初二上动点问题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二上动点问题

1.如图,已知△ABC中,∠B=90 º,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

(1)出发2秒后,求线段PQ的长?

(2)当点Q在边BC上运动时,出发几秒钟后,△PQB是等腰三角形?

(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间?

2.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=10cm,直线CM⊥BC,动点D从点C开始沿射线

....CB..方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM..上以每秒2厘米的速度运动,连接AD、AE,设运动时间为t秒.

(1)求AB的长;(2)当t为多少时,△ABD的面积为15cm2?

(3)当t为多少时,△ABD≌△ACE,并简要说明理由.(请在备用图中画出具体图形)

3.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;

(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的

点,且∠EAF=∠BAD上述结论是否仍然成立,并说明理由;

(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进 1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

4.(12分)在等腰△ABC中,AB=AC=2, ∠BAC=120°,AD⊥BC于D,点O、点P分别在射线AD、BA上的运动,且保证∠OCP=60°,连接OP.

(1)当点O运动到D点时,如图一,此时AP=______,△OPC是什么三角形。

(2)当点O在射线AD其它地方运动时,△OPC还满足(1)的结论吗?请用利用图二说明理由。

(3)令AO=x,AP=y,请直接写出y关于x的函数表达式,以及x的取值范围。

图一图二

5.探究题

如图,点O是等边△ABC内一点,∠A OB﹦1100,∠BOC﹦a,将

△BOC绕点C按顺时钟方向旋转60O得△ADC,连接OD.

(1)求证:△COD是等边三角形;

(2)当a﹦150O时,试判断△AOD的形状,并说明理由;

(3)探究:当仅为多少度时,△AOD是等腰三角形?

6.如图,在△ABC中,∠ACB为锐角,点D为BC边上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF.

(1)如图1,若AB=AC,∠BAC=90°,当点D在线段BC上时(不与点B重合),

证明:△ACF≌△ABD

(2)如图2,当点D在线段BC的延长线上时,其它条件不变,猜想CF与BD的数量关系和位置关系是什么,并说明理由;

(3)如图3,若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动(不与点B重合),试探究CF与BD位置关系.

7.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB 上截取AE=AC,连接DE,易证AB=AC+CD.

(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明;

(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.

8.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD 为一边在CD的下方作等边△CDE,连结BE.(1)填空:∠CAM=__________度;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动点D在直线

..AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.

9.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明

①:△ABD≌△ACE②DE=BD+CE

(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

10.如图①,等腰直角三角形的顶点的坐标为,的坐标为,直角顶点在第四象限,线段AC与x轴交于点D.将线段DC绕点D逆时针旋转90°

至DE.

(1)直接写出点B、D、E的坐标并求出直线DE的解析式.

(2)如图②,点P以每秒1个单位的速度沿线段AC从点A运动到点C的过程中,过点P作与x轴平行的直线PG,交直线DE于点G,求与△DPG的面积S与运动时间t的函数关系式,并求出自变量t的取值范围.

(3)如图③,设点F为直线DE上的点,连接AF,一动点M从点A出发,沿线段AF 以每秒1个单位的速度运动到F,再沿线段FE以每秒个单位的速度运动到E后停

止.当点F的坐标是多少时,是否存在点M在整个运动过程中用时最少?若存在,请求出点F的坐标;若不存在,请说明理由.

相关文档
最新文档