静电场中的导体和电介质
电磁学02静电场中的导体与介质
A q -q
-q+q
UA
q'
4 0 R0
q ' 4 0R1
q q '
4 0 R2
0
可得 q ( q) 1(9略)
例4 接地导体球附近有一点电荷,如图所示。
求:导体上感应电荷的电量
R
解: 接地 即 U0
o
感应电荷分布在表面,
l
q
电量设为:Q’(分布不均匀!)
由导体等势,则内部任一点的电势为0
选择特殊点:球心o计算电势,有:
1) Dds
S
1 (
r
1) q0内
l i mq内
V0V
1 (
r
1) limq0内 V0V
1 (
r
1)0
00 0。 40
[例2] 一无限大各向同性均匀介质平板厚度为 d
表明:腔内的场与腔外(包括壳的外表面)
物理 内涵
的电荷及分布无关。
在腔内 E 腔 外表 E 腔 面外 0带
电 量 的电 体 的
二.腔内有带电体时
q
① 带电量: Q腔内 q (用高斯定理易证)
表面
23
② 腔内的电场: 不为零。
由空腔内状况决定,取决于:
*腔内电量q;
*腔内带电体及腔内壁的 几何因素、介质。
平行放置一无限大的不带电导体平板。
0 1 2 求:导体板两表面的面电荷密度。
E2 • E1 解: 设导体电荷密度为 1、 2 ,
E0 电荷守恒: 1 + 2 = 0
(1)
导体内场强为零:E0 +E1‐E2 = 0
0 1 2 0 20 20 20
(1)、(2)解得:
(整理)静电场中的导体和电介质
第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。
(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。
从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。
用一句话说:静电平衡时导体为等势体。
二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。
S 面是任意的,∴导体内无净电荷存在。
结论:静电平衡时,净电荷都分布在导体外表面上。
2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。
但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。
结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。
(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。
又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。
静电场中的导体和电介质
静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。
(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。
导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。
定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。
拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。
测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。
库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。
所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。
所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。
以上是库仑平方反比定律验证的发展历史。
见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。
使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。
则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。
孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。
电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。
然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。
静电场中的导体与电介质
在静电场中平衡时: 1.内部电场强度不为零;2.电介质表面出现极化电荷
真空中的导体和电介质
P
pi
ΔV
P0eE
01
02
实验证
电 考 真空和P 偶 虑 中电c的介o 导质sS 极 一 P,体ln矩 电 pi, 0介 S 极 2质 l, 化 P 斜 0 . 极度定面 化:义V 圆 和 强:p 2i 电 柱 S 0 ,c荷 L So 体 明 各 性 介l0 : 向 质的 s密 在 同 中电co s度
此式对其它情况仍然适 用
D
义:电位移矢量D可, 得:D Dd0ESP S
q0
此既电介质中的高斯定理:通过电场中任意闭合曲面的电位移通量, 等于该闭合曲面所包围的自由电荷的代数和。
仿照电场线,用电位移线来描述电位移在空间的分布。但两者有 区别: 电场线起始于正电荷,终止于负电荷(包括极化电荷) 电位移线只起始于自由正电荷,终止于自由负电荷
在国际单位制中,D 的单位是: 库/米2(C/m2)
对各向同性电介质,因
所以 P0 eE
D 0EP 0 ( 1 ) E
式中 ε = ε0εr 叫电介质的介电常数, εr 称电介质的相对介电常数。
引入D,避免了求极化电荷的复杂问题,可使有电介质存在时解题简化。 只要有电介质,均应先求D 再求E 等。
E E0 E E0 与E 方 向 相 反 :
E
P
E0 // n
E
0 0
0
P cos
P
n
P
e 0E
E
E0
- E
10.4
E0 -
电介
质中0 静电E场0的-基本e
E
静电场中的导体和电解质
Q + + + + ++ + + + + E= 0 S+ + + + + + + + ++
Q q + + + +++ + +-q + + - E= 0 S + 结论: 电荷分布在导体外表面, 导体 + q + + 内部和内表面没净电荷. + - - + + + + ++ 腔内有电荷q: E 0 q 0
i
结论: 电荷分布在导体内外两个表面,内表面感应电荷为-q. 外表面感应电荷为Q+q.
NIZQ
第 5页
大学物理学 静电场中的导体和电介质
结论: 在静电平衡下,导体所带的电荷只能分布在导体的 表面,导体内部没有净电荷. • 静电屏蔽 一个接地的空腔导体可以隔离内 外电场的影响. 1. 空腔导体, 腔内没有电荷 空腔导体起到屏蔽外电场的作用. 2. 空腔导体,腔内存在电荷 接地的空腔导 体可以屏蔽内、 外电场的影响.
NIZQ
第 3页
大学物理学 静电场中的导体和电介质
• 静电平衡时导体中的电场特性
E内 0
场强:
ΔVab
b
a
E dl 0
• 导体内部场强处处为零 E内 0 • 表面场强垂直于导体表面 E表面 // dS
• 导体为一等势体 V 常量 • 导体表面是一个等势面
S
0 E P dS qi
静电场中的导体和电介质
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理
静电场中的导体与电介质
§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。
在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。
导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。
从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。
(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。
)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。
可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。
充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。
对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。
1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。
静电场中的导体和电介质教学教案
第九章 静电场中的导体和电介质1、D分析:带电导体达到静电平衡时0=内E ,导体为等势体,导体表面的电场强度垂直于导体表面;2、B分析:两金属球用细长导线相连成等势体,由于是细长导线,可视为两孤立的导体球,孤立导体球的电势)0(=∞U 242400=⇒=qQ r qr Qπεπε 3、C分析:因为金属球不带电,当在其下方放置一电量为q 的点电荷时,只有当金属球下方感应异号电荷后金属球内的电场强度才可能为零,必定可以看到金属秋下移的现象;4、B直接应用两等大的金属平板带电的分布规律: SQ Q S Q Q S Q Q B AB A B A 2,2,23241--=-=+==σσσσ 依据上式有:2,212σσσσ-==5、D 均匀带电球面的电场强度公式为:204R QE πε= m R E Q R 3689021********.11094--⨯=⇒⨯⨯⨯⨯==πε 6、C有介质时的高斯定理为:E D q S d D r S εε00,==⋅⎰∑选项A :E 是空间点和产生的,如果高斯面内没有自由电荷,但是外部可能有电荷,一般而言,E 不为零,故D 也不为零;选项B :两同心球壳上带等量异号电荷后,再做一个同心的大球面为高斯面,因为0=E 则高斯面上0=D ;选项C :从高斯定理可以解出高斯面的D 通量仅仅与面内的自由电荷有关;7、B依据等效电容的规律: 212121,111C C C C C C C C +=+=若中1C 插入r ε的电介质,则11'C C r ε=,且1>r ε,即1C 的电容增大;总电容: C C C C C C C C C C r>+=+=ε21212121'''8、B电容器充电后,断开电路,基板上的电荷量不变,然后充满电介质,有:0C C r ε=,电容增大;r U U ε0=,电压减小; ,2121022C q C q W r ε==能量减小; 9、B在q 不变的条件下,已知02021C q W =,充满电介质后,0C C r ε=, rr W C q C q W εε00222121=== 10、rE r D r επελπλ02,2== 应用有介质时的高斯定理:⎰∑=⋅s q S d D 0在两同轴圆柱之间取一半径为r 的单位长度同轴圆柱面为高斯面,λπ===⋅⎰⎰rD DdS S d D s 2侧面∴rE r D r επελπλ02,2== 11、)(21B A Q Q s q -==σ,d Q Q S U B A AB )(210-=ε 应用静电平衡的结果:S Q Q S Q Q S Q Q B A B A B A 2,2,23241--=-=+==σσσσ )(21,2B A B A Q Q s q S Q Q -==-=σσ A 、 B 间为均匀电场,场强为:)(2100B A Q Q SE -==εεσ 电势差:d Q Q S Ed U B A AB )(210-==ε12、SQ Q S Q Q S Q Q B AB A B A 2,2,23241--=-=+==σσσσ 应用电荷守恒原理:121Q s s =+σσ243Q s s =+σσ在AB 板内取一点p,该点的0=E , 0222204030201=---εσεσεσεσ 在CD 板内取一点o,该点的0=E , 0222204030201=-++εσεσεσεσ 由以上四个式子可以解出: SQ Q S Q Q S Q Q B AB A B A 2,2,23241--=-=+==σσσσ 13、CdF 2 ,CdF 2 两极板间的相互作用力为一个极板在另外一个极板上产生的电场强度求,该极板上的电量为q : d SC S q q qE F 0020,22εεεσ==⋅== CdF q CdF SF q 22202=⇒==ε CdF C q U 2==∆ 14、dsU 22120ε 依据能量公式:dsU CU C Q W 22121212022ε=== 15、41,161 16、c q c q 9291103.13',1067.6'--⨯=⨯= ,V 3100.6⨯分析:两个导体球相连后成为一个等势体,由于两球相距很远,可以看做孤立的导体球,导体球的电势为:r QU 04πε=,.0.2,0.1,100.111821cm r cm r c q q ==⨯==- 2021014'4'r q r q πεπε=, 2121''q q q q +=+ 解得:c q c q 9291103.13',1067.6'--⨯=⨯= V r q U 3101100.64'⨯==πε17、)()(122112r R R Q R Q R r q ++= 原来不带电的导体球与半径为1R 的导体球壳相连后,导体球带电为q,半径为1R 的导体球壳带电为q Q -1,根据电势相等的条件有: rq R Q R q Q 020*******πεπεπε=+- 化简得:rq R Q R q Q =+-2211 )()(122112r R R Q R Q R r q ++=18、RQ πε82R UQ C R QU πεπε4,4=== RQ C Q W πε82122== 应用积分法:422223221,4rQ E r Q E m επεωπε=== dr r Q dr r r Q dV dW m 2224228432πεπεπω=== R Q r dr Q dW W R πεπε88222===⎰⎰∞ 19、J J 16.0,32.0电容串联后的等效电容:F C C C C C μ322121=+= c CV q 4610810120032--⨯=⨯⨯== J C q W 32.010)108(2121624121=⨯⨯⨯==- J C q W 16.010)108(4121624222=⨯⨯⨯==- 20、1dq R q04πε 2R Q 028πε解:1当球上已带有电荷q 的条件下,外力将dq 从无穷远移动到球上时,外力做的功为: ∞→→∞=R R dW dW 电外)]()([R E E p p -∞-=)(R E p = )(R dqU = dq R q04πε= 2 R Q Q R dq q R dW W Q 022*********πεπεπε=⨯===⎰⎰外外21、利用电势相等来解; b Q a Q ba0044πεπε=Q Q Q b a =+由以上两式可以解得: ba bQ Qb a aQ Q b a +=+=, U Q U Q Q C b a=+=dq)(4414000b a Q b a Qa a a Q U a+=+==πεπεπε ∴)(40b a C +=πε。
电场中的导体和电介质
二、电容器
1、电容器的定义
两个带有等值而异号电荷的导体 所组成的系统,叫做电容器。
+Q
-Q
2、电容器的电容
如图所示的两个导体放在真空中,它们所 带的电量为+Q、-Q,它们的电势分别为 V1、V2,定义电容器的电容为: 计算电容的一般步骤为: •设电容器的两极板带有等量异号电荷; •求出两极板之间的电场强度的分布; •计算两极板之间的电势差; •根据电容器电容的定义求得电容。
3-4 物质中的电场
在静电场中总是有导体或电介质存在的,而且静电场 的一些应用都要涉及静电场中导体和电介质的行为, 以及它们对静电场的影响。
一、静电场中的导体
1、静电感应及静电平衡
若把导体放在静电场中,导体中的自由电子将在电场力的 作用下作宏观定向运动,引起导体中电荷重新分布而呈现 出带电的现象,叫作静电感应。 开始时, E’< E0 ,金属内部的场强不零, 自由电子继续运动,使得E’增大。这个过 程一直延续到E’= E0即导体内部的场强为零 时为止。此时导体内没有电荷作定向运动, 导体处于静电平衡状态。
根据静电平衡条件,空腔 由静电平衡条件,腔内壁非均匀 分布的负电荷对外效应等效于: 导体内表面总的感应电荷为 -q, 非均匀分布;外表面,总的感 在与 q 同位置处置 q 。 应电荷为 q,非均匀分布。
9
R
q q q U U U U U 0 q 壳 地 内壁 外壁 q q O o d q外壁 0
C Q V
Q C= 4 0 R V
大学物理-第18章静电场中的导体与电介质
+
O
+- H+ - H+
++
-
++
+
He
H2O
有极分子对外影响等效为一个电偶极子,电矩 Pe ql
事只实不上过lq所在为中为有无从心分分电负 的子子 场电 有中均 时荷 向所可 ,作 线有等 无用 段正效 极中电为 分心荷电 子指的偶 的向代极电正数子偶电和的极作;模矩用型为
综 1)不管是位移极化还是取向极化,其最后的 述:宏观效果都是产生了极化电荷。
2)两种极化都是外场越强,极化越厉害 所产生的分子电矩的矢量和也越大。
三、电介质内的场强、有介质时的高斯定理
1、电介质内的场强
EE0E'
c
E0
E'
a
b
EE0E'
实验发现,在均匀介质中
E
2 3 0 ……(3)
在板内任选一点P,其场强是四个面的场强的叠加,有
EP210220230240
又 EP 0 12340 Q
联立四式得:
……(4) 1 2 3 4
12432Q S
I
II III
P
由于静电平衡时表面面电荷密度与表面附近场强大小成
E0
E
E0
r
r 1
0
++
E0
+ +-
E
+ +-
静电场中的导体和电介质
2.1.1 导体的静电平衡条件 当一带电体系中的电荷静止不动,从而电场分布不随时间变化时,则该带电体系达到了静电平衡。 均匀导体的静电平衡条件就是其体内场强处为0。 从导体静电平衡条件还可导出以下推论: (1)导体是个等位体,导体表面是个等位面。 (2)导体以外靠近其表面地方的场强处处与表面垂直。
2.2.3 电容器的并联、串联 (1) 并联 电容器并联时,总电容等于个电容器电容之和。 (2) 串联 电容器串联后,总电容的倒数是各电容器电容的到数之和
2.2.4 电容器储能(电能) 设每一极板上所带电荷量的绝对值为Q,两极板间的电压为U,则电容器储存的电能 从这个意义上说,电容C也是电容器储能本领大小的标志。
(2)极化电荷的分布与极化强度矢量的关系 以位移极化为模型,设想介质极化时,每个分子中的正电“重心”相对负电“重心”有个位移l。用q代表分子中正、负电荷的数量,则分子电矩P分子=ql。设单位体积内有 n个分子,则极化强度矢量P=np分子=nql。
取任意闭合面S,根据电荷守恒定律,P通过整个闭合面S的通量应等于S面内净余的极化电荷∑q′的负值 ,即 这个公式表达了极化强度矢量P与极化电荷分布的一个普遍关系。
(3)库仑平方反比率的精确验证 用实验方法来研究导体内部是否确实没有电荷,可以比库仑扭秤实验远为精确的验证平方反比律。 卡文迪许的验证实验装置见教材中图2-11。实验时,先使连接在一起的球1和壳3带电,然后将导线抽出,将球壳3的两半分开并移去,再用静电计检验球1上的电荷。反复实验结果表明球1上总没有电荷。
(1) 平行板电容器 平行板电容器由两块彼此靠得很近的平行金属极板组成。设两极板A、B的面积为S , 带电量分别为±q , 则电荷的面密度分别为 ±σe =±q/S 根据式(2.1),场强为 E = σe/ε0 , 电位差为 根据电容的定义
2.3 静电场中的导体与电介质
被积函数 代入原式
r r r r r r P(r ') ∇′ ⋅ P(r ')) 1 P(r ') ⋅∇′ = ∇′ ⋅ − R R R
r r r r P (r ') r 1 ∇′ ⋅ P (r ') ϕ p (r ) = ∇′ ⋅ dV ′ − ∫ dV ′ ∫V ′ V′ 4π ε0 R R
+
+++ +
+
+ + +
感应电荷
CQU
+ + + +
+ + + +
+ + + +
v E0
CQU
v E0
v E=0
v' E
+ + + + + + + +
v E0
v v v' E = E0 + E = 0
导体内电场强度 外电场强度 感应电荷电场强度
CQU
静电平衡条件: 静电平衡条件 (1)导体内部任何一点处的电场强度为零; )导体内部任何一点处的电场强度为零; 都与导体表面垂直; (2)导体表面处的电场强度的方向 都与导体表面垂直 )导体表面处的电场强度的方向,都与导体表面垂直 (3)导体为一等位体,导体表面为等位面; )导体为一等位体,导体表面为等位面; (4)电荷(或感应电荷)分布在导体表面上,形成面电荷 )电荷(或感应电荷)分布在导体表面上,形成面电荷. 导体表面是等势面
2.3 静电场中的导体与电介质
CQU
导体与介质放在电场中会发生什么现象? 导体与介质放在电场中会发生什么现象? 导体:静电感应; 介质:极化现象。 导体:静电感应; 介质:极化现象。
第9章-静电场中的导体和电介质
E 加上外电场后 外 E外
把金属导体置于外电场 中,自由电子将产生宏 观定向运动,导体中电 荷按照外电场特性和导 体形状形成特定的分布
在外电场作用下,引起 导体中电荷重新分布而呈 现出的带电现象,称为
静电感应现象 Electrostatic Induction
问:这种静电感应的过程是否会一直进行下去?
辨析
0 一块无限大均匀带电导体薄板,电荷面密度为 0
问:在它附近一点的场强=?
解:由无限大带电均匀平面两侧的场强公式,得
二、导体处于静电平衡状态时的场强分布
导体外部近表面处场强 E
方向:与该处导体表面垂直
E
0
n
大小:与该处导体表面电荷面密度 成正比。 E(nˆ )
0
S
ES
S 0
ΔS
P
E
0
E内=0
讨论:导体表面附近的场强公式
E
0
指导体表面附近场点近旁的导体电荷面密度
一、静电感应 导体的静电平衡条件
无外电场时
无外电场时,导体中 自由电子在金属内作无 规则热运动,而没有宏 观定向运动,整个导体 呈现电中性
无外电场时
导体的静电感应过程
E 外
加上外电场后
导体的静电感应过程
E 外
+
加上外电场后
导体的静电感应过程
E 外
+
+
加上外电场后
导体的静电感应过程
E 外
+ +
E 外
+ + + + +
6静电场中的导体和电介质
V表面 常量
2. 导体上电荷分布 1)静电平衡时,导体内无净电荷,电荷只分布在导体 外表面上。 证明: (1)导体内无空腔 .p
E内 ds 0 q内 0
(2)导体内有空腔,腔内无其它带电体
可以看成已经达到静电平衡的实心导体,从中 挖出空腔,由于没有挖去净电荷,不会影响电 荷分布,也不影响电场分布。内表面无净电荷。
r
D1 E1 R1 2 r1 2 1r1 r R1 r1 r : E1 21r1 E1 2 r2 E 2 1r1 同理:r r2 R2 : E2 22 r2
R2
r R2 V d r1 dr2 ln ln 21r1 22 r2 21 R1 22 r R r
q
§6—7 静电场中的电介质 电介质 绝缘体(不导电) 1.电介质的电结构 带负电的电子→束缚电子 每个分子 带正电的原子核 正负重心不重合 两类电介质: 正负重心重合 E 2.电极化现象 E外 0 1)有极分子 2)无极分子
所有负电荷负重心 所有正电荷正重心
有极分子 p p 0 无极分子
q q A B
(3)内球与地相接,设内球带电q’:
R1
q q VA dr dr 2 2 R 4 r R2 4 r o o q 1 1 q q 1 ( ) 0 可解出 q 4o R R1 4o R2 q q 1 VB 4o R2
R
o
R
q
q
4 R 4
o
dq
q
o
2R
0
q q R 2R
q 4o R
静电场中的导体和电介质
静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。
导体和电介质是静电场中两种常见的物质类型。
理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。
本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。
导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。
由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。
导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。
这意味着在静电平衡条件下,导体表面任意一点的电势相等。
导体内部的电场分布特性在导体内部,电场强度为零。
这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。
这种现象称为电荷迁移。
因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。
这也是为什么导体内部没有电场线存在的原因。
电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。
当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。
电极化是指电介质分子在电场作用下产生偶极矩。
在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。
这种电极化现象可以分为两种类型:取向极化和感应极化。
取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。
电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。
介电常数是一个比值,代表了电介质在电场力下的相对表现。
介电常数决定了电介质的极化程度和电场中的电场强度。
电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。
在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。
第二章 静电场中的导体与电介质
第二章 静电场中的导体与电介质2.1 导体与电介质的区别:(1)宏观上,它们的电导率数量级相差很大(相差10多个数量级,而不同导体间电导率数量级最多就相差几个数量级)。
(2)微观上导体内部存在大量的自由电子,在外电场下会发生定向移动,产生宏观上的电流而电介质内部的电子处于束缚状态,在外场下不会发生定向移动(电介质被击穿除外)。
2.2静电场中的导体1. 导体对电场的响应:静电场中的导体,其内部的自由电子会发生定向漂移,电荷分布会发生变化,这是导体对电场的响应方式称为静电感应,导体表面会产生感应电荷,感应电荷激发的附加场会在导体内部削弱外电场直至导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,这时导体处于静电平衡状态。
2. 导体处于静电平衡状态的必要条件:0i E =(当导体处于静电平衡状态时,导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,自然其内部电场(指外场与感应电荷产生的电场相叠加的总电场)必为0。
3. 静电平衡下导体的电学性质:(1)导体内部没有净电荷,电荷(包括感应电荷和导体本身带的电荷)只分布在导体表面。
这个可以由高斯定理推得:ii sq E ds ε⋅=⎰⎰,S 是导体内“紧贴”表面的高斯面,所以0i q =。
(2)导体是等势体,导体表面是等势面。
显然()()0b a b i a V V E dl -=⋅=⎰,a,b 为导体内或导体表面的任意两点,只需将积分路径取在导体内部即可。
(3)导体表面以处附近空间的场强为:0ˆEn δε=,δ为邻近场点的导体表面面元处的电荷密度,ˆn为该面元的处法向。
简单的证明下:以导体表面面元为中截面作一穿过导体的高斯柱面,柱面的处底面过场点,下底面处于导体内部。
由高斯定理可得:12i s s dsE ds E ds δε⋅+⋅=⎰⎰⎰⎰,1s ,2s 分别为高斯柱面的上、下底面。
因为导体表面为等势面所以ˆE En=,所以1s E ds Eds ⋅=⎰⎰而i E =0所以0ds Eds δε=,即0ˆE n δε=(0δ>E 沿导体表面面元处法线方向,0δ<E 沿导体表面面元处法线指向导体内部)。
静电场中的导体和电介质
平行板电容器的电容,与极板的面积成正比,与极板 间的距离成反比。
圆柱形电容器的电容
两柱面间的场强大小 E Q 2 0 Lr 方向沿着径向 两柱面间的电势差
U A U B Edr Q 2 0 L ln R2 R1
R2
Q 2 0 Lr
R1
dr
柱形电容器的电容
dWe we dV
取半径为r,厚为dr的球壳, 电场总能量为: 其体积元为: 2
8r
2
dr
dV 4r dr
2
Q We dWe 8
R2
R1
dr 1 Q2 ( R2 R1 ) 2 r 2 4R2 R1
Q C U
4 0 R
★电量按半径比例进行重新分配
2 1 Q Q 2 Q 3 3 F 2 2 4π 0 R 18π 0 R
二. 电容器及其电容 常见的电容器: 平行板电容器----两块导体薄板; 圆柱形电容器----导体薄柱面; 球形电容器----导体薄球面; 当电容器的两极板分别带有等值异号电荷Q时,电荷Q与 两极板A、B间的电势差 (UA-UB) 的比值定义为电容器的 电容:
外 内
E内 ? S
★电荷只分布在外表面,内表面上处处无电荷
内表=0
E内=0
2、 若导体壳包围的空间(腔)有电荷:
内
q S ★内表面带电总量为-q,内表面上各处 电荷面密度取决于腔内电荷的分布
外
q内表 q
E内 0
3、静电屏蔽
S
A
Q
B
E内 0
在电子仪器中,用金属网罩把电路包起来,使其 不受外界带电体的干扰。 传送微弱电信号的导线,外表用金属丝编成的网 包起来,这种的导线叫屏蔽线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。
(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。
从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。
用一句话说:静电平衡时导体为等势体。
二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。
S 面是任意的,∴导体内无净电荷存在。
结论:静电平衡时,净电荷都分布在导体外表面上。
2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。
但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。
结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。
(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。
又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。
结论:静电平衡时,腔内表面有感应电荷-q ,外表面有感应电荷+q 。
3、导体表面上电荷分布设在导体表面上某一面积元S ∆(很小)上,电荷分布如图所示 ,过S ∆边界作一闭合柱面,S 上下底1S 、2S 均与S ∆平行,S 侧面3S 与S ∆垂直,柱面的高很小,即1S 与2S 非常接近S ∆,此柱面并且是关于S ∆对称的。
S 作为高斯面,高斯定理为∑⎰=∙内S Sq s d E 01ε SE ES ds E sd E s d E s d E s d E s d E s S S S S S S∆==∙=∙=∙+∙+∙=∙⎰⎰⎰⎰⎰⎰111321很小S q S ∆=∑σεε0011内S S E ∆=∆⇒σε010εσ=E (注意与无限大带电平面02εσ=E 的区别)。
结论:导体表面附近,σ∝E 。
4、导体表面曲率对电荷分布影响根据实验,一个形状不规则的导体带电后, 在表面上曲率越大的地方场强越强。
由上面讲 到的结果知,E 大的地方,σ 必大,所以曲率 大的地方电荷面密度大。
5、尖端放电三、静电屏蔽由于空腔中的场强处处为零,放在空腔中的物体,就不会受到外电场的影响,所以空心金属球体对于放在它的空腔内的物体有保护作用,使物体不受外电场影响。
另一方面,一个接地的空心导体可以隔绝放在它的空腔内的带电体和外界的带电体之间的静电作用,这就是静电屏蔽原理。
应用:如电话线从高压线下经过,为了防止高压线对电话线的影响, 在高压线与电话线之间装一金属网等。
例8-1:在电荷+q 的电场中,放一不带电的金属球,从球心O 到点电荷所在距离处的矢径为r ,试问(1)金属球上净感应电荷='q ?(2)这些感应电荷在球心O 处产生的场强E?解:(1)='q 0(2)球心O 处场强0=E (静电平衡要求),即+q 在O 处产生的场强+E与感应电荷在O 处产生场强的矢量和=0。
0=++感E Er r q E E 304πε=-=+感 方向指向+q 。
(感应电荷在 O 处产生电势=?球电势=?选无穷远处电势=0。
)§8-2 电容 电容器一、孤立导体的电容在真空中设有一半径为R 的孤立的球形导体,它的电量为q ,那么它的电势为(取无限远处电势=0)Rq U 04πε=对于给定的导体球,即R 一定,到q 变大时,U 也变大,q 变小时,U 也变小,但是R Uq04πε=确不变,此结论虽然是对球形孤立导体而言的,但对一定形状的其它导体也是如此,Uq仅与导体大小和形状等有关,因而有下面定义。
定义:孤立导体的电量q 与其电势U 之比称为孤立导体电容,用C 表示,记作:U qC = (8-1)对于孤立导体球,其电容为R Rq qUq C 0044πεπε===。
C 的单位为:F (法),1F=1C/1V 。
在实用中F 太大,常用F μ或pF ,他们之间换算关系: pF F F 12610101==μ。
(电容与电量的存在与否无关) 二、电容器实际上,孤立的导体是不存在的,周围总会有别的导体,当有其它导体存在时,则必然因静电感应而改变原来的电场分布,当然影响导体电容。
下面我们具体讨论电容器的电容。
1、电容器:两个带有等值而异号电荷的导体所组成的带电系统称为电容器。
电容器可以储存电荷,以后将看到电容器也可以储存能量。
2、电容器电容:如图所示,两个导体A 、B 放在真空中,它们所带的电量分别为+q ,-q ,如果A 、B 电势分别为A U 、B U ,那么A 、B 电势差为B A U U -,电容器的电容定义为:BA U U qC -= (8-2)由上可知,如将B 移至无限远处,B U =0。
所以,上式就是孤立导体的电容。
所以,孤立导体的电势相当于孤立导体与无限远处导体之间的电势差。
所以,孤立导体电容是B 放在无限远处时B A U U qC -=的特例。
导体A 、B 常称电容器的两个电极。
三、电容器电容的计算 1、平行板电容器的电容设A 、B 二极板平行,面积均为S ,相距为d , 电量为+q ,-q ,极板线度比d 大得多,且不计边 缘效应。
所以A 、B 间为均匀电场。
由高斯定理知,A 、B 间场强大小为)(0Sq E +==σεσ。
dS U U qC d S q Ed U U B A B A 00εε=-=⇒==-(8-3)2、球形电容器设二均匀带电同心球面A 、B ,半径A R 、B R ,电荷为+q ,-q 。
A 、B 间任一点场强大小为:204rqE πε=, BA AB B A R R R R R R B A R R )R R (q ]R R [q dr rq Edr d U U BABABA00241144πεπεπε-=-===∙=-⎰⎰⎰A B B A BA AB B A R R R R R R R R q qU U q C -=-=-=0044)(πεπε。
讨论:(1)当A A B R R R 〈〈-时,有A B R R ≈, 令d R R A B =-,则dS d R U U qC A A B A 0204επε==-=即——平行板电容器结果。
(2)A 为导体球或A 、B 均为导体球壳结果如何? 3、圆柱形电容器圆柱形电容器是两个同轴柱面极板构成的,如图所示,设A 、B 半径为A R 、B R ,电荷为+q ,-q ,除边缘外,电荷均匀分布在内外两圆柱面上,单位长柱面带电量lq=λ,l 是柱高。
由高斯定理知,A 、B 内任一点P 处E的大小为rE 02πελ=AB R R R R R R B A R R dr r Edr d U U BABABAln 2200πελπελ===∙=-⎰⎰⎰ ABA B BA R R lR R qU U qC ln 2ln 200πεπελ==-=(可知:在计算电容器时主要是计算两极间的电势差)。
四、电介质对电容器电容的影响以上所得电容是极间为真空情况,若极间充满电介质(不导电的物质),实际表明,此时电容C 要比真空情况电容0C 大,可表示10>=r C Cε,或0C C r ε=。
r ε 与介质有关,称为相对介电系数 。
以上各情况若充满电介质(极间),有:球形: A B B A A B B A r B A R R R R R R R R U U qC -=-=-=πεεπε440;平板:d Sd S C r εεε==0;柱形:AB A B r R R ln lR R ln l C πεεπε220==。
r εεε0=称为介质的介电常数。
000C C C r εεε=−−−−→−→充介质后(1>r ε)五、电容器的串联与并联在实际应用中,现成的电容器不一定能适合实际的要求,如电容大小不合适,或者电容器的耐压程度不合要求有可能被击穿等原因。
因此有必要根据需要把若干电容器适当地连接起来。
若干个电容器连接成电容器的组合,各种组合所容的电量和两端电压之比,称为该电容器组合的等值电容。
1、串联:几个电容器的极板首尾相接(特点:各电容的电量相同)。
设A 、B 间的电压为B A U U -,两端极板电荷分别为+q ,-q ,由于静电感应,其它极板电量情况如图,nB AC qC q C q C q U U ++++=- 321 。
由电容定义有nBA C C C C U U q C 111113++++=-=(8-4) 2、并联:每个电容器的一端接在一起,另一端也接 在一起。
(特点:每个电容器两端的电压相同, 匀为B A U U -,但每个电容器上电量不一定相等) 等效电量为:n q q q q q ++++= 321,由电容定义有:n n C C C C U U q q q q U U qC ++++=-++++=-= 321321(8-5)例8-2:平行板电容器,极板宽、长分别为a 和b ,间距为d ,今将厚度t ,宽为a 的金属板平行电容器极板插入电容器中,不计边缘效应,求电容与金属板插入深度x 的关系(板宽方向垂直底面)。
解:由题意知,等效电容如左下图所示,电容为:32321'1C C C C C C C C ++=+=0001100110011000()()()()()()[]axaxa b x d d t d ax axdd d t d a b x axdd t d d a b x ax atxb d d t d d tεεεεεεεεεε∙---=++---=+--+-=+=+--说明:C 大小与金属板插入位置(距极板距离)无关;注意:(1)掌握串并联公式;(2)掌握平行板电容器电容公式。
例8-3:半径为a 的二平行长直导线相距为d (d>>a ),二者电荷线密度为λ+,λ-,试求(1)二导线间电势差;(2)此导线组单位长度的电容。