2019年江苏省扬州市仪征市、高邮市中考数学二模考试试卷(解析版)

合集下载

【附5套中考模拟试卷】江苏省扬州市2019-2020学年中考数学二模考试卷含解析

【附5套中考模拟试卷】江苏省扬州市2019-2020学年中考数学二模考试卷含解析
20.(6分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y= (k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y= 上,求平行四边形OBDC的面积.
21.(6分)图1和图2中,优弧 纸片所在⊙O的半径为2,AB=2 ,点P为优弧 上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.
17.如图,点P的坐标为(2,2),点A,B分别在x轴,y轴的正半轴上运动,且∠APB=90°.下列结论:
①PA=PB;
②当OA=OB时四边形OAPB是正方形;
③四边形OAPB的面积和周长都是定值;
④连接OP,AB,则AB>OP.
其中正确的结论是_____.(把你认为正确结论的序号都填上)
18.下面是“作已知圆的内接正方形”的尺规作图过程.
15.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则∠CGE=________.
16.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
A. B.6C. D.
4.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为 π cm2,则扇形圆心角的度数为( )
A.12 0°B.140°C.150°D.ห้องสมุดไป่ตู้60°
5.内角和为540°的多边形是()
A. B. C. D.

【附5套中考模拟试卷】江苏省扬州市2019-2020学年第二次中考模拟考试数学试卷含解析

【附5套中考模拟试卷】江苏省扬州市2019-2020学年第二次中考模拟考试数学试卷含解析

江苏省扬州市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抛物线y =3(x ﹣2)2+5的顶点坐标是( )A .(﹣2,5)B .(﹣2,﹣5)C .(2,5)D .(2,﹣5)2.已知一次函数y =(k ﹣2)x+k 不经过第三象限,则k 的取值范围是( )A .k≠2B .k >2C .0<k <2D .0≤k <23.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( ) A . B . C . D .4.下列图形中,哪一个是圆锥的侧面展开图?( )A .B .C .D .5.下列各式中计算正确的是( )A .x 3•x 3=2x 6B .(xy 2)3=xy 6C .(a 3)2=a 5D .t 10÷t 9=t6.若55+55+55+55+55=25n ,则n 的值为( )A .10B .6C .5D .37.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩8.如图是一个空心圆柱体,其俯视图是( )A .B .C .D .9.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A .B .C .D .10.在△ABC 中,若21cos (1tan )2A B -+-=0,则∠C 的度数是( ) A .45° B .60°C .75°D .105° 11.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则这组数据的中位数是( )A .2B .3C .5D .712.已知关于x 的方程2222x x a x x x x x +-+=--恰有一个实根,则满足条件的实数a 的值的个数为( ) A .1 B .2C .3D .4 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某学校要购买电脑,A 型电脑每台5000元,B 型电脑每台3000元,购买10台电脑共花费34000元.设购买A 型电脑x 台,购买B 型电脑y 台,则根据题意可列方程组为______.14.在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm ,则根据题意可得方程 .15.如图,在平面直角坐标系中,函数y=k x(k >0)的图象经过点A (1,2)、B 两点,过点A 作x 轴的垂线,垂足为C ,连接AB 、BC .若三角形ABC 的面积为3,则点B 的坐标为___________.16.尺规作图:过直线外一点作已知直线的平行线.已知:如图,直线l 与直线l 外一点P .求作:过点P 与直线l 平行的直线.作法如下:(1)在直线l 上任取两点A 、B ,连接AP 、BP ;(2)以点B 为圆心,AP 长为半径作弧,以点P 为圆心,AB 长为半径作弧,如图所示,两弧相交于点M ;(3)过点P 、M 作直线;(4)直线PM 即为所求.请回答:PM 平行于l 的依据是_____.17.计算:﹣22÷(﹣14)=_____. 18.将直尺和直角三角尺按如图方式摆放.若145∠=︒,235∠=︒,则3∠=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A )、去郊游(记为B )、去图书馆(记为C ).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.20.(6分)已知关于x 的方程x 2-(m +2)x +(2m -1)=0。

江苏省扬州市2019-2020学年中考数学二月模拟试卷含解析

江苏省扬州市2019-2020学年中考数学二月模拟试卷含解析

江苏省扬州市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为()A.0 B.﹣1 C.1 D.22.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.353.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.114.下列运算正确的是()A.a3•a2=a6B.(a2)3=a5C.9=3 D.2+5=255.如图,在底边BC为23,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为( )A.2+3B.2+23C.4 D.336.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.7.cos30°的相反数是()A.3B.12-C.3D.28.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是()A.B.C.D.9.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为()A.116B.18C.316D.1410.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,3511.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.B.C.D.112.二元一次方程组43624x yx y+=⎧⎨+=⎩的解为()A.32xy=-⎧⎨=⎩B.21xy=-⎧⎨=⎩C.32xy=⎧⎨=-⎩D.21xy=⎧⎨=-⎩二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若方程x2+(m2﹣1)x+1+m=0的两根互为相反数,则m=______14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.15.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.16.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为__. 17.直线y=2x +1经过点(0,a),则a=________.18.如图,ABC V 与ADB △中,90ABC ADB ︒∠=∠=,C ABD ∠=∠,5AC =,4AB =,AD 的长为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一位测量人员,要测量池塘的宽度 AB 的长,他过 A B 、 两点画两条相交于点 O 的射线,在射线上取两点 D E 、 ,使13OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.20.(6分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表. 组别 分数段 频次 频率 A 60≤x <70 17 0.17 B 70≤x <80 30 a C 80≤x <90 b 0.45 D90≤x <10080.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B 组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.21.(6分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.22.(8分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.23.(8分)如图,在△ABC中,BC=12,tanA=34,∠B=30°;求AC和AB的长.24.(10分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB =80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)25.(10分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.26.(12分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?27.(12分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:把方程的解代入方程,可以求出字母系数a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本题选C.【考点】一元二次方程的解;一元二次方程的定义.2.A【解析】【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴63P2010==两次红,故选A.3.A【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得: 110°•(n-2)=3×360° 解得n=1. 故选A .点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决. 4.C 【解析】 【分析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项. 【详解】解:A. a 3⋅a 2=a 5,原式计算错误,故本选项错误; B. (a 2)3=a 6,原式计算错误,故本选项错误;C.,原式计算正确,故本选项正确;D. 2和 故选C. 【点睛】本题考查了幂的乘方与积的乘方, 实数的运算, 同底数幂的乘法,解题的关键是幂的运算法则. 5.B 【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可. 详解:∵DE 垂直平分AB , ∴BE=AE ,∴,∴△ACE 的周长 故选B .点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等. 6.B 【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误; B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关. 7.C 【解析】 【分析】先将特殊角的三角函数值代入求解,再求出其相反数. 【详解】 ∵cos30°∴cos30°的相反数是 故选C . 【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念. 8.B 【解析】 【分析】先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:根据题意,得:200x x ⎧⎨⎩1-< ①-1> ② , 解不等式①,得:x >12, 解不等式②,得:x >1, ∴不等式组的解集为x >1, 故选:B . 【点睛】本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.9.C【解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.解:共16种情况,和为6的情况数有3种,所以概率为.故选C.10.C【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.故选C.11.D【解析】试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.12.C【解析】【分析】利用加减消元法解这个二元一次方程组.【详解】解:43624x yx y+=⋯⋯⎧⎨+=⋯⋯⎩①②①-②⨯2,得:y=-2,将y=-2代入②,得:2x-2=4,解得,x=3, 所以原方程组的解是32x y =⎧⎨=-⎩.故选C. 【点睛】本题考查了解二元一次方程组和解一元一次方程等知识点,解此题的关键是把二元一次方程组转化成一元一次方程,题目比较典型,难度适中.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.﹣1 【解析】 【分析】根据“方程 x 2+(m 2﹣1)x+1+m =0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可. 【详解】∵方程 x 2+(m 2﹣1)x+1+m =0 的两根互为相反数, ∴1﹣m 2=0, 解得:m =1 或﹣1, 把 m =1代入原方程得: x 2+2=0, 该方程无解,∴m =1不合题意,舍去, 把 m =﹣1代入原方程得: x 2=0,解得:x 1=x 2=0,(符合题意), ∴m =﹣1, 故答案为﹣1. 【点睛】本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键.若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12cx x a⋅=. 14.1. 【解析】 【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=1,故白球的个数为1个.故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.15.54【解析】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.16.【解析】【分析】甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据甲、乙两厂5月份用水量与6月份用水量列出关于x、y的方程组即可.【详解】甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:,故答案为:.【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系是解题的关键. 17.1 【解析】 【分析】根据一次函数图象上的点的坐标特征,将点(0,a )代入直线方程,然后解关于a 的方程即可. 【详解】∵直线y=2x+1经过点(0,a ), ∴a=2×0+1, ∴a=1. 故答案为1. 18.165【解析】 【分析】先证明△ABC ∽△ADB ,然后根据相似三角形的判定与性质列式求解即可. 【详解】∵90ABC ADB ︒∠=∠=,C ABD ∠=∠, ∴△ABC ∽△ADB , ∴AB ADAC AB=, ∵5AC =,4AB =,∴454AD =, ∴AD=165.故答案为:165.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.可以求出A 、B 之间的距离为111.6米. 【解析】 【分析】根据OD OEOB OA =,AOB EOD ∠=∠(对顶角相等),即可判定AOB EOD V V ∽,根据相似三角形的性质得到13DE OE AB OA ==,即可求解. 【详解】 解:∵OD OEOB OA=,AOB EOD ∠=∠(对顶角相等), ∴AOB EOD V V ∽,∴13DE OE AB OA ==, ∴37.213AB =, 解得111.6AB =米.所以,可以求出A 、B 之间的距离为111.6米 【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键. 20.(1)0.3 ,45;(2)108°;(3)16. 【解析】 【分析】(1)首先根据A 组频数及其频率可得总人数,再利用频数、频率之间的关系求得a 、b ; (2)B 组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率; 【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人). 故答案为0.3,45; (2)360°×0.3=108°.答:扇形统计图中B 组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A 、B ,另外两学生记为C 、D ,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.2.【解析】【分析】将原式化简整理,整体代入即可解题.【详解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【点睛】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.22.(1)证明见解析;(2)1.【解析】试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;(2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC∽△BFD,再由相似三角形的性质得出结果.试题解析:(1)证明:∵,∴.∵CD平分,BC=BD,∴,.∴.∴∥.∴.∵AB是⊙O的直径,∴BD是⊙O的切线.(2)连接AC,∵AB是⊙O直径,∴.∵,可得.∴在Rt△CEB中,∠CEB=90°,由勾股定理得∴.∵,∠EFC =∠BFD,∴△EFC∽△BFD.∴.∴.∴BF=1.考点:切线的判定,相似三角形,勾股定理23.8+63. 【解析】 【分析】如图作CH ⊥AB 于H .在Rt △BHC 求出CH 、BH ,在Rt △ACH 中求出AH 、AC 即可解决问题; 【详解】解:如图作CH ⊥AB 于H .在Rt △BCH 中,∵BC =12,∠B =30°, ∴CH =12BC =6,BH =22BC CH -=63, 在Rt △ACH 中,tanA =34=CH AH, ∴AH =8, ∴AC =22AH CH +=10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 24.(70﹣103)m . 【解析】 【分析】过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H.通过解Rt ADF V 得到DF 的长度;通过解Rt CDE △得到CE 的长度,则BC BE CE =-. 【详解】如图,过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H.则DE=BF=CH=10m ,在Rt ADF V 中,∵AF=80m−10m=70m,45ADF ∠=o ,∴DF=AF=70m.在Rt CDE △中,∵DE=10m,30DCE ∠=o ,∴)tan30DE CE m ===o,∴(70.BC BE CE m =-=-答:障碍物B ,C两点间的距离为(70.m -25. (1) A 种树每棵2元,B 种树每棵80元;(2) 当购买A 种树木1棵,B 种树木25棵时,所需费用最少,最少为8550元. 【解析】 【分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(2-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.9(A 种树的金额+B 种树的金额)进行解答. 【详解】解:(1)设A 种树木每棵x 元,B 种树木每棵y 元,根据题意,得256003380x y x y +=⎧⎨+=⎩ ,解得10080x y =⎧⎨=⎩, 答:A 种树木每棵2元,B 种树木每棵80元.(2)设购买A 种树木x 棵,则B 种树木(2-x )棵,则x≥3(2-x ).解得x≥1. 又2-x≥0,解得x≤2.∴1≤x≤2.设实际付款总额是y 元,则y =0.9[2x +80(2-x )]. 即y =18x +7 3.∵18>0,y 随x 增大而增大,∴当x =1时,y 最小为18×1+7 3=8 550(元). 答:当购买A 种树木1棵,B 种树木25棵时,所需费用最少,为8 550元. 26.(1)60;(2)20,20;(3)38000 【解析】 【分析】(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x 、4x 、5x 、10x 、8x ,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x++10x+8x 即可; (2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可.【详解】(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,1.∵20出现次数最多,∴众数为20元;∵共有60个数据,第30个和第31个数据落在第四组内,∴中位数为20元;(3)5610815102020301660⨯+⨯+⨯+⨯+⨯⨯2000=38000(元),∴估算全校学生共捐款38000元.【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.27.(1)60,90°;(2)补图见解析;(3)300;(4)2 3 .【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案.详解:(1)60;90°.(2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为1551603+=,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为1 9003003⨯=.(4)列表法如表所示,男生男生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是82123 P==.点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.。

江苏省扬州市2019中考数学试卷(解析版)-精选

江苏省扬州市2019中考数学试卷(解析版)-精选

扬州市2019学初中毕业、升学统一考试数学试题一、选择题(本大题共8小题,每小题3分,共24分)1.下列图案中,是中心对称图形的是( D )A. B. C. D. 【考点】:中心对称图形【解析】:中心对称图形绕某一点旋转180°与图形能够完全重合【答案】:D.【考点】:数的比较大小,无理数【解析】:根据二次根式的定义确定四个选项与-2的大小关系,可得【答案】:故选B.4.一组数据3、2、4、5、2,则这组数据的众数是( A)A.2B.3C.3.2D.4【考点】:统计,数据的集中趋势与离散程度【解析】:众数是出现次数最多的数据【答案】:故选:A5.如图所示物体的左视图是( B )【考点】:三视图【解析】:三视图的左视图从物体的左边看【答案】:选B.6.若点P在一次函数4y的图像上,则点P一定不在( C ).=x+-A.第一象限B. 第二象限C. 第三象限D. 第四象限【考点】:一次函数的图像【解析】:坐标系中,一次函数4+-=x y 经过第一、二、四象限,所以不经过第三象限 【答案】:C7.已知n 正整数,若一个三角形的三边长分别是n+2、n+8、3n ,则满足条件的n 的值有( D )A.4个B. 5个C. 6个D. 7个 【考点】:正整数,三角形三边关系 【解析】:方法一:∵n 是正整数∴n=1时,三边为3,9,3构不成三角形,不符合 n=2时,三边为4,10,6构不成三角形,不符合 n=3时,三边为5,11,9可以构成三角形,符合 n=4时,三边为6,12,12可以构成三角形,符合 n=5时,三边为7,13,15可以构成三角形,符合 n=6时,三边为8,14,18可以构成三角形,符合 n=7时,三边为9,15,21可以构成三角形,符合 n=8时,三边为10,16,24可以构成三角形,符合 n=9时,三边为11,17,27可以构成三角形,符合n=10时,三边为12,18,30不可以构成三角形,不符合 ∴总共7个方法二:当n+8最大时424238238832<<<>><>n n n nn n n n n n n ⇒⎩⎨⎧⇒⎪⎩⎪⎨⎧++-++++∴n=3当3n 最大时10483283382<<>n n n n n n n n n ≤⇒⎪⎩⎪⎨⎧+≥+--+++∴n=4,5,6,7,8,9综上:n 总共有7个 【答案】:选:D.8.若反比例函数xy 2-=的图像上有两个不同的点关于y 轴对称点都在一次函数y =-x +m 的图像上,则m 的取值范围是( C )A.22>mB.22-<m ①C.22-22<或>m mD.2222-<<m 【考点】:函数图像,方程,数形结合 【解析】:∵反比例函数xy 2-=上两个不同的点关于y 轴对称的点在一次函数y =-x +m 图像上∴是反比例函数xy 2=与一次函数y =-x +m 有两个不同的交点联立两个函数解方程02222=+-⇒+-=⇒⎪⎩⎪⎨⎧+-==mx x m x x m x y xy ∵有两个不同的交点∴022=+-mx x 有两个不等的根△=m 2-8>0 根据二次函数图像得出不等式解集 所以22-22<或>m m 【答案】:C.二、填空题(本大题共10小题,每小题3分,共30分)9.2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全场约1790000米,数据1790000用科学记数法表示为 1.79×106. 【考点】:科学计数法 【答案】:1.79×10610.因式分解:a 3b-9ab=ab (3-x )(3+x ) 。

2019年江苏省扬州市中考数学模拟试卷(解析版)

2019年江苏省扬州市中考数学模拟试卷(解析版)

2019年江苏省扬州市中考数学模拟试卷(4月份)一.选择题(共5小题,满分15分,每小题3分)1.下列各数中,其相反数等于本身的是()A.﹣1B.0C.1D.20182.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列各式中计算正确的是()A.t10÷t9=t B.(xy2)3=xy6C.(a3)2=a5D.x3x3=2x65.如图,是从不同的方向看一个物体得到的平面图形,该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱二.填空题(共5小题,满分20分,每小题4分)6.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)7.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=8.京珠高速公路粤北段地势十分复杂,所以当年在建这段路时,要开很多隧道,如图是一个要开挖的隧道,为保证按时完成工程,必须先要知道所挖隧道的长度,于是测量人员在山外取一点O,并取AO,BO的中点C,D,测得CD=237m,则隧道AB的长是m.9.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于.10.把多项式a2﹣2ab+b2﹣1分解因式,结果是.三.解答题(共5小题,满分30分,每小题6分)11.(6分)12.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.13.(6分)解下列不等式,并把它的解集在数轴上表示出来.3x+(13﹣x)>17.14.(6分)已知:关于x的方程x2﹣6x+8﹣t=0有两个实数根x1,x2,且(x1﹣2)(x2﹣2)=﹣3,求t的值.15.(6分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.四.解答题(共4小题,满分28分,每小题7分)16.(7分)某服装店用4400元购进A,B两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.(1)请利用二元一次方程组求这两种服装各购进的件数;(2)如果A种服装按标价的9折出售,B种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?17.(7分)某电视台在一次青年歌手大赛中,设置了基础知识问答题,答对一题得5分,答错或不答得0分,各选手答对题的情况如图所示.(1)所有选手中答对题数的众数是,中位数是;(2)求所有选手得分的平均数.18.(7分)在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下方案(如图①所示):第1步:在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=30°第2步:量出测点A到旗杆底部N的水平距离AN=26m第3步:量出测倾器的高度AC=1.5m(1)根据上述测量数据,求出旗杆的高度MN(结果保留三位小数).(2)如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图②)的方案:先在图②中,画出你测量小山高度OP的示意图(标上适当字母);然后写出你设计的方案.19.(7分)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;(2)若AD=4、AB=6,求直角边BC的长.五.解答题(共3小题,满分27分,每小题9分)20.(9分)把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AGFE,边FG与BC交于点H.(1)试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想;(2)若正方形的边长为2cm,∠BAG=2∠BAE,求重叠部分(四边形ABHG)的面积.21.(9分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?22.(9分)在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.2019年江苏省扬州市中考数学模拟试卷(4月份)参考答案与试题解析一.选择题(共5小题,满分15分,每小题3分)1.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:相反数等于本身的数是0.故选:B.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形.故正确;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【分析】根据同底数幂的乘法和除法的法则以及幂的乘方和积的乘方的法则计算即可.【解答】解:A、t10÷t9=t,正确;B、(xy2)3=x3y6,错误;C、(a3)2=a6,错误;D、x3x3=x6,错误;故选:A.【点评】本题考查了同底数幂的乘法和除法,幂的乘方和积的乘方,熟记法则是解题的关键.5.【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.【解答】解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆及圆心,∴此几何体为圆锥,故选:A.【点评】本题考查了由三视图判断几何体的知识,用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.二.填空题(共5小题,满分20分,每小题4分)6.【分析】由已知二线平行,得到一对角对应相等,图形中又有公共边,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.7.【分析】根据同弧所对的圆周角相等,求出∠DCB=∠A=32°,再根据直径所对的圆周角为90°,求出∠ABD的度数.【解答】解:∵∠DCB=32°,∴∠A=32°,∵AB为⊙O直径,∴∠ADB=90°,在Rt△ABD中,∠ABD=90°﹣32°=58°.故答案为:58°【点评】本题考查了圆周角定理,知道同弧所对的圆周角相等和直径所对的圆周角是90°是解题的关键.8.【分析】根据三角形的中位线的性质即可得到结论.【解答】解:∵点C,D是AO,BO的中点,∴AB=2CD,∵CD=237m,∴AB=474m,故答案为:474.【点评】本题考查了三角形的中位线的性质,熟练掌握三角形的中位线的性质是解题的关键.9.【分析】设圆锥的底面半径为r.根据圆锥的侧面积=半圆的面积,构建方程即可解决问题.【解答】解:设圆锥的底面半径为r.由题意:•2π•r•8=•π•82,∴r=4【点评】本题考查圆锥的计算,扇形的面积公式,圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.【分析】直接将前三项分组进而利用公式法分解因式得出答案.【解答】解:a2﹣2ab+b2﹣1=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1).故答案为:(a﹣b+1)(a﹣b﹣1).【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键.三.解答题(共5小题,满分30分,每小题6分)11.【分析】先根据二次根式的性质和负整数指数幂的意义计算,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=2﹣2+2﹣3=﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.13.【分析】先求出不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将解集在数轴上表示出来.【解答】解:3x+13﹣x>17,2x>4,∴x>2;把不等式的解集在数轴上表示为:.【点评】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.14.【分析】利用根与系数的关系将x1+x2和x1x2用t表示出来,再将其代入(x1﹣2)(x2﹣2)=﹣3的展开式中可得出关于t的一元一次方程,解方程即可得出结论.【解答】解:∵x1,x2是关于x的方程x2﹣6x+8﹣t=0有两个实数根,∴有x1+x2=6,x1x2=8﹣t.(x1﹣2)(x2﹣2)=x1x2﹣2(x1+x2)+4=8﹣t﹣2×6+4=﹣3,解得:t=3.答:t的值是3.【点评】本题考查了根与系数的关系以及解一元一次方程,解题的关键是利用根与系数的关系用含t的代数式表示出x1+x2和x1x2.本题属于基础题,难度不大,巧妙的利用了根与系数的关系用t表示出x1+x2和x1x2,再代入(x1﹣2)(x2﹣2)=﹣3展开式中.15.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【解答】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.【点评】此题考查了列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.四.解答题(共4小题,满分28分,每小题7分)16.【分析】(1)设购进A种服装x件,购进B种服装y件,根据总价=单价×数量结合总利润=单件利润×销售数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据少获得的总利润=单件少获得的利润×销售数量,即可求出结论.【解答】解:(1)设购进A种服装x件,购进B种服装y件,根据题意得:,解得:.答:购进A种服装40件,购进B种服装20件.(2)40×100×(1﹣0.9)+20×160×(1﹣0.8)=1040(元).答:服装店比按标价出售少收入1040元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.17.【分析】(1)由图形可知,答对1题的有8人,答对2题的有16人,答对3题的有10人,答对4题的有6人.再根据众数和平均数概念求解;(2)利用平均数公式计算即可.【解答】解:(1)众数是一组数据中出现次数最多的数据,∴众数是2;把数据按从小到大顺序排列,可得中位数=(2+2)÷2=2;(2)平均数=(5×8+10×16+15×10+20×6)÷40=11.75(分).【点评】考查了平均数、众数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.18.【分析】(1)根据题意要求,解答即可;(2)根据(1)中,所给的测量工具,可先测得∠OCE=α,山顶M的仰角∠ODE=β.根据测点A、B之间的距离AB=m构造两个直角三角形,可得设计方法.【解答】解:(1)∵CE=AN=26m,∠MCE=30°,∴ME=,∴MN=ME+EN=ME+AC=15.012+1.5=16.512m;(2)①在测点A处安置测倾器,测得此时O的仰角∠MCE=α;②在测点A与小山之间的B处安置测倾器(A、B与N在同一条直线上),测得此时山顶M的仰角∠ODE=β;③量出测倾器的高度AC=BD=h,以及测点A、B之间的距离AB=m.根据上述测量数据,即可求出小山的高度OP.【点评】本题主要考查了作图﹣应用与设计作图,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.19.【分析】(1)连OD,OE,由E是BC边上的中点,得到OE是△ABC的中位线,则OE∥AC,所以有∠1=∠3,∠2=∠A,而∠A=∠3,因此得到∠1=∠2,再加上OD=OB,OE为公共边,所以得到△OED≌△OEB,于是∠OED=∠OBE=90°.(2)首先证明△ABC∽△ADB,得出,即可求出答案.【解答】解:(1)连OD,OE,如图,∵E是BC边上的中点,AB是半圆O的直径,∴OE是△ABC的中位线,∴OE∥AC,∴∠1=∠3,∠2=∠A,而OD=OA,∠A=∠3,∴∠1=∠2,又∵OD=OB,OE为公共边,∴△OED≌△OEB,∴∠ODE=∠OBE=90°.∴DE与半圆O相切.(2)∵AB为直径∴∠ADB=∠ABC=90°,∴∠CAB=∠CAB,∴△ABC∽△ADB.∴,∵AD=4、AB=6,∴AC=9,∴在Rt△ABC中:BC===3.【点评】此题主要考查了圆的切线的判定方法以及相似三角形的性质与判定,经过半径的外端点与半径垂直的直线是圆的切线.当已知直线过圆上一点,要证明它是圆的切线,则要连接圆心和这个点,证明这个连线与已知直线垂直即可;当没告诉直线过圆上一点,要证明它是圆的切线,则要过圆心作直线的垂线,证明垂线段等于圆的半径.同时考查了三角形全等的判定与性质.五.解答题(共3小题,满分27分,每小题9分)20.【分析】(1)根据旋转的性质可得AG=AB,∠G=∠B=90°,根据“SAS”可证Rt△AHG≌Rt△AHB,可得HG=BH;(2)由题意可得∠BAE=∠GAH=∠BAH=30°,根据勾股定理可求BH的长,即可求重叠部分的面积.【解答】解:(1)HG=HB.理由如下:如图,连接AH,由旋转可知,AG=AB,∠G=∠B=90°,AH=AH,∴Rt△AHG≌Rt△AHB(HL),∴HG=HB;(2)由(1)知Rt△AHG≌Rt△AHB,∴∠GAH=∠BAH,∵∠BAG=2∠BAE,∠GAE=90°,∴∠BAE=∠GAH=∠BAH=30°,设BH=x(cm),则AH=2x(cm),而AB=2(cm),∴x2+4=(2x)2,x>0,解得x=∴重叠部分的面积=2×=(cm2)【点评】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,勾股定理,求BH 的长度是本题的关键.21.【分析】(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,根据“总利润=盆数×每盆的利润”可得函数解析式;(2)将盆景的利润加上花卉的利润可得总利润关于x的函数解析式,配方成顶点式,利用二次函数的性质求解可得.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W =W 1+W 2=﹣2x 2+60x +8000﹣19x +950=﹣2x 2+41x +8950=﹣2(x ﹣)2+,∵﹣2<0,且x 为整数,∴当x =10时,W 取得最大值,最大值为9160,答:当x =10时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是9160元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,据此列出函数解析式及二次函数的性质.22.【分析】(1)由y =﹣x 2+bx +c 经过点A 、B 、C ,A (﹣1,0),C (0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令﹣x 2+2x +3=0,求得点B 的坐标,然后设直线BC 的解析式为y =kx +b ′,由待定系数法即可求得直线BC 的解析式,再设P (a ,3﹣a ),即可得D (a ,﹣a 2+2a +3),即可求得PD 的长,由S △BDC =S △PDC +S △PDB ,即可得S △BDC =﹣(a ﹣)2+,利用二次函数的性质,即可求得当△BDC 的面积最大时,求点P 的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m =(n ﹣)2﹣,然后根据n 的取值得到最小值.【解答】解:(1)由题意得:,解得:, ∴抛物线解析式为y =﹣x 2+2x +3;(2)令﹣x 2+2x +3=0,∴x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,∴,解得:,∴直线BC 的解析式为y =﹣x +3,设P (a ,3﹣a ),则D (a ,﹣a 2+2a +3),∴PD =(﹣a 2+2a +3)﹣(3﹣a )=﹣a 2+3a ,∴S △BDC =S △PDC +S △PDB=PD •a +PD •(3﹣a )=PD •3=(﹣a 2+3a )=﹣(a ﹣)2+,∴当a =时,△BDC 的面积最大,此时P (,);(3)由(1),y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (,),∵∠MNC =90°,∴NQ =CM ,∴4NQ 2=CM 2,∵NQ 2=(1﹣)2+(n ﹣)2,∴4[=(1﹣)2+(n ﹣)2]=m 2+9,整理得,m =n 2﹣3n +1,即m =(n ﹣)2﹣,∵0≤n ≤4,当n =上,m 最小值=﹣,n =4时,m =5,综上,m 的取值范围为:﹣≤m ≤5.【点评】此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。

2019届江苏省扬州市中考二模数学试卷【含答案及解析】

2019届江苏省扬州市中考二模数学试卷【含答案及解析】

2019届江苏省扬州市中考二模数学试卷【含答案及解析]姓名____________ 班级_______________ 分数____________、选择题1.下面的数中,与-2的和为0的是()A. 2 B . - 2 C D2 22.在“ 2015高淳国际马拉松赛”中,有来自肯尼亚、韩国、德国等16个国家和地区约10100名马拉10100用科学记数法可表示为(A. x >- 1 B . x > 2 C .x v- 1 D . x v 21.01 X 105 D . 0.101 X 1043 .计算(-a2)3的结果是()A.a5 B . - a5 C.a6D-a6BAE、/ AED.Z ED外角, 5.从下列不等式中选择一个与那么可以选择的不等式可以是(x+1组成不等式组,如果要使该不等式组的解集为A. 10.1 X 103 B . 1.01 X 104 C4.如图,五边形ABCD中, AB// CD,则/ 1+Z 2+Z3 等于()210°Z 2、/分别是/A. x >- 1 B . x > 2 C .x v- 1 D . x v 26.下列四个几何体中,主视图与其它三个不同的是(B D7. 如图,点C是OO上的动点,弦AB=4, Z C=45。

,贝US A ABC的最大值是()A :+4B . 8C •;' +4D . 4J +4EAF=45 ° ,△ EC周长为8. 如图,在正方形ABCD中, E、F分别是边BC CD上的点,Z二、填空题9. 若代数式有意义,则x满足的条件是 __________ .10. 分解因式:x3 - 4x= .11. 一组数据3, 2, x, 2, 6, 3的唯一众数是2,则这组数据的中位数为D12. 在直角坐标系中,将点(-2, 3)关于原点的对称点向左平移2个单位长度得到的点的坐标是13. 甲、乙两台机器分别罐装每瓶质量为500克的矿泉水•从甲、乙罐装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是:S甲2=4.8 , S乙2=3.6 •那么罐装的矿泉水质量比较稳定.14. 已知m2+叶仁0,则m3+2m2+2014=15. 用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm 那么这张扇形纸片的面积是cm216. 已知:如图,在△ABC AD丄BC,垂足为点D, BE丄AC,垂足为点E, M为AB边的中点,连结ME MD ED.设AB=4,Z DBE=30,则△ EDM的面积为iX-S(%-2) <217. 若关于x的不等式组门十2玄有解,则实数a的取值范围是------- >愛18. 如图,己知△ ABC, / C=90 ° ,Z A=30 °AC^ .动点D在边AC上,以BD为边作等边△ BDE (点E、A在BD的同侧)•在点D从点A移动至点C的过程中,点E移动的路线长为二、计算题19. 计算:tan SO3- 卅(1-柏心四、解答题元购进第二批该款套尺,购进时单价是第一批的一倍, 所2°.先化简再计算: ,其中x 是一元二次方程 x2 - 2x - 2=0的正数根. 21.设中学生体质健康综合评定成绩为 x 分,满分为100分,规定: 75W x <85为B 级,60<x <75为C 级,x V 60为D 级.现随机抽取福海中学部分学生的综 合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题: 人 名学生,a = % ; (1) (2) (3) (4) 在这次调查中,一共抽取了 补全条形统计图;扇形统计图中C 级对应的圆心角为 若该校共有2000名学生,请你估计该校 D 级学生有多少名?度; 22.某市举办中学生足球赛,初中男子组共有市直学校的 A B 两队和县区学校的e 、f 、g 、 h 四队报名参赛,六支球队分成甲、乙两组,甲组由 A 、e 、f 三队组成,乙组由B 、g 、h 三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛. (1) 在甲组中,首场比赛抽到 e 队的概率是 ;(2) 请你用画树状图或列表的方法,求首场比赛出场的两个队都是县区学校队的概率.BA 丄 ADBC=DC BE 丄 C 于点 E.(1) 求证:△ ABD^A EBD(2) 过点E 作EF// DA 交BD 于点F ,连接AF .求证:四边形AFED 是菱形. 24.某文化用品商店用1 000元购进一批“晨光”套尺, 很快销售一空;商店又用1 500(1) 求第一批套尺购进时单价是多少?(2) 若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?25. 如图,△ AB中,以BC为直径的圆交AB于点D,Z ACD=Z ABC.A(1)求证:CA是圆的切线;26. 定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理【解析】 (1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB BC为边的两个对等四边形ABCD(2)如图2,在圆内接四边形ABCD中, AB是OO的直径,AC=BD求证:四边形ABCD是对等四边形;(3)如图3,点D B分别在x轴和y轴上,且 D (8, 0), B (0, 6),点A在BD边上,且AB=2试在x轴上找一点C,使ABO(是对等四边形,请直接写出所有满足条件的C点坐标.27. 从M地到N地有一条普通公路,总路程为120km 有一条高速公路,总路程为126km甲车和乙车同时从M地开往N地,甲车全程走普通公路,乙车先行驶了另一段普通公路,然后再上高速公路.假设两车在普通公路和高速公路上分别保持匀速行驶,其中在普通公路上的行车速度为60km/h,在高速公路上的行车速度为100km/h .设两车出发xh时,距N地的路程为y km,图中的线段AB与折线ACD分别表示甲车与乙车的y与x之间的函数关系.五、填空题28.已知,在平面直角坐标系中,点P (0,2),以P 为圆心,0P 为半径的半圆与y 轴的另一个交点是C, 一次函数y=-二x+m ( m 为实数)的图象为直线l , I 分别交x 轴,y3轴于A , B 两点,如图1. (1) B 点坐标是(用含m 的代数式表示),/ ABO= ° ;(2) 若点N 是直线AB 与半圆CO 的一个公共点(两个公共点时, N 为右侧一点),过点 N 作OP 的切线交x 轴于点E,如图2.①是否存在这样的 m 的值,使得△ EBN 是直角三角形?若存在,求出 m 的值;若不存在, 请说明理由.(2) (3) CD 所表示的y 与x 之间的函数关系式;两车在何时间段内离 N 地的路程之差达到或超过30km ?求线段AB参考答案及解析第1题【答案】A【解析】试题分析:设这个数知9由题育得:X+ ( - 2) =0」x-2=0,故选:A.第2题【答案】B第3题【答案】j【解析】试题分析:根抿积的乘方法则:把毎一个因式分别乘方.再把所得的显相乘,进行计算即可.故选D・第4题【答案】【解析】试题分析:TABf/CD,.\ZB+ZC=180"』■\Z4+Z5=1SO6,根据多边形的外角下咗理,ZL+Z2^Z3+Z4+Z5=350°, J.Zl+Z 24Z3=360 -100° =190°,故选E.第5题【答案】A【解析】试题井析:x+l^Z,解得:心1[根据犬犬取大可得号一个不等式的解集一定是盂不大于1 •第6题【答案】故选;hD【解析】试题井析:拟的壬视图是第一层两个小正方脇第二层■左边一个小正方形; J的主视團是第一层两个小正方开离第二层左边一牛小1E方形,氣的主视團是第一层两个小正方形』第二层左边一个小正方形,X的主视團是第一层两个小正方勉第二层左两个小正方形'故选:D -第7题【答案】D【瞬析】试题井析:过点0作倆丄AB于点® 0E的反向延长线交O0于点D,连接0旺OS.丁噩杲定值,二恥越论则也ABC的面积越大,'/ZC=i5^ ・.'.ZAOB^* ,-■-AOABft等腰直甬三角形,/.0A=2^ .TOE 丄AB ?.'.J1E=2?…OE ~J。

2019年最新江苏省中考数学二模试卷2及答案解析

2019年最新江苏省中考数学二模试卷2及答案解析

江苏省中考数学二模试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)1.﹣4的倒数是()A.4 B.C.﹣ D.﹣4【分析】根据求一个整数的倒数,就是写成这个整数分之一,可得结论.【解答】解:﹣4的倒数是﹣,故选C.【点评】本题考查了倒数,明确倒数的定义是关键.2.下列运算正确的是()A.a6÷a2=a3B.a3•a2=a6C.(3a3)2=6a6D.a3﹣a3=0【分析】根据同底数幂的除法,同底数幂的乘法,积的乘方,合并同类项,可得答案.【解答】解:A、同底数幂的除法底数不变指数相减,故A不符合题意;B、同底数幂的乘法底数不变指数相加,故B不符合题意;C、积的乘方等于乘方的积,故C不符合题意;D、系数相加子母机指数不变,故D符合题意;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.2015年10月成立的无锡市新吴区总面积220平方公里,常住人口约55万人,下辖6个街道;2016年末,新吴区实现地区生产总值约1302亿元,用科学记数法表示该地区生产总值应记为()A.1302×108B.1.302×103C.1.302×1010D.1.302×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1302亿用科学记数法表示为:1.302×1011.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.若关于x的方程2x﹣m=x﹣2的解为x=3,则m的值为()A.﹣5 B.5 C.﹣7 D.7【分析】把x的值代入方程计算即可求出m的值.【解答】解:把x=3代入方程得:6﹣m=3﹣2,解得:m=5,故选B【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.十边形的内角和为()A.1800°B.1620°C.1440°D.1260°【分析】根据多边形的内角和计算公式(n﹣2)×180°进行计算即可.【解答】解:十边形的内角和等于:(10﹣2)×180°=1440°.故选C.【点评】本题主要考查了多边形的内角和定理,关键是掌握多边形的内角和的计算公式.6.sin45°的值是()A.B.C.D.【分析】将特殊角的三角函数值代入求解.【解答】解:sin45°=.故选B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.7.下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A.B.C.D.【分析】主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.【解答】解:从上面看易得俯视图为:,从左面看易得左视图为:,从正面看主视图为:,故选:A.【点评】本题考查了几何体的三视图,解答本题的关键是掌握三视图的观察方向.8.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D、正确故选D.【点评】正确理解概率的含义是解决本题的关键.9.如图,⊙A经过点E、B、C、O,且C(0,8),E(﹣6,0),O(0,0),则cos∠OBC 的值为()A.B.C.D.【分析】连接EC ,由∠COE=90°,根据圆周角定理可得:EC 是⊙A 的直径,由C (0,8),E (﹣6,0),O (0,0),可得OC=8,OE=6,根据勾股定理可求EC=10,然后由圆周角定理可得∠OBC=∠OEC ,然后求出cos ∠OEC 的值,即可得cos ∠OBC 的值.【解答】解:连接EC ,∵∠COE=90°,∴EC 是⊙A 的直径,∵C (0,8),E (﹣6,0),O (0,0),∴OC=8,OE=6,由勾股定理得:EC=10,∵∠OBC=∠OEC ,∴cos ∠OBC=cos ∠OEC==.故选A .【点评】此题考查了圆周角定理,勾股定理,坐标与图形性质,以及锐角三角函数定义,熟练掌握定理是解本题的关键.10.如图,在△ABC 中,D 为AB 边上一点,E 为CD 中点,AC=,∠ABC=30°,∠A=∠BED=45°,则BD 的长为( )A .B . +1﹣C .﹣D .﹣1【分析】如图,过C作CF⊥AB于F,过点B作BG⊥CD于G,在Rt△BEG中,∠BED=45°,则GE=GB.设DF=x,CE=DE=y,则BD=﹣x,想办法构建方程组即可解决问题.【解答】解:如图,过C作CF⊥AB于F,过点B作BG⊥CD于G,在Rt△BEG中,∠BED=45°,则GE=GB.在Rt△AFC中,∠A=45°,AC=,则AF=CF==1,在Rt△BFC中,∠ABC=30°,CF=1,则BC=2CF=2,BF=CF=,设DF=x,CE=DE=y,则BD=﹣x,∴△CDF∽△BDG,∴==,∴==,∴DG=,BG=,∵GE=GB,∴y+=,∴2y2+x(﹣x)=﹣x,在Rt△CDF中,∵CF2+DF2=CD2,∴1+x2=4y2,∴+x(﹣x)=﹣x,整理得:x2﹣(2+2)x+2﹣1=0,解得x=1+﹣或1+﹣(舍弃),∴BD=﹣x=﹣1.故选D.【点评】本题考查相似三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程组解决问题,属于中考选择题中的压轴题.二、填空题(本小题共8小题,每小题2分,共16分)11.若有意义,则x的取值范围是x≠2 .【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.【点评】本题考查了分式的定义,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.分解因式:a2﹣2a+1= (a﹣1)2.【分析】观察原式发现,此三项符合差的完全平方公式a2﹣2ab+b2=(a﹣b)2,即可把原式化为积的形式.【解答】解:a2﹣2a+1=a2﹣2×1×a+12=(a﹣1)2.故答案为:(a﹣1)2.【点评】本题考查了完全平方公式分解因式,熟练掌握完全平方公式的结构特点是解题的关键.13.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是8.5 .【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有8个,按从小到大排列后为:7、7、8、8、9、9、9、10.故中位数是按从小到大排列后第4,第5两个数的平均数作为中位数,故这组数据的中位数是×(8+9)=8.5.故答案为:8.5.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.14.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是1<c<5 .【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.【解答】解:∵三角形两边长是方程x2﹣5x+6=0的两个根,∴x1+x2=5,x1x2=6∵(x1﹣x2)2=(x1+x2)2﹣4x1x2=25﹣24=1∴x1﹣x2=1,又∵x1﹣x2<c<x1+x2,∴1<c<5.故答案为:1<c<5.【点评】主要考查了三角形的三边关系和一元二次方程的根与系数的关系,要知道第三边大于两边差,小于两边和.15.如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是 3.6 .【分析】算出扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长为=7.2π,∴圆锥的底面半径是7.2π÷2π=3.6.故答案为:3.6.【点评】考查圆锥的计算;用到的知识点为:圆锥的弧长=圆锥的底面周长.16.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA= 36 度.【分析】首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.17.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是1+.【分析】根据反比例函数图象上点的坐标特征由A点坐标为(﹣2,2)得到k=﹣4,即反比例函数解析式为y=﹣,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B′的坐标可表示为(﹣,t),于是利用PB=PB′得t﹣2=|﹣|=,然后解方程可得到满足条件的t的值.【解答】解:如图,∵点A坐标为(﹣2,2),∴k=﹣2×2=﹣4,∴反比例函数解析式为y=﹣,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(﹣,t),∵PB=PB′,∴t﹣2=|﹣|=,整理得t2﹣2t﹣4=0,解得t1=1+,t2=1﹣(不符合题意,舍去),∴t的值为1+.故答案为1+.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质;会用求根公式法解一元二次方程.18.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是 4 .【分析】连接CE,根据∠DCE=90°,F是DE的中点,可得CF=DE,再根据当AD⊥BC时,AD最短,此时DE最短,根据直角三角形的面积以及相似三角形的性质,求得DE的最小值,即可得出CF的最小值.【解答】解:如图,连接CE,∵△ABC∽△ADE,∴∠ACD=∠AEG,又∵∠AGF=∠DGC,∴△AGE∽△DGC,∴=,又∵∠AGD=∠EGC,∴△AGD∽△EGC,∴∠ADG=∠ECG,又∵Rt△ADE中,∠ADG+∠AEG=90°,∴∠ECG+∠ACD=90°,即∠DCE=90°,∵F是DE的中点,∴CF=DE,∵△ABC∽△ADE,∴当AD⊥BC时,AD最短,此时DE最短,当AD⊥BC时,AD==4.8,∵=,即=,∴DE=8,∴CF=×8=4.故答案为:4.【点评】本题主要考查了相似三角形的判定与性质,以及直角三角形斜边上中线的性质的应用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是利用垂线段最短得到线段的最小值.三、解答题(本大题共10小题,共84分)19.(8分)计算:(1)+()﹣1﹣cos60°(2)(2x﹣y)2﹣(x+y)(x﹣y)【分析】(1)原式利用算术平方根定义,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=2+2﹣=3;(2)原式=4x2﹣4xy+y2﹣x2+y2=3x2﹣4xy+2y2.【点评】此题考查了平方差公式,完全平方公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.解方程:x2﹣6x﹣6=0;(2)解不等式组:.【分析】(1)利用求根公式即可直接求解;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:(1)a=1,b=﹣6,c=﹣6,则△=b2﹣4ac=36+24=60>0,则x=,则x1=3+,x2=3﹣;(2),解①得:x≤1,解②得:x>﹣2,则不等式组的解集是:﹣2<x≤1.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.21.(6分)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为8时,求△FED的面积.【分析】(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;(2)首先得出△FED∽△FBC,进而得出=,进而求出即可.【解答】(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FBC=S▱ABCD,∴=,∴=,∴=,∴△FED的面积为:2.【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等知识,得出S△FBC=S平行四边形ABCD是解题关键.22.(6分)2017无锡国际马拉松赛的赛事共有三项:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明、小刚和小芳参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为;(2)已知小明被分配到A(全程马拉松),请利用树状图或列表法求三人被分配到不同项目组的概率.【分析】(1)利用概率公式直接计算即可;(2)列表或画树形图得到所有可能的结果,即可求出小芳和小刚被分配到半程马拉松和迷你马拉松项目组的概率.【解答】解:(1)∵共有A,B,C三项赛事,∴小明被分配到“迷你马拉松”项目组的概率是,故答案为:;(2)设三种赛事分别为1,2,3,列表得:2,3);(3,1);(3,2);(3,3),小芳和小刚被分配到半程马拉松和迷你马拉松项目组的情况有2种,所有其概率=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)“知识改变命运,科技繁荣祖国”,某区中小学每年都要举办一届科技比赛,如图为某区某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图.(1)该校参加机器人、建模比赛的人数分别是 4 人和 6 人;(2)该校参加科技比赛的总人数是24 人,电子百拼所在扇形的圆心角的度数是120 °,并把条形统计图补充完整;(3)从全区中小学参加科技比赛选手中随机抽取85人,其中有34人获奖.某区中小学参加科技比赛人数共有3625人,请你估算参加科技比赛的获奖人数约是多少人?【分析】(1)由图知参加机器人、建模比赛的人数;(2)参加建模的有6人,占总人数的25%,根据总人数=参加航模比赛的人数÷25%,算出电子百拼比赛的人数,再算出所占的百分比×360°;(3)先求出随机抽取80人中获奖的百分比,再乘以我市中小学参加科技比赛比赛的总人数.【解答】解:(1)由条形统计图可得:该校参加机器人、建模比赛的人数分别是4人,6人,故答案为:4人,6人;(2)该校参加科技比赛的总人数是:6÷25%=24,电子百拼所在扇形的圆心角的度数是:(24﹣6﹣6﹣4)÷24×360°=120°,故答案为:24,120°,条形统计图补充如下:(3)34÷85=0.4,0.4×3625=1450(人).答:今年参加科技比赛比赛的获奖人数约是1450人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?【分析】根据已知角的度数,易求得∠BAC=∠BCA=30°,由此得BC=AB=3米;可在Rt△CBF 中,根据BC的长和∠CBF的余弦值求出BF的长,进而由x=BF﹣EF求得汽车车头与斑马线的距离.【解答】解:如图:延长AB.∵CD∥AB,∴∠CAB=30°,∠CBF=60°;∴∠BCA=60°﹣30°=30°,即∠BAC=∠BCA;∴BC=AB=3米;Rt△BCF中,BC=3米,∠CBF=60°;∴BF=BC=1.5米;故x=BF﹣EF=1.5﹣0.8=0.7米.答:这时汽车车头与斑马线的距离x是0.7米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.25.(10分)无锡某校准备组织学生及学生家长到上海进行社会实践,为了便于管理,所有人员必须乘坐在同一列火车上:根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2:1,无锡到上海的火车票价格(部分)如表所示:(2)由于各种原因,二等座火车票单程只能买m张(m小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)w与m之间的函数关系式.(3)按第(2)小题中的购票方案,请你做一个预算,购买这次单程火车票最少要花多少钱?最多要花多少钱?【分析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,根据题意得到方程组:,求出方程组的解即可;(2)有两种情况:①当180≤x<210时,学生都买学生票共180张,(x﹣180)名成年人买二等座火车票,(210﹣x)名成年人买一等座火车票,得到解析式:y=51×180+68(x﹣180)+81(210﹣x),②当0<x<180时,一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(210﹣x)张,得到解析式是y=﹣30x+17010;(3)由(2)小题知,当180≤x<210时,y=﹣13x+13950和当0<x<180时,y=﹣30x+17010,分别讨论即可.【解答】解:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买三等座学生票,依题意得:,解得,则2m=20,答:参加社会实践的老师、家长与学生分别有10人、20人、180人.(2)解:由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x﹣180)名成年人买二等座火车票,(210﹣x)名成年人买一等座火车票.∴火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x﹣180)+81(210﹣x),即y=﹣13x+13950(180≤x<210),②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(210﹣x)张,∴火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210﹣x),即y=﹣30x+17010(0<x<180),答:购买火车票的总费用(单程)y与x之间的函数关系式是y=﹣13x+13950(180≤x<210)或y=﹣30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=﹣13x+13950,∵﹣13<0,y随x的增大而减小,∴当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=﹣30x+17010,∵﹣30<0,y随x的增大而减小,∴当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16980元,答:按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16980元.【点评】本题主要考查对一次函数,二元一次方程组,一元一次不等式等知识,解题的关键是理解题意,学会构建方程组或一次函数解决问题,属于中考常考题型.26.(10分)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.【分析】(1)证明△ABP∽△PCE,利用比例线段关系求出y与x的函数关系式;(2)根据(1)中求出的y与x的关系式,利用二次函数性质,求出其最大值,列不等式确定m的取值范围;(3)根据翻折的性质及已知条件,构造直角三角形,利用勾股定理求出BP的长度.解答中提供了三种解法,可认真体会.【解答】解:(1)∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°,∴∠APB=∠CEP,又∵∠B=∠C=90°,∴△ABP∽△PCE,∴,即,∴y=x2+x.(2)∵y=x2+x=(x﹣)2+,∴当x=时,y取得最大值,最大值为.∵点P在线段BC上运动时,点E总在线段CD上,∴≤1,解得m≤.∴m的取值范围为:0<m≤.(3)由折叠可知,PG=PC,EG=EC,∠GPE=∠CPE,又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,∴∠APG=∠APB.∵∠BAG=90°,∴AG∥BC,∴∠GAP=∠APB,∴∠GAP=∠APG,∴AG=PG=PC.解法一:如解答图所示,分别延长CE、AG,交于点H,则易知ABCH为矩形,HE=CH﹣CE=2﹣y,GH=AH﹣AG=4﹣(4﹣x)=x,在Rt△GHE中,由勾股定理得:GH2+HE2=GE2,即:x2+(2﹣y)2=y2,化简得:x2﹣4y+4=0 ①由(1)可知,y=x2+x,这里m=4,∴y=x2+2x,代入①式整理得:3x2﹣8x+4=0,解得:x=或x=2,∴BP的长为或2.解法二:如解答图所示,连接GC,过点G作GN⊥PC于点N,则GN=2,PN=PC﹣CN=4﹣2x.∵AG∥PC,AG=PC,∴四边形APCG为平行四边形,∴AP=CG.易证△ABP≌GNC,∴CN=BP=x.在Rt△GPN中,由勾股定理得:PN2+GN2=PG2,即:(4﹣2x)2+22=(4﹣x)2,整理得:3x2﹣8x+4=0,解得:x=或x=2,∴BP的长为或2.解法三:过点A作AK⊥PG于点K,∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG﹣PK=4﹣2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:(4﹣2x)2+22=(4﹣x)2,整理得:3x2﹣8x+4=0,解得:x=或x=2,∴BP的长为或2.【点评】本题是代数几何综合题,考查了全等三角形、相似三角形、勾股定理、梯形、矩形、折叠、函数关系式、二次函数最值等知识点,所涉及考点众多,有一定的难度.注意第(2)问中求m取值范围时二次函数性质的应用,以及第(3)问中构造直角三角形的方法.27.(12分)如图,一次函数y=x+m与坐标轴交于A,B两点,点C在直线AB上,且AC=2AB,以A为旋转中心,逆时针旋转线段AC,使得点C恰好落在Y轴正半轴上点C′处.(1)求∠CAC′的正切值;(2)点E是直线AC′上一点,连接CE,BE,若△ACE与△BCE相似,且m=1,求此时点E 的坐标;(3)在(2)的条件下,作CD垂直于X轴,将△AOC′沿Y轴向下以每秒2个单位长度的速度向下运动,将△ACD沿着CA方向在直线AC上衣每秒单位长度的速度运动,求出在此运动过程中两三角形重叠部分面积的最大值以及当时的t值.【分析】(1)由题意A(﹣2m,0),B(0,m),C(2m,2m),C′(0,4m),推出AO=2m,OB=m,C′B=3m.作C′H⊥AC于H,由△AOB∽△C′HB,可得C′H=m,BH=m,根据tan∠CAC′=,计算即可;(2)设E(n,2n+4),由EC2=(n﹣2)2+(2n+4﹣2)2,AB=BC=,由△CAE∽△CEB,推出EC2=CB•CA,可得(n﹣2)2+(2n+4﹣2)2=10,解方程即可解决问题;(3)分三种情形讨论即可①如图1中,当0<t<1时,重叠部分是四边形MNBK.②如图2中,当1≤t<时,重叠部分是四边形MNCD.③当≤t≤时,重叠部分是△MND.分别求解即可解决问题.【解答】解:(1)由题意A(﹣2m,0),B(0,m),C(2m,2m),C′(0,4m),∴AO=2m,OB=m,C′B=3m.作C′H⊥AC于H,由△AOB∽△C′HB,可得C′H=m,BH=m,∵AB=m,∴AH=,∴tan ∠CAC′==.(2)当m=1时,A (﹣2,0),B (0,1),C (2,2),C′(0,4),∴直线AC′的解析式为y=2x+4,设E (n ,2n+4),∴EC 2=(n ﹣2)2+(2n+4﹣2)2,AB=BC=,∵△CAE ∽△CEB ,∴EC 2=CB•CA,∴(n ﹣2)2+(2n+4﹣2)2=10,解得n=,∴点E 坐标为(,)或(,).(3)①如图1中,当0<t <1时,重叠部分是四边形MNBK .S=S △ABK ﹣S △AMN =﹣t 2+2t+1,当t=时,S 最大值=.②∵直线A′C′的解析式为y=2x+4﹣2t,直线AC的解析式为y=x+1,由,解得x=,当点C在直线A′C′上时,2﹣2t=,解得t=,∴当1≤t<时,重叠部分是四边形MNCD,S=S△ACD﹣S△AMN=﹣t2+t+1,当t=1是,S最大值=.③∵点D在直线y=x﹣1上运动,由,解得x=,当点D在直线A′C′上时,2﹣2t=,解得t=,∴当≤t≤时,重叠部分是△MND,S=S△MND=t2﹣20t+16,当t=时,S 最大值=1,综上所述,重叠部分的面积的最大值为,此时t=.【点评】本题考查一次函数综合题、待定系数法、解直角三角形、二次函数的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会圆分类讨论的思想思考问题,学会构建一次函数利用方程组确定灵活函数图象的交点,属于中考压轴题.28.(8分)给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为 3 ,点C(﹣2,3)和射线OA之间的距离为;(2)如果直线y=x+1和双曲线y=之间的距离为,那么k= ﹣4 ;(可在图1中进行研究)(3)点E的坐标为(1,),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.【分析】(1)只需根据新定义即可解决问题;(2)过点O作直线y=x+1的垂线,与双曲线y=交于点E、F,过点E作EG⊥x轴,如图1,根据新定义可得直线y=﹣x和双曲线y=之间的距离就是线段EF的长,如何只需求出点E的坐标,运用待定系数法就可求出k的值;(3)①过点O分别作射线OE、OF的垂线OH、OG,如图2,根据新定义可得图形M为x轴的正半轴、∠GOH的边及其内部所有的点;②设直线y=﹣2x﹣4与射线OH的交点为M,与射线OG的交点为N,先求得M、N的坐标,得出x的范围,如图2,图形N上点的坐标可设为(x,﹣2x﹣4),根据新定义可得图形W与图形N之间的距离为d=的最小值.利用二次函数的增减性求出d=的最小值,就可解决问题.【解答】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为=,故答案分别为:3,;(2)∵直线y=x+1和双曲线y=之间的距离为,∴k<0(否则直线y=x+1和双曲线y=相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y=交于点E、F,过点E作EG⊥x轴,如图1,由得,即点F(﹣,),则OF==,∴OE=OF+EF=2,在Rt△OEG中,∠EOG=∠OEG=45°,OE=2,则有OG=EG=OE=2,∴点E的坐标为(﹣2,2),∴k=﹣2×2=﹣4,故答案为:﹣4;(3)①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直),;②由①知OH所在直线解析式为y=﹣x,OG所在直线解析式为y=x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),即图形W与图形N之间的距离为d,d===∴当x=﹣时,d的最小值为=,即图形W和图形N之间的距离.【点评】本题属于新定义型,考查了用待定系数法求反比例函数的解析式、抛物线的增减性、勾股定理、求直线与抛物线的交点等知识,解决本题的关键是对新定义的理解.一、选择题(本大题共10小题,每小题3分,共30分)1.﹣4的倒数是(。

江苏省扬州市2019-2020学年中考第二次模拟数学试题含解析

江苏省扬州市2019-2020学年中考第二次模拟数学试题含解析

江苏省扬州市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4)D.1-4x2=(1+4x)(1-4x)2.tan30°的值为()A.B.C.D.3.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为A.(1)19802x x-=B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19804.一元二次方程x2﹣3x+1=0的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上答案都不对5.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是()A.90°B.120°C.150°D.180°6.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )A.2 B.3 C.4 D.57.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF8.下列计算正确的是()A.5﹣2=3B.4=±2C.a6÷a2=a3D.(﹣a2)3=﹣a69.1﹣2的相反数是()A.1﹣2B.2﹣1 C.2D.﹣110.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是()A.12B.13C.29D.1611.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.110B.19C.16D.1512.一组数据8,3,8,6,7,8,7的众数和中位数分别是( ) A.8,6 B.7,6 C.7,8 D.8,7二、填空题:(本大题共6个小题,每小题4分,共24分.)13.双察下列等式:111242-=,112393-=,1134164-=,…则第n个等式为_____.(用含n的式子表示)14.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,则可列方程为__________.15.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.16.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.17.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元.18.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.20.(6分)如图,直线y=2x+6与反比例函数y=kx(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?21.(6分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班(用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.22.(8分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______ ;扇形统计图中的圆心角α等于______ ;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.23.(8分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).(1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.24.(10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.25.(10分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?26.(12分)在平面直角坐标系中,已知点A(2,0),点B(0,3,点O(0,0).△AOB绕着O 顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).27.(12分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【详解】请在此输入详解!2.D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.3.D【解析】【分析】根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.【详解】根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=1980,故选D.【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.4.B【解析】【分析】首先确定a=1,b=-3,c=1,然后求出△=b2-4ac的值,进而作出判断.【详解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0两个不相等的实数根;故选B.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.5.D【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.考点:圆锥的计算.6.C【解析】【分析】如图(见解析),连接BD 、CD ,根据圆周角定理可得,ACB ADB ABC ADC ∠=∠∠=∠,再根据相似三角形的判定定理可得ACE BDE ∆~∆,然后由相似三角形的性质可得AC CE BD DE =,同理可得AB AE CD CE =;又根据圆周角定理可得90ABD ACD ∠=∠=︒,再根据正切的定义可得tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∠=∠=∠=∠=,然后求两个正切值之积即可得出答案. 【详解】如图,连接BD 、CD ,ACB ADB ABC ADC ∴∠=∠∠=∠在ACE ∆和BDE ∆中,ACE BDE AEC BED ∠=∠⎧⎨∠=∠⎩ACE BDE ∴∆~∆AC CE BD DE∴= 2,3DE OE ==Q5,8OA OD DE OE AE OA OE ∴==+==+=2AC CE BD ∴= 同理可得:ABE CDE ∆~∆ AB AE CD CE ∴=,即8AB CD CE = AD Q 为⊙O 的直径90ABD ACD ∠∴∠==︒tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∴∠=∠=∠=∠= 8tan tan 42AB AC AC AB CE ACB ABC BD CD BD CD CE∴∠⋅∠=⋅=⋅=⋅= 故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.7.C【解析】【分析】根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案.【详解】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,所以△ABC≅△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.8.D【解析】【分析】根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.【详解】A. 不是同类二次根式,不能合并,故A选项错误;4,故B选项错误;C. a6÷a2=a4≠a3,故C选项错误;D. (−a2)3=−a6,故D选项正确.故选D.【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.9.B【解析】【分析】根据相反数的的定义解答即可.【详解】根据a的相反数为-a即可得,1﹣2的相反数是2﹣1.故选B.【点睛】本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.10.B【解析】解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:13.故选B.点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.11.A【解析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.12.D【解析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7 考点:(1)众数;(2)中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13 【解析】 【分析】探究规律后,写出第n 个等式即可求解. 【详解】12===…则第n 1n =+1n =+ 【点睛】本题主要考查二次根式的应用,找到规律是解题的关键. 14.8374x x -=+ 【解析】 【分析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决 【详解】解:由题意可设有x 人, 列出方程:8374x x +﹣=, 故答案为8374x x +﹣=. 【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程. 15.四丈五尺 【解析】 【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, ∴x 15=1.50.5, 解得x=45(尺). 故答案为:四丈五尺. 【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键. 16.87【解析】分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论. 详解:∵平均数是12, ∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84−4×12=36, ∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,()()()()()()()222222221[1112121210121312131213121212],7S =-+-+-+-+-+-+-8.7= 故答案为8.7点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键. 17.300 【解析】 【分析】设成本为x 元,标价为y 元,根据已知条件可列二元一次方程组即可解出定价. 【详解】设成本为x 元,标价为y 元,依题意得0.75250.920y x y x +=⎧⎨-=⎩,解得250300x y =⎧⎨=⎩故定价为300元. 【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.18.6【解析】【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【详解】解:∵四边形ABCD为正方形,且边长为3,∴AC=32,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=32,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=32,∴EF=CF+CE=32+32=62三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)作图见解析;;(2)作图见解析.【解析】试题分析:(1)通过数格子可得到点P关于AC的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.试题解析:(1)如图1所示:四边形AQCP即为所求,它的周长为:;(2)如图2所示:四边形ABCD即为所求.考点:1轴对称;2勾股定理.20.(1)m=8,反比例函数的表达式为y=8x;(2)当n=3时,△BMN的面积最大.【解析】【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题. 【详解】解:(1)∵直线y=2x+6经过点A (1,m ), ∴m=2×1+6=8, ∴A (1,8),∵反比例函数经过点A (1,8), ∴8=1k, ∴k=8,∴反比例函数的解析式为y=8x. (2)由题意,点M ,N 的坐标为M (8n,n ),N (62n -,n ),∵0<n <6, ∴62n -<0, ∴S △BMN =12×(|62n -|+|8n |)×n=12×(﹣62n -+8n)×n=﹣14(n ﹣3)2+254,∴n=3时,△BMN 的面积最大. 21.(1)图形见解析,216件;(2)12【解析】 【分析】(1)由B 班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D 班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;(2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得. 【详解】(1)4个班作品总数为:1201236360÷=件,所以D 班级作品数量为:36-6-12-10=8; ∴估计全校共征集作品364×36=324件. 条形图如图所示,(2)男生有3名,分别记为A 1,A 2,A 3,女生记为B ,列表如下:A1A2A3 BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B (B,A1)(B,A2)(B,A3)由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种.所以选取的两名学生恰好是一男一女的概率为61 122.【点睛】考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)30;;(2).【解析】试题分析:(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.考点:列表法与树状图法;扇形统计图;利用频率估计概率.23.(1) y=﹣x2+2x+3;(2)见解析.【解析】【分析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【详解】解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),∴,得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),∴抛物线的对称轴为直线x=1,∴点A的坐标为(﹣1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,当AC为斜边时,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t2﹣6t+10,解得,t=,∴点Q的坐标为(1,),当CQ时斜边时,t2﹣6t+10=4+t2+10,解得,t=,∴点Q的坐标为(1,﹣),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.【点睛】本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.24.(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣332.【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO , ∴∠ODB=∠OBD ,∵∠ABC 的平分线交⊙O 于点D , ∴∠EBD=∠DBO , ∴∠EBD=∠BDO , ∴DO ∥BE , ∵DE ⊥BC ,∴∠DEB=∠EDO=90°, ∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE ⊥BE ,DF ⊥AB , ∴DE=DF=3, ∵3∴223+33()=6, ∵sin ∠DBF=31=62, ∴∠DBA=30°, ∴∠DOF=60°, ∴sin60°=332DF DO DO ==, ∴3, 则3260(23)1333322ππ⨯=-. 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键. 25.(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程. 【解析】【分析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x 天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y 天完成该项工程,根据题意列不等式解不等式即可. 【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷13=90(天). 设乙队单独施工需要x 天完成该项工程,则301515190x++=, 去分母,得x+1=2x . 解得x=1.经检验x=1是原方程的解. 答:乙队单独施工需要1天完成. (2)设乙队施工y 天完成该项工程,则 1-363090y ≤ 解得y≥2.答:乙队至少施工l8天才能完成该项工程.26.(1)B'的坐标为(3,3);(1)见解析 ;(3)3﹣1. 【解析】 【分析】(1)设A'B'与x 轴交于点H ,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°, 由∠BOB'=α=30°推出BO ∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)证明∠BPA'=90︒即可;(3)作AB 的中点M (1,),连接MP ,由∠APB=90°,推出点P 的轨迹为以点M 为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM ⊥x 轴时,点P 3﹣1.【详解】(Ⅰ)如图1,设A'B'与x 轴交于点H ,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴点B'的坐标为(3,3);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为.如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).∴当PM⊥x轴时,点P纵坐标的最小值为3﹣1.【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.27.(1)详见解析;(2)2 tan.2C【解析】【分析】(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=22AE,CE=4AE,然后在Rt△BEC 中,即可求得tanC的值.【详解】(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C ,∴∠ODB=∠C ,∴OD ∥AC ,∵DF ⊥AC ,∴OD ⊥DF ,∴DF 是⊙O 的切线;(2)连接BE ,∵AB 是直径,∴∠AEB=90°,∵AB=AC ,AC=3AE ,∴AB=3AE ,CE=4AE ,∴=,在RT △BEC 中,tanC=42BE CE AE ==.。

扬州市2019年中考数学模拟试卷及答案

扬州市2019年中考数学模拟试卷及答案

扬州市2019年中考数学模拟试卷及答案(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

1. 一个数的绝对值是5,这个数是A.5 B 、-5 C .5和-5 D .02. 2017年我省粮食总产量695.2亿斤,居历史第二高位,695.2亿用科学记数法表示为A.695.2×108B.6.952×109C.6.952×1010D.6.952×10113. 下列运算正确的是 D A .2a 2•a 3=2a6B .(3ab )2=6a 2b2C .2abc +ab =2D .3a 2b +ba 2=4a 2b4.已知不等式组⎩⎨⎧≥+>-0103x x ,其解集在数轴上表示正确的是5.设一元二次方程(1x +)(3x -)=m (m >0)的两实数分别为α、β且α<β,则α、β满足 A.-1<α<β<3 B.α<-1且β>3 C.α<-1<β<3 D.-1<α<3<β 6. 如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示的点是A. 点MB. 点NC. 点PD. 点Q7. 如图,在⊙O 中,AB =AC ,∠AOB =40°,则∠ADC 的度数是 A .40° B .30° C .20° D .15°8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:① 投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.② 随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.③ 投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是N A .①B .②C .①③D .②③9.如图,菱形ABCD 的边长为4,∠DAB =60°,过点A 作AE ⊥AC ,AE =1,连接BE ,交AC 于点F ,则AF 的长度为A.B.C.D.10.. 甲车行驶30千米和乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米. 设甲车的速度为x 千米/小时,依题意列方程正确的是 A.304015x x =+ B. 304015x x =+ C. 304015x x =- D. 304015x x =- 二、填空题(本大共6小题,每小题4分,满分24分) 11.分解因式:a 3-9a= ___________.12.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90°,得到的点A ′的坐标 为 .13.关于x 的不等式组2131x a x +>⎧⎨->⎩的解集为1<x <4,则a 的值为 .14.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .15.若一个等腰三角形有两边长为3和4,则它的周长为 .16.若圆锥的底面积为216cm π,母线长为cm 12,则它的侧面展开图的圆心角为 °第11题图三、(本大题共2小题 ,满分80分)17. (本题满分6分)计算:18. (本题满分10分)已知关于x 的方程(k +1)x 2-2(k -1)x +k =0有两个实数根x 1,x 2.(1)求k 的取值范围; (2)若12122x x x x +=+,求k 的值.19.(本题满分10分)如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠A =∠F ,∠1=∠2.(1)求证:四边形BCED 是平行四边形;(2)已知DE =2,连接BN ,若BN 平分∠DBC ,求CN 的长.20.(10分)某中学组织七、八、九年级学生参加全区作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)此次参赛的作文篇数共有 篇;(2)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图; (3)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率. 21. (本题满分12分)在正方形网格中,建立如图所示的平面直角坐标系的三个顶点都在格点上,点A 的坐标,请解答下列问题:画出关于y 轴对称的,并写出点、、的坐标;2021*******-⎪⎭⎫⎝⎛+---将绕点C逆时针旋转,画出旋转后的,并求出点A到的路径长.22.(本小题满分8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?23.(本题满分12分)如图,四边形ABCD是边长为4的菱形,且∠ABC=60°,对角线AC与BD相交点为O,∠MON=60°,N在线段BC上.将∠MON绕点O旋转得到图1和图2.(1)选择图1或图2中的一个图形,证明:△MOA∽△ONC;(2)在图2中,设NC=x,四边形OMBN的面积为y. 求y与x的函数关系式;当NC的长x为多少时,四边形OMBN面积y最大,最大值是多少?(根据材料:正实数a,b满足a+b≥2ab,仅当a=b时,a+b=2ab).24.(本题满分14分)给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,22M ⎛ ⎝⎭,N ⎝⎭.在A (1,0),B (1,1),)C三点中, 是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线2y x =+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

江苏省扬州市2019-2020学年中考数学二模试卷含解析

江苏省扬州市2019-2020学年中考数学二模试卷含解析

江苏省扬州市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( )A .4B .4.5C .5D .5.52.近似数25.010⨯精确到( )A .十分位B .个位C .十位D .百位3.下列四个命题,正确的有( )个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A .1B .2C .3D .44.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB 2=,B 60o ∠=时,AC 等于( )A .2B .2C .6D .225.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1 D .m <16.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y=k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为( )A .6B .8C .10D .127.若关于x 、y 的方程组4xy k x y =⎧⎨+=⎩有实数解,则实数k 的取值范围是( ) A .k >4 B .k <4C .k≤4D .k≥4 8.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A .AC=EFB .BC=DFC .AB=DED .∠B=∠E9.如图,在Rt △ABC 中,∠BAC=90°,将△ABC 绕点A 顺时针旋转90°后得到△AB′C′(点B 的对应点是点B′,点C 的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B 的大小是( )A .32°B .64°C .77°D .87°10.如图所示,直线a ∥b ,∠1=35°,∠2=90°,则∠3的度数为( )A .125°B .135°C .145°D .155°11.若关于x 的不等式组2x a x >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( ) A .a≤﹣1 B .﹣2≤a <﹣1 C .a <﹣1 D .﹣2<a≤﹣112.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )A .8B .9C .10D .11二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度.14.二次函数22y x mx m =++-的图象与x 轴有____个交点 .15.一个正n 边形的中心角等于18°,那么n =_____.16.化简3m ﹣2(m ﹣n )的结果为_____.17.菱形ABCD 中,060A ?,其周长为32,则菱形面积为____________.18.若正多边形的一个外角是45°,则该正多边形的边数是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下(1)样本中D 级的学生人数占全班学生人数的百分比是 ;(2)扇形统计图中A 级所在的扇形的圆心角度数是 ;(3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数之和. 20.(6分)如图,直线:3l y x =-+与x 轴交于点M ,与y 轴交于点A ,且与双曲线k y x=的一个交点为(1,)B m -,将直线l 在x 轴下方的部分沿x 轴翻折,得到一个“V ”形折线AMN 的新函数.若点P 是线段BM 上一动点(不包括端点),过点P 作x 轴的平行线,与新函数交于另一点C ,与双曲线交于点D .(1)若点P 的横坐标为a ,求MPD V 的面积;(用含a 的式子表示) (2)探索:在点P 的运动过程中,四边形BDMC 能否为平行四边形?若能,求出此时点P 的坐标;若不能,请说明理由.21.(6分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?22.(8分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.23.(8分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?(3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.24.(10分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.25.(10分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD 是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD 的长.26.(12分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0m y m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?27.(12分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A ,B ,C ,D 四个等级进行统计,制成了如下不完整的统计图.(说明:A 级:8分﹣10分,B 级:7分﹣7.9分,C 级:6分﹣6.9分,D 级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C 对应的扇形的圆心角是 度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A 级的学生有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:根据平行线分线段成比例可得AC BDCE DF=,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.故选B考点:平行线分线段成比例2.C【解析】【分析】【详解】根据近似数的精确度:近似数5.0×102精确到十位.故选C.考点:近似数和有效数字3.A【解析】解:①有理数与无理数的和一定是有理数,故本小题错误;②有理数与无理数的和一定是无理数,故本小题正确;③例如+,0是有理数,故本小题错误;)=﹣2,﹣2是有理数,故本小题错误.故选A.点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.4.B【解析】【分析】首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,B60o∠=,易得△ABC是等边三角形,即可得到答案.【详解】连接AC,∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,∴AB=BC ,∵B 60o ∠=,∴△ABC 是等边三角形,∴AC=AB=1.故选:B .【点睛】本题考点:菱形的性质.5.D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->V ,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 6.B【解析】【分析】根据勾股定理得到2234+,根据菱形的性质得到AB=OA=5,AB ∥x 轴,求得B (-8,-4),得到E (-4,-2),于是得到结论.【详解】∵点A 的坐标为(﹣3,﹣4),∴2234+,∵四边形AOCB 是菱形,∴AB=OA=5,AB ∥x 轴,∴B (﹣8,﹣4),∵点E 是菱形AOCB 的中心,∴E (﹣4,﹣2),∴k=﹣4×(﹣2)=8,故选B .【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键. 7.C【解析】【分析】利用根与系数的关系可以构造一个两根分别是x ,y 的一元二次方程,方程有实数根,用根的判别式≥0来确定k 的取值范围.【详解】解:∵xy =k ,x+y =4,∴根据根与系数的关系可以构造一个关于m 的新方程,设x ,y 为方程240m m k -+=的实数根.241640b ac k =-=-≥V ,解不等式1640k -≥得4k ≤.故选:C .【点睛】本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.8.C【解析】【分析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由//AB ED ,得∠B=∠D,因为CD BF =,若ABC V ≌EDF V ,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.9.C【解析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A ,∴∠B=77°,故选C .考点:旋转的性质.10.A【解析】分析:如图求出∠5即可解决问题.详解:∵a ∥b ,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A .点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.11.B【解析】【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a 的取值范围.【详解】解:∵x 的不等式组2x a x >⎧⎨<⎩恰有3个整数解, ∴整数解为1,0,-1,∴-2≤a <-1.故选B.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.12.A【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故选A .点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.130【解析】分析:n 边形的内角和是()2180n -⋅︒,因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1.详解:设多边形的边数为x ,由题意有(2)1802750x o o ,-⋅= 解得51718x =, 因而多边形的边数是18,则这一内角为()1821802750130.-⨯-=o o o故答案为130点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.14.2【解析】【分析】根据一元二次方程x 2+mx+m-2=0的根的判别式的符号进行判定二次函数y=x 2+mx+m-2的图象与x 轴交点的个数.【详解】二次函数y=x 2+mx+m-2的图象与x 轴交点的纵坐标是零,即当y=0时,x 2+mx+m-2=0,∵△=m 2-4(m-2)=(m-2)2+4>0,∴一元二次方程x 2+mx+m-2=0有两个不相等是实数根,即二次函数y=x 2+mx+m-2的图象与x 轴有2个交点,故答案为:2.【点睛】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.15.20【解析】【分析】由正n边形的中心角为18°,可得方程18n=360,解方程即可求得答案.【详解】∵正n边形的中心角为18°,∴18n=360,∴n=20.故答案为20.【点睛】本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.16.m+2n【解析】分析:先去括号,再合并同类项即可得.详解:原式=3m-2m+2n=m+2n,故答案为:m+2n.点睛:本题主要考查整式的加减,解题的关键是掌握去括号与合并同类项的法则.17.【解析】分析:根据菱形的性质易得AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,再判定△ABD为等边三角形,根据等边三角形的性质可得AB=BD=8,从而得OB=4,在Rt△AOB中,根据勾股定理可得AC=2AO=ABCD的面积.详解:∵菱形ABCD中,其周长为32,∴AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,∵060∠=,A∴△ABD为等边三角形,∴AB=BD=8,∴OB=4,在Rt△AOB中,OB=4,AB=8,根据勾股定理可得OA=43,∴AC=2AO=83,∴菱形ABCD的面积为:1183822AC BD⋅=⨯⨯=323.点睛:本题考查了菱形性质:1.菱形的四个边都相等;2.菱形对角线相互垂直平分,并且每一组对角线平分一组对角;3.菱形面积公式=对角线乘积的一半.18.1;【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【详解】∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=1即该正多边形的边数是1.【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)10%; (2)72; (3)5,见解析; (4)330.【解析】【分析】【详解】解:(1)根据题意得:D级的学生人数占全班人数的百分比是:1-20%-46%-24%=10%;(2)A级所在的扇形的圆心角度数是:20%×360°=72°;(3)∵A等人数为10人,所占比例为20%,∴抽查的学生数=10÷20%=50(人),∴D 级的学生人数是50×10%=5(人),补图如下:(4)根据题意得:体育测试中A 级和B 级的学生人数之和是:500×(20%+46%)=330(名),答:体育测试中A 级和B 级的学生人数之和是330名.【点睛】本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.20.(1)213222=-++S a a ;(2)不能成为平行四边形,理由见解析 【解析】【分析】(1)将点B 坐标代入一次函数3y x =-+上可得出点B 的坐标,由点B 的坐标,利用待定系数法可求出反比例函数解析式,根据M 点的坐标为(3,0),可以判断出13a -<<,再由点P 的横坐标可得出点P 的坐标是(,3)P a a -+,结合PD ∥x 轴可得出点D 的坐标,再利用三角形的面积公式即可用含a 的式子表示出△MPD 的面积;(2)当P 为BM 的中点时,利用中点坐标公式可得出点P 的坐标,结合PD ∥x 轴可得出点D 的坐标,由折叠的性质可得出直线MN 的解析式,利用一次函数图象上点的坐标特征可得出点C 的坐标,由点P ,C ,D 的坐标可得出PD≠PC ,由此即可得出四边形BDMC 不能成为平行四边形.【详解】解:(1)∵点(1,)B m -在直线3y x =-+上,∴4m =.∵点(1,4)B -在k y x =的图像上, ∴4k =-,∴4y x=-. 设(,3)P a a -+,则4,33D a a -⎛⎫-+ ⎪-+⎝⎭. ∵(3,0)M ∴13a -<<.记MPD V 的面积为S ,∴14(3)23S a a a -⎛⎫=--+ ⎪-+⎝⎭213222a a =-++.(2)当点P 为BM 中点时,其坐标为(1,2)P ,∴(2,2)D -.∵直线l 在x 轴下方的部分沿x 轴翻折得MN 表示的函数表达式是:3(3)y x x =-…, ∴(5,2)C ,∴3PD =,4PC =∴PC 与PD 不能互相平分,∴四边形不能成为平行四边形.【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P ,M ,D 的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.21.(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比60360=16, 调查的样本容量50÷16=300人,骑自行车的人数300×120360=100人, 骑自行车的人数多,多100﹣50=50人;(2)全校骑自行车的人数2400×120360=800人, 800>600,故学校准备的600个自行车停车位不足够.点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22. (1)m≥﹣;(2)m 的值为2. 【解析】【分析】(1)根据方程有两个相等的实数根可知△>1,求出m 的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】 (1)由题意知,(2m+2)2﹣4×1×m 2≥1,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m 2,∵α+β+αβ=1,∴﹣(2m+2)+m 2=1,解得:m 1=﹣1,m 1=2,由(1)知m≥﹣,所以m 1=﹣1应舍去,m 的值为2.【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.23.(1)y=12x2+x﹣4;(2)S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)Q坐标为(﹣4,4)或(﹣52﹣52﹣55P,Q,B,O为顶点的四边形是平行四边形.【解析】【分析】(1)设抛物线解析式为y=ax2+bx +c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;(2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;(3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.【详解】解:(1)设抛物线解析式为y=ax2+bx+c,∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),∴16404420a b cca b c-+=⎧⎪=-⎨⎪++=⎩,解得1214 abc⎧=⎪⎪=⎨⎪=-⎪⎩,∴抛物线解析式为y=12x2+x﹣4;(2)∵点M的横坐标为m,∴点M的纵坐标为12m2+m﹣4,又∵A(﹣4,0),∴AO=0﹣(﹣4)=4,∴S=12×4×|12m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,∴当m=﹣1时,S有最大值,最大值为S=9;故答案为S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)∵点Q是直线y=﹣x上的动点,∴设点Q的坐标为(a,﹣a),∵点P在抛物线上,且PQ∥y轴,∴点P的坐标为(a,12a2+a﹣4),∴PQ=﹣a﹣(12a2+a﹣4)=﹣12a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以点P,Q,B,O为顶点的四边形是平行四边形,∴|PQ|=OB,即|﹣12a2﹣2a+4|=4,①﹣12a2﹣2a+4=4时,整理得,a2+4a=0,解得a=0(舍去)或a=﹣4,﹣a=4,所以点Q坐标为(﹣4,4),②﹣12a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,解得a=﹣2±所以点Q的坐标为(﹣2﹣2﹣,,综上所述,Q坐标为(﹣4,4)或(﹣2﹣2﹣P,Q,B,O为顶点的四边形是平行四边形.【点睛】本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.24.(1)50,360;(2)23.【解析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种.∴考点:1、扇形统计图,2、条形统计图,3、概率.25.(1)证明见解析;(2)CD的长为223【解析】【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根据30°的性质和勾股定理可求出EF和DF的长,在Rt△CEF 中,根据勾股定理可求出CF的长,从而可求CD的长.【详解】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD ,∴四边形ABCD 为平行四边形,∵AD=CD ,∴四边形ABCD 是菱形;(2)作EF ⊥CD 于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2, ∴CD=2+. .【点睛】本题考查了全等三角形的判定与性质,平行线的性质,菱形的判定,含30°的直角三角形的性质,勾股定理.证明AD=BC 是解(1)的关键,作EF ⊥CD 于F ,构造直角三角形是解(2)的关键.26.(1)m=-6,点D 的坐标为(-2,3);(2)1tan BAO 2∠=;(3)当2x <-或06x <<时,一次函数的值大于反比例函数的值.【解析】【分析】(1)将点C 的坐标(6,-1)代入m y x=即可求出m ,再把D (n ,3)代入反比例函数解析式求出n 即可.(2)根据C (6,-1)、D (-2,3)得出直线CD 的解析式,再求出直线CD 与x 轴和y 轴的交点即可,得出OA 、OB 的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【详解】 ⑴把C (6,-1)代入m y x=,得()m 616=⨯-=-. 则反比例函数的解析式为6y x=-, 把y 3=代入6y x =-,得x 2=-, ∴点D 的坐标为(-2,3).⑵将C (6,-1)、D (-2,3)代入y kx b =+,得6123k b k b +=-⎧⎨-+=⎩,解得122k b ⎧=-⎪⎨⎪=⎩. ∴一次函数的解析式为1y x 22=-+, ∴点B 的坐标为(0,2),点A 的坐标为(4,0).∴OA 4OB 2==,,在在Rt ΔABO 中,∴OB 21tan BAO OA 42∠===. ⑶根据函数图象可知,当x 2<-或0x 6<<时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.27.(1)117(2)见解析(3)B (4)30【解析】【分析】(1)先根据B 等级人数及其百分比求得总人数,总人数减去其他等级人数求得C 等级人数,继而用360°乘以C 等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A 等级人数所占比例可得.【详解】解:(1)∵总人数为18÷45%=40人, ∴C 等级人数为40﹣(4+18+5)=13人,则C 对应的扇形的圆心角是360°×1340=117°, 故答案为117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为B.(4)估计足球运球测试成绩达到A级的学生有300×440=30人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。

2019年最新江苏省中考数学第二次模拟试卷2及答案解析

2019年最新江苏省中考数学第二次模拟试卷2及答案解析

江苏省中考数学二模试卷一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.计算(﹣4)+(﹣9)的结果是()A.﹣13 B.﹣5 C.5 D.132.把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)3.下列图形中不是中心对称图形的是()A.B.C.D.4.某市在一次扶贫助残活动中,共捐款8310000元,将8310000用科学记数法表示为()A.0.831×108B.8.31×106C.8.31×107D.83.1×1065.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的众数和极差分别是()A.5,7 B.7,5 C.4,7 D.3,76.直线y=2x+6与两坐标轴围成的三角形面积是()A.2 B.4.5 C.9 D.187.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=58.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.9.若关于x、y的二元一次方程组的解满足,则满足条件的m 的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.110.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A. B.C.D.2二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在答题卷相对应的位置上.)11.计算:|﹣5|= .12.计算:3a3•a2﹣2a7÷a2= .13.若使二次根式有意义,则x的取值范围是.14.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.15.已知3是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是菱形ABCD的两条对角线的长,则菱形ABCD的面积为.16.如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6的概率是.17.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .18.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车:④当甲、乙两车相距50千米时,或.其中不正确的结论是(填序号)三、解答题(本大题共10题,共76分.解答时应写出文字说明、证明过程或演算步骤.19.计算:.20.解不等式组:.21.先化简,再求值:,其中.22.为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的3个小组(每个小组人数都相等)制作240面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做4面彩旗.如果每名学生制作彩旗的面数相等,那么每个小组有多少学生?23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.24.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM 交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.25.如图,在平面直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B、C的横坐标都是3,且BC=2,点D在AC上,若反比例函数的图象经过点B、D,且.(1)求:k及点D坐标;(2)将△AOD沿着OD折叠,设顶点A的对称点A1的坐标是A1(m,n),求:代数式m+3n的值.26.如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且AB=AC.(1)求证:DE平分∠CDF;(2)若AC=3cm,AD=2cm,求DE的长.27.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发1秒后,点Q从点C出发,并以1cm/s速度向点B运动,当点P到达点C时,点Q也停止运动.设点P的运动时间为t秒.(1)求DC的长;(2)当t取何值时,PQ∥CD?(3)是否存在t,使△PQC为直角三角形?28.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x 轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD 相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.计算(﹣4)+(﹣9)的结果是()A.﹣13 B.﹣5 C.5 D.13【考点】有理数的加法.【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(4+9)=﹣13,故选A.2.把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)【考点】因式分解﹣提公因式法.【分析】原式提取公因式得到结果,即可做出判断.【解答】解:原式=a(a﹣2),故选A.3.下列图形中不是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.4.某市在一次扶贫助残活动中,共捐款8310000元,将8310000用科学记数法表示为()A.0.831×108B.8.31×106C.8.31×107D.83.1×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将8310000用科学记数法表示为8.31×106,故选:B.5.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的众数和极差分别是()A.5,7 B.7,5 C.4,7 D.3,7【考点】极差;众数.【分析】根据众数的定义和极差的计算方法分别进行解答即可.【解答】解:4出现了2次,出现的次数最多,则众数是4;极差是:10﹣3=7;故选C.6.直线y=2x+6与两坐标轴围成的三角形面积是()A.2 B.4.5 C.9 D.18【考点】一次函数图象上点的坐标特征.【分析】先根据直线解析式求得直线y=2x+6与坐标轴交点坐标,再计算围成的三角形面积即可.【解答】解:在直线y=2x+6中,当x=0时,y=6;当y=0时,x=﹣3;∴直线y=2x+6与坐标轴交于(0,6),(﹣3,0)两点,∴直线y=2x+6与两坐标轴围成的三角形面积=×6×3=9.故选(C)7.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=5【考点】抛物线与x轴的交点.【分析】根据对称轴方程﹣=2,得b=﹣4,解x2﹣4x=5即可.【解答】解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴﹣=2,解得:b=﹣4,解方程x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.【考点】弧长的计算;圆周角定理;圆内接四边形的性质.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选B.9.若关于x、y的二元一次方程组的解满足,则满足条件的m 的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.1【考点】二元一次方程组的解.【分析】方程组两方程相加表示出x+y,代入所求不等式计算确定出m的范围,即可确定出m的正整数值.【解答】解:,①+②得:3(x+y)=﹣3m+6,解得:x+y=﹣m+2,代入得:﹣m+2>,解得:m<,则满足条件的m的所有正整数值是1,故选D10.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A. B.C.D.2【考点】切线的性质;坐标与图形性质.【分析】利用点C的坐标可判断点C在直线y=﹣x上,在确定AB的中点D的坐标为(4,﹣2)过D点作DC垂直直线y=﹣x于点C,利用两点之间线段最短得到此时CD为过点C的圆的最小半径,再求出直线CD的解析式为y=x﹣6,通过解方程组得C点坐标为(3,﹣3),然后利用两点的距离公式计算CD 的长即可.【解答】解:∵C(a,﹣a),∴点C在直线y=﹣x上,设AB的中点D,则D(4,﹣2)过D点作DC垂直直线y=﹣x于点C,此时CD为过点C的圆的最小半径,∵CD⊥直线y=﹣x,∴直线CD的解析式可设为y=x+b,把D(4,﹣2)代入得4+b=﹣2,解得b=﹣6,∴直线CD的解析式为y=x﹣6,解方程组得,此时C点坐标为(3,﹣3),∴CD==,即这个圆的半径的最小值为.故选B.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在答题卷相对应的位置上.)11.计算:|﹣5|= 5 .【考点】绝对值.【分析】根据绝对值定义去掉这个绝对值的符号即可.【解答】解:|﹣5|=5.故答案为:512.计算:3a3•a2﹣2a7÷a2= a5.【考点】整式的混合运算.【分析】根据整式的混合运算顺序,首先计算乘法和除法,然后计算减法,即可求出算式3a3•a2﹣2a7÷a2的值是多少.【解答】解:3a3•a2﹣2a7÷a2=3a5﹣2a5=a5故答案为:a5.13.若使二次根式有意义,则x的取值范围是x≥2 .【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵二次根式有意义,∴2x﹣4≥0,解得x≥2.故答案为:x≥2.14.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000 米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.15.已知3是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是菱形ABCD的两条对角线的长,则菱形ABCD的面积为 4.5 .【考点】菱形的性质;一元二次方程的解;根与系数的关系.【分析】首先利用一元二次方程的解得出m的值,再利用根与系数的关系得出方程的两根之积,再结合菱形面积公式求出答案.【解答】解:∵3是关于x的方程x2﹣2mx+3m=0的一个根,∴32﹣6m+3m=0,解得:m=3,∴原方程为:x2﹣6x+9=0,∴方程的两根之积为:9,∴菱形ABCD的面积为:4.5.故答案为:4.5.16.如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6的概率是.【考点】列表法与树状图法.【分析】先画树状图展示所有12种等可能的结果数,再找出两个转盘停止后指针所指区域内的数字之和小于6的结果数,然后根据概率公式计算即可.【解答】解:画树状图为:共有12种等可能的结果数,两个转盘停止后指针所指区域内的数字之和小于6的结果数为6,所以两个转盘停止后指针所指区域内的数字之和小于6的概率==.故答案为.17.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .【考点】线段垂直平分线的性质;解直角三角形.【分析】根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC.【解答】解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.18.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车:④当甲、乙两车相距50千米时,或.其中不正确的结论是③④(填序号)【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得:,∴y乙=100t﹣100,令y甲=y乙,可得:60t=100t﹣100,解得:t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知不正确是:③④,故答案为:③④.三、解答题(本大题共10题,共76分.解答时应写出文字说明、证明过程或演算步骤.19.计算:.【考点】实数的运算.【分析】根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=9+2﹣4=11﹣4=720.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了,确定不等式组的解集.【解答】解:解不等式2(x+2)>x+7,得:x>3,解不等式3x﹣1<5,得:x<2,故不等式组无解.21.先化简,再求值:,其中.【考点】分式的化简求值.【分析】先算括号里面的,再算乘法,最后把m的值代入进行计算即可.【解答】解:原式=•=•(﹣)=,当m=+1时,原式==﹣.22.为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的3个小组(每个小组人数都相等)制作240面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做4面彩旗.如果每名学生制作彩旗的面数相等,那么每个小组有多少学生?【考点】分式方程的应用.【分析】关键描述语是:“这两个小组的每一名学生就要比原计划多做4面彩旗”.等量关系为:实际每个学生做的彩旗数﹣原来每个学生做的旗数=4.【解答】解:设每个小组有x名学生.﹣=4,解得x=10,经检验x=10是原方程的解.答:每个小组有10名学生.23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.【考点】条形统计图;扇形统计图;加权平均数;中位数.【分析】(1)由得10分的人数除以占的百分比求出乙校参赛的总人数,即可得出8分的人数;由于两校参赛人数相等,根据总人数减去其他人数求出甲校得9分的人数;(2)根据平均数求法得出甲的平均;把分数从小到大排列,利用中位数的定义解答.【解答】解:(1)5÷=20(人),20×=3(人),20﹣11﹣8=1(人),填表如下:如下尚不完整的统计图表.(2)甲校的平均分为=(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,故中位数=(7+7)=7(分);由于两校平均分相等,乙校成绩的中位数大于甲校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.故答案为:1.24.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM 交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.【考点】平行四边形的性质;全等三角形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由四边形ABCD是平行四边形,可得AB=CD,AD=BC,∠B=∠CDM,又由M、N分别是AD,BC的中点,即可利用SAS证得△ABN≌△CDM;(2)易求得∠MND=∠CND=∠2=30°,然后由含30°的直角三角形的性质求解即可求得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,∵在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∠END+∠CNP+∠2=180°﹣∠CEN=90°又∵∠END=∠CNP=∠2∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==2,∵∠MNC=60°,CN=MN=MD,∴△CNM是等边三角形,∵△ABN≌△CDM,∴AN=CM=2.25.如图,在平面直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B、C的横坐标都是3,且BC=2,点D在AC上,若反比例函数的图象经过点B、D,且.(1)求:k及点D坐标;(2)将△AOD沿着OD折叠,设顶点A的对称点A1的坐标是A1(m,n),求:代数式m+3n的值.【考点】反比例函数图象上点的坐标特征;翻折变换(折叠问题).【分析】(1)先根据AO:BC=3:2,BC=2得出OA的长,再根据点B、C的横坐标都是3可知BC∥AO,故可得出B点坐标,再根据点B在反比例函数y=(x>0)的图象上可求出k的值,由AC∥x轴可设点D(t,3)代入反比例函数的解析式即可得出t的值,进而得出D点坐标;(2)过点A1作EF∥OA交AC于E,交x轴于F,连接OAA1,根据AC∥x轴可知∠A1ED=∠A1FO=90°,由相似三角形的判定定理得出△DEA1∽△A1FO,设A1(m,n),可得出=,再根据勾股定理可得出m2+n2=9,于是得到结论.【解答】解:(1)∵AO:BC=3:2,BC=2,∴OA=3,∵点B、C的横坐标都是3,∴BC∥AO,∴B(3,1),∵点B在反比例函数y=(x>0)的图象上,∴1=,解得k=3,∵AC∥x轴,∴设点D(t,3),∴3t=3,解得t=1,∴D(1,3);(2)过点A1作EF∥OA交AC于E,交x轴于F,连接OA1,∵AC∥x轴,∴∠A1ED=∠A1FO=90°,∵∠OA1D=90°,∴∠A1DE=∠OA1F,∴△DEA1∽△A1FO,∵A1(m,n),∴=,∴m2+n2=m+3n,∵m2+n2=OA12=OA2=9,∴m+3n=9.26.如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且AB=AC.(1)求证:DE平分∠CDF;(2)若AC=3cm,AD=2cm,求DE的长.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)由∠ABC+∠ADC=180°,∠CDE+∠ADC=180°,推出∠CDE=∠ABC,由∠EDF=∠ADB=∠ACB,以及AB=AC,推出∠ABC=∠ACB,即可推出∠EDF=∠CDE解决问题.(2)证△ABD∽△AEB,通过相似三角形的对应成比例线段,求出DE的值.【解答】(1)证明:∵∠ABC+∠ADC=180°,∠CDE+∠ADC=180°,∴∠CDE=∠ABC,∵∠EDF=∠ADB=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∴∠EDF=∠CDE,∴DE平分∠CDF.(2)解:∵∠ADB=∠ABC,∠DAB=∠BAE,∴△ABD∽△AEB∴=,∵AB=AC=3,AD=2∴AE==,∴DE=﹣2=(cm).27.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发1秒后,点Q从点C出发,并以1cm/s速度向点B运动,当点P到达点C时,点Q也停止运动.设点P的运动时间为t秒.(1)求DC的长;(2)当t取何值时,PQ∥CD?(3)是否存在t,使△PQC为直角三角形?【考点】四边形综合题.【分析】(1)过D点作DF⊥BC于F,得出四边形ABFD是矩形,那么DF=AB=8,BF=AD=12,CF=BC﹣BF=6,然后在直角△CDF中利用勾股定理即可求出DC;(2)由于AD∥BC,所以当PQ∥CD时,四边形PDCQ是平行四边形,根据平行四边形的对边相等得出PD=QC,依此列出关于t的方程,求解即可;(3)因为∠C<90°,所以△PQC为直角三角形时,分两种情况:①∠PQC=90°;②∠CPQ=90°;分别求解即可.【解答】解:(1)过D点作DF⊥BC于F,∵AD∥BC,∠B=90°,∴四边形ABFD是矩形,∴DF=AB=8,BF=AD=12,∴CF=BC﹣BF=18﹣12=6,∴DC===10(cm);(2)当PQ∥CD时,四边形PDCQ是平行四边形,此时PD=QC,∴12﹣2t=t﹣1,∴t=4.∴当t=4时,四边形PQDC是平行四边形;(3)△PQC为直角三角形时,因为∠C<90°,分两种情况:①当∠PQC=90°时,则AP=BQ,即2t=18﹣(t﹣1),解得t=6,不合题意舍去;②当∠CPQ=90°,此时P一定在DC上,∵CP=10+12﹣2t=22﹣2t,CQ=t﹣1,易知,△CDF∽△CQP,∴=,即=,解得:t=8,符合题意;综上所述,当t=8秒时,△PQC是直角三角形.28.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x 轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD 相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.【考点】二次函数综合题.【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).。

2019年江苏省扬州市中考数学第二次联合测评试卷附解析

2019年江苏省扬州市中考数学第二次联合测评试卷附解析

2019年江苏省扬州市中考数学第二次联合测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在一个有 10 万人的小镇,随机调查了 2000人,其中有 250 人看中央电视台的早新闻,在该镇随机问一个人,他看早新闻的概率大约是( )A .0.75B . 0.5C . 0.25D . 0.125 2.样本数据3,6,a ,4,2的平均数是5,则这个样本的方差是( ) A .8B .5C . 3D .22 3.不论a 是什么数,下列不等式都能成立的是( ) A .20a >B .a a ≥−C .210a +>D .2a a > 4.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( ) A .222)(b a b a −=− B .6234)2(a a =−C .5232a a a =+D .1)1(−−=−−a a5.下列说法:①两个无理数的和必是无理数②两个无理数的积必是无理数③有理数与无理数分别平方后,不可能相等④有理数都有倒数其中正确的个数是( )A .1 个B .2 个C .3 个D .4 个6.32332(3)(1)(1)−−−⨯−+−的值为( ) A .-30B .0C .-11D .24 7.将矩形ABCD 沿AE 折叠.得到如图所示的图形,已知∠CED ′=60°.那么∠AED 的大小是( )A .50°B .55°C .60°D .75°二、填空题8.如图,已知△ABC 的一边BC 与以AC 为直径的⊙O 相切于点C ,若BC=4,AB=5,则cosB= .9.三角形都相似.10.一水池内储水 20m3,设放完这池水所需的时间为 T(h),每小时流水量为 W(m3/h),规定放水时间不得超过10h,则 T关于W的函数解析式为,自变量W的取值范围.11.从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是________ 12.三角形三边长分别为 4,12a−,9,则a的取值范围是.13.当x时,代数式3214x−−的值是非负数.14.如图,若等腰三角形的两腰长分别为x和26x−,则x的值为________.15.已知二元一次方程3210x y−=,用含y的代数式表示x 得 ,并写出这个方程的部分解:①1__xy=⎧⎨=⎩;②__1xy=⎧⎨=⎩16.近似数0.030精确到位,含有个有效数字.17.已知sinα=32,且α为锐角,则α= .三、解答题18.一个圆锥的轴截面平行于投影面,圆锥的正投影是边长为 3 的等边三角形,求圆锥的表面积.19.如图,矩形ABCD中,对角线AC,BD交于点0,DE平分∠ADC,交BC于点E,∠BDE的度数为15°.求∠COD的度数.20.如图,EF过□ABCD的对角线交点0,交AD于点E,交BC于点F,若AB=4,BC=5,OE=1.5,求四边形EFCD的周长.21.已知2310x x−+=,求分式24231xx x++的值.11022.有人问李老师,他所教的班有多少学生?李老师说:“一半在学数学,四分之一在学音乐,七分之一在读外语,还剩不足六位同学在操场踢球.”试问这个班共有多少名学生?23.有个均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,2个面标有“4”,1个面标有“5”,其余面标有“6”,将这个骰子掷出后:(1)掷出“6”朝上的的可能性有多大?(2)哪些数字朝上的可能性一样大?(3)哪些数字朝上的可能性最大?24.将图中的角,用不同的方法表示,填写在下表.∠1∠2∠3∠C∠α25.找出下列解方程过程中的错误之处,并予以纠正.解方程:1.2031030.2x x−⋅=+⋅解:101231032x x−=+…第一步2010369x x=+−…第二步2091036x x−=+…第三步1146x=…第四步1146x=…第五步26.检验括号中的数是否为方程的解?(1)3x-4=8(x=3,x=4)(2)1372y+=(y=8,y=4)27.连续 5 天测量某地每天的最高气温与最低气温,记录如下表所示:28.跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米优秀及格不及格11678824等级人数培训后培训前的点F 处,绳子甩到最高处时刚好通过她的头顶点E.以点O 为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax 2+bx +0.9.(1)求该抛物线的解析式;(2)如果小华站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD 之间,且离点O 的距离为t 米, 绳子甩到最高处时超过..她的头顶,请结合图像,写出t 的取值范围 .29.在世界环境日到来之际,希望中学开展了“环境与人类生存”主题研讨活动,活动之一是对我们的生存环境进行社会调查,并对学生的调查报告进行评比,初三(三)班将本班50篇学生调查报告得分进行整理(成绩均为整数),列出了频数分布表,并画出了频数分布直方图如图所示.根据以上信息,回答下列问题:(1)该班90分以上(含90分)的调查报告共有 篇;(2)该班被评为优秀等级(80分及80分以上)的调查报告占 %;(3)补全频数分布直方图.30.某校八年级320名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩都以同一标准划分成“不及格”、“及格”和“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生培训前后两次考试成绩的等级,并绘制成如图的统计图,试结合图形信息回答下列问题:· AO B D E Fx y(1)这32名学生培训前后考试成绩的中位数所在的等级分别是、;(2)估计该校整个八年级320名学生中,培训后考试成绩的等级为“及格”与“优秀”的学生共有多少名?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.C4.B5.A6.B7.C二、填空题8.49.5等边10.20T=,W≥2W32 12. -6<a<-213. ≤12− 14.615. 2103y x +=,①72−;②4 16.千分;二17.60°三、解答题18.由题意知圆锥的母线l =3,底面半径r=1.5,4.5S rl ππ==侧,2 2.25S r ππ==底,∴ 6.75S S S π=+=侧表底.19.60°20.证△AOE ≌△COF(ASA),再得四边形EFCD 的周长=10.521.11022. 28名23.(1)41;(2)1和5,2和4,3和6;(3)3和6. 24.共有四步错误,第一步中10应为l ;第二步漏乘了不含分母的项10;第三步移项没有变号;第五步中除数和被除数关系颠倒.正确解为4229x =26.(1)x=4 是方程的解,x=3不是 (2)y=8是方程的解,y=4不是27.星期三的温差最大,星期一的温差最小28.解:(1)由题意得点E (1,1.4), B(6,0.9), 代入y=ax 2+bx+0.9得0.9 1.43660.90.9a b a b ++=⎧⎨++=⎩ , 解得 0.10.6a b =−⎧⎨=⎩. ∴所求的抛物线的解析式是y=-0.1x 2+0.6x+0.9.(2)把x=3代入y=-0.1x 2+0.6x+0.9得y=-0.1×32+0.6×3+0.9=1.8,∴小华的身高是1.8米.(3)1<t <5.29.⑴21; ⑵76;⑶略.30.(1)不及格、及格;(2)及格有160人,优秀80人。

2019年江苏省扬州市中考数学二模名师精编试题附解析

2019年江苏省扬州市中考数学二模名师精编试题附解析

2019年江苏省扬州市中考数学二模名师精编试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.从圆外一点向半径为1cm ,它们所夹的锐角是( )A .30oB .60oC .90oD .45o 2.已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为( )A .1∶2B .2∶1C .1∶4D .4∶1 3. 一元二次方程22(1)1x x −=−的根是( )A .32−B .1C .32−或 1 D . 无解4.△ABC 和△DEF 都是等边三角形,若△ABC 的周长为24 cm ,△DEF 的边长比△ABC 的边长长3 cm ,则△DEF 的周长为( )A .27 cmB .30 cmC .33 cmD .无法确定 5.数学老师抽一名同学回答问题,抽到女同学是( ) A .必然事件B .不确定事件C .不可能事件D .无法判断 6.如图,在ABC ∆中,AB=AC=10,AB 的垂直平分线交AC 于G ,BC=7,则GBC ∆的周长是( )A .10B .20C .17D .137.若a =−时,a 是( )A . 全体实数B . 正实数C .负实数D .零8.近似数0.07030的有效数字和精确度分别是( )A .4个,精确到万分位B .3个,精确到万分位C .4个,精确到十万分位D .3个,精确到十万分位 二、填空题9.已知点P 是线段 AB 的黄金分割点,AP>PB .若 AB=2,则AP= .10.已知⊙O 的半径为5cm ,弦AB 的弦心距为3cm ,则弦AB 的长为 cm .11.为了了解某中学九年级250名学生升学考试的数学成绩,从中抽取了50名学生的数学成绩进行分析,下面是50名学生数学成绩的频数分布表.频数分布表根据题中给出的条件回答下列问题:(1)在这次抽样分析的过程中,样本是;(2)补全频数分布表中的空白之处;(3)在这次升学考试中,该校九年级数学成绩在90.5~100.5分范围内的人数约为人.12.请写出一根2x=−,另一根满足11x−<<的一元二次方程.13.已知直角三角形的两直角边长分别为 a 和3,则斜边长为.14.关于x的方程15613x k x+=+的解为负数,则k的取值范围是 .15.在4张小卡片上分别写有实数 0、2、π、31,从中随机抽取一张卡片,抽到无理数的概率是 _______.16.在ΔABC中, ∠C=90°,BD平分∠ABC,交AC于D,若AB=5,CD=2, 则ΔABD的面积是 .17.在Rt△ABC中,∠C=90°,其中∠A,∠B的平分线的交点为E,则∠AEB的度数为.18.如图,要使输出值y大于100,则输入的最小正整数x是.三、解答题19.如图,直线l的解析式为443y x l=+,与x轴,y轴分别交于点A B,.(1)求原点O到直线l的距离;(2)有一个半径为1的⊙C从坐标原点出发,以每秒1个单位长的速度沿y轴正方向运动,设运动时间为t(秒).当⊙C与直线l相切时,求t的值.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑,希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么 A 型号电脑被选中的概率是多少?21.求下列各式中的 x:(1)7 : 10=6 : 3x;(2)23(3)::34x−=;(3)2:(1)(1):2x x x−+=−22.如图,已知 EF是⊙O的直径,且 EF=10cm,弦MN =8 cm,求 E、F 两点到直线MN 的距离之和.23.如图.(1)求出图形轮廓线上各转折点A、B、C、D、E的坐标;(2)在图上找出A、B、C、D、E各点关于x轴的对称点A′、B′、C′、D′、E′,并求出其坐标.24.已知|31|23250a b a b−+++−≤,求不等式组27()10(3)62ax x bax b x−−>⎧⎪⎨+−>⎪⎩的解.2x<−25.若(x m÷x2n)3÷x m-n与4x2为同类项,且2m+5n=7,求4m2-25n2的值.26.如图,(1)如图,在正方形 ABCD 中,E是AD 的中点,F 是 BA 延长线上的一点,AF =12AB. 请说明△ABE≌△ADF;(2)回答下列问题:①在图中,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 变到△ADF 的位置?答:.②指出图中线段 BE 与 DF 之间的数量关系和位置关系.答:.27.如图,点P是∠ABC内一点.(1)过点P画一条直线平行于BC;(2)过点P画一条直线垂直于AB.28.如图是某大型超市一年中三种洗发用品的销售情况统计图.(1)哪种洗发用品的销售量最大?(2)这三种洗发用品的销售份额的百分比之和是多少?(3)若已知A 种洗发用品的销售量为2300瓶,请计算一下这个超市一年中三种洗发用品的销售总量.(4)若你是这家超市的销售部门经理,根据这个统计图,在下一次定货时,你会怎样分配定货比例?29.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利l5%,并可用本和利再投资其它商品,到月底又可获利l0%;如果月末出售可获利30%,但要付仓储费700元,请问根据商场的资金状况,如何购销才能获利最多?30.如图所示,(1)请找出图中哪些线段是互相平行的,并用字母把它们表示出来;(2)你能否画出与DE平行的线段?若能画,则在图中画出与DE平行的线段;若不能画,请说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.C5.B6.C7.D8.C二、填空题9.110.811.(1)被抽取的50名学生的数学成绩;(2)划记:;频数:6,10,50;(3)85 12.220x x +=(答案不唯一)13.29a +.1315k <15. 0.516.517.135°18.21三、解答题19.解:(1)在443y x =+中,令0x =,得4y =,得4BO =. 令0y =,得3x =−,得3AO =,225AB AO BO ∴=+=. 设点O 到直线AB 的距离为h ,1122AOB S AO BO AB h ==△, ∴4.2=⋅=AB BO AO h . (2)如图,设⊙C 与直线l 相切于点D ,连CD ,则CD AB ⊥,90AO BO BDC BOA ∴∠=∠=,⊥,ABO CBD ∠=∠BC CD ABO CBD AB AO∴∴=,,△∽△由(1)得345AO BO AB ===,,, 1557453333BC BC OC ∴=∴=∴=−=,,,73t CO ∴==(秒). 根据对称性得53BC BC '==,517174333OC t OC ''∴=+=∴==,(秒). ∴当⊙C 与直线l 相切时,73t =秒或173秒. 20.B C D l yO C ' D ' A(1) 有6种结果:(A ,D),(A ,E),(B ,D),(E, E:) , (C,1)) , (C,E). (2)A 型号被选中概率13. 21.(1)207x =;(2)278x =−;(3)33x =± 22.过点 0作OA ⊥MN ,过 E 点作EH ⊥MN ,过F 点作FG ⊥MN ,∴EH ∥OA ∥FG,AM=12MN ,∵EF 是⊙O 的直径,∴0 是 EF 的中点,∴ EH+FG=2OA. 连结OM ,Rt △OAM 中,OM=5 cm ,AM=4 cm ,∴OA=3cm ,∴EH+FG=6. 23.(1)A(-2,-l),B(4,4),C(2,O),D(4,1),E(4,O);(2)图略,A ′(-2,1),B ′(4,-4),C ′(2,0),D ′(4,-l),E ′(4,0)24.2x <−25.14.26.(1)根据 SAS 说明全等:AE = AF ,AB =AD ,∠BAE = ∠DAF ;(2)①△ABE 绕点 A 逆时针旋转 90°到△ADF 的位置;③BE= DF 且BE ⊥DF27.图略1l ∥CB ,2l ∥AB .28.(1)C 种 ;(2) 100%;(3)230020%11500÷=(瓶);(4)根据三种流发水的销售情况统计图,知三种洗发水应接 A :B :C=4:3:13 的比例进货 29.设投入资金为a 元,月初售出可获利:a(1+15%)(1+10%)-a=0.265a月末售出可获利:[a(1+30%)-700]-a=0.3a-700∴当a=20000元时,获利一样多;当a>20000元时,月末售出获利多;当a<20000元时,月初售出获利30.(1)HI∥FG,LM∥ON (2)能。

江苏省扬州市仪征市中考数学二模试题(解析版)

江苏省扬州市仪征市中考数学二模试题(解析版)
【详解】解:如图所示:
可知:AB=CD=3,BC=DE=1,∠B=∠D=90°,
∴△ABC≌△CDE(SAS),
∴∠1=∠3,
则∠1+∠2=∠2+∠3=135°.
故答案为:135°.
【点睛】
此题主要考查了全等三角形的判定和性质,正确借助网格分析是解题关键.
15.如图,点E是▱ABCD边AD的中点,连接AC、BE交于点P,过点P作PQ AD交CD于点Q,若AB=3,则DQ=___.
A. B.
C. D.
【答案】D
【解析】
【分析】根据轴对称图形的定义逐个判断即可.
【详解】解:A.不是轴对称图形,故本选项不符合题意;
B.不是轴对称图形,故本选项不符合题意;
C.不是轴对称图形,故本选项不符合题意;
D.是轴对称图形,故本选项符合题意;
故选:D.
【点睛】本题考查了轴对称图形的定义,注意:一个图形延一条直线对折,直线两旁的部分能够完全重合,那么这个图形叫轴对称图形.
先提取公因式2后继续应用完全平方公式分解即可: .
11.若代数式 有意义,则实数x的取值范围是____.
【答案】
【解析】
【分析】根据分式分母有意义的条件,解答即可.
【详解】根据分式有意义的条件,要使 在实数范围内有意义,必须
x-1≠0
∴x≠1.
故答案为:x≠1.
【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.
∴mn-1=k2.
∴m(-m+2)-1=k2.
∴-m2+2m-1=k2.
∴k2+(m-1)2=0,
∵k2≥0,(m-1)2≥0,
∴k=0,m-1=0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年扬州市仪征市、高邮市中考数学二模试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.(3分)的相反数为()A.2 B.﹣2 C.﹣D.2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣23.(3分)我国古代数学家利用“牟合方盖“找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的左视图是()A.B.C.D.4.(3分)下列单项式中,与3a2b为同类项的是()A.﹣a2b B.ab2C.3ab D.35.(3分)一个盒子中装有20颗蓝色幸运星,若干颗红色幸运星和15颗黄色幸运星,小明通过多次摸取幸运星试验后发现,摸取到红色幸运星的频率稳定在0.5左右,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的可能性约为()A.B.C.D.6.(3分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=17.(3分)如图,半径为3的⊙O与五边形ABCDE的边相切于点A、C,∠D+∠E=240°,则的长是()A.B.2πC.D.3π8.(3分)在抛物线y=a(x﹣m﹣1)2+c(a≠0)和直线y=﹣x的图象上有三点(x1,m)、(x2,m)、(x3,m),则x1+x2+x3的结果是()A.B.0 C.1 D.2二、填空题(本大题共10小是,每小题3分,共30分)9.(3分)“故人西辞黄鹤楼,烟花三月下扬州”,据报道去年扬州旅游总收入近900亿元,大部分的旅游收入是靠“皮包骨“的湖泊﹣﹣瘦西湖得来.将数据90000000000用科学记数法表示为.10.(3分)分解因式:2a3﹣2ab2=.11.(3分)如图,直线AB∥CD,直线EF与AB、CD相交于点E、F,∠BEF的平分线EN与CD相交于点N.若∠1=65°,则∠2=.(3分)若△ABC∽△DEF,且相似比是2:3,它们周长之和是40,则△ABC的周长是.12.13.(3分)某市A楼盘准备以每平方米10000元的价格对外销售,由于新政策出台,开发商对价格连续两次下调,决定以每平方米8100元的价格销售,平均每次下调的百分率为x,那么可列方程为.14.(3分)如果一组数据1,3,5,a,8的方差是3,那么另一组数据2,6,10,2a,16的方差是.15.(3分)圆锥的底面半径是1,侧面展开图的圆心角是90°,那么圆锥的高是.16.(3分)若关于x的方程有增根,则m的值为.17.(3分)如图菱形ABCD的边AB与x轴重合,点C、D分别在y=和y=的图象上,若菱形ABCD的两条对角线长分别是3和4,则k的值是.18.(3分)如图,在△ABC中,AB=6,AC=4,∠A=30°,线段AB上有一个动点P,过点P作PD∥BC,交AC于D,连接PC,则△PCD的最大面积是.三、解答题(本大题共10小题,共96分)19.(8分)计算或化简:(1)2cos60°﹣(π﹣2019)0+2﹣2;(2)(1﹣)÷.20.(8分)已知关于x的一元二次方程x2+mx+2n=0.其中m、n是常数.(1)若m=n+3,试判断该一元二次方程根的情况;(2)若该一元二次方程有两个相等的实数根,写出一组m、n的值,并求此时方程的根.21.(8分)某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机抽取了该校部分学生的年龄作为样本,经过数据整理,绘制出如下不完整的统计图.依据相关信息解答以下问题:(1)写出样本容量,并补全条形统计图;(2)写出样本的众数岁,中位数岁;(3)若该校一共有600名学生.估计该校学生年龄在15岁及以上的人数.22.(8分)某市已实现义务教育均衡分班,某校九年级有3个班,为各班随机分配科任老师,任教语文的陈老师和任教数学王老师都只能任教其中的一个班级.(1)直接写出陈老师任教九(2)班的概率;(2)利用树状图或表格,求陈老师和王老师同时任教九(2)班的概率.23.(10分)某校举办园博会知识竞赛,打算购买A、B两种奖品.如果购买A奖品10件、B奖品5件,共需120元;如果购买A奖品5件、B奖品10件,共需90元.(1)A,B两种奖品每件各多少元?(2)若购买A、B奖品共100件,总费用不超过600元,则A奖品最多购买多少件?24.(10分)在Rt△ABC中,∠ACB=90°,点D、E分别是AB、BC的中点,过点C作CF∥AB,与DE的延长线并交于点F,连接BF.(1)试判断四边形CDBF的形状,并说明理由;(2)若CD=5,sin∠CAB=,过点C作CH⊥BF,垂足为H点,试求CH的长.25.(10分)2021年世界园艺博览会将在扬州枣林湾举办,有一块枣林湾博览会的直传牌CD竖立在路边,其中CB是支柱.小梅同学想计算出CD的长度.于是在A处测得支柱B 处的俯角为30°.测得顶端D处的仰角为42°,同时测量出AB的长度是10m,BC的长度是6m.求宜传牌CD的长度(结果保留小数点后一位).(参考数据:≈1.73,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)26.(10分)【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.【理解应用】(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,试求m的值;(2)若一次函数y=2kx+1﹣4k的图象经过某个定点,则该定点坐标为;【能力提升】(3)7张如图1的小长方形,长为a,宽为b.按照图2方式不重叠地放在大矩形ABCD 内,大矩形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变.求a与b的等量关系.27.(12分)如图,在以AB为直径的半⊙O上有点C,点D在上,过圆心作OF⊥CD的于点F,OF、AD的延长线交于点E,连结CE,若∠DEC=90°.(1)试说明∠BAC=45°;(2)若DF=1,△ACE的面积为△DCE面积的3倍,连接AC交OE于点P,求tan∠ACD 的值和OP的长;(3)在(2)的条件下,延长EC与AB的延长线相交于点G,直接写出BG的长.28.(12分)如图1,已知抛物线的顶点坐标为(0,1)且经过点A(1,2),直线y=3x﹣4经过点B(,n),与y轴交点为C.(1)求抛物线的解析式及n的值;(2)将直线BC绕原点O逆时针旋转45°,求旋转后的直线的解析式;(3)如图2将抛物线绕原点O顺时针旋转45°得到新曲线,新曲线与直线BC交于点M、N,点M在点N的上方,求点N的坐标.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分)1.(3分)的相反数为()A.2 B.﹣2 C.﹣D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数为﹣,故选:C.2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.3.(3分)我国古代数学家利用“牟合方盖“找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的左视图是()A.B.C.D.【分析】根据左视图的定义,得出圆柱以及立方体的摆放即可得出左视图为2个正方形以及一个圆的组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱左视图是正方形,得出圆柱以及正方体的摆放的左视图为1列,上边一个矩形,下边是正方形与圆的组合体.故选:A.4.(3分)下列单项式中,与3a2b为同类项的是()A.﹣a2b B.ab2C.3ab D.3【分析】单项式3a2b含有字母a、b,且次数分别为2、1,根据同类项的定义进行判断.【解答】解:∵3a2b含有字母a、b,且次数分别为2、1,∴与3a2b是同类项的是﹣a2b.故选:A.5.(3分)一个盒子中装有20颗蓝色幸运星,若干颗红色幸运星和15颗黄色幸运星,小明通过多次摸取幸运星试验后发现,摸取到红色幸运星的频率稳定在0.5左右,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的可能性约为()A.B.C.D.【分析】设袋中红色幸运星有x个,根据“摸取到红色幸运星的频率稳定在0.5左右”列出关于x的方程,解之可得袋中红色幸运星的个数,再根据频率的定义求解可得.【解答】解:设袋中红色幸运星有x个,根据题意,得:=0.5,解得:x=35,经检验:x=35是原分式方程的解,则袋中红色幸运星的个数为35个,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的频率为=,故选:C.6.(3分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、(﹣a2)3=﹣a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(﹣a2b3)2=a4b6,正确;D、3a2﹣2a2=a2,故此选项错误;故选:C.7.(3分)如图,半径为3的⊙O与五边形ABCDE的边相切于点A、C,∠D+∠E=240°,则的长是()A.B.2πC.D.3π【分析】连接OA、OC,根据切线的性质得到∠OAE=90°,∠OCD=90°,求出∠AOC,根据弧长公式计算即可.【解答】解:连接OA、OC,∵⊙O与五边形ABCDE的边相切于点A、C,∴∠OAE=90°,∠OCD=90°,∵∠D+∠E=240°,∴∠AOC=540°﹣240°﹣90°×2=120°,∴的长==2π,故选:B.8.(3分)在抛物线y=a(x﹣m﹣1)2+c(a≠0)和直线y=﹣x的图象上有三点(x1,m)、(x2,m)、(x3,m),则x1+x2+x3的结果是()A.B.0 C.1 D.2【分析】根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【解答】解:如图,在抛物线y=a(x﹣m﹣1)2+c(a≠0)和直线y=﹣x的图象上有三点A(x1,m)、B(x2,m)、C(x3,m),∵y=a(x﹣m﹣1)2+c(a≠0)∴抛物线的对称轴为直线x=m+1,∴=m+1,∴x2+x3=2m+2,∵A(x1,m)在直线y=﹣上,∴m=﹣x1,∴x1=﹣2m,∴x1+x2+x3=﹣2m+2m+2=2,故选:D.二、填空题(本大题共10小是,每小题3分,共30分)9.(3分)“故人西辞黄鹤楼,烟花三月下扬州”,据报道去年扬州旅游总收入近900亿元,大部分的旅游收入是靠“皮包骨“的湖泊﹣﹣瘦西湖得来.将数据90000000000用科学记数法表示为9×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:90000000000=9×1010,故答案为:9×1010.10.(3分)分解因式:2a3﹣2ab2=2a(a+b)(a﹣b).【分析】先提取公因式2a,再根据平方差公式进行二次分解即可求得答案.【解答】解:2a3﹣2ab2=2a(a2﹣b2)=2a(a+b)(a﹣b).故答案为:2a(a+b)(a﹣b).11.(3分)如图,直线AB∥CD,直线EF与AB、CD相交于点E、F,∠BEF的平分线EN与CD相交于点N.若∠1=65°,则∠2=50°.【分析】先根据平行线的性质求出∠BEN的度数,再由角平分线的定义得出∠BEF的度数,根据平行线的性质即可得出∠2的度数.【解答】解:∵AB∥CD,∠1=65°,∴∠BEN=∠1=65°.∵EN平分∠BEF,∴∠BEF=2∠BEN=130°,∴∠2=180°﹣∠BEF=180°﹣130°=50°.故答案为:50°.12.(3分)若△ABC∽△DEF,且相似比是2:3,它们周长之和是40,则△ABC的周长是16 .【分析】根据相似三角形的性质得△ABC的周长:△DEF的周长=2:3,然后把它们周长之和是40=40代入可计算出△ABC的周长.【解答】解:∵△ABC与△DEF的相似比为2:3,∴△ABC的周长:△DEF的周长=2:3,∴△ABC的周长=×40=16.故答案为:1613.(3分)某市A楼盘准备以每平方米10000元的价格对外销售,由于新政策出台,开发商对价格连续两次下调,决定以每平方米8100元的价格销售,平均每次下调的百分率为x,那么可列方程为10000(1﹣x)2=8100 .【分析】根据每次的均价等于上一次的价格乘以(1﹣x)(x为平均每次下调的百分率),可列出一个一元二次方程.【解答】解:设平均每次下调的百分率为x,根据题意可得:则10000(1﹣x)2=8100,故答案为:10000(1﹣x)2=8100.14.(3分)如果一组数据1,3,5,a,8的方差是3,那么另一组数据2,6,10,2a,16的方差是12 .【分析】根据每个数据都放大或缩小相同的倍数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍,从而得出答案.【解答】解:∵一组数据1,3,5,a,8的方差是3,∴另一组数据2,6,10,2a,16的方差是3×22=12,故答案为:12.15.(3分)圆锥的底面半径是1,侧面展开图的圆心角是90°,那么圆锥的高是.【分析】设圆锥的母线长为R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到R,进而利用勾股定理解答即可.【解答】解:设圆锥的母线长为R,根据题意得2π•1=,解得R=4,∵θ=90°,∴r=1,∴R=4,∴h=.故答案为:16.(3分)若关于x的方程有增根,则m的值为 1 .【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x﹣2),得x﹣3=﹣m,∵方程有增根,∴最简公分母x﹣2=0,即增根是x=2,把x=2代入整式方程,得m=1.故答案为:1.17.(3分)如图菱形ABCD的边AB与x轴重合,点C、D分别在y=和y=的图象上,若菱形ABCD的两条对角线长分别是3和4,则k的值是﹣2 .【分析】连接AC、BD交于M,根据菱形的性质求得菱形的边长为,S△ABD=S菱形ABCD=3,进而求得C点的纵坐标,代入解析式求得横坐标,即可求得D点的横坐标,代入y=求得看的值.【解答】解:连接AC、BD交于M,∵四边形ABCD是菱形,∴AC⊥BD,MA=MC=2,MB=MD=,∴菱形的边长为,∵S菱形ABCD=AC•BD==6,∴S△ABD=S菱形ABCD=3,∴AB•y D=3,即וy D=3,∴y D=,∴y C=,代入y=求得x C=,∴D点的横坐标为:﹣=﹣,∴D(﹣,),∵点D在y=的图象上,∴k=﹣×=﹣2,故答案为﹣2.18.(3分)如图,在△ABC中,AB=6,AC=4,∠A=30°,线段AB上有一个动点P,过点P作PD∥BC,交AC于D,连接PC,则△PCD的最大面积是.【分析】过点C作CE⊥AB于E,过点P作PF⊥AC于F,先求出S△ACB=×AB×CE=6,通过证明△ADP∽△ACB,可得=()2,可求PF=AD,由三角形面积公式可得S△PCD=﹣(AD﹣2)2+,由二次函数的性质可求解.【解答】解:如图,过点C作CE⊥AB于E,过点P作PF⊥AC于F,∵AC=4,∠A=30°,∴CE=AC=2,∴S△ACB=×AB×CE=6,∵PD∥BC,∴△ADP∽△ACB,∴=()2,∴S△ADP=6×,∴×AD×PF=6×,∴PF=AD,∵S△PCD=×CD×PF=×(4﹣AD)×AD=﹣(AD﹣2)2+,∴当AD=2时,△PCD的最大面积=,故答案为:.三、解答题(本大题共10小题,共96分)19.(8分)计算或化简:(1)2cos60°﹣(π﹣2019)0+2﹣2;(2)(1﹣)÷.【分析】(1)根据特殊角的三角函数值、零指数幂、负整数指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题.【解答】解:(1)2cos60°﹣(π﹣2019)0+2﹣2=2×﹣1+=1﹣1+=;(2)(1﹣)÷===2(a+1)=2a+2.20.(8分)已知关于x的一元二次方程x2+mx+2n=0.其中m、n是常数.(1)若m=n+3,试判断该一元二次方程根的情况;(2)若该一元二次方程有两个相等的实数根,写出一组m、n的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=m2﹣8n,把m=n+3代入得△=n2﹣2n+9,利用配方法得到△=(n﹣1)2+8>0,然后根据判别式的意义可判断根的情况;(2)由于△=m2﹣8n=0,可令n=0,则m=0,方程变形为x2=0,然后解方程即可.【解答】解:(1)△=m2﹣4×2n=m2﹣8n,而m=n+3,所以△=(n+3)2﹣8n=n2﹣2n+9=(n﹣1)2+8>0,所以该一元二次方程有两个不相等的实数解;(2)根据题意得△=m2﹣8n=0,令n=0,则m=0,方程变形为x2=0,所以x1=x2=0.21.(8分)某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机抽取了该校部分学生的年龄作为样本,经过数据整理,绘制出如下不完整的统计图.依据相关信息解答以下问题:(1)写出样本容量50 ,并补全条形统计图;(2)写出样本的众数15 岁,中位数14 岁;(3)若该校一共有600名学生.估计该校学生年龄在15岁及以上的人数.【分析】(1)根据12岁的人数和所占的百分比,可以求得样本容量,进而求得14岁和16岁的人数,从而可以将条形统计图补充完整;(2)根据(1)中补充完整的条形统计图可以得到众数和中位数;(3)根据统计图中的数据可以求得该校学生年龄在15岁及以上的人数.【解答】解:(1)样本容量为:6÷12%=50,故答案为:50;14岁的有:50×28%=14(人),16岁的有:50﹣6﹣10﹣14﹣18=2(人),补充完整的条形统计图如右图所示;(2)由条形统计图可得,众数是15,中位数是14,故答案为:15,14;(3)600×=240(人),答:该校学生年龄在15岁及以上的有240人.22.(8分)某市已实现义务教育均衡分班,某校九年级有3个班,为各班随机分配科任老师,任教语文的陈老师和任教数学王老师都只能任教其中的一个班级.(1)直接写出陈老师任教九(2)班的概率;(2)利用树状图或表格,求陈老师和王老师同时任教九(2)班的概率.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,找出陈老师和王老师同时任教九(2)班的结果数,然后利用概率公式求解.【解答】解:(1)陈老师任教九(2)班的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中陈老师和王老师同时任教九(2)班的结果数为1,所以陈老师和王老师同时任教九(2)班的概率=.23.(10分)某校举办园博会知识竞赛,打算购买A、B两种奖品.如果购买A奖品10件、B奖品5件,共需120元;如果购买A奖品5件、B奖品10件,共需90元.(1)A,B两种奖品每件各多少元?(2)若购买A、B奖品共100件,总费用不超过600元,则A奖品最多购买多少件?【分析】(1)设A奖品的每件x元,B奖品每件y元,根据“如果购买A奖品10件、B 奖品5件,共需120元;如果购买A奖品5件、B奖品10件,共需90元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A奖品购买m件,则B奖品购买(100﹣m)件,根据总价=单价×数量结合总费用不超过600元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设A奖品的每件x元,B奖品每件y元,依题意,得:,解得:.答:A奖品的每件10元,B奖品每件4元.(2)设A奖品购买m件,则B奖品购买(100﹣m)件,依题意,得:10m+4(100﹣m)≤600,解得:m≤.∵m为整数,∴m的最大值为33.答:A奖品最多购买33件.24.(10分)在Rt△ABC中,∠ACB=90°,点D、E分别是AB、BC的中点,过点C作CF∥AB,与DE的延长线并交于点F,连接BF.(1)试判断四边形CDBF的形状,并说明理由;(2)若CD=5,sin∠CAB=,过点C作CH⊥BF,垂足为H点,试求CH的长.【分析】(1)证出DE是△ABC的中位线,得出DE∥AC,AC=2DE,证出四边形CDBF是平行四边形,由直角三角形的性质得出CD=AB=BD,即可得出四边形CDBF是菱形;(2)由直角三角形的性质得出AB=2CD=10,求出BC=6,由勾股定理得出AC==8,得出DE=AC=4,由菱形的性质得出DF=2DE=8,BF=CD=5,由菱形CDBF的面积即可得出结果.【解答】解:(1)四边形CDBF是菱形,理由如下:∵点D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE∥AC,AC=2DE,∴DF∥AC,∵CF∥AB,∴四边形CDBF是平行四边形,∵∠ACB=90°,点D是AB的中点,∴CD=AB=BD,∴四边形CDBF是菱形;(2)如图所示:∵∠ACB=90°,CD=5,∴AB=2CD=10,∵sin∠CAB==,∴BC=6,∴AC==8,∴DE=AC=4,∵四边形CDBF是菱形,∴DF=2DE=8,BF=CD=5,∵菱形CDBF的面积=BF×CH=×BC×DF=×6×8=24,∴CH=.25.(10分)2021年世界园艺博览会将在扬州枣林湾举办,有一块枣林湾博览会的直传牌CD竖立在路边,其中CB是支柱.小梅同学想计算出CD的长度.于是在A处测得支柱B 处的俯角为30°.测得顶端D处的仰角为42°,同时测量出AB的长度是10m,BC的长度是6m.求宜传牌CD的长度(结果保留小数点后一位).(参考数据:≈1.73,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【分析】如图作AE⊥BD于E.分别求出BE、DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6≈6.8(m),答:标语牌CD的长为6.8m.26.(10分)【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.【理解应用】(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,试求m的值;(2)若一次函数y=2kx+1﹣4k的图象经过某个定点,则该定点坐标为(2,1);【能力提升】(3)7张如图1的小长方形,长为a,宽为b.按照图2方式不重叠地放在大矩形ABCD 内,大矩形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变.求a与b的等量关系.【分析】(1)由题可知代数式的值与x的取值无关,所以含x项的系数为0,故将多项式整理为(2m﹣3)x﹣3m+2m2,令x系数为0,即可求出m.(2)根据题意可知图象经过某个定点即x取某定值时,函数值与k无关,故可将x作系数,把k看出字母合并同类项,原函数解析式可化为即y=2k(x﹣2)+1,当x﹣2=0时即看求出y值,即定点为(2,1).(3)设AB=x,由图可知S1=a(x﹣3b),S2=2b(x﹣2a),即可得到S1﹣S2关于x的代数式,根据取值与x可得a=2b.【解答】解:(1)(2x﹣3)m+2m2﹣3x=2mx﹣3m+2m2﹣3x=(2m﹣3)x﹣3m+2m2,∵若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,∴2m﹣3=0,∴m=.(2)∵y=2kx+1﹣4k=2k(x﹣2)+1,当x=2时,y=1,故一次函数y=2kx+1﹣4k的图象经过定点(2,1),故答案为:(2,1)(3)设AB=x,由图可知S1=a(x﹣3b),S2=2b(x﹣2a),∴S1﹣S2=a(x﹣3b)﹣2b(x﹣2a)=(a﹣2b)x+ab,∵当AB的长变化时,S1﹣S2的值始终保持不变.∴S1﹣S2取值与x无关,∴a﹣2b=0∴a=2b.27.(12分)如图,在以AB为直径的半⊙O上有点C,点D在上,过圆心作OF⊥CD的于点F,OF、AD的延长线交于点E,连结CE,若∠DEC=90°.(1)试说明∠BAC=45°;(2)若DF=1,△ACE的面积为△DCE面积的3倍,连接AC交OE于点P,求tan∠ACD 的值和OP的长;(3)在(2)的条件下,延长EC与AB的延长线相交于点G,直接写出BG的长.【分析】(1)连接BC,由垂径定理得出OF垂直平分CD,得出△CDE是等腰直角三角形,∠DCE=∠CDE=45°,由圆内接四边形的性质得出∠ABC=∠CDE=45°,由圆周角定理得出∠ACB=90°,即可得出结论;(2)连接OC、BD,由题意求出AE=3DE=3,AD=2,由勾股定理得出AC==2,由圆周角定理得出∠ACB=∠ADB=90°,得出△ABC是等腰直角三角形,BC=AC=2,AB=AC=2,得出OC=OA=OB=,由勾股定理得出BD==4=2AD,再由圆周角定理和三角函数即可得出tan∠ACD=tan∠ABD==;证明△PCF∽△ABD,得出=,求出PF=,由勾股定理得出OF==3,即可得出OP的长;(3)由等腰直角三角形的性质得出OC⊥AB,证明△OCG∽△EAG,得出==,即==,解得:BG=,CG=5即可.【解答】(1)证明:连接BC,如图1所示:∵OF⊥CD,∴DF=CF,∴ED=EC,∵∠DEC=90°,∴△CDE是等腰直角三角形,∴∠DCE=∠CDE=45°,∴∠ABC=∠CDE=45°,∵AB是直径,∴∠ACB=90°,∴∠BAC=45°;(2)解:连接OC、BD,如图2所示:∵DF=CF=1,∴CD=2,△CDE是等腰直角三角形,∴ED=EC=,∵△ACE的面积为△DCE面积的3倍,∴AE=3DE=3,AD=2,∴AC===2,∵AB是半⊙O的直径,∴∠ACB=∠ADB=90°,∵∠BAC=45°,∴△ABC是等腰直角三角形,∴BC=AC=2,AB=AC=2,∴OC=OA=OB=,BD===4=2AD,∵∠ACD=∠ABD,∴tan∠ACD=tan∠ABD==;∵∠PFC=∠ADB=90°,∴△PCF∽△ABD,∴=,即=,解得:PF=,∵OF==3,∴OP=OF﹣PF=;(3)解:如图3所示:∵△ABC是等腰直角三角形,OA=OB,∴OC⊥AB,∴∠COG=90°=∠DEC,∵∠G=∠G,∴△OCG∽△EAG,∴==,即==,解得:BG=,CG=5,故答案为:.28.(12分)如图1,已知抛物线的顶点坐标为(0,1)且经过点A(1,2),直线y=3x﹣4经过点B(,n),与y轴交点为C.(1)求抛物线的解析式及n的值;(2)将直线BC绕原点O逆时针旋转45°,求旋转后的直线的解析式;(3)如图2将抛物线绕原点O顺时针旋转45°得到新曲线,新曲线与直线BC交于点M、N,点M在点N的上方,求点N的坐标.【分析】(1)抛物线的表达式为:y=ax2+1,将点A坐标代入上式得:2=a+1,即可求解;(2)点B围绕点O逆时针旋转45°,落在y轴上,设为点B′(0,4),同理点C(0,﹣4)围绕点O逆时针旋转45°,设旋转后该点对应点C′(4,﹣4),即可求解;(3)在图2中,作直线y=﹣2x+4交抛物线于点N′,则抛物线和直线y=﹣2x+4绕原点O顺时针旋转45°得到新曲线和直线线y=3x﹣4,由ON=ON′,即可求解.【解答】解:(1)抛物线的表达式为:y=ax2+1,将点A坐标代入上式得:2=a+1,解得:a=1,故抛物线的表达式为:y=x2+1,n=3×2﹣4=2;(2)∵点B的横坐标和纵坐标相同,BO=4,故点B围绕点O逆时针旋转45°,落在y轴上,设为点B′(0,4),同理点C(0,﹣4)围绕点O逆时针旋转45°,设旋转后该点对应点C′(4,﹣4),将BC坐标代入一次函数表达式:y=mx+n得:,解得:,故旋转后直线的表达式为:y=﹣2x+4;(3)在图2中,作直线y=﹣2x+4交抛物线于点N′,则抛物线和直线y=﹣2x+4绕原点O顺时针旋转45°得到新曲线和直线线y=3x﹣4,联立y=x2+1与y=﹣2x+4并解得:x=1或﹣3(舍去﹣3),故点N′(1,2),设点N(m,3m﹣4),由题意得:ON=ON′,即:1+4=(m)2+(3m﹣4)2,解得:m=(不合题意值已舍去),故点N′(,).。

相关文档
最新文档