第一章 第一节 集合的运算
高中数学必修一第一章第一节:集合的表示课件
首页
上一页
下一页
末页
结束
用列举法表示集合
[例1] (1)设集合A={1,2,3},B={1,3,9},若x∈A且x∉B,
则x=( )
A.1
B.2
C.3
D.9
首页
上一页
下一页
末页
结束
(2)用列举法表示下列集合: ①不大于 10 的非负偶数组成的集合; ②方程 x2=x 的所有实数解组成的集合; ③直线 y=2x+1 与 y 轴的交点组成的集合; ④方程组xx-+yy==-1,1 的解.
首页
上一页
下一页
末页
结束
描述法
[导入新知]
描述法 (1)定义:用集合所含元素的共同特征表示集合的方法. (2) 具 体 方 法 : 在 花 括 号 内 先 写 上 表 示 这 个 集 合 元 素 的 __一__般__符__号__及_取__值__(或__变__化__)_范__围__,再画一条竖线,在竖线后写 出这个集合中元素所具有的_共__同__特__征___.
首页
上一页
下一页
末页
结束
[类题通法]
用列举法表示集合的步骤 (1)求出集合的元素. (2)把元素一一列举出来,且相同元素只能列举一次. (3)用花括号括起来.
首页
上一页
下一页
末页
结束
[活学活用]
已 知 集 合 A = { - 2 , - 1,0,1,2,3} , 对 任 意 a∈A , 有 |a|∈B,且B中只有4个元素,求集合B.
首页
上一页
下一页
末页
结束
(2)设集合 B=x∈N2+6 x∈N
.
①试判断元素 1,2 与集合 B 的关系;
高一数学人教A版必修1教案:第一章第一节集合第四课时 Word版含解析
第一章第一节集合第四课时导入新课问题:①分别在整数范围和实数范围内解方程(x -3)(x -3)=0,其结果会相同吗? ②若集合A ={x |0<x <2,x ∈Z },B ={x |0<x <2,x ∈R },则集合A ,B 相等吗?学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题.推进新课新知探究提出问题①用列举法表示下列集合:A ={x ∈Z |(x -2)(x +31)(x -2)=0; B ={x ∈Q |(x -2)(x +31)(x -2)=0; C ={x ∈R |(x -2)(x +31)(x -2)=0}. ②问题①中三个集合相等吗?为什么?③由此看,解方程时要注意什么?④问题①,集合Z ,Q ,R 分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.⑤已知全集U ={1,2,3},A ={1},写出全集中不属于集合A 的所有元素组成的集合B . ⑥请给出补集的定义.⑦用Venn 图表示∁U A .活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.讨论结果:①A ={2},B ={2,-13},C ={2,-13,2}. ②不相等,因为三个集合中的元素不相同.③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U .⑤B ={2,3}.⑥对于一个集合A ,全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集.集合A 相对于全集U 的补集记为∁U A ,即∁U A ={x |x ∈U ,且x ∉A }.⑦如图6所示,阴影表示补集.图6 应用示例思路1例1设U ={x |x 是小于9的正整数},A ={1,2,3},B ={3,4,5,6},求∁U A ,∁U B .活动:让学生明确全集U 中的元素,回顾补集的定义,用列举法表示全集U ,依据补集的定义写出∁U A ,∁U B .解:根据题意,可知U ={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8};∁U B={1,2,7,8}.点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.常见结论:∁(A∩B)=(∁A)∪(∁B);∁(A∪B)=(∁A)∩(∁B).A∩B,∁U(A∪B).活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A∩B是由集合A,B中公共元素组成的集合,∁U(A∪B)是全集中除去集合A∪B中剩下的元素组成的集合.解:根据三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},例1已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求:(1)∁U A,∁U B;(2)(∁U A)∪(∁U B),∁U(A∩B),由此你发现了什么结论?(3)(∁U A)∩(∁U B),∁U(A∪B),由此你发现了什么结论?活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.解:在数轴上表示集合A,B,如图7所示,图7(1)由图得∁U A={x|x<-2或x>4},∁U B={x|x<-3或x>3}.(2)由图得(∁U A)∪(∁U B)={x|x<-2或x>4}∪{x|x<-3或x>3}={x|x<-2或x>3};∵A∩B ={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},∴∁U(A∩B)=∁U{x|-2≤x≤3}={x|x<-2或x>3}.∴得出结论∁U(A∩B)=(∁U A)∪(∁U B).(3)由图得(∁U A)∩(∁U B)={x|x<-2或x>4}∩{x|x<-3或x>3}={x|x<-3或x>4};∵A∪B ={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},∴∁U(A∪B)=∁U{x|-3≤x≤4}={x|x<-3U UA)∩(∁U B)={2,17},求集合A,B.U活动:学生回顾集合的运算的含义,明确全集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的Venn图中即可.求集合A,B的关键是确定它们的元素,由于全集是U,则集合A,B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于Venn图来解决.解:U={2,3,5,7,11,13,17,19},由题意借助于Venn图,如图8所示,图8∴A={3,5,11,13},B={7,11,13,19}.点评:本题主要考查集合的运算、V enn图以及推理能力.借助于Venn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表示出来,这正体现了数形结合思想的优越性.图9)(N∩P)M内部,排除C;阴影部分不在集合内部,即是M的子集,又阴影部分在图10课本本节练习,4.【补充练习】课堂小结本节课学习了:①全集和补集的概念和求法.②常借助于数轴或Venn图进行集合的补集运算.作业课本习题1.1,A组,9,10,B组,4.设计感想本节教学设计注重渗透数形结合的思想方法,因此在教学过程中要重点指导学生借助于数轴或Venn图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节对此也予以体现,可以利用课余时间学习有关解不等式的知识.备课资料[备选例题]【例1】已知A={y|y=x2-4x+6,x∈R,y∈N},B={y|y=-x2-2x+7,x∈R,y∈N},求A∩B,并分别用描述法、列举法表示它.解:y=x2-4x+6=(x-2)2+2≥2,A={y|y≥2,y∈N},又∵y=-x2-2x+7=-(x+1)2+8≤8,∴B={y|y≤8,y∈N}.故A∩B={y|2≤y≤8}={2,3,4,5,6,7,8}.【例2】设S={(x,y)|xy>0},T={(x,y)|x>0且y>0},则()A.S∪T=S B.S∪T=T C.S∩T=S D.S∩T=∅解析:S={(x,y)|xy>0}={(x,y)|x>0且y>0,或x<0且y<0},则T⊆S,所以S∪T=S.答案:A【例3】某城镇有1000户居民,其中有819户有彩电,有682户有空调,有535户彩电和空调都有,则彩电和空调至少有一种的有________户.解析:设这1000户居民组成集合U,其中有彩电的组成集合A,有空调的组成集合B,如图13所示.有彩电无空调的有819-535=284(户);有空调无彩电的有682-535=147(户),因此二者至少有一种的有284+147+535=966(户).填966.图13答案:966差集与补集有两个集合A,B,如果集合C是由所有属于A但不属于B的元素组成的集合,那么C 就叫做A与B的差集,记作A-B(或A\\B).例如,A={a,b,c,d},B={c,d,e,f},C=A-B={a,b}.也可以用Venn图表示,如图14所示(阴影部分表示差集).图14图15特殊情况,如果集合B是集合I的子集,我们把I看作全集,那么I与B的差集I-B,叫做B在I中的补集,记作B.例如,I={1,2,3,4,5},B={1,2,3},B=I-B={4,5}.也可以用Venn图表示,如图15所示(阴影部分表示补集).从集合的观点来看,非负整数的减法运算,就是已知两个不相交集合的并集的基数,以及其中一个集合的基数,求另一个集合的基数,也可以看作是求集合I与它的子集B的差集的基数.。
第一章 集合的概念及运算(集合论讲义)
(5) 德·摩根律 A ∪ B = A ∩ B , A ∩ B = A ∪ B
A − (B ∪ C) = (A − B) ∩ (A − C) , A − (B ∩ C) = (A − B) ∪ (A − C)
4
|
A1
|=
⎢ 250 ⎥ ⎢⎣ 2 ⎥⎦
=
125
,|
A2
|=
⎢ 250 ⎢⎣ 3
⎥ ⎥⎦
=
83
,|
A3
|=
⎢ 250 ⎥ ⎢⎣ 5 ⎥⎦
=
50
,|
A4
|=
⎢ ⎢⎣
250 ⎥ 7 ⎥⎦
=
35
,
|
A1
∩
A2
|=
⎢ ⎢⎣
250 ⎥ 2× 3⎥⎦
=
41
,|
A1
∩
A3
|=
⎢ 250 ⎥ ⎢⎣2× 5⎥⎦
=
(6) 吸收律 A ∪ ( A ∩ B) = A , A ∩ ( A ∪ B) = A (7) 零律 A ∪ E = E , A ∩ ∅ = ∅ (8) 同一律 A ∪ ∅ = A , A ∩ E = A (9) 排中律 A ∪ A = E
5
(10) 矛盾律 A ∩ A = ∅ (11) 全补律 ∅ = E , E = ∅ (12) 双重否定律 A = A (13) 补交转换律 A − B = A ∩ B
3
还可以将交,并运算推广到集族上。
∪ 定义 2.3 设 A 为一个集族,称由 A 中全体集合的元素组成的集合为 A 的广义并集,记作 A , ∪ 称 ∪ 为广义并运算符, A 可描述为
高考数学总复习 第一章 第一节集合的概念与运算课件 理
第十七页,共35页。
考点(kǎo 集合(jíhé)的基本关系及空集的妙用 diǎn)三
【例3】 设集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m -1},若B⊆A,求实数(shìshù)m的取值范围.
思路点拨:考查集合间的包含、相等关系,关键搞清A,B两 集合谁是谁的子集.若B⊆A,说明B是A的子集,即集合B中元素 都在集合A中,注意B是∅的情况;同样若A⊆B,说明A是B的子集, 此时注意B是不是∅;若A=B,说明两集合元素完全相同.
A.A=B B.B=C C.C=E D.B=E
思路点拨:要注意分辨各集合的代表元素是什么,如果性质 相同,但代表元素不同,则它们所表示的集合也是不一样的.因此 对于集合问题(wèntí),要首先确定它属于哪类集合(数集、点集或某 类图形).
第十五页,共35页。
解析:集合 A 是用列举法表示,它只含有一个元 素,即函数 y=x2+2,集合 B,C,E 中的元素都是数, 即这三个集合都是数集,集合 B 表示的是函数 y=x2 +2 的值域2,+∞,集合 C 表示的是函数 y=x2+2 的 定 义 域 R, 集 合 E 是不 等 式 x - 2≥0 的 解集 2,+∞,集合 D 的元素则是平面上的点,此集合是 函数 y=x2+2 的图象上所有点所组成的集合.故只有 B=E.故选 D.
第七页,共35页。
2.并集. (1)定义: 由所有属于集合A或集合B的元素组成的集合,称 为(chēnɡ w集éi)合__(_j_íh_é_)_A_与__集__合__(_j_íh的é)并B集,记作___A__∪__B_____(读作 “A并B”).即 A∪B={ x|x∈A,或x∈B}. (2)性质:
第一章集合与不等式的解法
第一章集合和不等式的解法第一节集合的含义与表示例1已知集合A={a,a+b,a+2b},B={a,ac,a c 2},若A=B,求实数c 的值。
例2用适当的方法表示集合(1) x 2=9的解集;(2) 不等式2x+1>5的解集;(3) 方程组解集{x +y =2x −y =4; (4) {x |y=√4−2x };(5) {y |y=√4−2x }.例3已知集合A={x |m x 2-3x+2=0},若A 中至多一个元素,求实数m 的取值范围。
第二节集合间的基本关系例1已知集合A={x |x=2n,n ϵz},B={x |x=4n,n ϵz },则A 与B 的关系是____________例2已知集合A={0,1},B={x |x ϵA },C={x |x ⊆A},则A,B,C 的关系是________________________ 例3已知{1,2}⊆A ⊆{1,2,3,4,5},满足条件的集合A 的个数是___________________ 例4M={1,2,3,4,5,6,7},N ≠Ø,N ⊆M,若a ∈N,则8-a ϵN,则满足条件的集合N 的个数为_______________ 例5已知A={x |x 2−2x −3=0},B={x |ax-1=0},若B ⊆A,求a 的值。
第三节集合的基本运算已知A={x |x ≤5},B={x |x>2a-1},若A ∪B=R,求实数a 的取值范围。
设集合A={-2,0,4},B={m,m 2},则使A ∪B=A 成立的m 的值为___________________例2 A={1,3,5,7},B={2,3,5,6,8,9},则A ∩B =_______________________设A={x |x>-1},B={x |x ≤2},则A ∩B =_____________________ 例3已知集合A={x |x 2−3x −10≤0},B={x |m+1≤x ≤2m −1},若A ∩B =B ,则实数m 的取值范围为_________________例4若U={1,2,3},A={1,3}则C U A=_________________若U={2,5,a2+2a+1},A={2,5},C U A={0},则a=________________已知A={1,3,5},C U A={−2,2},C U B={−2,1,3},则B=_____________________例5已知集合A={x|x<a},B={x|1≤x≤2},且A∪(C R B)=R,则实数a的取值范围是____________ 第4节一元二次不等式的解集例1解不含参数的一元二次不等式(1)x2−x−6≤0(2)4x-x2>0(3)-2x2+x-6<0 (4)x2−4x+4≥0例2解含参数的一元二次不等式(1)解关于x的不等式x2−(a+a2)x+a3>0(2)解关于x的不等式a x2−(a+1)x+1<0(a<1)例3不等式恒成立问题若关于x的一元二次不等式2x2−8x+6−m>0对任意的xϵR恒成立,求实数m的取值范围第5节分式不等式和高次不等式的解决例1可化为一元二次不等式的简单分式不等式的解法(1)2−xx+3>0(2)2x−13x+1≥0(3)2−xx+3>1例2解下列不等式(1)(x-2)(x+2)(x-1)(x+1)>0 (2)(x2−5x−6)(1−x)>0(3)(x−2)2(x−3)3(x+1)<0 (4)(x-3)(x+1)(x2+4x+4)≤0第6节绝对值不等式的解法例1解下列不等式(1)|x|<8(2)|5-3x|≥10(3)2<|x+1|<3例2解下列不等式(1)|x+1|>2-x (2)|x2−2x−6|<3x例3解不等式|2x-1|<|x+3|例4解不等式|x-1|+|x+2|<5例5解不等式|2x+3|<|x+8|+5x-2。
集合的概念及其运算
第一节 集合一.考试要求:理解集合,子集,补集,交集,并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语和符号,并用它们正确表示一些简单的集合。
二.基本概念和性质1.集合的基本概念:某些指定的对象集在一起成为一个集合。
其中每一个对象叫做集合的_______,集合中的元素具有________、_________、________三个特性。
2.集合的三种表示方法:_________、________、_________,它们各有优点,用什么方法来表示集合要具体问题具体分析。
3.集合中元素与集合的关系分为__________或_________,它们用符号___或____表示。
4.集合间的关系及运算子集:___________________________________称A 为B 的子集,记作为_____;真子集:___________________________________称A 为B 的真子集,记为_____;空集:____________________,记为_____补集:如果已知全集U ,集合A U ⊆,则U C A =_________________;交集:A B =___________________;并集:AB =_____________________5.集合中常用运算性质 若,A B B A ⊆⊆则______,若,A B B C ⊆⊆则_______, ___A ∅,若,A ≠∅则___A ∅,___,__,__,__A A A A A A =∅==∅=__U A C A = __,()__,()__U U U A C A C A B C A B ===____A B A B A B ⊆⇔=⇔=6.熟练掌握描述法表示集合的方法,理解下列五个常见集合:{}{}{}{}{}(1)|()0,:______________(2)|()0,:_________________(3)|():____________________(4)|(),:________________(5)(,)|(),:__________________________x f x x R x f x x R x y f x y y f x x M x y y f x x M =∈>∈==∈=∈7.特别注意:(1)空集和全集是集合中的特殊集合,应引起重视,特别是空集,避免误解或漏解。
人教A必修第一册第一章:集合的基本运算-全集与补集
3}.
课堂总结
补集及其 ∪ =
(4) ∩ = ∅
(5) ∩ = ( ∪ )
(6) ∪ = ( ∩ );
⊆ B ⟺ ∪ =
典例4
已知U={1, 2, 3, 4, 5, 6, 7}, A={2, 4, 5}, B={1, 3, 5, 7},
求A∩(CUB), (CUA)∩(CUB).
解法一:依题意可知, CUA={1, 3, 6, 7}, CUB={2, 4, 6},
∴ A∩(CUB)={2, 4, 5}∩{2, 4, 6} ={2, 4}.
素,那么就称这个集合为全集,记作U .
请指出以下例子中的全集:
(1)在实数范围内解方程: x 2 x 2 3 0.
(2)在有理数范围内解方程: x 2 x 2 3 0.
2. 补集的概念
概念
对于一个集合A,由全集U中的不属于A的所有元素组成的集合称
为集合A 相对于全集U的补集,简称为集合A的补集,记作
答案:{2,4,6}
5.设集合 U={1,2,3,4,5},A={1,2,3},B={2,5},则 A∩(∁UB)
等于________.
解析:∵U={1,2,3,4,5},B={2,5},∴∁UB={1,3,4}.
又 A={1,2,3},∴A∩(∁UB)={1,2,3}∩{1,3,4}={1,3}.
(CUA)∩(CUB)={1, 3, 6, 7}∩{2, 4, 6}={6}.
已知 = {1,2,3,4,5,6,7}, = {2, 4, 5} , = {1, 3, 5, 7} ,
第一章 第一节 集合
5.理解两个集合的并集与交集的含义,会求两 .理解两个集合的并集与交集的含义, 个简单集合的并集与交集; 个简单集合的并集与交集; 6.理解在给定集合中一个子集的补集的含义, .理解在给定集合中一个子集的补集的含义, 会求给定子集的补集; 会求给定子集的补集; 7.能使用韦恩图表达集合的关系和运算. .能使用韦恩图表达集合的关系和运算.
2.设集合A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7}, .设集合 = , + = , = , + = , 则满足C⊆ ∩ 的集合 的集合C的个数是 则满足 ⊆(A∩B)的集合 的个数是 A.0 . C.2 . B.1 . D.3 .
x=1, = , ⇒ y=2, = ,
b 4.若 a,b∈R,集合 ,a+b,a}={0,a,b},求 b2011 . , ∈ ,集合{1, + , = , , 的值. -a2011 的值.
b 解:由{1,a+b,a}={0,a,b}可知 a≠0,则只能 a , + , = , 可知 ≠ , 则有以下对应关系: +b=0.则有以下对应关系: = 则有以下对应关系 a+b=0, + = , b =a, , a b=1 = 由①得 a+b=0, + = , b=a, = , ① 或 b a=1.
4.集合的表示法: 列举法 、 描述法 、韦恩图 . .集合的表示法:
二、集合间的基本关系 表示 关系 定义 记法 A=B =
集合A与集合 与集合B中的所有元素都相同 集合 相等 集合 与集合 中的所有元素都相同
间的 子集 A中任意一元素均为 中的元素 中任意一元素均为B中的元素 中任意一元素均为 A⊆B 或 B⊇A ⊆ ⊇ 基本 中任意一元素均为B中的元素 真子 A中任意一元素均为 中的元素,且 中任意一元素均为 中的元素, A B或B A 关系 中至少有一个元素A中没有 集 B中至少有一个元素 中没有 中至少有一个元素 空集是任何集合的子集 空集 空集是任何 非空集合 的真子集 ∅⊆B ∅⊆ ∅B (B≠∅) ≠
集合与常用逻辑用语--2023高考真题分类汇编完整版
集合与常用逻辑用语--高考真题汇编第一章第一节集合1.(2023全国甲卷理科1)设集合{}31,A x x k k ==+∈Z ,{}32,B x x k k ==+∈Z ,U 为整数集,则()U A B = ð()A.{}3,x x k k =∈ZB.{}31,x x k k =-∈ZC.{}32,x x k k =-∈Z D.∅【分析】根据整数集的分类,以及补集的运算即可解出.【解析】因为整数集{}{}{}3,3+1,3+2,x x k k x x k k x x k k ==∈=∈=∈Z Z Z Z ,=U Z ,所以(){}3,U A B x x k k ==∈Z ð.故选A .2.(2023全国甲卷文科1)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}2,5N =,则U N M = ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【分析】利用集合的交并补运算即可得解.【解析】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð.故选A.3.(2023全国乙卷理科2)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x =()A.()U M N ð B.U N Mð C.()U M N ð D.U M Nð【分析】由题意逐一考查所给的选项运算结果是否为{}2x x 即可.【解析】由题意可得{}2M N x x =< ,则(){}2U M N x x = ð,选项A 正确;{}1U M x x =ð,则{}1U N M x x =>- ð,选项B 错误;{}11M N x x =-<< ,则(){}11U M N x x x =- 或ð,选项C 错误;{}12U N x x x =-或ð,则{}12U M N x x x =< 或ð,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集{}0,1,2,4,6,8U =,集合{}0,4,6M =,{}0,1,6N =,则U M N = ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U【分析】由题意可得U N ð的值,然后计算U M N ð即可.【解析】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选A.5.(2023新高考I 卷1)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =()A.{}2,1,0,1--B.{}0,1,2 C.{}2- D.{}2【解析】{}(][)260,23,N x x x =--≥=-∞-+∞ ,所以{}2M N =- ,故选C.6.(2023新高考II 卷2)2.设集合{}{}0,,1,2,22A a B a a =-=--,若A B ⊆,则a =()A.2 B.1 C.23D.1-【解析】因为A B ⊆,所以必有20a -=或220a -=,解得2a =或1a =.当2a =时,{}{}0,2,1,0,2A B =-=,不满足A B ⊆;当1a =时,{}{}0,1,1,1,0A B =-=-,符合题意.所以1a =.故选B.7.(2023北京卷1)已知集合{}20M x x =+,{}10N x x =-<,则M N = ()A.{}21x x -<B.{}21x x -<C.{}2x x - D.{}1x x <【分析】先化简集合,M N ,然后根据交集的定义计算.【解析】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣,根据交集的运算可知,{|21}M N x x =-≤< .故选A.8.(2023天津卷1)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A = ð()A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【分析】对集合B 求补集,应用集合的并运算求结果;【解析】由{3,5}U B =ð,而{1,3}A =,所以{1,3,5}U B A = ð.故选A.第二节充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023新高考I 卷7)已记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ≠,则“0x y +=”是“2x yy x+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解法一:证明充分性可由0x y +=得到x y =-,代入x yy x+化简即可,证明必要性可由2x y y x +=-去分母,再用完全平方公式即可;解法二:由x y y x+通分后用配凑法得到完全平方公式,证明充分性可把0x y +=代入即可;证明必要性把2x yy x+=-代入,解方程即可.【解析】解法一:充分性:因为0xy ≠,且0x y +=,所以x y =-,所以112x y y y y x y y-+=+=--=--,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.解法二:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+-+++--+===-,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-,所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.4.(2023天津卷2)“22a b =”是“222a b ab +=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【解析】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立;所以22a b =是222a b ab +=的必要不充分条件.故选B.。
高中数学知识点总结(第一章 集合与常用逻辑用语)
第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。
第一章 集合 —2022届高三数学一轮复习备考
第一章 第一节 集合1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法2.集合的基本关系⎪⎩⎪⎨⎧⊂⊄⊆=⊆⊆⊆≠),,(),,()()1(B A A B B A B A A B B A B A 则若真包含则若相等包含其中,若B A ⊆,则称A 是B 的子集,若B A ≠⊂,则称A 是B 的真子集.(2)空集:不含任何元素的集合叫做空集,记为φ.规定:空集是任何集合的子集、空集是任何非空集合的真子集.(3)集合中元素个数与子集个数的关系:若有限集合A 中有n 个元素,则集合A 的子集个数为2n ,真子集个数为2n -1,非空真子集个数为2n -2. 3.集合的基本运算(1)并集的常考性质A ⊆A ∪B,B ⊆A ∪B.A ⊆B ⇔A ∪B=B. A ∪B=∅⇔A=B=∅. (2)交集的常考性质A ∩B ⊆A,A ∩B ⊆B.A ⊆B ⇔A ∩B=A. A ∩B=A ∪B ⇔A=B. (3)补集的常考性质A ∪(∁U A)=U A ∩(∁U A)=∅∁U (∁U A)=A∁U (A ∩B)=(∁U A)∪(∁U B)∁U (A ∪B)=(∁U A)∩(∁U B).考点1 集合的含义与表示1.已知集合A ={0,1,2},则集合B =中元素的个数是( ) A .1 B .3C .5D .92.若集合A ={−1,1},B ={0,2},则集合{z|z =x +y,x ∈A,y ∈B}中的元素的个数为( ) A .5 B .4 C .3 D .23.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x −y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .104.已知集合A ={(x,y)|x,y ∈N ∗,y ≥x},B ={(x,y)|x +y =8},则A ∩B 中元素的个数为() A .2 B .3C .4D .65.已知集合A ={(x,y)│x 2+y 2=1},B ={(x,y)│y =x},则A ∩B 中元素的个数为( ) A .3B .2C .1D .06.已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .47.已知集合A ={(x,y)|x,y 为实数,且x 2+y 2=1},B ={(x,y)|x,y 为实数,且x +y =1},则A ∩B 的元素个数为( )A .4B .3C .2D .1{}|,x y x A y A -∈∈8.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=.9.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4B.2C.0D.0或410.已知集合A={x|ax=1},B={x|x2-1=0},若A⊆B,则a的取值构成的集合是( )A.{-1}B.{1}C.{-1,1}D.{-1,0,1}11.已知M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值为( )(A)1 (B)-1 (C)1或-1 (D)0或1或-112.设集合A={x|(x-a)2<1},且2∈A,3∉A,则实数a的取值范围为________.考点2 集合间关系1.若P={x|x<1},Q={x|x>−1},则( )A.P⊆Q B.Q⊆P C.C R P⊆Q D.Q⊆C R P2.已知集合A={x|x2-2x>0},B={x||x−2|≤5},则( )A、A∩B=B、A∪B=RC、B⊆AD、A⊆B3.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是( ) A.(−∞,−1] B.[1,+∞) C.[−1,1] D.(−∞,−1] ∪[1,+∞)4.已知集合M={0,1,2,3,4},N={1,3,4,5},P=M∩N,则P的真子集共有( ) (A)2个(B)4个(C)6个(D)7个5.已知集合A={x|x2−3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1 B.2 C.3 D.46.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( ) A.∅B.S C.T D.Z∪B=A,则m= .7.已知集合8.若集合A={1,a,b},B={a,a2,ab},且A∪B=A∩B,则实数a的取值集合是.9.已知a ∈R,b ∈R,若{ a,ln(b+1),1}={a 2,a+b,0},则a2018+b2018=________.考点3 集合间的基本运算1.已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A ∩B= ( )(A){1,4} (B){2,3} (C){9,16}(D){1,2}2.已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A ∩B 中的元素个数为( )(A) 5 (B)4 (C)3 (D)23.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则C U A ∩B =( ) A. {}1- B. {}0,1 C. {}1,2,3- D. {}1,0,1,3-4.已知全集U =R,A ={x|x ≤0},B ={x|x ≥1},则集合C U (A ∪B)=( ) A .{x|x ≥0} B .{x|x ≤1} C .{x|0≤x ≤1} D .{x|0<x <1}5.已知集合P ={x |x 2−2x ≥0},Q ={x |1<x ≤2},则(∁R P)∩Q =( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]6.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,C ={x ∈R|1⩽x <3} ,则()A C B =( )A. {2}B. {2,3}C. {-1,2,3}D. {1,2,3,4}7.已知集合均为全集的子集,且C U (AUB )={4},,则A ∩C U B =( )A.{3} B .{4}C .{3,4}D .8.若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( ) A .M ∪N B .M ∩N C .(C n M )∪(C n N ) D .(C n M )∩(C n N )B A 、}4,3,2,1{=U {1,2}B =∅9.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩C I M =∅,则M ∪N =( )A .MB .NC .ID .∅10.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =() A .–4 B .–2 C .2 D .411.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}12.设集合A ={x ∈Z||x+1|≤3},B ={x|32x≤1},则A ∩B =( )A .{﹣4,﹣3,﹣2,0,2}B .{2}C .{﹣4,﹣3,﹣2,﹣1,2}D .{1,2}13.已知集合104x A xx ⎧⎫-=<⎨⎬-⎩⎭,{}2230B x x x =--≥,则A B 等于( )A .(-1,1]B .(](),11,-∞-+∞C .[3,4)D .(][),13,-∞-+∞14.已知集合02xA x x ⎧⎫=≤⎨⎬+⎩⎭,集合{}0B x x =>,则A B =( )A .{}2x x ≥-B .{}2x x >-C .{}0x x ≥D .{}0x x >15.已知全集为,集合,,则( )A .B .{x|2≤x ≤4}C .D .16.设集合 则=( )A .B .C .D .17.设全集U=R,集合A={x|2x-x 2>0},B={y|y=e x +1},则A ∪B 等于( ) A.{x|x<2}B.{x|1<x<2}C.{x|x>1}D.{x|x>0}R 112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}2|680B x x x =-+≤R A C B ={}|0x x ≤{}|024x x x ≤<>或{}|024x x x <≤≥或2{|2,},{|10},x A y y x B x x ==∈=-<R AB (1,1)-(0,1)(1,)-+∞(0,)+∞18.设集合A ={x||x −1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4)19.设集合M ={x|x 2=x},N ={x|lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(−∞,1]20.已知全集为R,集合A={x|lgx ≤1},B={x|x 2-6x+8≤0},则A ∩(∁R B)=.21.已知U={y|y=log 2x,x>1}, P={y|y =1x ,x >2},则∁U P= ( )11A.[) B.(0,)221C.(0,)D. (,0][,)2+∞ +∞ -∞⋃+∞,22.已知集合A ={x |0<log 4x <1},B ={x |e x-2≤1},则A ∪B =( ) A .(﹣∞,4) B .(1,4)C .(1,2)D .(1,2]。
中职数学-第一章-集合
第三节 集合的运算
思考与讨论
例4中集合A、B的交集{(1,2)}能否写成{1, 2}?有什么区别呢?
第三节 集合的运算
二、 并集
观察下面三个集合: M={-2,-1,0},N={1,2,3,4},P={-2,1,0,1,2,3,4}, 可以看出,集合P是集合M与集合N的所有元素组成的. 一般地,像上述那样,对于两个给定的集合A、B,由 集合A和集合B的所有元素组成的集合叫作集合A和集合B的并 集,记作
二、 集合的表示方法
用列举法表示集合时,一般不考虑元 素的排列顺序,如集合{1,2}与集合{2,1}表 示的是同一个集合.
如何表示一个集合呢?常用的表示方 法有列举法和描述法两种.
第一节 集合的概念
1. 列举法
把集合的元素一一列举出来,元素中间用逗号 隔开,写在花括号“{}”中用来表示集合,这种 方法即为列举法.例如,由小于5的自然数所组成的 集合可表示为
课堂练习
(1){1,3,5} (2){x|x2=9} ( 3 ) a {a}; (4){2,4,6}
{1,2,3,4,5}; {-3,3};
{4,6}.
第三节 集合的运算
过去我们只对数或式子进行算 术运算或代数运算,那么集合与集 合之间可以进行运算吗?
由两个已知的集合按照某种 指定的法则构造出一个新的集合即 为集合的运算.
第一节 集合的概念
课堂练习
1.用符号“∈
(1)-3 N; (2)3.14 Q;
(3)π Q; (4)0.5
Z;
(5)1.8 R; (6)-1
N*.
2.判断下列语句是否正确:
(1)由1,2,4,2构成一个集合,这个集合共有4个元素;
(2)方程x2+1=0的所有解组成的集合为空集.
第一章 第一节 集 合
集合间的基本关系
讲练融通
(1)(2022·山东泰安二模)设全集 U=R,则集合 M={0,1,2}和 N={x|x·(x -2)·log2x=0}的关系可表示为( )
(2)(2022·吉安期中)已知全集 U=R,集合 A={x|-2≤x≤7},B={x|m+ 1≤x≤2m-1},则使 B⊆A 成立的实数 m 的取值范围是________.
3.已知集合 A={1,2,3},B={1,m,n},若 3-m∈A,n+1∈A,则非 零实数 m+n 的可能取值构成的集合是________.
答案:{2} 解析:因为 3-m∈A,所以 3-m=1 或 3-m=2 或 3-m=3, 解得 m=2 或 m=1 或 m=0, 因为 n+1∈A,所以 n+1=1 或 n+1=2 或 n+1=3, 解得 n=0 或 n=1 或 n=2,又因为 B={1,m,n},所以mn==02, 或mn==20,, 即 m+n=2.
把 y= 3 x+4 代入 x2+y2=4,得 x2+2 3 x+3=0,解得 x=- 3 ,有唯
一解,故集合 A∩B 中元素的个数为 1.
2.已知集合 A={x∈N|1<x<log2k},集合 A 中至少有 3 个元素,则( ) A.k≥16 B.k>16 C.k≥8 D.k>8 B 解析:由集合 A 中至少有 3 个元素,得 log2k>4,解得 k>16,故选 B.
练4 已知集合 M={x|0<x<5},N={x|m<x<6}.若 M∩N={x|3<x<n},则 m
+n 等于( )
A.9
B.8
C.7
D.6
B 解析:因为 M∩N={x|0<x<5}∩{x|m<x<6}={x|3<x<n},所以 m=3,n=
高考数学复习笔记1第一章 第一节 集合
数学一轮总复习 第一章 集合与简易逻辑第一节 集合【考纲要求】【知识网络】【考点梳理】 一.集合的概念:集 合集 合 表 示 法集 合 的 关 系集 合 的 运 算 描 述 法图 示 法列 举 法 相 等 包 含 交 集并 集 补 集子集、真子集1.一般的,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集。
集合通常用大写的拉丁字母表示,如A 、B 、C 、……元素通常用小写的拉丁字母表示,如a 、b 、c 、…… 2.集合中元素特征(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. (2)互异性:集合中的元素一定是不同的. (3)无序性:集合中的元素没有固定的顺序. 3.集合的分类:根据集合所含元素个属不同,可把集合分为如下几类: (1)把不含任何元素的集合叫做空集Ф (2)含有有限个元素的集合叫做有限集 (3)含有无穷个元素的集合叫做无限集 注:应区分Φ,}{Φ,}0{,0等符号的含义 4、常用数集(1)非负整数集(自然数集):全体非负整数的集合.记作N (2)正整数集:非负整数集内排除0的集.记作N *或N + (3)整数集:全体整数的集合.记作Z (4)有理数集:全体有理数的集合.记作Q (5)实数集:全体实数的集合.记作R 注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N *或N +,Q 、Z 、R 等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z *二.集合的表示法:1.列举法:用来表示有限集或具有显著规律的无限集,如N +={0,1,2,3,…};2.描述法:例如,不等式232>-x x 的解集可以表示为:}23|{2>-∈x x R x 或}23|{2>-x x x , 3.韦恩图: 4.区间法:三.集合间的基本关系:1.元素与集合的关系,用∈或∉表示;属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A 不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉ 要注意“∈”的方向,不能把a ∈A 颠倒过来写.2.集合与集合的关系,用⊆,≠⊂,=表示,当A ⊆B 时,称A 是B 的子集;当A ≠⊂B 时,称A 是B 的真子集。
第一节 集合概念及其运算
第一章 集合与常用逻辑用语【知识导读】【方法点拨】1. 集合蕴涵着一种数学思想即对应的思想,数学的统一靠集合的语言,语言的形式化、符号化为现代数学的逻辑结构及相互关系提供了较好的表达、组织方式.在复习中应强调渗透和运用集合的语言、思想和方法.2. 逻辑体现了一种数学思想,即转化的思想.命题的转化有等价和不等价的,主要依据四个命题的关系和充分性、必要性.3.已知简单命题的真假而判断由其构成的复合命题的真假,主要是依据真值表而不是命题的具体内容,这种判断实际上是一种命题演算,是抽象的判断,而不是经验的判断. 4. 判断全称命题是假命题,只要在限定的集合M 中找到一个0x x =使)(0x p 不成立;要判断一个特称命题是真命题,只要在限定的集合M 中至少找到一个0x x =使)(0x p 为真.全称量词的否定是存在量词,存在量词的否定是全称量词;全称命题的否定是特称命题,特称命题的否定是全称命题.第1课 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想. 【基础练习】1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表示{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}.2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=∅.3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=____________. 4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I A =ð,则实数a 的值为____8或2___.5. 已知集合[1,4)A =,(,)B a =-∞,若A B A ⋂=,则实数a 的取值范围____________. 6. 已知集合{|10}M x x =+<,1{|0}N x x=>,则图中【范例解析】例1. 设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,求b a -的值.分析:利用集合中元素互异性和集合相等性质,得到集合中对应元素的关系.解:由题知,0a ≠, 0a b +=,则1b a =-,所以 1baa b ⎧=⎪⎨⎪=⎩,解得11a b =-⎧⎨=⎩,所以2b a -=.点评:本题以集合中元素的性质为载体,考察学生对条件的把握分析能力,以寻找解题的突破口. 例2.已知集合{026}A x ax =<+≤,{124}B x x =-<≤.(1) 若A B A ⋂=,求实数a 的取值范围;(2) 集合A ,B 能否相等?若能,求出a 的值;若不能,请说明理由. 分析:(1)对a 进行分类讨论,利用数轴求a 的取值范围. 解: {124}B x x =-<≤1{2}2x x =-<≤,{026}A x ax =<+≤{24}x ax =-<≤. ①当0a =时,A R =,所以A B ⊆不可能;第6题{0,2} [4,)+∞②当0a >时,24{}A x x a a =-<≤,若A B ⊆,则21,24 2.a a ⎧-≥-⎪⎪⎨⎪≤⎪⎩解得4a ≥.③当0a <时,42{}A x x a a =≤<-,若A B ⊆,则41,22 2.a a⎧>-⎪⎪⎨⎪-≤⎪⎩解得8a <-.综上所得,a 的取值范围为(,8)[4,)-∞-⋃+∞.(2)分析一:求出满足B A ⊆时a 的取值范围,再与(1)取交集.解法一:①当0a =时,A R =,所以B A ⊆成立;②当0a >时,24{}A x x a a =-<≤,若B A ⊆,则21,24 2.a a ⎧-≤-⎪⎪⎨⎪≥⎪⎩解得02a <≤.③当0a <时,42{}A x x a a =≤<-,若B A ⊆,则41,22 2.a a⎧≤-⎪⎪⎨⎪->⎪⎩解得10a -<<.综上,B A ⊆时,12a -<≤.A B A B =⇔⊆ 且B A ⊆,∴若A B =,则(1,2]a ∈-且(,8)[4,)a ∈-∞-⋃+∞,矛盾.所以,集合A 与B 不可能相等.分析二:利用两个相等集合中元素的对应关系,建立等量关系. 解法二:①当0a =时,A R =,所以B A ≠;②当0a >时,24{}A x x a a =-<≤,若B A =,则21,24 2.a a⎧-=-⎪⎪⎨⎪=⎪⎩无解.③当0a <时,42{}A xx a a=≤<-,若B A =,显然不成立. 综上,集合A 与B 不可能相等.点评:在解决两个数集关系问题时,应合理运用数轴帮助分析与求解.另外,在解含参数的不等式(方程)时,要对参数进行分类讨论,分类时要遵循不重不漏的分类原则,然后对每一类情况都要给出问题的解答.例3.(1)已知R 为实数集,集合2{320}A x x x =-+≤.若R B A R ⋃=ð,{01R B A x x ⋂=<<ð或23}x <<,求集合B ;(2)已知集合{,0}M a =,2{30,}N x x x x Z =-<∈,且{1}M N ⋂=,记P M N =⋃,写出集合P的所有子集.分析:(1)先化简集合A ,由R B C A R ⋃=可以得出A 与B 的关系;最后,由数形结合,利用数轴直观地解决问题.(2)求出N ,由{1}M N ⋂=,可知1M ∈,解得a ,进而求出P .解:(1){12}A x x =≤≤ ,{1R C A x x ∴=<或2}x >.又R B C A R ⋃=,R A C A R ⋃=,可得A B ⊆. 而{01R B C A x x ⋂=<<或23}x <<,∴{01x x <<或23}x <<.B ⊆ 借助数轴可得B A =⋃{01x x <<或23}x <<{03}x x =<<.(2)由230x x -<,得03x <<;又x Z ∈,故{1,2}N =.由{,0}M a =且{1}M N ⋂=,可得1a =.{1,0}M ∴=,故P 的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.点评:(1)研究数集的相互关系时,可通过数轴示意,借助直观性探求,易于理解.(2)含有n 个元素的集合,共有2n 个子集,21n-个真子集.另注意空集的情况.例4.已知函数2()f x x px q =++,集合{()}A x f x x ==,集合{[()]}B x f f x x ==. (1)求证:A B ⊆;(2)若{1,3}A =-,求集合B .分析:(1)要证明A B ⊆,根据定义,只要证A 中任一元素都是B 中的元素即可; (2)由{1,3}A =-,可以求出p ,q 的值,从而求出B .解:(1)设0x 是集合A 中的任一元素,即0x A ∈. {()}A x f x x ==,∴ 00()x f x =, 即有000[()]()f f x f x x ==.∴0x B ∈.故A B ⊆.(2) {1,3}A =-2{}x x px q x =++=,1∴-,3是方程2(1)0x p x q +-+=的两个根,∴1(1)(1)0,9(1)30,p q p q +-⋅-+=⎧⎨+-⋅+=⎩1,3.p q =-⎧∴⎨=-⎩2() 3.f x x x ∴=-- 因为集合B 中的元素是方程[()]f f x x =的根,也就是222(3)(3)3x x x x x ------=的根.方程整理得22(23)(3)0x x x ---=,解得1x =-{1B =-.点评:本题考查集合语言与集合思想在解决方程问题时的运用,在解答过程中,应脱去集合符号和抽象函数符号的“外衣”,显出本质的数量关系,要不断实施各种数学语言间的相互转换. 【反馈演练】1.设全集U =R ,集合M ={x | x >1},P ={x | x 2>1},则下列关系中正确的是( C ) A .M =P B .P ÜM C .M ÜP D .U M P =∅ ð2.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A =_________. 3.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是____8___个.4.已知集合A ={-1,3,2m -1},集合B ={3,2m }.若B ⊆A ,则实数m = 1 . 5.若集合M ={0,l ,2},N ={(x ,y )|x -2y +1≥0且x -2y -1≤0,x ,y ∈M },则N 中元素的个数为 ______4____个.6.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)=_____________. 7.若集合131,11,2,01A y y x x B y y x x ⎧⎫⎧⎫⎪⎪==-≤≤==-<≤⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,则A ∩B 等于[]1,1-.8.已知集合}1≤-=a x x A ,{}0452≥+-=x x x B ,若φ=B A ,则实数a 的取值范围是 .9.已知A ,B ,C 为三个集合,若C B B A ⋂=⋃,给出下列结论:①C A ⊆;②A C ⊆;③C A ≠;④φ=A . 其中正确结论的有_______①______.提示:由A B B C = 知,,A B B A B C A B C ⊆⊆∴⊆⊆ .10.已知集合2{20}A x x x =+-≤,{214}B x x =<+≤,2{0}C x x bx c =++>,若集合A ,B ,C满足()A B C ⋃⋂=∅,()A B C R ⋃⋃=,求b ,c 的值.解:由题知:{(1)(2)0}A x x x =-+≤{21}x x =-≤≤,{13}B x x =<≤.{23}A B x x ∴⋃=-≤≤.()A B C ⋃⋂=∅,()A B C R ⋃⋃=,()R C A B ∴=⋃ð.{2C x x ∴=<-或3}x >.又2{0}C x x bx c =++>,∴20x bx c ++=的两根为2-和3,即有420,930.b c b c -+=⎧⎨++=⎩解得1b =-,6c =-.11.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+.(1)若P Q P ⋃=,求实数a 的取值范围; (2)若P Q ⋂=∅,求实数a 的取值范围;{}4,2,1 {0,3} (2,3)(3)若{03}P Q x x ⋂=≤<,求实数a 的值.解:(1)由题意知:{23}P x x =-<<, P Q P ⋃=,Q P ∴⊆. ①当Q =∅时,得23a a >+,解得3a >.②当Q ≠∅时,得2233a a -<≤+<,解得10a -<<. 综上,(1,0)(3,)a ∈-⋃+∞.(2)①当Q =∅时,得23a a >+,解得3a >;②当Q ≠∅时,得23,3223a a a a ≤+⎧⎨+≤-≥⎩或,解得3532a a ≤-≤≤或.综上,3(,5][,)2a ∈-∞-⋃+∞.(3)由{03}P Q x x ⋂=≤<,则0a =.12.设集合2{40}A x x x =+=,22{2(1)10}B x x a x a =+++-=.(1)若A B B ⋂=,求a 的值; (2)若A B B ⋃=,求a 的值. 解:由题知:{0,4}A =-. (1)A B B ⋂= ,B A ∴⊆.①当B =∅时,224(1)4(1)0a a ∆=+--<,解得1a <-;②当{0}B =或{4}-时,224(1)4(1)0a a ∆=+--=,解得1a =-,此时,{0}B =,满足B A ∴⊆;③当{0,4}B =-时,22224(1)4(1)0,10,168(1)10.a a a a a ⎧∆=+-->⎪-=⎨⎪-++-=⎩综上所述,实数a 的取值范围是1a =或1a ≤-.(2)A B B ⋃= ,A B ∴⊆,故{0,4}B =-.即22224(1)4(1)0,10,168(1)10.a a a a a ⎧∆=+-->⎪-=⎨⎪-++-=⎩,解得1a =.。
2015届高考数学总复习 第一章 第一节集合的概念与运算课时精练 理
第一章 集合与常用逻辑用语第一节 集合的概念与运算1.(2013·惠州一模)若集合A ={x |x 2-4x -5=0},B ={x |x 2=1},则A ∩B =( )A .-1B .{-1}C .{5,-1}D .{1,-1}解析:由集合A 中的方程x 2-4x -5=0,解得:x =5或x =-1,所以集合A ={-1,5},由集合B 中的方程x 2=1,解得:x =1或x =-1,所以集合B ={-1,1},则A ∩B ={-1}.故选B.答案:B2.集合M ={y ∈R |y =3x },N ={-1,0,1},则下列结论正确的是( )A .M ∩N ={0,1}B .M ∪N =(1,+∞)C .(∁R M )∪N =(-∞,0)D .(∁R M )∩N ={-1,0}解析:M ={y ∈R |y >0},∁R M ={y |y ≤0},∴(∁R M )∩N ={-1,0}.故选D.答案:D3.(2013·合肥模拟)如图,已知R 是实数集,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪log 12(x -1)>0,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:题图中阴影部分表示集合B ∩∁R A ,又A ={x |1<x <2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 0<x <32,所以∁R A ={x |x ≤1或x ≥2},B ∩∁R A ={x |0<x ≤1}.答案:D4.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( )A .0或 3B .0或3C .1或 3D .1或3解析:∵A ∪B =A ,∴B ⊆A .∵A ={1,3,m },B ={1,m },∴m ∈A .故m =m 或m =3,解得m =0或m =3或m =1.又根据集合元素的互异性知,m ≠1,∴m =0或m =3.故选B.答案:B5.(2013·山东卷)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9解析:依题意易知x -y ∈{-2,-1,0,1,2}.故选C.答案:C6.若全集U =R ,集合A ={x |x ≥1}∪{x |x ≤0},则∁U A =_____ .答案:{x |0<x <1}7.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =__________.解析:由|x +2|<3,得 -3<x +2<3,即-5<x <1,所以集合A ={x |-5<x <1}.因为A ∩B =(-1,n ),所以-1是方程(x -m )(x -2)=0的根,所以代入得3 (1+m )=0,所以m =-1.此时不等式(x +1)(x -2)<0的解为-1<x <2,所以A ∩B =(-1,1),即n =1.答案:-1 18.(2013·河南调研)设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________________.解析:因为A ∪(∁I A )=I ,所以{2,3,a 2+2a -3}={2,5,|a +1|},所以|a +1|=3且a 2+ 2a -3=5,解得a =-4或a =2.所以M ={log 22,log 2|-4|}={1,2}.答案:∅、{1}、{2}、{1,2}9.设集合A ={x 2,2x -1,-4},B ={x -5,1-x,9},若A ∩B ={9},求A ∪B .解析:由9∈A ,可得x 2=9或2x -1=9,解得x =±3或x =5.当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;当x =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,故A ∪B ={-8,-7,-4,4,9};当x =5时,A ={25,9,-4},B ={0,-4,9},此时A ∩B ={-4,9}与A ∩B ={9}矛盾,故舍去.综上所述,A ∪B ={-8,-7,-4,4,9}.10.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解析:(1)∵M ={x |(x +3)2≤0}={-3},N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3},∴(∁I M )∩N ={2}.(2)A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2},当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2.解得a =3,综上所述,所求a的取值范围为{a|a≥3}.。
中职数学集合
∅ 2、写出由一个元素构成的所有集合:
{1},{2},{3} 3、写出由两个元素构成的所有集合:
{1,2},{1,3},{2,3} 4、写出由三个元素构成的所有集合:
{1,2,3}
若集合A不包含于集合B,或集合B不包含 集合A时,
记作A B
我们经常用平面上封闭曲线的内部代表集 合,这种图称为维恩图,那么,集合A是 集合B的子集用图形如何表示?
集合的性质
问题一:某班所有“帅哥”能否构成一个集合?
不可以 帅是一个含糊的概念,每个人的审美不同,因此对帅的理解也不同。
集合的元素是确定的。确定性
问题二:1、3、0、5、|-3|这些数组成的集合有5个元 素。这句话对吗?
不对 集合中只有四个不同的数。1、3、0、5
集合的元素是互异的。互异性
问题三:高一(5)班的全体同学组成一个集合,调整 座位后这个集合有没有变化?
每一个元素必须是一个确定的值或事物
例如:(判断能否构成集合)
小于10的自然数全体
√
咱们班较高的人构成的全体
×
2.“对象”怎么理解?
感觉到客观存在以及我们思想中的事物或特殊符号 例如:
教室里的桌子、教科书
神话 △ ○ ☆
①很小的数 ②大于2的整数
练习
元素
构成集合的每个对象都叫做集合的元素。
元素与集合的关系
A
B
真子集:
• 一般的,若集合A是集合B的子集,且B中至少有一个元素 不属于A,则A叫做B的真子集,
• 记作:A⫋B或B⊋A • 读作:A真包含于B或B真包含A • 空集是任何非空集合的真子集
强化记忆:真子集是不包括集合它本身。
练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页Leabharlann 下一页末 页首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页