奥数专题-比的应用
奥数—比的应用
二、主要比例转化实例
• • • • •
x y a b a y b ; ; ① x x y; a b y b x a x ma mx a a m0 ②x ; ( 其中 ); y mb my b y b x a a x y ab x y a b ③ xy b ; ; ;· · · x y ab x y a b x a a y c x ac , ④x ;x : y : z ac : bc : bd ; y b z d z bd ad bc c d ⑤ x的 a 等于 y的 b ,则x是y的 bc ,y是x的 ad .
• 例4.某俱乐部男、女会员的人数之比是3: 2,分为甲、乙、丙三组.已知甲、乙、丙 三组的人数比是10:8:7,甲组中男、女 会员的人数之比是3:1,乙组中男、女会 员的人数之比是5:3.求丙组中男、女会 员人数之比 。 10 3 3 • 以总人数为1,则甲组男会员人数 10 8 7 3 1 10 3 1 1 8 5 1 , 女会员 ,乙组男会员为 10 8 7 5 3 5 10 3 10 3 3 3 3 1 1 , 女会员为 1 ;丙组男会员为 3+2 10 5 10 5 5 25 2 3 9 1 女会员为 3+2 10 25 50;所以,丙组中男、女 1 9 : 5:9 会员人数之比为10 . 50
•Leabharlann 例3.如下图所示,圆B与圆C的面积之和 等于圆A面积的4/5,且圆A中的阴影部分 面积占圆A面积的1/6,圆B的阴影部分面 积占圆B面积的1/5,圆C的阴影部分面积 占圆C面积的1/3.求圆A、圆B、圆C的 面积之比.
A B C
解析:
• 设A与B的共同部分的面积为x,A与C的共 5 同部分的面积为y,则根据题意有A 4 B C 6 x y 5 B C B C 6 ,这条 x=B/5,Y=C/3于是得到 4 3 5 5 A 式子可化简为B=15C,所以 4 B C 20C .最 后得到A:B:C=20:15:1.
小学奥数 比例的应用2
比例的应用(2)例1:新华书店运来文艺书和科技书共5700本,其中文艺书本数的2/3和科技书本数的3/5同样多。
文艺书和科技书各有多少本?练习:1、下图中,正方形面积比圆形面积小20平方米,麦地占圆形面积的2/3,玉米占正方形面积的2/5,求油菜面积。
玉米油菜麦地2、张、王、李三人共有54元,张用了自己钱数的3/5,王用了自己钱数的3/4,李用了自己钱数的2/3,各买了一只同样的钢笔,那么张和李两人剩下钱数共有多少元?例2:一堆黑白围棋子,从中取走白子15粒,余下的黑子数与白子数之比为2:1,此后,又取走黑子45粒,余下的黑子数与白子数之比为1:5,那么这堆围棋子原来共有多少粒?练习:1、一支笔售价3元,如果小明买了这支笔,买了以后小明和小强的钱数之比为 2:5;现在小强买了这支笔,买了以后两人的钱数之比是8:13。
小明原有多少钱?2、甲、乙两队合运一批货物。
甲计划运这批货物的7/12,甲队在完成自己计划的任务后,又帮乙队运了4吨,甲、乙两队实际运货质量的比是3:2。
乙队原计划运货多少吨?例3:甲、乙、丙三人分19只羊,规定:甲得1/2,乙得1/4,丙得1/5。
但分时不准谦让赠送,不准宰杀变卖。
问三人各应分得几只羊?练习:1、传说中古代有个守财奴,临死前留下13颗宝石。
嘱咐三个女儿:大女儿可得 1/2,二女儿可得1/3,三女儿可得1/4,你知道三个女儿各分得几颗宝石吗?能力检测:1、甲、乙两个书架,甲书架存书的1/4等于乙书架存书的2/5,已知甲书架比乙书架多存120本,两个书架共存书多少本?2、某小学共有学生697人,已知低年级学生数的1/2等于中年级学生数的2/5,低年级学生数的1/3等于高年级学生数的2/7,求该校低、中、高年级各有多少学生?3、两件不同的皮衣标价的比是7:3,把它们同时加价70元后,则价格的比变为7:4,问这两件皮衣原来标价多少元?4、古代一农夫临终前对三个儿子说:我仅有17头羊留给你们三人,老大得一半,老二得三分之一,老三得九分之一。
小学奥数专题-比例应用题(一).学生版
1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ; 性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数) 性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积) 正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比; 反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b =⇒ y b x a =; x ya b =; a b x y =; ②x a y b = ⇒ mx a my b =; x ma y mb =(其中0m ≠); ③x a y b = ⇒ x a x y a b =++; x y a b x a --=; x y a b x y a b ++=-- ;④x a yb =,yc zd = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的ca等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad .三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bxa b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为axa b-,B 的知识点拨教学目标比例应用题(一)元素数量为bxa b-,所以解题的关键是求出()a b -与a 或b 的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。
(完整)六年级奥数思维训练比例应用题
六年级奥数思维训练比例应用题
一、尝试练习
1.甲乙两人走同一段路, 甲要20分钟, 乙要15分钟, 现在甲、乙两人分别同时从相距840米的两地相向而行, 相遇时, 甲、乙各走了多少米?
2.盒子里共有红、白、黑三种颜色的彩球共68个, 红球与白球个数的比是1:2, 白球与黑球个数的比是3:4, 红球有多少个?
二、训练营地
1.甲、乙、丙三个平行四边形的底之比是4:5:6, 高之比是3:2:1, 已知三个平行四边形的面积和是140平方分米, 那么甲、乙、丙三个平行四边形的面积各是多少?
2.某校四、五年级参加数学竞赛的人数相等, 四年级获奖人数与未获奖人数的比是1:4, 五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?
3.光明小学有三个年级, 一年级学生占全校学生人数的25%, 二年级与三年级学生人数的比是3: 4, 已知一年级比三年级学生少40人, 一年级有学生多少人?
4.五年级举行数学竞赛, 一班占参加比赛总人数的1/3, 二班与三班参加比赛人数的比是11: 13, 二班比三班少8人, 则三班有多少人参加比赛?。
奥数题_专题训练之比和比例应用题
v1.0可编辑可修改比和比例应用题[例1]、生产队饲养的鸡与猪的只数比为26:5,羊与马的只数比为25 : 9,猪与马的只数比为10 : 3。
求鸡、猪、马和羊的只数比。
[分析]该题给出了三个单比,要求写出它们的连比。
将几个单比写成连比,关键是利用比的基本性质将各个比中表示同一个量的值化为相同的值。
[解]由题设,鸡:猪=26 : 5,羊:马=25 : 9,猪:马=10 : 3,由比的基本性质可得:猪:马=10 : 3=30 : 9,羊:马=25 : 9,鸡:猪=26 : 5=156 : 30,从而鸡:猪:马:羊=156 : 30 : 9 : 25。
答:鸡、猪、马、羊的只数比为156 : 30 : 9 : 25。
[注]将单比化为连比时,还可先化为三个量的连比,再化为四个量的连比。
如,鸡:猪=26 : 5,猪:马=10 : 3,由此可得,鸡:猪:马=52 : 10 : 3;再注意到羊:马=25 : 9可得,鸡:猪:马:羊=156 : 30 : 9 : 25。
[例2]•下列各题中的两个量是否成比例若成比例,请说明成正比例还是成反比例。
(1) 路程一定时,速度与时间;(2) 速度一定时,路程与时间;(3) 播种面积一定时,总产量与单位面积的产量;(4) 圆的面积与该圆的半径;(5) 两个相互啮合的大小齿轮,它们的转速与齿数。
[分析]禾U用正比例、反比例的概念进行判定与说明。
[解](1)由于速度与时间的乘积等于路程,所以,当路程一定时,速度与时间成反比例。
⑵由于路程与时间的比值为速度,所以,当速度一定时,路程与时间成正比例。
(3) 由于总产量与单位面积的产量的比值为播种面积,所以,当播种面积一定时,总产量与单位面积的产量成正比例。
(4) 设圆的半径为R,则圆的面积为nR 2,所以圆的面积与半径的积为nR 3,随半径的变化而变化,即圆的面积与半径不成反比例;而圆的面积与半径的比值为n R,也随半径的变化而变化,即圆的面积与半径不成正比例。
奥数比例应用题
奥数比例应用题奥数比例应用题知识点1.份数思想甲:乙=a:b,可以看成甲为a份,乙为b份。
份数是可以相加减的,如甲、乙的总和为a+b份,甲比乙多a-b份。
2.量份对应假如a份对应的量是x,那么1份对应的量就是x÷a。
而假如1份对应的量是x,那么a份对应的量就是x×a3.统一比〔化连比〕在两个比中,1份代表的'量可能是不同的。
例如甲:乙=2:3,乙:丙=2:5,这里乙在前面的比中代表3份,在后面的比中代表2份,应该取3、2最小公倍数6,两个比分别化为甲:乙=4:6,乙:丙=6:15,这样就统一了两个比,可以写成甲:乙:丙=4:6:15.例题:(1)艾迪和大宽的糖数之比为4:5,艾迪有20块糖,那么大宽有块糖.(2)艾迪和大宽一共有45块糖,而且两人糖数之比为4:5,那么艾迪有块糖,大宽有块糖.(3)艾迪、大宽和薇儿一共有45块糖,而且三人糖数之比为4:5:6,那么艾迪有块糖,大宽有块糖,薇儿有块糖.(4)艾迪、大宽和薇儿三人糖数之比为4:5:6,并且知道薇儿比艾迪多10块糖,那么三人共有块糖.【解析】(1)艾迪4份是20块,因此1份是20÷4=5块,大宽是5份,因此大宽有5×5=25块;(2)艾迪4份,大宽5份,总共9份,对应45块糖,所以1份是45÷9=5块糖,所以艾迪有5×4=20块糖,大宽有5×5=25块糖;(3)一共有4+5+6=15份,对应45块糖,所以1份是45÷15=3块糖,所以艾迪有3×4=12块糖,大宽有3×5=15块糖,薇儿有3×6=18块糖;(4)薇儿比艾迪多6-4=2份,对应10块糖,所以1份是10÷2=5块糖,三人一共有4+5+6=15份,所以共有5×15=75块糖。
1、民间常将生姜、红糖用水煎服以防感冒,一般按1:2:50的质量比煮沸。
六年级上册数学培优奥数讲义-第8讲比的应用1
第8讲 比的应用1知识装备1、在实际生活中,把一个数量按一定的比分成几部分,求每个部分各是多少,这就是按比分配。
在按比分配问题中,有时要先求出分配的数量,有时要先求出几个部分的比,有时把一个问题转换成按比分配的问题,可以找到解决问题的简便方法。
2、按比分配应用题的关键: (1)先找出或求出总数量。
(2)再找出或求出总份数。
(3)最后求出各部分的量。
初级挑战1一个长方体的棱长总和是48厘米,它的长、宽、高的比是3:2:1,那么这个长方体的体积是多少立方厘米?思路引领∶已知长方体的棱长总和及长、宽、高的比,可先找出长、宽、高之和,再根据比分别求出长、宽、高,即可求出体积。
答案: 48÷4=12(厘米),1份数:12÷(3+2+1)=2(厘米), 长:2×3=6(厘米);宽:2×2=4(厘米),高2×1=2(厘米)长方体的体积:6×4×2=48(立方厘米)。
能力探索1甲、乙、丙三个数的平均数是60。
甲、乙、丙三个数的比是3:2:1。
甲、乙、丙三个数各是多少?答案: 60×3=180 180÷(3+2+1)=30甲:30×3=90 乙:30×2=60 丙:30×1=30初级挑战2中心小学六(一)班共有学生51人,男生人数的43等于女生人数的32。
这个班男、女生各有多少人?思路引领:根据男、女生人数的关系,找出他们的人数比,再按比分配求男、女生人数各是多少。
答案:由男生人数的43等于女生人数的32,得知男生和女生人数之比为8:9,再按比例分配得:男生:51÷(8+9)×8=24(人) 女生:51÷(8+9)×9=27(人)能力探索21、粮店里有大米、面粉和玉米共900吨,大米重量的41等于面粉重量的31,玉米重200吨。
大米和面粉的重量各是多少吨?答案:大米和面粉共重:900-200=700(吨),大米重量和面粉重量之比为4:3。
小学六年级奥数第14讲 比的应用(一)(含答案分析)
第14讲 比的应用(一)一、知识要点我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。
运用这种方法解决一些实际问题可以化难为易,化繁为简。
二、精讲精练【例题1】甲数是乙数的32,乙数是丙数的54,甲、乙、丙三数的比是( ):( ):( )。
练习1:1、甲数是乙数的54,乙数是丙数的85,甲、乙、丙三数的比是( ):( ):( )。
2、甲数是乙数的54,甲数是丙数的94,甲、乙、丙三数的比是( ):( ):( )。
3、甲数是丙数的73,乙数是丙数的212,甲、乙、丙三数的比是( ):( ):( )。
【例题2】光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5。
这三个小组各有多少人?练习2:1、某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1。
每种作物各是多少公亩?2、黄山小学六年级的同学分三组参加植树。
第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2。
已知第一组的人数比二、三组人数的总和少15人。
六年级参加植树的共有多少人?【例题3】甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。
原来甲校有图书多少本?练习3:1、小明读一本书,已读的和未读的页数比是1:5。
如果再读30页,则已读和未读的页数之比为3:5。
这本书共有多少页?2、甲、乙两包糖的重量比是4:1。
从甲包取出130克放入乙包后,甲、乙两包糖的重量比为7:5。
原来甲包有多少克糖?【例题4】从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得21,二儿子分得31,小儿子分得91,但不能把牛卖掉或杀掉。
三个儿子按照老人的要求怎么也不好分。
后来一位邻居顺利地把17头牛分完了,你知道这到底是怎么回事吗?练习4:1、图书室取出一批书,按照一年级得21,二年级得31,三年级得71,正好是41本,各年级各得多少本?2、古罗马富豪约翰逊再临终前,对怀孕的妻子写下这样一份遗嘱:如果生下来是个男孩,就把遗产的三分之二给儿子,母亲拿三分之一;如果生下来的是女孩就把遗产的三分之一给女儿,三分之二给母亲。
六年级奥数-12比的应用(二)
比的应用(二)1.互化连比2.学会解连比和乘除法关系比问题1.确定连比2.解连比和乘除法关系比问题连比题型比的应用题型会涉及到给出甲乙的比、乙丙的比,和甲乙丙的和,要求各部分的量。
遇到这种题型,可以利用中间量通分,化成三个部分之间的共同比,再求各自具体量。
也可以使用方程解题,但是需要注意按比设,并且找对等量关系式。
例1.六(1)班有56名学生,分成三个小组进行课外活动。
已知第一小组和第二小组人数的比是3:5,第二小组和第三小组人数的比是5:6,这三个小组各有多少人?练习1.方伯今年种了白菜、青菜和茄子三种蔬菜,一共有360棵,其中青菜是白菜的75%,茄子与白菜的比是1:2,这三种蔬菜各有多少棵?给出甲乙的比、乙丙的比,和甲乙丙的和,要求各部分的量。
可以利用中间量,若中间量的比相同,可以直接化成三个部分之间的共同比,再求各自具体量。
例2.参加体育、舞蹈、合唱小组的同学共188人,其中体育小组与舞蹈小组人数比为3:4,舞蹈与合唱小组人数的比为5:3,三个小组各多少人?练习1.幼儿园的小朋友分成三队参加游戏,第一队与第二队人数比是6:5,第二队与第三队人数比是3:4,已知第一队人数比第二、三队人数的总和少17人。
幼儿园参加游戏的小朋友共有多少人?给出甲乙的比、乙丙的比,和甲乙丙的和,要求各部分的量。
可以利用中间量,若中间量的比不同,则需要通分,化成三个部分之间的共同比,再求各自具体量。
例3.水果店运来桔子、苹果和梨一共530千克,其中苹果与桔子的比是2:3,梨是苹果的,苹果有多少千克?练习1.城北小学四五六年级的人数比是2:3:4,六年级转走25%学生,这时四五六人数一共有320人,问城北小学五年级有多少人?使用方程解题时,需要注意按比设,并且找对等量关系式。
乘除法关系题型比的应用题型可以结合分数乘除法关系进行考察,可以采用方程或者列式进行解答。
1、当遇到两种事物的比和他们混合物的价格、总量时,要先求出他们在混合物中所占的分量,再求各自单价。
六年级奥数 比的应用 详解及答案
比及比的应用(2009-08-13 16:37:35)分类:奥数专题讲座标签:教育比及比的应用一、比的计算思维上的把握:比号就是除号,就是分数线。
这一点至关重要,把握住了这点,就掌握了所有比的计算的入门钥匙。
例:2:3=2/3=2÷3方法上的把握:运用比的基本性质(除法或分数的基本性质)来解题,即:比的前项(也称分子或被除数)和比的后项(也称分母或除数)同时乘以或除以不为零的数,比值(也称分数值或商)不变注意:化简比和求比值相同处:方法和过程相同;不同处:化简比结果有比号,求比值最后的结果是一个数。
二、比的应用解题思路:把比当份数,求出每份例1.男女生人数之比是2:7,男生是女生人数的几分之几?女生是男生人数的几分之几?男生占全班人数的几分之几?女生点全班人数的几分之几?男生比女生少几分之几?女生比男生多几分之几?解析:男女生人数之比是2:7,我们可以把男生看成2份人,女生看成7份人,全班就是9份人。
男生是女生人数的:2÷7=2/7;女生是男生人数的:7÷2=7/2;男生占全班的:2÷9=2/9;女生占全班人数的:7÷9=7/9;男生比女生人数少:(7-2)÷7=5/7;女生比男生人数多:(7-2)÷2=5/2。
应用题类型(一)题目告诉了总数和比:直接把比当份数例1.学校买来540本书,按4:5借给五、六年级,每个年级各借多少本?解析:把比当份数,求出每份。
五年级占4份,六年级5份,总共9份,每份是540÷9=60(本),那么五年级借了:60×4=240本,六年级借了:60×5=300本(二)题目告诉了总数,但没告诉比的:先求出各量的比,再把比当份数例1:学校把栽560棵树的任务按照六年级三个班的人数比分配给各班;一班有47人,二班有45人,三班有48人,三个班各应栽树多少棵?解析:三个班的人数比是:47:45:48,把比当份数,一班47份,二班45份,三班48份,总共47+45+48=140份,总共560棵,每份就是560÷140=4棵,那么,一班分:4×47=188棵;二班分:4×45=180棵;三班分:4×48=192棵例2.两个服装厂一个月内生产的西服数量是6:5,两厂西服价格比是11:10,已知这个月两厂的总产值为6960万元,两厂的产值各是多少万元?解析:题目告诉了总产值,没告诉两厂的产值比,所以先要求出两厂的产值比产值=件数×每件价格第一个厂:件数是6份,每件价格是11份,产值就是6×11=66份第二个厂:件数是5份,每件价格是10份,产值就是5×10=50份两个厂的产值比是66:50,剩下的解题思路和过程,同上.(三)题目没告诉总数,但告诉比的(1)间接告诉总数的:先求出总数,再把比当份数,求每份例1.已知甲乙丙三个数的比是2:3:5,这三个数的平均数60,这三个数分别是多少?解析:虽然题目未告诉总数,但由平均数可以求出三个数的总数。
小学奥数思维训练-比和比应用(通用,含答案)
保密★启用前小学奥数思维训练-比和比应用学校:___________姓名:___________班级:___________考号:___________一、化简比和求比值1.化简下面的比,并求出比值。
65∶5237∶251.2∶0.150.5千米∶25米二、填空题2.化简下面各比,并求出比值。
3.如下图,两个平行四边形的重叠部分面积相当于大平行四边形的112,相当于小平行四边形面积的18。
大平行四边形与小平行四边形的面积比是( )。
4.用35厘米的铁丝围成一个等腰三角形,已知一个腰和底的长度比是3∶1,则腰长( )厘米。
5.下图中长方形的面积与阴影部分的面积比是( )。
三、解答题6.用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形斜边上的高是多少厘米?7.已知甲数的25等于乙数的825,甲数是80,则乙数是多少?8.生产队饲养的鸡与猪只数的比是26:5,羊与马的只数比25:9,猪与马的只数比是10:3.求鸡与羊的只数的比.9.水果店新进梨和苹果,已知梨和苹果的数量比是11∶10 ,价格比是6∶5。
两种水果总进价是11600元,梨和苹果的进价各是多少元?10.学校美术组的人数是书法组的45,美术组人数与数学组人数的比是3:5.书法组有30人,数学组有多少人?11.已知A、B、C三个数的比是2∶3∶5,这三个数的平均数是90,这三个数分别是多少?12.希望小学参加植树活动,把任务按2∶3∶4分配给四、五、六三个年级,已知六年级比四年级多植树84棵,这次任务三个年级共植树多少棵?13.把54本图书分给三个组,A组的12和B组的13以及C组的14相等,A、B、C三个组各分得图书多少本?14.甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的,A、B两地相距多少米?15.甲、乙两班原有人数比为5∶4,若从甲班调9人到乙班,那么乙班与甲班人数之比为5∶4,两个班原来各有多少人?16.一条路全长120千米,分成上坡、平路、下坡三段,各段路程长的比依次是1∶2∶3,某人走完各段路程的所用时间比依次是4∶5∶6,已知他上坡的速度是每小时3千米,此人走完全程用了多少时间?参考答案:1.5∶4,54;15:14,1514;8∶1,8;20∶1,20【解析】【分析】整数比的化简,比的前项和后项同时除以最大公因数,小数比可以先同时移动小数点化成整数比,再化简。
小学奥数-比的应用
小学奥数-比的应用〖专题简析〗我们已经学过比的认识,都知道比与分数,除法其实是一回事,所以比与分数能够相互转化。
专用这种方法解决一些实际问题可以化难为易,化繁为简。
例题1:光明小学将五年级的140名学生,分成三个小组进行植树活动。
已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人的比是4:5.这三个小组各是多少人?练习1:某农场把61600公顷耕地归为粮田与棉田,它们之间的面积比为7:2,棉田与其它农作物面积的比是6:1。
每种作物各多少公倾?练习2:六年级的同学分三组参加植树。
第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2. 已知第一组的人数比二、三两组人数的总和少15人。
六年级参加植树的共有多少人?练习3:科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7.已知数学组与科技组共69人。
数学组比作文组多多少人?例题2:甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4.原来甲校有图书多少本?练习1、小明读一本书,已读和未读的页数比是1:5. 如果再读30页,则已读和未读的页数之比为3:5. 这本书共有多少页?练习2、甲、乙两包糖的重量比是4:1,从甲包取出130克放入乙包后,甲、乙两包糖的重量比是7:5.原来甲包有多少克糖?,二班与三班练习3、五年级三个班举行数学竞赛。
一班参加比赛的占全年级参赛总人数的13参加比赛人数的比是11:13,二班比三班少8人。
一班有多少人参加了数学竞赛?例题3:甲、乙、丙三个同时从A向B跑,当甲跑到B时,乙离B还有35米,丙离B还有68米;当乙跑到B时,丙离B还有40米,A、B相距多少米?练习1:甲、乙两车同时从A、B同地相向而行,当甲到达B地时,乙车距A地30千米,当乙车到达A地时,甲车超过B地40千米,A、B两地相距多少千米?练习2:小刚和小明进行100米短跑比赛(假定二人速度均不变)。
奥数题-专题训练之比与比例应用题
比和比例应用题[例1]、生产队饲养的鸡与猪的只数比为26∶5,羊与马的只数比为25∶9,猪与马的只数比为10∶3。
求鸡、猪、马和羊的只数比。
[分析] 该题给出了三个单比,要求写出它们的连比。
将几个单比写成连比,关键是利用比的基本性质将各个比中表示同一个量的值化为相同的值。
[解] 由题设,鸡∶猪=26∶5,羊∶马=25∶9,猪∶马=10∶3,由比的基本性质可得:猪∶马=10∶3=30∶9,羊:马=25∶9,鸡:猪=26∶5=156∶30,从而鸡∶猪∶马∶羊=156:30∶9∶25。
答:鸡、猪、马、羊的只数比为156∶30∶9∶25。
[注] 将单比化为连比时,还可先化为三个量的连比,再化为四个量的连比。
如,鸡∶猪=26∶5,猪∶马=10∶3,由此可得,鸡∶猪∶马=52∶10∶3;再注意到羊∶马=25∶9可得,鸡∶猪∶马∶羊=156∶30∶9∶25。
[例2].下列各题中的两个量是否成比例?若成比例,请说明成正比例还是成反比例。
(1)路程一定时,速度与时间;(2)速度一定时,路程与时间;(3)播种面积一定时,总产量与单位面积的产量;(4)圆的面积与该圆的半径;(5)两个相互啮合的大小齿轮,它们的转速与齿数。
[分析] 利用正比例、反比例的概念进行判定与说明。
[解] (1)由于速度与时间的乘积等于路程,所以,当路程一定时,速度与时间成反比例。
(2)由于路程与时间的比值为速度,所以,当速度一定时,路程与时间成正比例。
(3)由于总产量与单位面积的产量的比值为播种面积,所以,当播种面积一定时,总产量与单位面积的产量成正比例。
(4)设圆的半径为R,则圆的面积为∏R²,所以圆的面积与半径的积为∏R³,随半径的变化而变化,即圆的面积与半径不成反比例;而圆的面积与半径的比值为∏R,也随半径的变化而变化,即圆的面积与半径不成正比例。
综上,圆的面积与半径不成比例。
(5)由于齿轮的转速与齿数的积等于单位时间内齿轮转过的总齿数,而两个相互咬合的大小齿轮在单位时间内转过的总齿数相等,所以,它们的转速与齿数成反比例。
奥数--比的应用
奥数——比的应用1.甲乙两人共存款2500元,如果甲再存500元,甲的存款数就是乙的1/2.甲乙两人原来各存多少钱?2.A,B两缸水共重650千克,如果从B缸中取出50千克水,那么A缸的水就是B缸剩下水的5/7.A,B两缸原来各有多少水?3.甲乙两根绳子共长68米,如果从甲绳上剪去11米,那么甲绳剩下的长度就是乙绳的1/2,原来两根绳子各多长?4.袋子里装有若干个皮球,其中花皮球占总数的5/12,后来又往袋子里放入6个花皮球,这时花皮球占总数的1/2,现在袋子里有多少个皮球?5.操场上做游戏的学生中,男生占总人数的4/9,后来又来了五个男生,这时男生和女生人数一样多,现在操场上一共有多少个同学在做游戏?6.果园里有苹果树和梨树一共800棵。
其中苹果树占总数棵数的3/5,后来又栽了一些苹果树,这时苹果树占总棵数的17/25,后来又栽了多少棵苹果树?7.两根长短,粗细均不同的蚊香。
短的一根可燃8小时长的一根燃烧的时间是短的一根的时间的1/2。
同时点燃两根蚊香,经过3小时,他们剩下的长度正好相等。
未点燃之前短蚊香是长蚊香长度的几分之几?8.有两根长短粗细均不同的蜡烛,短的一根可燃9小时,长的一根燃烧的时间是短的一根的1/3,同时点燃两根蜡烛,经过,2个小时,他们剩下的长度正好相等。
未点燃之前短的一根是长的一根的几分之几?9.有两根长短粗细均不同的蜡烛,长的一根可燃烧3个小时,短的一根燃烧的时间是长的一根的5/3,同时点燃两根蜡烛,2小时后两根蜡烛剩下的长度相等,问未点燃之前短的一根是长的一根的几分之几?10.一辆汽车从甲地到乙地,先上坡后下坡。
上坡和下坡的路程比是5:4。
汽车上坡和下坡所用的时间比是7:3。
求这两辆汽车上坡和下坡的速度之比。
11.从甲地到乙地上坡和下坡的路程比是2:3。
一辆汽车上坡速度是下坡速度的一半,从甲地到乙地共用7小时,这辆车从甲地到乙地上坡下坡各几小时?12.一段路程,先上坡后平路,再下坡,各段路程的长度比是3:5:2,一个人骑自行车行这三段路程的速度比是3:3:4,已知他全程共用了19小时,问骑车人上坡,平路,下坡各几小时?13.甲乙两根绳子一共长68米,如果从甲绳上剪去11米,那么甲绳剩下的长度就是已绳的1/2。
小学六年级奥数-第14讲 比的应用(一)后附答案
第14讲 比的应用(一)一、知识要点我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。
运用这种方法解决一些实际问题可以化难为易,化繁为简。
二、精讲精练【例题1】甲数是乙数的32,乙数是丙数的54,甲、乙、丙三数的比是( ):( ):( )。
练习1: 1、甲数是乙数的54,乙数是丙数的85,甲、乙、丙三数的比是( ):( ):( )。
2、甲数是乙数的54,甲数是丙数的94,甲、乙、丙三数的比是( ):( ):( )。
3、甲数是丙数的73,乙数是丙数的212,甲、乙、丙三数的比是( ):( ):( )。
【例题2】光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5。
这三个小组各有多少人?练习2:1、某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1。
每种作物各是多少公亩?2、黄山小学六年级的同学分三组参加植树。
第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2。
已知第一组的人数比二、三组人数的总和少15人。
六年级参加植树的共有多少人?【例题3】甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。
原来甲校有图书多少本?练习3:1、小明读一本书,已读的和未读的页数比是1:5。
如果再读30页,则已读和未读的页数之比为3:5。
这本书共有多少页?2、甲、乙两包糖的重量比是4:1。
从甲包取出130克放入乙包后,甲、乙两包糖的重量比为7:5。
原来甲包有多少克糖?【例题4】从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得21,二儿子分得31,小儿子分得91,但不能把牛卖掉或杀掉。
三个儿子按照老人的要求怎么也不好分。
后来一位邻居顺利地把17头牛分完了,你知道这到底是怎么回事吗?练习4:1、图书室取出一批书,按照一年级得21,二年级得31,三年级得71,正好是41本,各年级各得多少本?2、古罗马富豪约翰逊再临终前,对怀孕的妻子写下这样一份遗嘱:如果生下来是个男孩,就把遗产的三分之二给儿子,母亲拿三分之一;如果生下来的是女孩就把遗产的三分之一给女儿,三分之二给母亲。
奥数专题-比的应用
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】奥数专题-比的应用(1)【课前轻松】一男要跳楼,其妻大喊道:亲爱的别冲动,我们的路还长着呢!男子听后,嗖地跳了下去。
警察说:“你真不该这样威胁他!!”【题型概述】今天,我们学习有连比的应用题。
解决此类应用题应该先将两个比转化成连比,然后按比例分配。
【典型例题】希望小学六年级有三个班,共195名学生。
六(1)班和六(2)班的人数比是7:8,六(2)班与六(3)班的人数比是6:5,你知道三个班各有多少名学生吗?【举一反三】1.小芳和小灵步行的速度比是2:3,小灵和小红步行的速度比是4:5,三人一分钟所行的路程和是175米,三个伙伴每分钟各行了多少米?2.某学校学生阅览室里有236本童话故事书,分三层摆放,第一层与第二层的本数比是3:4,第二层与第三层的本数比是5:6,三层各有多少本童话故事书?【拓展提高】春节快来了!水果批发商张老板购进了1420箱苹果、香蕉和梨,苹果和香蕉的箱数比是4;3,梨比香蕉少180箱。
苹果、香蕉和梨三种水果各购进了多少箱?【奥赛训练】1.培育花圃的李阿姨培育了850株菊花、玫瑰花和月季花,菊花、玫瑰花的株数比是5:2,月季花比玫瑰花多40株。
菊花、玫瑰花和月季花三种话各有多少株?2.2008年8月第29届奥运会子啊首都北京召开。
育才小学六年级三个班的同学分别进行募捐。
学校学生处共收到捐款18000元,六(1)班和六(2)班捐款数额比是6:7,六(3)班比六(2)班少捐400元,六年级三个班的同学各捐款多少元?3.甲乙两数的比是5:7,乙丙两数的比是3:4,已知甲乙两数的和是84,求乙丙两数的和是多少?奥数专题-比的应用(2)【典型例题】甲乙两个长方形的周长相等,甲的长与宽的比是3:2,乙的长与宽的比是2:1,那么甲乙两个的长方形的面积比是多少?【举一反三】1. 有两个长方形,大长方形的长比小长方形的长多41,而小长方形的宽比大长方形的宽多51,求这两个长方形的面积比。
小学六年级奥数题-专题训练之比和比例应用题
比和比例应用题例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?提示:单价比:成年人:儿童:残疾人=3:2:1人数比:50:20:1[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。
已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元。
提示:根据已知条件可先求三种商品的数量比。
[练习]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?例3、A、B、C是三个顺次咬合的齿轮。
当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例。
习题:1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?小学六年级女生人口国情与青春期健康知识教案讲座目的:通过向学生讲授青春期在心理和生理方面的有关知识,使学生加强对自我的认识,从而正确对待、处理这一时期遇到的感觉困惑的问题,促进身心健康成长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数专题-比的应用(1)
【课前轻松】
一男要跳楼,其妻大喊道:亲爱的别冲动,我们的路还长着呢!男子听后,嗖地跳了下去。
警察说:“你真不该这样威胁他!!”
【题型概述】
今天,我们学习有连比的应用题。
解决此类应用题应该先将两个比转化成连比,然后按比例分配。
【典型例题】
希望小学六年级有三个班,共195名学生。
六(1)班和六(2)班的人数比是7:8,六(2)班与六(3)班的人数比是6:5,你知道三个班各有多少名学生吗?
【举一反三】
1.小芳和小灵步行的速度比是2:3,小灵和小红步行的速度比是4:5,三人一分钟所行的路
程和是175米,三个伙伴每分钟各行了多少米?
2.某学校学生阅览室里有236本童话故事书,分三层摆放,第一层与第二层的本数比是3:4,
第二层与第三层的本数比是5:6,三层各有多少本童话故事书?
【拓展提高】
春节快来了!水果批发商张老板购进了1420箱苹果、香蕉和梨,苹果和香蕉的箱数比是4;3,梨比香蕉少180箱。
苹果、香蕉和梨三种水果各购进了多少箱?
【奥赛训练】
1.培育花圃的李阿姨培育了850株菊花、玫瑰花和月季花,菊花、玫瑰花的株数比是5:2,
月季花比玫瑰花多40株。
菊花、玫瑰花和月季花三种话各有多少株?
2.2008年8月第29届奥运会子啊首都北京召开。
育才小学六年级三个班的同学分别进行募捐。
学校学生处共收到捐款18000元,六(1)班和六(2)班捐款数额比是6:7,六(3)班比六(2)班少捐400元,六年级三个班的同学各捐款多少元?
3.甲乙两数的比是5:7,乙丙两数的比是3:4,已知甲乙两数的和是84,求乙丙两数的和是多少?
奥数专题-比的应用(2)
【典型例题】
甲乙两个长方形的周长相等,甲的长与宽的比是3:2,乙的长与宽的比是2:1,那么甲乙两个的长方形的面积比是多少?
【举一反三】
1. 有两个长方形,大长方形的长比小长方形的长多4
1,而小长方形的宽比大长方形的宽多5
1,求这两个长方形的面积比。
2. 某外贸公司有三批货物共值152万元,三批货物的重量比是2:4:3,单价比是6:5:2,这三
批货物各值多少万元?
【拓展提高】
甲乙两个服装厂12月份生产服装的数量比是6:7,两个厂服装的单价比是11:10,并且这两个厂这个月的总产值是8160万元。
两个服装厂这个月的产值分别是多少万元?
【奥赛训练】
1. 大苹果与小苹果的数量比是8:7,单价比是5:3,把两种苹果混在一起卖,共卖得1220
元。
如果把两种苹果分开卖,每种苹果可以卖多少元?
2.“怡口莲”糖与“德芙”巧克力的单价比是7:9,数量比是2:3,把两种糖混在一起卖,共卖得820元。
如果把这两种糖分开卖,每种糖各卖得多少元?
奥数专题-比的应用(3)
【题型概述】
将“比的意义”、“倒数的意义”及“分数应用题”结合起来,也可以解决以下问题
【典型例题】 甲数的
31等于乙数的52。
乙数的32等于丙数的7
3。
那么,甲乙丙三数的最简比是多少?
【举一反三】
1. 甲数的
41等于乙数的53。
乙数的31等于丙数的54。
那么,甲乙丙三数的最简比是多少?
2. A 的
65、B 的54与C 的3
2相等,求A 、B 、C 的最简比。
3. 小华钱的32与小花钱的43相等,小华钱的32与小丽钱的8
7相等。
小华、小花和小丽钱数的最简比是多少?
【拓展提高】
强强、笑笑和甜甜三人共有147元,强强用了自己钱数的
21,笑笑永科自己钱数的32,甜甜用了自己钱数的
7
4,各买了一支相同的钢笔。
那么三个好朋友原来各有多少元?
【奥赛训练】
1. 五(3)班的三个小队共植树196棵,已知第一队植树棵树的31等于第二队的5
2,第二。