在一个封闭的多相系统中,相与相之间可以有热的 交换、功的传递和物质的交流。对具有P个相系统的 热力学平衡,实际上包含了如下四个平衡条件: (1)热平衡条件:设系统有、Ⅱ······P 个相,达到平 衡时,各相具有相同温度
2c(NH3) = c(H2S) 但如果分解产物在不同相则不然,如反应:
CaCO3(s) = CO2(g) + CaO(s) c(CO2, g)和c(CaO, s)无关,则无浓度限制条件。 设浓度限制条件的数目为R′,则又有R′个关于浓度的 方程式。
(2) 相律的推导
(2) 相律的推导
现设该独立变量为温度,则根据纯液态锌的克拉佩 龙-克劳休斯方程,p(Zn)=f (T), 在一定温度下有确 定的p(Zn),上面第一个方程表示如下的平衡
ZnO(s) + C(s) = Zn(g) +CO(g) 因其平衡常数在定温下为定值,有K1=p(Zn)·p(CO) 于是p(CO)有定值。再根据第二个化学平衡,其平衡 常数在定温下为另一定值K2=p(CO2)/p2(CO),因此 p(CO2)也有定值。故一个强度变量的值可确定其它四 个强度变量的值,F=1,同样若先确定另一强度变量 的值,例如p(CO)为某值,同样可推论出其它强度变 量的值。
(2) 相律的推导
设有 S 种物质在 P 个相中, 描述一个相的状态要 T,p,(x1, x2, …xs)
(S–1)种独立变量 所以总变量数= P(S –1) + 2
(2) 相律的推导
在一个封闭的多相系统中,相与相之间可以有热的 交换、功的传递和物质的交流。对具有P个相系统的 热力学平衡,实际上包含了如下四个平衡条件: (1)热平衡条件:设系统有、Ⅱ······P 个相,达到平 衡时,各相具有相同温度
2c(NH3) = c(H2S) 但如果分解产物在不同相则不然,如反应:
CaCO3(s) = CO2(g) + CaO(s) c(CO2, g)和c(CaO, s)无关,则无浓度限制条件。 设浓度限制条件的数目为R′,则又有R′个关于浓度的 方程式。
(2) 相律的推导
相平衡物理化学课件—
* 应用:利用温差提纯盐类
图(1)NaNO3 -KNO3 - H2O(298 K)相图 图(2)NaNO3 -KNO3 - H2O(373 K) 相图 将(1) ,(2)叠合 T↗,不饱和区 扩大,两种盐的 溶解度增加。
得到图 (c) 利用相图(c) 将 NaNO3 与KNO3 的 混合物分离
298 K 时仅仅看 * 应用:利用温差提纯盐类 此温度下的相图 (1)设混合物中含 KNO3 较多,物系点为 x 。 298 K 下加水溶解,物系点 沿xA 移动,进入MDB 区, NaNO3全溶解,剩下 KNO3(s) 、 组成为 D 的饱和溶液。 如有泥沙等不溶杂 质,将饱和溶液加热至 373 K,这时在线 M’D’ 之上, KNO3 全部溶解, 趁热过滤,将滤液冷却 可得纯 KNO3(s) 。
第5章
453
单相
TB
B
等压
等温
p
pB
T/K
373
A'
An
A"
T1
pA
两相
C 313 D 0 0.2 0.4 0.6 H2 O 质量分数
0.8 1.0 A C6 H5 NH2
E
xB
B
湖 南 师 范 大 学 化 学 化图的共同特征 ① 水平线都是三相线,三相线上 f * = 0。 ② 垂直线都是单组分(化合物或单质)。 稳定化合物的垂线顶端与曲线相交。不稳定 化合物的垂线顶端与一水平线相交。 ③ 单相固溶体特征:围成的单相固溶体的线 段中不含三相水平线。 ④ 杠杆规则只适用于两相平衡区。
5.7.4 三组分低共熔相图 Sn-Bi-Pb 可形成 三个二元低共熔相图, 低共熔点分别为 E1, E3 和 E2,其在底边 组成线上的位置分别 为 C ,F 和 B。 将平面图向中间 折拢,三个底边 SnBi,Bi-Pb 和Pb-Sn 组 成正三角形,就得到 了三维的正三棱柱形 的三组分低共熔相图, 纵坐标为温度。
物理化学 第五章 化学平衡.ppt
G
T
<0;A>0;ΔγGm<0
.P
;反应正向进行;
G
T .P
=0; A=0;ΔγGm=0 ; 化学平衡
G
T .P
>0;
A<0;ΔγGm>0;反应逆向进行;
2. 化学反应等温方程及平衡常数
对于理想气体反应
aAg+bBg
gGg+hHg
平衡转化率=某反应平衡时反应消耗原料的量/反应 开始投入原料的量×100%
产率=转化为指定产物的某反应物的量/该反应物的 原始量×100%
例1 已知反应
CO(g) H2O(g) H2 (g) CO2 (g)
在800℃时 K O 1
(1)若将等摩尔CO和H2O(g)在800℃反应。求平衡时CO的转化率和摩 尔分数。
ΔγGm=∑νBμB =gμG+hμH-aμA-bμB
gG hH aA bB
RT
ln
PG P
PA P
g
a
PH P
PB P
h
b
BB
RT
ln
PB P
B
令
Jp
PB P
4. 复相反应的平衡常数
对于复相反应 aA(g)+bB(l) hH(g)+gG(s)
∵l. s的化学势与P无关, μB(l或s)=μBθ
经推导, ∴ Kθ=∏(PB/Pθ)gνB 只与气体物质有关
1、Kθ与反应式写法有关。 反应式系数×2,平衡常数平方; 反应式系数÷2,平衡常数开方; 两反应式相加,平衡常数相乘; 两反应式相减,平衡常数相除;
物理化学 第五章 相平衡
第五章 相平衡
一、基本概念和公式 (一)几个基本概念 1. 相和相数 (1)相 (phase) 系统内部物理和化学性质完全均匀的部分称为相。 特点 相与相之间在指定条件下有明显的界面, 在界面上宏观性质的改变是飞跃式的。 (2)相数 (number of phase) 系统中相的总数称为相数,用 表示。 气体:
(三)二组分系统的相图及应用
(3) 同时具有最高、最低会溶温度 (4) 不具有会溶温度
(三)二组分系统的相图及应用
4. 不互溶双液系 (1) 特点 如果A,B 两种液体彼此互溶程度极小,以致可忽略 不计。则A与B共存时,各组分的蒸气压与单独存在时一 样,液面上的总蒸气压等于两纯组分饱和蒸气压之和。 * * 即: p pA pB 当两种液体共存时,不管其相对数量如何,其 总蒸气压恒大于任一组分的蒸气压,而沸点则恒低 于任一组分的沸点。 (2) 水蒸气蒸馏
CaF2 ( A)
0 .6
0 .8
1 .0 CaCl2 ( B)
(三)二组分系统的相图及应用
(3) 相合熔点 A和B形成的化合物有确定的熔点,完全熔化时不 分解,在熔点时液相和固相的组成相同,所以稳定化 合物的熔点称为相合熔点。 (4) 不相合熔点 因为C没有自己的熔点,将C加热,到O点温 度时分解成 CaF2 (s) 和组成为B的熔液,所以将O点 的温度称为转熔温度(peritectic temperature)也 叫异成分熔点或不相合熔点。
(四)三组分系统的相图及其应用
(d) 如果代表两个三个组分 系统的D点和E点,混合成新 系统的物系点O必定落在DE 连线上。哪个物系含量多, O点就靠近哪个物系点。 O点的位置可用 杠杆规则求算。
mD OD mE OE
一、基本概念和公式 (一)几个基本概念 1. 相和相数 (1)相 (phase) 系统内部物理和化学性质完全均匀的部分称为相。 特点 相与相之间在指定条件下有明显的界面, 在界面上宏观性质的改变是飞跃式的。 (2)相数 (number of phase) 系统中相的总数称为相数,用 表示。 气体:
(三)二组分系统的相图及应用
(3) 同时具有最高、最低会溶温度 (4) 不具有会溶温度
(三)二组分系统的相图及应用
4. 不互溶双液系 (1) 特点 如果A,B 两种液体彼此互溶程度极小,以致可忽略 不计。则A与B共存时,各组分的蒸气压与单独存在时一 样,液面上的总蒸气压等于两纯组分饱和蒸气压之和。 * * 即: p pA pB 当两种液体共存时,不管其相对数量如何,其 总蒸气压恒大于任一组分的蒸气压,而沸点则恒低 于任一组分的沸点。 (2) 水蒸气蒸馏
CaF2 ( A)
0 .6
0 .8
1 .0 CaCl2 ( B)
(三)二组分系统的相图及应用
(3) 相合熔点 A和B形成的化合物有确定的熔点,完全熔化时不 分解,在熔点时液相和固相的组成相同,所以稳定化 合物的熔点称为相合熔点。 (4) 不相合熔点 因为C没有自己的熔点,将C加热,到O点温 度时分解成 CaF2 (s) 和组成为B的熔液,所以将O点 的温度称为转熔温度(peritectic temperature)也 叫异成分熔点或不相合熔点。
(四)三组分系统的相图及其应用
(d) 如果代表两个三个组分 系统的D点和E点,混合成新 系统的物系点O必定落在DE 连线上。哪个物系含量多, O点就靠近哪个物系点。 O点的位置可用 杠杆规则求算。
mD OD mE OE
物理化学第五章1
g
明白二点假设
fus Hm dT dp . fusVm T
一、克拉贝龙方程的推导思路
1. 相平衡条件 推 导 思 路 2. 热力学的基本方程
dG = -S dT + V dp
3.可逆相变:
Hm Qr Sm T T T
Qp
T, p
T+dT, p+dp
Hm : 物质的摩尔相变热
该式称为克拉贝龙方程。适用于任何纯物质 的任何两相平衡(气液、气固和固液平衡)。
二、克劳修斯--克拉贝龙方程的推导
Hm dp dT T Vm
克拉贝龙方程
(l、s) (g)
(蒸发或升华)
二点假设
d ln p H m 2 dT RT
S 2 S S R R
K 2
'
对相律的4点说明:
f = K- +2
1、相律仅适用于多相平衡体系; 2、推导过程中假设每一相中S种物质均 存在。如果某一相或几相中,不含一种或 几种物质时,均不会影响相律的形式。
对相律的4点说明:
f = K- +2
3、式中2表示只考虑温度、压力对 平衡系统的影响。 若考虑其他因素(如电场、磁场、重力场 等)对平衡系统的影响,则相律的形式为:
K = S - R - R’
显然,K S
重点
K = S - R - R’
S: 物种数
R: 独立化学反应的数目(独立的平衡反应数)
R’: 独立的浓度限制条件数目
强调1:所涉及的平衡反应,必须是在所 讨论的条件下,系统中实际存在的反应。 强调2:对于一个平衡反应,在一定条 件下, KØ为定值使一种物质不独立。
明白二点假设
fus Hm dT dp . fusVm T
一、克拉贝龙方程的推导思路
1. 相平衡条件 推 导 思 路 2. 热力学的基本方程
dG = -S dT + V dp
3.可逆相变:
Hm Qr Sm T T T
Qp
T, p
T+dT, p+dp
Hm : 物质的摩尔相变热
该式称为克拉贝龙方程。适用于任何纯物质 的任何两相平衡(气液、气固和固液平衡)。
二、克劳修斯--克拉贝龙方程的推导
Hm dp dT T Vm
克拉贝龙方程
(l、s) (g)
(蒸发或升华)
二点假设
d ln p H m 2 dT RT
S 2 S S R R
K 2
'
对相律的4点说明:
f = K- +2
1、相律仅适用于多相平衡体系; 2、推导过程中假设每一相中S种物质均 存在。如果某一相或几相中,不含一种或 几种物质时,均不会影响相律的形式。
对相律的4点说明:
f = K- +2
3、式中2表示只考虑温度、压力对 平衡系统的影响。 若考虑其他因素(如电场、磁场、重力场 等)对平衡系统的影响,则相律的形式为:
K = S - R - R’
显然,K S
重点
K = S - R - R’
S: 物种数
R: 独立化学反应的数目(独立的平衡反应数)
R’: 独立的浓度限制条件数目
强调1:所涉及的平衡反应,必须是在所 讨论的条件下,系统中实际存在的反应。 强调2:对于一个平衡反应,在一定条 件下, KØ为定值使一种物质不独立。
物理化学:相平衡
第五章 相平衡
相平衡是热力学在化学领域中的重要应用之一。研究 多相体系的平衡在化学、化工的科研和生产中有重要的 意义,例如:溶化、蒸馏、重结晶、萃取、提纯及金相 分析等方面都要用到相平衡的知识。
一、基本概念
第一节 相律
1、 相(phase) 体系内部物理和化学性质完全均匀的 部分称为相。相与相之间在指定条件下有明显的界面, 在界面上宏观性质的改变是飞跃式的。体系中相的总数 称为相数,用Φ表示。
三、自由度数(f)
自由度: 确定平衡体系的状态所必须的独立强度变量的
数目称为自由度,用字母 f 表示。这些强度变量通常是
压力、温度和浓度等。
以水为例〔注意是商量平衡态〕∶ a. 当φ=1时,例如液态水的T、p可在肯定范围内改变, φ不变 ∴ f=2 b. 当φ=2时,例如气-液平衡,指定p外,则Tb确定; 而指定T,则水有确定的平衡蒸气压p,∴ f=1 c. 当φ=3时,即气-液-固三相平衡共存时〔三相点〕,T、 p是确定的〔273.16K、6.1×102Pa、由水的性质所决定〕, ∴ f=0,如果变化T或p,则不可能三相共存〔即φ≠3〕。
一、水的相图 水的相图是依据实验绘制的。图上有:
水 的 相 图
(1) 气、液、固单相区∶f=1-1+2=2
(2) 两相平衡线∶
f=1-2+2=1
OC线∶气-液平衡
T与液态水的饱和蒸气压p蒸气的关系
或沸点Tb与p外的关系
OA线∶液-固平衡 凝固点Tf与p外的关系
OB线∶气-固平衡
T与冰的饱和蒸气压p蒸气的关系
dp/dT=ΔHm / T·ΔVm 此方程适合于任何纯物质的两相平衡
2、对于气-液或气-固两相平衡体系 近似处理∶a. 假设蒸气遵守理想气体状态方程
相平衡是热力学在化学领域中的重要应用之一。研究 多相体系的平衡在化学、化工的科研和生产中有重要的 意义,例如:溶化、蒸馏、重结晶、萃取、提纯及金相 分析等方面都要用到相平衡的知识。
一、基本概念
第一节 相律
1、 相(phase) 体系内部物理和化学性质完全均匀的 部分称为相。相与相之间在指定条件下有明显的界面, 在界面上宏观性质的改变是飞跃式的。体系中相的总数 称为相数,用Φ表示。
三、自由度数(f)
自由度: 确定平衡体系的状态所必须的独立强度变量的
数目称为自由度,用字母 f 表示。这些强度变量通常是
压力、温度和浓度等。
以水为例〔注意是商量平衡态〕∶ a. 当φ=1时,例如液态水的T、p可在肯定范围内改变, φ不变 ∴ f=2 b. 当φ=2时,例如气-液平衡,指定p外,则Tb确定; 而指定T,则水有确定的平衡蒸气压p,∴ f=1 c. 当φ=3时,即气-液-固三相平衡共存时〔三相点〕,T、 p是确定的〔273.16K、6.1×102Pa、由水的性质所决定〕, ∴ f=0,如果变化T或p,则不可能三相共存〔即φ≠3〕。
一、水的相图 水的相图是依据实验绘制的。图上有:
水 的 相 图
(1) 气、液、固单相区∶f=1-1+2=2
(2) 两相平衡线∶
f=1-2+2=1
OC线∶气-液平衡
T与液态水的饱和蒸气压p蒸气的关系
或沸点Tb与p外的关系
OA线∶液-固平衡 凝固点Tf与p外的关系
OB线∶气-固平衡
T与冰的饱和蒸气压p蒸气的关系
dp/dT=ΔHm / T·ΔVm 此方程适合于任何纯物质的两相平衡
2、对于气-液或气-固两相平衡体系 近似处理∶a. 假设蒸气遵守理想气体状态方程
浙江大学物理化学(甲)第五章(相平衡)
对于NH4Cls 分解为HClg 和NH3 g 的体系,
f * C F 1 其中f * f 1,称为“条件自由度”
18
相律的最普遍形式, 由Gibbs提出 给出了系统的自由度、相数、独立组分数之间的关系。
f C F2
对于通常情况,影响系统的外界条件是温度和压力, 所以上式中用2来表示外界条件数
f S F 2 1 2 2 1
即独立变量为1,可以是T或p,若选T为独立变量,则p必 为温度的函数。 ——克—克方程 (2)I2在水和CCl4分配平衡
f S F 2 3 2 2 3
在等温等压时: f S F 0 3 2 0 1 即独立变量为1,即组成:CI2(水)或CI2(CCl4) ,若选 CI2(水)为独立变量,则CI2(CCl4) 是CI2(水)的函数。
f S F 2 如果令
考虑到(1) (2)两种 情况
f F S R R 2
C S R R C称为独立组分数 number of independen component t
def
则相律可以表示为: C F 2 f
G1 ( , T , p) G2 ( , T , p) G1 dG1 G2 dG2
dG1 dG2
由热力学基本方程式: dG SdT Vdp 代入上式并整理: V2 V1dp S2 S1dT
23
所以:
dp S 2 S1 S dT V2 V1 V
描述系统状态的变量总数为 FS-1)+2
联系浓度之间关系的方程数为 SF-1)
f FS 1 2 S F 1
得到 f S F2
物理化学-第五章 相平衡
•理想液态混合物的蒸气压介于两纯组分蒸气压之间
* p* p p A B
1. 压力-组成图—p-x(y)
(3) 气相线的制作 气相线:液相蒸气总压与蒸气组成关系线。
* pB pB xB yB p p
* * p p* ( p p A B A ) xB
* pB xB yB * * p A +( pB p* A ) xB
讨论组分数(C)与物 种数(S)的关系: 例1:液态水 S=1=C 例2:任意量的PCl5(g)、PCl3(g)和 Cl2(g)构成的平衡系统。 1指的是系统存在一个化学平衡方程式 S=3 C=3-1
PCl5(g)= PCl3(g)+ Cl2(g)
0 vB B
5.1 相律
3.独立组分数(number of independent component) 在平衡系统所处的条件下,能够确保各相组 成所需的最少独立物种数称为独立组分数,用 字母C表示。
在平衡系统所处的条件下,能够确保各相组 成所需的最少独立物种数称为独立组分数,用 字母C表示。
讨论组分数(C)与物 种数(S)的关系: 例1:液态水 S=1 = C
5.1
相律
3.独立组分数(number of independent component) 在平衡系统所处的条件下,能够确保各相组 成所需的最少独立物种数称为独立组分数,用 字母C表示。
5.1
自由度(f)= 系统总变量 -关联方程式数
热力学 平衡系统 S种物种
ф个相
假设S种物种都可 溶于ф个相中
2通常指T, P两个变量
1)系统总变量
1
2
3 … … S系统总变量= NhomakorabeaS-1)ф +2
* p* p p A B
1. 压力-组成图—p-x(y)
(3) 气相线的制作 气相线:液相蒸气总压与蒸气组成关系线。
* pB pB xB yB p p
* * p p* ( p p A B A ) xB
* pB xB yB * * p A +( pB p* A ) xB
讨论组分数(C)与物 种数(S)的关系: 例1:液态水 S=1=C 例2:任意量的PCl5(g)、PCl3(g)和 Cl2(g)构成的平衡系统。 1指的是系统存在一个化学平衡方程式 S=3 C=3-1
PCl5(g)= PCl3(g)+ Cl2(g)
0 vB B
5.1 相律
3.独立组分数(number of independent component) 在平衡系统所处的条件下,能够确保各相组 成所需的最少独立物种数称为独立组分数,用 字母C表示。
在平衡系统所处的条件下,能够确保各相组 成所需的最少独立物种数称为独立组分数,用 字母C表示。
讨论组分数(C)与物 种数(S)的关系: 例1:液态水 S=1 = C
5.1
相律
3.独立组分数(number of independent component) 在平衡系统所处的条件下,能够确保各相组 成所需的最少独立物种数称为独立组分数,用 字母C表示。
5.1
自由度(f)= 系统总变量 -关联方程式数
热力学 平衡系统 S种物种
ф个相
假设S种物种都可 溶于ф个相中
2通常指T, P两个变量
1)系统总变量
1
2
3 … … S系统总变量= NhomakorabeaS-1)ф +2
物理化学之相平衡
通过升华从冻结的样品中除去水份的方法。
E
f=2
B
冰
水
f=2 A
C
气
D
f=2
s+g, f=1,冷冻干燥
T
一、单组分系统的相图
f f=K- +2 水的相图
E
B
冰
水
p
610.6Pa
A:三相点
C
A
气
f=0
D
T
0.0098℃
一、单组分系统的相图
f=K-f+2 水的三相点:水的气、液、固三相平衡点。 f=0,T=273.16K ( 0.01℃),p=610.6Pa 水的凝固点(冰点):水的液、固二相平衡点。
↑
l+g, f=1
l+g, f=1 TB
l, f=2
T
A
xB →
B
T
二、杠杆规则
TA
↑
f f=K- +2 g, f=2
l+g, f=1 TB
l, f=2
A
xB →
B
T
二、杠杆规则
TA
↑
f f=K- +2 g, f=2
l+g, f=1 TB
l, f=2
A
xB →
B
T
二、杠杆规则
TA
↑
f=K-f+2 g, f=2
单位与相图一致
A
x1 x0
y1
B
二、杠杆规则
f=K-f+2 系统温度变化时,相如何变化?
n1L1= n2L2
TA
L1
L2
气
T0时,L1=0,得 n2=0
物理化学-第五章-化学平衡
( g )
3. 增加反应物的量对平衡移动的影响
aA bB yY zZ 恒温恒容条件下增加反应物量对反应平衡的影响:
在已达到平衡的系统中,加入反应物A,瞬间A的分压增加,其他组分分压不变,结果Jp减小, 温度一定,Kϴ不变,反应右移。 恒温恒压条件下增加反应物量并不总是使平衡右移: 当起始反应物配比1:1时,平衡后加入反应物,会使平衡左移。
Kθ的实验测定和平衡组成的计算
Kθ的计算 1. Kθ可由热力学计算得到,由△rGθm=-RTlnKθ计算 2. Kθ 可由实验测定得到,由平衡时Kθ= ∏(PB/Pθ)vB( 理想气 体)可得
平衡组成的特点
1. 反应条件不变,平衡组成不变 2. 一定温度下,正向与逆向反应平衡组成算出的Kθ应一致 3. 温度不变,改变原料配比所得的Kθ应相同
注意:溶剂A和溶质B的标准态不同。
A
B
B
(r b
B
B B
/ b )B
习题
五氯化磷分解反应 在200℃时的Kθ =0.312,计算: (1)200℃、200kPa下PCl5的离解度; ( 2 )组成 1 ∶ 5 的 PCl5 与 Cl2 的混合物,在 200 ℃ 、 101.325kPa下PCl5的离解度。
上式中△rHθ m=∑vB△fHθ m,B=-∑vB△cHθ m,B,△rSθ m=∑vBSθ m,B (2)通过△fGθ m来计算△rGθ m
△rGθ m=∑vB△fGθ m
(3)由相关线性反应计算,如果一个反应可由其他反应线 性组合得到,那么该反应的△rGm也可由相应反应的△rGm线
性组合得到
如 (3)=(1)+ 2*(2),那么 △rGθ m,3=△rGθ m,1+2△rGθ m,2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在单相区,物系点与相点重合;在两相区中, 只有物系点,它对应的两个相的组成由对应的相点 表示。
上一内容 下一内容 回主目录
返回
2020/1/27
5.3 单组分体系的相图
单组分体系的相数与自由度
C=1 当 P=1
P=2
F=C-P+2=3-P
单相
F=2
两相平衡
F=1
双变量体系 单变量体系
P=3 三相共存
O点 是三相点(triple point),气-液-固三相
共存,F 3, f 0 。三
相点的温度和压力皆由
体系自定。
H2O的三相点温度为273.16 K,压力为610.62 Pa。
上一内容 下一内容 回主目录
返回
2020/1/27
水的相图
两相平衡线上的相变过程 在两相平衡线上的任何
上一内容 下一内容 回主目录
返回
2020/1/27
水的相图
上一内容 下一内容 回主目录
返回
2020/1/27
水的相图
OA 是气-液两相平衡线,即水的蒸气压曲线。它 不能任意延长,终止于临界点。临界点T 647 K , p 2.2107 Pa ,这时气-液界面消失。高于临界温 度,不能用加压的方法使气体液化。
上一内容 下一内容 回主目录
返回
2020/1/27
相平衡
相(phase) 体系内部物理和化学性质完全均匀 的部分称为相。相与相之间在指定条件下有明显 的界面,在界面上宏观性质的改变是飞跃式的。
体系中相的总数称为相数,用 表示。
气体,不论有多少种气体混合,只有一个气相。
液体,按其互溶程度可以组成一相、两相或三 相共存。 固体,一般有一种固体便有一个相。两种固体粉 末无论混合得多么均匀,仍是两个相(固体溶液 除外,它是单相)。
响,则2改用n表示,即:
F=C–P+n
上一内容 下一内容 回主目录
返回
2020/1/27
5.3 单组分体系的相图
相点 表示某个相状态(如相态、组成、温度 等)的点称为相点。
物系点 相图中表示体系总状态的点称为物系点。 在T-x图上,物系点可以沿着与温度坐标平行的垂线 上、下移动;在水盐体系图上,随着含水量的变化, 物系点可沿着与组成坐标平行的直线左右移动。
物理化学电子教案—第五章
上一内容 下一内容 回主目录
返回
2020/1/27
第五章 相平衡
5.1 多相体系平衡的一般条件 5.2 相律 5.3 单组分体系的相图 5.4 二组分理想液态混合物的气-液平衡相图 5.5 二组分真实液态混合物的气-液平衡相图
5.6 二组分液态部分互溶和完全不互溶系统的气- 液平衡相图
例如:指定了压力,
f * f 1
指定了压力和温度, f ** f 2
上一内容 下一内容 回主目录
返回
2020/1/27
5.1 多相体系平衡的一般条件
在一个封闭的多相体系中,相与相之间可以有热 的交换、功的传递和物质的交流。对具有F 个相体系 的热力学平衡,实际上包含了如下四个平衡条件: (1)热平衡条件:设体系有, , ,F 个相,达到平衡 时,各相具有相同温度
5.7 二组分系统的液固平衡相图
上一内容 下一内容 回主目录
返回
2020/1/27
相平衡
相平衡是热力学在化学领域中的重要应用之一。 研究多相体系的平衡在化学、化工的科研和生产中 有重要的意义,例如:溶解、蒸馏、重结晶、萃取、 提纯及金相分析等方面都要用到相平衡的知识。
相图(phase diagram) 表达多相体系的状态如何 随温度、压力、组成等强度性质变化而变化的图形, 称为相图。
上一内容 下一内容 回主目录
返回
2020/1/27
相平衡
自由度(degrees of freedom) 确定平衡体系的状 态所必须的独立强度变量的数目称为自由度,用字 母 f 表示。这些强度变量通常是压力、温度和浓度 等。
如果已指定某个强度变量,除该变量以外的其它强
度变量数称为条件自由度,用 f *表示。
上一内容 下一内容 回主目录
返回
2020/1/27
5.2 相律
相律(phase rule)
F=C–P+2
相律是相平衡体系中揭示相数P ,独立组分数C和
自由度 F之间关系的规律,可用上式表示。式中2
通常指T,p两个变量。相律最早由Gibbs提出,所以 又称为Gibbs相律。如果除T,p外,还受其它力场影
T T TF
(2)压力平Βιβλιοθήκη 条件:达到平衡时各相的压力相等p p pF
上一内容 下一内容 回主目录
返回
2020/1/27
5.1 多相体系平衡的一般条件
(3) 相平衡条件: 任一物质B在各相中的化学 势相等,相变达到平衡
B B FB
(4) 化学平衡条件:化学变化达到平衡
BB 0
B
上一内容 下一内容 回主目录
返回
2020/1/27
5.2 相律
独立组分数(number of independent component) 定义: C S R R'
在平衡体系所处的条件下,能够确保各相组成所 需的最少独立物种数称为独立组分数。它的数值等于 体系中所有物种数 S 减去体系中独立的化学平衡数R, 再减去各物种间的浓度限制条件R'。
F=0 无变量体系
单组分体系的自由度最多为2,双变量体系 的相图可用平面图表示。
上一内容 下一内容 回主目录
返回
2020/1/27
水的相图
水的相图是根据实验绘制的。图上有:
三个单相区 在气、液、固三个 单相区内, P=1 F=2 ,温度和 压力独立地有限度地变化不会引起 相的改变。
三条两相平衡线 P=2 F=1 ,压力与温度只能改变 一个,指定了压力,则温度由体系自定。
OB 是气-固两相平衡线,即 冰的升华曲线,理论上可延长 至0 K附近。
OC 是液-固两相平衡线,当C点延长至压力大于 2108 Pa 时,相图变得复杂,有不同结构的冰生成。
上一内容 下一内容 回主目录
返回
2020/1/27
水的相图
OD 是AO的延长线,是过冷水和水蒸气的介稳平衡 线。因为在相同温度下,过冷水的蒸气压大于冰的蒸 气压,所以OD线在OB线之上。过冷水处于不稳定状 态,一旦有凝聚中心出现,就立即全部变成冰。
上一内容 下一内容 回主目录
返回
2020/1/27
5.3 单组分体系的相图
单组分体系的相数与自由度
C=1 当 P=1
P=2
F=C-P+2=3-P
单相
F=2
两相平衡
F=1
双变量体系 单变量体系
P=3 三相共存
O点 是三相点(triple point),气-液-固三相
共存,F 3, f 0 。三
相点的温度和压力皆由
体系自定。
H2O的三相点温度为273.16 K,压力为610.62 Pa。
上一内容 下一内容 回主目录
返回
2020/1/27
水的相图
两相平衡线上的相变过程 在两相平衡线上的任何
上一内容 下一内容 回主目录
返回
2020/1/27
水的相图
上一内容 下一内容 回主目录
返回
2020/1/27
水的相图
OA 是气-液两相平衡线,即水的蒸气压曲线。它 不能任意延长,终止于临界点。临界点T 647 K , p 2.2107 Pa ,这时气-液界面消失。高于临界温 度,不能用加压的方法使气体液化。
上一内容 下一内容 回主目录
返回
2020/1/27
相平衡
相(phase) 体系内部物理和化学性质完全均匀 的部分称为相。相与相之间在指定条件下有明显 的界面,在界面上宏观性质的改变是飞跃式的。
体系中相的总数称为相数,用 表示。
气体,不论有多少种气体混合,只有一个气相。
液体,按其互溶程度可以组成一相、两相或三 相共存。 固体,一般有一种固体便有一个相。两种固体粉 末无论混合得多么均匀,仍是两个相(固体溶液 除外,它是单相)。
响,则2改用n表示,即:
F=C–P+n
上一内容 下一内容 回主目录
返回
2020/1/27
5.3 单组分体系的相图
相点 表示某个相状态(如相态、组成、温度 等)的点称为相点。
物系点 相图中表示体系总状态的点称为物系点。 在T-x图上,物系点可以沿着与温度坐标平行的垂线 上、下移动;在水盐体系图上,随着含水量的变化, 物系点可沿着与组成坐标平行的直线左右移动。
物理化学电子教案—第五章
上一内容 下一内容 回主目录
返回
2020/1/27
第五章 相平衡
5.1 多相体系平衡的一般条件 5.2 相律 5.3 单组分体系的相图 5.4 二组分理想液态混合物的气-液平衡相图 5.5 二组分真实液态混合物的气-液平衡相图
5.6 二组分液态部分互溶和完全不互溶系统的气- 液平衡相图
例如:指定了压力,
f * f 1
指定了压力和温度, f ** f 2
上一内容 下一内容 回主目录
返回
2020/1/27
5.1 多相体系平衡的一般条件
在一个封闭的多相体系中,相与相之间可以有热 的交换、功的传递和物质的交流。对具有F 个相体系 的热力学平衡,实际上包含了如下四个平衡条件: (1)热平衡条件:设体系有, , ,F 个相,达到平衡 时,各相具有相同温度
5.7 二组分系统的液固平衡相图
上一内容 下一内容 回主目录
返回
2020/1/27
相平衡
相平衡是热力学在化学领域中的重要应用之一。 研究多相体系的平衡在化学、化工的科研和生产中 有重要的意义,例如:溶解、蒸馏、重结晶、萃取、 提纯及金相分析等方面都要用到相平衡的知识。
相图(phase diagram) 表达多相体系的状态如何 随温度、压力、组成等强度性质变化而变化的图形, 称为相图。
上一内容 下一内容 回主目录
返回
2020/1/27
相平衡
自由度(degrees of freedom) 确定平衡体系的状 态所必须的独立强度变量的数目称为自由度,用字 母 f 表示。这些强度变量通常是压力、温度和浓度 等。
如果已指定某个强度变量,除该变量以外的其它强
度变量数称为条件自由度,用 f *表示。
上一内容 下一内容 回主目录
返回
2020/1/27
5.2 相律
相律(phase rule)
F=C–P+2
相律是相平衡体系中揭示相数P ,独立组分数C和
自由度 F之间关系的规律,可用上式表示。式中2
通常指T,p两个变量。相律最早由Gibbs提出,所以 又称为Gibbs相律。如果除T,p外,还受其它力场影
T T TF
(2)压力平Βιβλιοθήκη 条件:达到平衡时各相的压力相等p p pF
上一内容 下一内容 回主目录
返回
2020/1/27
5.1 多相体系平衡的一般条件
(3) 相平衡条件: 任一物质B在各相中的化学 势相等,相变达到平衡
B B FB
(4) 化学平衡条件:化学变化达到平衡
BB 0
B
上一内容 下一内容 回主目录
返回
2020/1/27
5.2 相律
独立组分数(number of independent component) 定义: C S R R'
在平衡体系所处的条件下,能够确保各相组成所 需的最少独立物种数称为独立组分数。它的数值等于 体系中所有物种数 S 减去体系中独立的化学平衡数R, 再减去各物种间的浓度限制条件R'。
F=0 无变量体系
单组分体系的自由度最多为2,双变量体系 的相图可用平面图表示。
上一内容 下一内容 回主目录
返回
2020/1/27
水的相图
水的相图是根据实验绘制的。图上有:
三个单相区 在气、液、固三个 单相区内, P=1 F=2 ,温度和 压力独立地有限度地变化不会引起 相的改变。
三条两相平衡线 P=2 F=1 ,压力与温度只能改变 一个,指定了压力,则温度由体系自定。
OB 是气-固两相平衡线,即 冰的升华曲线,理论上可延长 至0 K附近。
OC 是液-固两相平衡线,当C点延长至压力大于 2108 Pa 时,相图变得复杂,有不同结构的冰生成。
上一内容 下一内容 回主目录
返回
2020/1/27
水的相图
OD 是AO的延长线,是过冷水和水蒸气的介稳平衡 线。因为在相同温度下,过冷水的蒸气压大于冰的蒸 气压,所以OD线在OB线之上。过冷水处于不稳定状 态,一旦有凝聚中心出现,就立即全部变成冰。