初一下学期期末数学试题.pdf
2023年人教版七年级数学下册期末考试卷(A4打印版)
2023年人教版七年级数学下册期末考试卷(A4打印版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC =BC ,则下列选项正确的是( )A .B .C .D .5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒8.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A .40°B .36°C .30°D .25°10.下列几何体中,是圆柱的为( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.如图,点O 是直线AD 上一点,射线OC ,OE 分别平分∠AOB 、∠BOD .若∠AOC =28°,则∠BOE =________.3.12与最简二次根式51a+是同类二次根式,则a=________.4.如图,∠1+∠2+∠3+∠4=______度.5.若方程组x y73x5y3+=⎧⎨-=-⎩,则()()3x y3x5y+--的值是________.638-.三、解答题(本大题共6小题,共72分)1.按要求解下列方程组.(1)124x yx y+=⎧⎨-=-⎩(用代入法解)(2)34225x yx y+=⎧⎨-=⎩(用加减法解)2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.4.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.5.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?6.某水果批发市场苹果的价格如表购买苹果(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、B6、C7、B8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、82、62°3、24、2805、24.6、﹣2.三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)21xy=⎧⎨=-⎩.2、0.3、(1)略;(2)10.4、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.5、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.6、(1)16,4;(2)第一次购买16千克苹果,第二次购买84千克苹果或第一次购买32千克苹果,第二次购买68千克苹果.。
2024年人教版初一数学下册期末考试卷(附答案)
2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。
()2. 一个数既是偶数又是奇数。
()3. 任何两个数的和都是正数。
()4. 任何两个数的差都是负数。
()5. 任何两个数的积都是正数。
()三、填空题(每题1分,共5分)1. 5的平方根是______。
2. 下列数中,最大的是______(2,3,0,5)。
3. 两个相邻的自然数之和是______。
4. 下列数中,最小的数是______(3,4,2,1)。
5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。
四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。
2. 请简述什么是绝对值。
3. 请简述什么是分数。
4. 请简述什么是比例。
5. 请简述什么是方程。
五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。
2. 若一个数的三分之一是4,求这个数。
3. 若一个数的二分之一是5,求这个数。
4. 若一个数的四分之一是3,求这个数。
5. 若一个数的五分之一是2,求这个数。
六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。
2. 请分析什么是反比例函数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。
2. 请用尺规作一个半径为3cm的圆。
八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。
甘肃省兰州市第十一中学2023-2024学年七年级下学期期末数学试题
甘肃省兰州市第十一中学2023-2024学年七年级下学期期末数学试题一、单选题1.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .2.下列各式计算正确的是( ) A . 23523a a a += B .()326a a =C . 623a a a ÷=D . 236a a a ⋅=3.下列长度的三根木棒首尾相接,能做成三角形框架的是( ) A .13cm 、7cm 、5cm B .5cm 、8cm 、3cm C .7cm 、5cm 、1cmD .5cm 、5cm 、9cm4.下列成语描述的事件为随机事件的是( ) A .守株待兔B .种豆得豆C .水中捞月D .水涨船高5.抖空竹是我国的传统体育,也是国家级非物质文化遗产之一、明代《帝京景物略》一书中就有空竹玩法和制作方法的记述,明定陵亦有出土的文物为证,可见抖空竹在民间流行的历史至少在600年以上.如图,通过观察抖空竹发现,可以将某一时刻的情形抽象成数学问题:AB CD ∥,94BAE ∠=︒,28E ∠=︒,则DCE ∠的度数为( )A .122︒B .120︒C .118︒D .115︒6.下列能用平方差公式计算的是( ) A .()()x y x y -+- B .()()x y x y ---C .(2)(2)x x ++D .(23)(32)x x +-7.如图,点E ,点F 在直线AC 上,AE CF =,AD CB =,下列条件中不能判断ADF CBE△△≌的是( )A .AD BC ∥B .BE DF ∥C .BE DF =D .A C ∠=∠8.某兴趣小组上网查询,获取声音在空气中的传播速度与空气温度关系的一些数据(如下表):下列说法错误的是( )A .在这个变化过程中,自变量是温度,因变量是声速B .在一定范围内,温度越高,声速越快C .当空气温度为20℃时,声音10s 可以传播342mD .温度每升高10℃,声速增加6m /s 9.在Rt ABC △中,90C ∠=︒,BAC ∠的角平分线AD 交BC 于点D ,9BC =,6BD =,则点D 到AB 的距离是( )A .3B .4C .5D .710.如图,ABC V 是等边三角形,AD 为中线,E 为AB 上一点,且AD AE =,则EDB ∠等于( )A .15︒B .20︒C .25︒D .30︒11.等腰三角形的底边长与其腰长的比值称为这个等腰三角形的“优美比”.若等腰ABC V 的周长为20,其中一边长为8,则它的“优美比”为( )A .12B .43C .43或2D .43或1212.如图,在ABC V 中,AB AC =,边AC 的垂直平分线MN 分别交AB 、AC 于点M 、N ,点D 是边BC 的点,点P 是MN 上任意一点,连接PD 、PC ,若40A ∠=︒,则当PCD △周长最小时,CPD ∠=( )A .25︒B .30︒C .35︒D .40︒二、填空题13.已知35x =,32y =,则3x y -的值是.14.一辆汽车油箱中现存油50升,若油从油箱中匀速流出,速度为0.3升/分钟,则油箱中剩余油量Q (升)与流出时间t (分钟)的关系式是 . 15.若多项式236x mx -+是一个完全平方式,则m =.16.如图,已知30AOB ∠=︒,点D 是边OA 上一点,在射线OB 上取一点C ,当OCD V 是等腰三角形时,OCD ∠的度数为 .三、解答题 17.计算: (1)()()22023011 3.142π-⎛⎫-+-- ⎪⎝⎭; (2)()23243a a a -⋅.18.在ABC V 中,21B A ∠=∠+︒,42C B ∠=∠+︒,求A ∠的度数. 19.尺规作图(不写作法,但要保留作图痕迹)(1)如图,作BAC ∠的对称轴AM .(2)点E 为BAC ∠边AC 上一点,在AM 上找一点F ,使F 点到点A 、E 距离相等. 20.已知:如图,B 、E 分别是AC 、DF 上一点,∠1=∠2,∠C =∠D .求证:∠A =∠F .21.一个不透明的箱子里装有红、黄、蓝三种颜色的小球共24个,它们除颜色外其他均相同,其中红色球有6个、黄色球的数量是蓝色球数量的2倍. (1)求摸出1个球是蓝色球的概率;(2)再往箱子中放入多少个蓝色球,可以使摸出1个蓝色球的概率为1?222.老师在黑板上布置了一道题:已知1y =-,求代数式()()()222322102x y x y y x y x ⎡⎤+++--÷⎣⎦的值,小白和小红展开了讨论:根据上述情景,你认为谁说得对?并将代数式化简求值.23.如图所示,在ABC V 中,DM 、EN 分别垂直平分AB 和AC ,交BC 于D 、E .(1)40DAE ∠=︒,求BAC ∠的度数;(2)若ADE V 的周长为18,求BC 的长度.24.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是她本次去舅舅家所用的时间与小红离家的距离的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是 米,小红在商店停留了 分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快?最快的速度是多少米/分? (3)本次去舅舅家的行程中,小红一共行驶了多少米?25.如图,在三角形ABC 中,AB AC =,点B 、P 、Q 三点在同一条直线上,且ABP ACQ ∠=∠,62BAC PAQ ∠=∠=︒.求APQ ∠的度数.26.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按形状拼成正方形ABCD .(1)观察图2填空:正方形ABCD 的边长为______,阴影部分的小正方形的边长为_____; (2)观察图2,试猜想式子2()m n +,2()m n -,mn 之间的等量关系,并说明理由; (3)根据(2)中的等量关系,解决如下问题:已知6a b -=,5ab =-,求a b +的值. 27.在数学课上,老师将同学们分成“智慧组”,“奋进组”和“创新组”三个数学活动小组,探究等边三角形的有关问题.(1)如图①,“智慧组”在等边ABC V 中,作AD BC ⊥于点D ,经过探究提出下面结论:在直角三角形Rt ABD ()△中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半12BD AB ⎛⎫= ⎪⎝⎭.①Rt ACD △中等于30︒的角为_____;②CD =______ AC (直接填空) (2)“奋进组”直接探究了下面的问题:已知:在ABC V 中,CA CB =,60ACB ∠=︒,以CA 为腰,在ABC V 外作等腰CAE V ,使C A C E =,ACE α∠=0120α︒<<︒(),连接BE ,则AEB ∠的度数是个定值,利用图②求出AEB ∠的度数;(3)“创新组”发现:在图②取BE 中点F ,连接CF 并延长CF 交直线AE 于点G ,若2AG =,4AE =,则可得出线段FG 的长.请求出线段FG 的长.28.已知:点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB MON ∠∠+=︒,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,写出PA 和PB 的数量关系,并说明理由. (2)探究证明:如图2,当50MON ∠=︒时,写出OA ,OC 和BC 之间的等量关系,并说明理由.(3)拓展延伸:如图3,当MON ∠α=,点B 在射线ON 的反向延长线上时,请直接写出线段OA 、OC 和BC 之间的数量关系.。
2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)
20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
七年级下学期期末考试数学试卷(带答案)
七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。
四川省成都市天府第七中学2023-2024学年七年级下学期期末数学试题
四川省成都市天府第七中学2023-2024学年七年级下学期期末数学试题一、单选题1.第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,下列巴黎奥运会项目图标中,轴对称图形是( )A .B .C .D .2.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣ 3.下列计算正确的是( )A .()222a b a b +=+B .224236m m m ⋅=C .()4312x x -=-D .()()a m b n ab mn ++=+4.如图,在ACD V 与ABD △中,C B ∠=∠,再添加一个下列条件,能判断ADC ADB ≌△△的是( ).A .AC AB = B .ADC ADB ∠=∠ C .CD BD = D .AC CD ⊥ 5.下列说法正确的是( )A .“买中奖率为110的奖券10张,中奖”是必然事件 B .福山气象局预报说“明天的降水概率为95%”,意味着福山明天一定下雨C .“汽车累计行驶10000km ,从未出现故障”是不可能事件D .拋掷一枚质地均匀的硬币,正面朝上的概率为0.56.如图,下列条件中,不能判定12l l ∥的是( )A .13∠=∠B .24180∠+∠=︒C .23∠∠=D .45180∠+∠=︒ 7.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x 尺,木长y 尺,所列方程组正确的是( )A . 4.521x y x y -=⎧⎨+=⎩B . 4.5112x y x y -=⎧⎪⎨+=⎪⎩C . 4.521y x x y -=⎧⎨-=⎩D . 4.5112x y x y -=⎧⎪⎨-=⎪⎩ 8.如图1,在长方形ABCD 中,动点P 从点A 出发,沿AB BC CD --运动,至点D 处停止.点P 运动的路程为x ,ADP △的面积为y ,且y 与x 之间满足的关系如图2所示,则当8y =时,对应的x 的值是( )A .4B .4或12C .4或16D .5或12二、填空题9.计算()200020010.1258-⨯=.10.已知等腰三角形的两边长a b 、满足2|2|10250a b b -+-+=,那么这个等腰三角形的周长为.11.已知()2219x m x -++是一个完全平方式,则m =.12.为了测量一幢6层高楼的层高,在旗杆CD 与楼之间选定一点P .测得旗杆顶C 的视线PC 与地面的夹角21DPC ∠=︒,测楼顶A 的视线PA 与地面的夹角69APB ∠=︒,量得点P 到楼底的距离PB 与旗杆CD 的高度都等于12米,量得旗杆与楼之间距离为30DB =米,则每层楼的高度大约米.13.如图,在ABC V 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交AC 于点D ,交AB 于点E ,连接BD .若90C ∠=︒,若2ABD CBD ∠=∠,求A ∠的度数是.三、解答题14.(1)计算:()()22021031π 3.1421-⎛⎫-+-⨯--- ⎪⎝⎭; (2)解方程组:4342312x y x y ⎧+=⎪⎨⎪-=⎩.15.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C在小正方形的顶点上.(1)在图中画出与ABC V 关于直线l 成轴对称的DEF V ;(2)在直线l 上找一点P ,使PB PC +的长最短.(3)ABC V 的面积是______.16.如图,已知CD 平分MCB ∠,点F 在线段BC 上,FH NB ⊥于点,1132,23H ∠=︒∠=∠,48MCB ∠=︒.(1)求证:NB CD ⊥;(2)求NDE ∠的度数.17.某社区超市用520元钱从批发商处购进了甲、乙两种商品共100千克,已知甲、乙商品的批发价与零售价如下表所示:(1)该社区超市这天批发甲商品和乙商品各多少千克;(2)甲商品和乙商品按零售价售出相同的重量后,剩下的商品都按零售价打八折售出,最终当天甲乙商品全部卖完,共获得464元利润,求打折后卖出的甲、乙商品的重量分别为多少? 18.已知点A 是线段BD 上的一点,ABC V 是等腰直角三角形,90ABC ∠=︒,将线段AD 绕点D 顺时针旋转90︒得线段DE ,连接,CE F 为CE 的中点,连接,DF BF .(1)如图1,延长BC DF 、交于点G .①求证:G EDF ∠=∠;②判断线段DF 与BF 之间的关系,并证明.(2)将ABC V 绕点B 逆时针旋转到图2的位置时,判断线段DF 与BF 之间的关系,并说明理由.四、填空题19.如果2230m m --=,那么代数式()()()2332m m m +-+-=. 20.已知关于x y ,的二元一次方程组2438x y m x y m +=⎧⎨-=+⎩的解满足3x y m +=,则m 的值为. 21.如图是一盏可调节台灯示意图,其中支架AO 与底座MN 垂直,支架,AB BC 分别为可绕点A 和点B 旋转的调节杆,台灯灯罩EF 可绕C 点旋转调节光线角度.当支架AB 和灯罩EF 平行时,CD MN ∥,140OAB ∠=︒,150BCD ∠=︒,则BCE ∠=.22.如图,ABC V 为等腰直角三角形,90,2ABC AB ∠=︒=,点D 在CB 延长线上,连接AD ,以AD 为边作等腰直角,90ADE DAE ∠=︒V ,连接CE 交AB 于点,4F DC AF =,则BD =.23.如图,ABC V 是等腰直角三角形,90,8,ACB AC BC D ∠=︒==为AC 边上一点,2,AD E =为BC 边上一动点,连接DE ,以DE 为边并在DE 的左侧作等边DEF V ,连接AF ,则AF 的最小值为.(提示:直角三角形中,30︒角所对的直角边等于斜边的一半)五、解答题24.如图1是一个长为4b ,宽为a 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成如图2的正方形.(1)由图2可以直接写出22(),(),a b a b ab +-之间的一个等量关系是______.(2)两个正方形ABCD DEFG ,如图3摆放,边长分别为,x y .15xy =,2AE =,求图中阴影部分面积和.25.2024年成都马拉松比赛将在10月17日举行,小天和爸爸都完成了比赛报名,并且计划每周进行一次全长6000米的训练.第一次训练时小天和爸爸同时从同起点出发,行程S (单位:米)随时间t (单位:分钟)变化的图像如图所示.已知小天中途提速后用了16分钟到达终点.因为爸爸中途体力不支减速,所以当小天到达终点时,爸爸离终点还有1280米.请根据图中信息回答以下问题:(1)小天比爸爸早到终点多长时间?(2)在小天跑步的过程中,小天出发几分钟后和爸爸相距150米? 26.已知ABC V 为等边三角形,过点A 的射线AM 在ABC V 的外部,D 为射线AM 上的一点,E 为平面内的一点,满足BE BD =.(1)如图1,连接CD ,若点E 恰好在CD 上,且60DBE ∠=︒,求ADC ∠的度数;(2)如图2,连接DE 交BC 于点F ,若120DBE ∠=︒,且F 恰为BC 的中点,求证:DF AD EF =+;(3)如图3,若38,120B A M DB E ∠=︒∠=︒,连接CE ,当线段CE 的长度最小时,在射线CE 上截取一点H ,在边BC 上截取一点I ,使C H B I =,连接,,AH AI 则当AH AI +的值最小时,请直接写出HAB ∠的度数.。
2022—2023年人教版七年级数学下册期末考试题及答案【A4打印版】
2022—2023年人教版七年级数学下册期末考试题及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 42.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元3.下列说法正确的是()A.一个数的绝对值一定比0大 B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数 D.最小的正整数是14.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0 5.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地其中符合图象描述的说法有()A.2个B.3个C.4个D.5个6.﹣6的倒数是()A.﹣16B.16C.﹣6 D.67.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x个字,则下面所列方程正确的是().A.x+2x+4x=34 685 B.x+2x+3x=34 685C.x+2x+2x=34 685 D.x+12x+14x=34 6858.6的相反数为()A.-6 B.6 C.16-D.169.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.如果,长方形ABCD中有6个形状、大小相同的小长方形,且3EF=,12CD=,则图中阴影部分的面积为().A .108B .72C .60D .48二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=________.2.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是________元.3.一次数学竞赛出了15个选择题,选对一题得4分,选错或不答一题倒扣2分,小明同学做了15题,得42分.设他做对了x 道题,则可列方程为________.4.若+x x -有意义,则+1x =___________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)53x y y x +=⎧⎨=-⎩ (2)223346a b a b ⎧+=-⎪⎨⎪-=⎩2.已知方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值.3.如图,在四边形OBCA中,OA∥BC,∠B=90°,OA=3,OB=4.(1)若S四边形AOBC=18,求BC的长;(2)如图1,设D为边OB上一个动点,当AD⊥AC时,过点A的直线PF与∠ODA 的角平分线交于点P,∠APD=90°,问AF平分∠CAE吗?并说明理由;(3)如图2,当点D在线段OB上运动时,∠ADM=100°,M在线段BC上,∠DAO 和∠BMD的平分线交于H点,则点D在运动过程中,∠H的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A 的坐标为(﹣6,3),求点B的坐标.5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.为保护环境,我市公交公司计划购买A 型和B 型两种环保节能公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、C6、A7、A8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、2000,3、4x﹣2(15﹣x)=42.4、15、246、5三、解答题(本大题共6小题,共72分)1、(1)41xy=⎧⎨=⎩;(2)23ab=-⎧⎨=-⎩2、m=4,n=﹣1.3、(1)6;(2)略;(3)略.4、(1,4).5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.。
河南省安阳市殷都区2023-2024学年七年级下学期期末数学试题(含答案)
2023-2024学年第二学期期末教学质量检测七年级数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,三个大题,满分120分,考试时间100分钟.2.请直接将答案写在答题卡上,写在试题卷上的答案无效.3.答题时,必须使用2B 铅笔按要求规范填涂,用0.5毫米的黑色墨水签字笔书写.一、选择题(每小题3分,共30分)1.甲骨文是我国的一种古代文字,是汉字的最早形式,下列甲骨文中,能用其中一部分平移得到的是()A. B. C. D.2.下列调查中,最适合采用抽样调查的是( )A.调查某中学七年级一班学生的视力情况B.中央电视台《2024年第九季诗词大会》的收视率C.选出某校短跑最快的学生参加全市比赛D.对乘坐高铁的乘客进行安检3.下列各点中,在第二象限的点是( )A. B. C. D.4.下列无理数中,介于4和5之间的数是( )5.如图是木匠师傅利用直尺和三角尺过已知直线外一点作直线的平行线的方法,其直接理由是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.平面内垂直于同一条直线的两条直线互相平行6.已知,下列式子不一定成立的是( )A. B. C. D.7.下列命题中,属于假命题的是( )A.带根号的数都是无理数B.对顶角相等C.同角的补角相等D.两直线平行,内错角相等8.已知x ,y 满足方程组,则的值是( )()4,2-()4,2--()4,2()4,2-a b >11a b ->-22a b-<-3131a b +>+ma mb>2728x y x y +=⎧⎨+=⎩x y +A.3B.5C.7D.99.中国清代算书《御制数理精蕴》中有这样一题:“马六匹、牛五头,共价四十四两;马二匹、牛三头共价二十四两,问马,牛各价几何?”译文:“有6匹马,5头牛,总价值44两;有2匹马,3头牛,总价值24两.求每匹马价值多少两,每头牛价值多少两?”设每匹马价值x 两,每头牛价值y 两,根据题意可列方程组为().A. B. C. D.10.如图,科技兴趣小组爱好编程的同学编了一个“步步高升”程序,已知点A 在平面直角坐标系中按规律跳动,开始时,已知,,,,,……以此类推,则的坐标为( )A. B. C. D.二、填空题(每小题3分,共15分)11.9的平方根是_______.12.若点在y 轴上,则_______.13.在对某班50名同学的身高进行统计时,发现最高的为,最矮的为.若以为组距分组,则应分为_______组.14.如图,点E 在的延长线上,在不添加任何辅助线和字母的情况下,添加一个条件_______,使(填一个即可).15.定义一种法则“”如下:,例如:,.若,则m 的取值范围是_______.三、解答题(本大题共8个小题,满分75分)16.(10分)计算:56443224x y x y +=⎧⎨+=⎩62445324x y x y +=⎧⎨+=⎩65442324x y x y +=⎧⎨+=⎩65242344x y x y +=⎧⎨+=⎩123O A A A →→→→ ()11,2A ()22,1A ()33,3A ()44,2A ()55,4A ()66,3A 100A ()100,50()100,51()101,50()100,52()3,4M a a +-a =177cm 153cm 5cm AB AB DC ∥⊗()()a ab a b b a b >⎧⎪⊗=⎨≤⎪⎩525⊗=233⊗=()351111m -+⊗=(1(217.(8分)解方程组18.(9分)解不等式组,请按下列步骤完成解答:(1)解不等式①,得________;(2)解不等式②,得________;(3)将不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为________.19.(9分)某中学计划组织七年级学生前往4个安阳市景点中的1个开展研学活动,这4个景点为:A.林州红旗渠;B.殷墟博物馆;C.汤阴岳飞庙;D.中国文字博物馆.该中学数学兴趣小组针对七年级学生的意向目的地开展抽样调查(注:每位被抽样调查的学生选择且只选择1个意向前往的景点),并将调查结果绘制成如下两幅不完整的统计图:请结合图中所给信息,解答下列问题:(1)本次被抽样调查的学生共有_______名,并补全条形统计图;(2)在扇形统计图中,“C.汤阴岳飞庙”对应的圆心角度数为______;(3)该校七年级共有学生500名,请你估计七年级意向前往“D.中国文字博物馆”的学生人数.20.(9分)如图,点O 在直线上,,与互余.(1)求证:;(2)平分交于点F ,若,补全图形,并求的度数.21.(9分)如图,在平面直角坐标系中,三角形的顶点都在正方形网格的格点上,其中点A 的坐标为,现将三角形平移,使得点A 变换为点,点,分别是点B ,C 的对应点.-)12332x y x y -=⎧⎨+=⎩①②11321x x x x -⎧<+⎪⎨⎪+≥⎩①②AB OC OD ⊥D ∠1∠DE AB ∥OF BOD ∠DE 58OFD ∠=︒1∠ABC ()1,3-ABC A 'B 'C '(1)请画出平移后的三角形(不写画法);(2)点的坐标为______,点的坐标为______;(3)若三角形内部有一点P ,其平移后的对应点为,则点P 的坐标为______.22.(10分)北京时间2024年5月3月17时27分,嫦蛾六号探测器由长征五号遥八运载火箭在中国文昌航天发射场发射,之后准确进入地月转移轨道,发射任务取得圆满成功.某超市为了满足广大航天爱好者的需求,计划购进A 、B 两种型号运载火箭模型进行销售,据了解,2件A 种型号运载火箭模型和4件B 种型号运载飞船模型的进价共计140元;3件A 种型号运载火箭模型和2件B 种型号运载火箭模型的进价共计130元.(1)求A 、B 两种型号运载火箭模型每件的进价分别为多少元?(2)若该超市计划用不超过800元的资金购进这两种型号运载火箭模型共30件,求A 种型号运载火箭模型最多能购买多少件?23.(11分)综合与实践问题情境:数学课上,老师让同学们以“三角板与平行线”为主题开展数学活动.如图1,已知,直角三角板中,,将其顶点A 放在直线上,并使边于点D ,与相交于点H .(1)试判断边与直线的位置关系并说明理由;操作探究:(2)如图2,将图1中三角板的直角顶点B 放在平行线之间,两直角边,分别与,相交于点E ,F ,得到和,试探究与的数量关系并说明理由;下面是小明不完整的解答过程,请你补充完整.解:,理由:过点B 作直线,如图4所示.因为(已知)A B C '''B 'C 'ABC ()3,1P '-12l l ∥ABC 90B ∠=︒2l 1AB l ⊥AC 1l BC 1l ABC AB CB 1l 2l 1∠2∠1∠2∠1290∠+∠=︒1BN l ∥12l l ∥所以(______________)所以,________(______________)因为________,所以深入探究:(3)受小明启发,同学们继续探究下列问题.在图2中作线段和,使它们分别平分和的顶角,如图3,请直接写出的度数.2BN l ∥1ABN ∠=∠2∠=NBC ABC +∠=∠90ABC ∠=︒1290∠+∠=︒EO FO 1∠2∠EOF ∠2023——2024学年第二学期七年级数学参考答案及评分标准评分说明:解答题中,对于一题多解的题目,视学生解法过程的合理性恰当评分。
甘肃省兰州市兰州树人中学2023-2024学年七年级下学期期末数学试题
甘肃省兰州市兰州树人中学2023-2024学年七年级下学期期末数学试题一、单选题1.下列图形中,是轴对称图形的是( )A .B .C .D . 2.三角形结构在生产实践中有着广泛的应用,如图所示的斜拉索桥结构稳固,其蕴含的数学道理是( )A .两点之间,线段最短B .三角形的稳定性C .三角形的任意两边之和大于第三边D .三角形的内角和等于180︒3.人体内红细胞的直径大约为0.00085cm ,数据0.00085用科学记数法表示为( ) A .30.8510-⨯ B .48.510-⨯ C .58510-⨯ D .58.510-⨯ 4.将一副三角尺(厚度不计)按如图所示摆放,使有刻度的两条边互相平行,则图中1∠的度数为( )A .100︒B .105︒C .120︒D .115︒5.下列说法正确的是( )A .成语“水中捞月”所描述的事件,是随机事件B .“兰州市明天降雨的概率为0.6”,表示兰州市明天一定降雨C .若抽奖活动的中奖概率为150,则抽奖50次必中奖1次 D .“若a 是实数,则0a ≥”是必然事件6.下图中所反映的过程是:李红从家跑步去体育中心广场,在那里锻炼了一阵后,又去面馆吃面,然后步行回家.其中x 表示时间,y 表示李红离家的距离.根据图象,以下四个说法错误的是( )A .李红从面馆回家的平均速度是3千米/小时B .体育中心广场离面馆4千米C .李红在体育中心广场锻炼了15分钟D .体育中心广场离李红家2.5千米7.在ABC V 中,90ACB ∠=︒,尺规作图的痕迹如图所示.若3AC =,5AB =,则线段BE 的长为( )A .43B .65C .1D .28.如图,飞镖游戏板中每一块小正方形除颜色外都相同,若某人向如图所示的游戏板投掷飞镖一次(假设飞镖落在游戏板上),则停留在阴影区域上的概率是( )A .23B .12C .13D .499.如图,在ABC V 中,AC 边上的高是( )A .BEB .ADC .CFD .AF10.等腰三角形一边上的高与一腰所夹的锐角是50o ,则该等腰三角形顶角是( ) (1)甲的结果是100o ;(2)乙的结果是40o ;(3)丙的结果是140o .A .甲、乙的结果合起来才对B .乙、丙的结果合起来才对C .甲、乙、丙的结果合起来才对D .甲、乙、丙的结果合起来也不对11.如图,BD 是ABC V 的中线,O 是BD 上一点,2OB OD =,连接AO 并延长交BC 于点E .若B O E △的面积为2,则ABC V 的面积是( )A .10B .11C .12D .1312.如图,在ABC V 中,分别延长AC ,AB 边上的中线BD ,CE 到F ,G ,使DF BD =,EG CE =,则下列说法:①GA AF =;②GA BC ∥;③GB AC =;④四边形GBCF 的面积是ABC V 面积的3倍.其中正确的个数是( )A .1B .2C .3D .4二、填空题13.计算:01(3)2π--- = .14.如图,已知AB =CB ,要使四边形ABCD 成为一个轴对称图形,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)15.如图,在四边形ABCD 中,AB AD =,AB AD ⊥,AC DC ⊥.过点B 作BE CA ⊥,垂足为点E .若2CD =,4CE =,则四边形ABCD 的面积是.16.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,10AB =,点D 是BC 上一点,连接AD ,点D 到AB 的距离等于CD 的长,P 、Q 分别是AD AC 、上的动点,连接PC PQ ,,则PQ PC +的最小值是.三、解答题17.若53n =,2511m =,求325n m +的值.18.先化简,再求值:()()()()24332253a b a b a b a b b a ⎡⎤-+--++÷⎣⎦,其中4a =,23b =-. 19.如图是44⨯的正方形网格,请用无刻度尺的直尺(不用圆规)按要求完成以下作图.(1)在图1中作四边形ABCD ,使点,C D 在格点上,并且四边形ABCD 为轴对称图形.(画一种即可)(2)在图2中找一点M (M 在格点上),直线PM 与线段AB 交于点Q ,使PQ 最短.画出直线PM 和点Q (用实线保留作图痕迹)20.如图,点C 在AOB ∠的边OB 上,过C 作DE OA ∥,CF 平分BCD CG CF ∠⊥,于C .(1)若55BCG ∠=︒,求DCF ∠;(2)过O 作OH CF ∥,交DE 于点 H ,求证:OH 平分AOB ∠.21.在一个不透明的盒子里只装有红、白、黑三种颜色的球,每个球除颜色外完全相同,其中红球3个,白球5个,黑球若干个.若从中任意摸出一个白球的概率是13. (1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子里其中一种颜色球的数量,使得任意摸出一个球是红球的概率为14,若能,写出一种可行的方案;若不能,说明理由.22.如图,在ABC V 中,D 为AC 中点,F 为AB 边上一点,连接FD ,并延长FD 至点 E ,使得ED DF =,连接CE .(1)求证:CDE ADF ≌△△;(2)若EF BC ∥,60A ∠=︒,50E ∠=︒,求BCD ∠的度数.23.一家服装店因换季将某种品牌的服装打折销售,如果每件服装按着标价的7.5折出售,可盈利60元.若每件服装按着标价的5折出售,则亏损60元.问:(1)每件服装的标价为多少元?(2)若这种服装一共库存80件.按着标价8折出售一部分后,将余下服装按标价的5折全部出售,设打八折出售的有y 件,共获利w 元。
新人教版七年级数学下册期末测试卷(A4打印版)
新人教版七年级数学下册期末测试卷(A4打印版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.54.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°5.若x取整数,则使分式6321xx+-的值为整数的x值有()A.3个B.4个C.6个D.8个6.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.在数轴上,a所表示的点总在b所表示的点的右边,且|a|=6,|b|=3,则a -b的值为()A.-3 B.-9 C.-3或-9 D.3或9 9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.27的立方根是________.2.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__________°.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为______cm .5.如图,直线a ,b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a ∥b 的是________(填序号)5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x +7=12x ﹣5 (2)4y ﹣3(5﹣y )=6(3)3157146x x ---= (4)20.30.40.50.3a a -+-=12.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.3.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、A4、A5、B6、A7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、105°3、70.4、225、①③④⑤.6、10三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、x=3或-3是原方程的增根;m=6或12.3、(1)略;(2)112.5°.4、∠BOE的度数为60°5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)8;(2)答案见解析:(3)200000立方厘米。
人教版七年级数学下册期末测试题及答案(共五套)pdf版
( 4) 2 =-4
3.已知 a> b> 0,那么下列不等式组中无解..的是( )
xa
xa
xa
A.
B.
C.
D
xb
xb
xb
xa
.
xb
4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角
度可能为 ( )
(A) 先右转 50°,后右转 40° (B) 先右转 50°,后左转 40°
A1 2
D
B
C
22. 如图 , 已知 D 为△ ABC边 BC延长线上一点 ,DF⊥ AB于 F 交 AC于 E, ∠ A=35° ,? ∠ D=42° , 求∠ ACD的度数 .
A F
E
B
CD
23. 如图 , 已知 A( -4 ,-1 ),B(-5 ,-4 ),C( -1 ,-3 ),△ABC经过平移得到的△ A′B′C′, △ABC 中任意一点 P(x 1,y 1) 平移后的对应点为 P′(x 1+6,y 1+4) 。 ( 1)请在图中作出△ A′B′C′; ( 2)写出点 A′、 B′、 C′的坐标 .
1 ,则这个多边形的边数是 ( ) 2
A. 5 B . 6
C
.7 D .8
9.如图,△ A1B1C1 是由△ ABC沿 BC 方向平移了 BC长度的一半得到的,若△ ABC的面积为
20 cm 2,则四边形 A1DCC1 的面积为( )
A. 10 cm2
B. 12 c m2
C . 15 cm 2
D
.17 cm 2
ቤተ መጻሕፍቲ ባይዱ
-7
1
20. 解:原方程可化为
8x 9y 6 2x 7 y 17 0
2023年人教版七年级数学下册期末考试卷及答案【A4打印版】
2023年人教版七年级数学下册期末考试卷及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.下列图形中,不是轴对称图形的是( )A .B .C .D .3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB=,则阴影部分的面积是__________.3.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组x3y1 {3x2y8+=--=2.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t0 1 2 3 …(h)油箱剩余油量Q100 94 88 82 …(L)①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、B6、C7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、83、3 44、-405、40°6、5三、解答题(本大题共6小题,共72分)1、x2 y1⎧⎨⎩==-2、(1)m=-5 (2)373、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤403;(3)两人相遇时间为第8分钟.4、36平方米5、(1)800,240;(2)补图见解析;(3)9.6万人.25003km.6、①Q=100﹣6t;② 10L;③。
2024—2025学年最新人教新版七年级下学期数学期末考试试卷(含参考答案)
2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。
初一期末数学试卷电子版
考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列数中,哪个数是负数?A. -3B. 0C. 5D. -2.52. 如果一个长方形的周长是24厘米,那么它的长和宽的和是多少厘米?A. 12厘米B. 18厘米C. 24厘米D. 36厘米3. 下列哪个图形的面积是16平方厘米?A. 一个边长为4厘米的正方形B. 一个长为8厘米,宽为2厘米的长方形C. 一个半径为2厘米的圆D. 一个直径为8厘米的圆4. 一个数的3倍加上12等于48,这个数是多少?A. 12B. 16C. 18D. 205. 下列哪个数是2的平方?A. 2B. 4C. 8D. 166. 下列哪个数是3的立方?A. 3B. 9C. 27D. 817. 一个三角形的底是6厘米,高是4厘米,它的面积是多少平方厘米?A. 12B. 18C. 24D. 308. 下列哪个数是质数?A. 10B. 11C. 12D. 149. 一个长方形的长是8厘米,宽是4厘米,它的对角线长度是多少厘米?A. 4厘米B. 6厘米C. 8厘米D. 10厘米10. 下列哪个数是偶数?A. 23B. 24C. 25D. 26二、填空题(每题2分,共20分)11. 5的倒数是__________。
12. 12除以3等于__________。
13. 一个数的5倍是25,这个数是__________。
14. 100减去40等于__________。
15. 下列数中,最大的数是__________。
A. 3B. 2.5C. 1.2D. 0.516. 一个圆的半径是5厘米,它的直径是__________厘米。
17. 一个长方形的长是10厘米,宽是5厘米,它的面积是__________平方厘米。
18. 下列图形中,哪个是轴对称图形?(在括号内填写图形编号)①正方形②长方形③等腰三角形④圆答案:(__________)19. 下列哪个数是奇数?A. 21B. 22C. 23D. 2420. 一个三角形的底是8厘米,高是6厘米,它的面积是__________平方厘米。
七年级下学期期末考试数学试卷(附答案)
七年级下学期期末考试数学试卷(附答案)一、选择题(本大题共10小题,每小题4分,满分40分,)1、下列选项中能由如图平移得到的是()A.B.C.D.2、计算m6÷m2的结果是()A.m3B.m4C.m8D.m123、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交4、若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm5、计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y26、若a<b,则下列结论中,不正确的是()A.a+2<b+2 B.a﹣2>b﹣2 C.2a<2b D.﹣2a>﹣2b7、学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种8、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29、将一个长为2a,宽为2b的长方形纸片(a>b),用剪刀沿图1中的虛线剪开,分成四块形状和大小都一样的小长方形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为( )A. a2+b2B. a2-b2C. (a+b)2D. (a-b)210、如图,已知AD∥EF∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有( )A. 4个B. 5个 C. 6个 D. 7个二、填空题(本大题共4小题,每小题5分,满分20分)11.8的立方根是________.12.因式分解:x3y2-x=________13.若分式方程mx−1+31−x=2的解为正数,则m的取值范围是________14.已知:AB∥CD,点C在点D的右侧,BE平分∠ABC,DE平分∠ADC,BE,DE所在直线交于点E,∠ADC=70°。
七年级下学期期末考试数学试卷(带答案)
七年级下学期期末考试数学试卷(带答案)一、选择题(本大题共8小题)1.下列计算正确的是()A.a2+a3=a5B.a6÷a2=a3C.(a2)3=a6D.2a×3a=6a2.如果a<b,下列各式中正确的是()A.ac2<bc2B.>C.﹣3a>﹣3b D.>3.不等式组的解集在数轴上可以表示为()A.B.C.D.4.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.55.下列命题是真命题的是()A.同旁内角互补B.三角形的一个外角等于两个内角的和C.若a2=b2,则a=bD.同角的余角相等6.如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠A=∠EDF C.BC∥EF D.∠B=∠E7.如图,在长方形ABCD纸片中,AD∥BC,AB∥CD,把纸片沿EF折叠后,点C、D分别落在C'、D'的位置.若∠EFB=65°,则∠AED'等于()A.70°B.65°C.50°D.25°8.如图,在△ABC中,已知点D,E分别为BC,AD的中点,EF=2FC,且△ABC的面积12,则△BEF的面积为()A.5 B.C.4 D.二、填空题(本大题共8小题,请将下列各题正确的结果填写在答题卡相应的位置上)9、计算:a2•a3=.10、不等式3x﹣2>1的解集是.11、2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为.12、分解因式:a2﹣4=.13、买5kg苹果和3kg梨共需23元,分别求苹果和梨的单价.设苹果的单价x元/kg,梨的单价y元/kg,可列方程:.14、有一个多边形的每一个外角都等于45°,则这个多边形是边形.15、命题“三角形的三个内角中至少有两个锐角”是(填“真命题”或“假命题”).16、阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17;(2+i)2=4+4i+i2=4+4i﹣1=3+4i根据以上信息,完成下面计算:(1+2i)(2﹣i)+(2﹣i)2=.三、解答题(本大题共8小题,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)17.(10分)计算:(1)(﹣2)2﹣|﹣3|+(π﹣2021)0;(2)m•m5+(2m3)2.18.(10分)解方程组:(1);(2).19.(10分)解下列不等式(组):(1)x﹣3(x﹣2)>4;(2).20.(6分)先化简,再求值:(x﹣1)2﹣x(x+3),其中x=.21.(6分)请将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD证明:∵CE平分∠ACD∴∠=∠(_),∵∠1=∠2.(已知)∴∠1=∠()∴AB∥CD()22.(8分)如图,AB∥CD,点E在CB的延长线上,∠A=∠E,AC=ED,求证:CB=CD.23.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?24.(12分)定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(1)如图1,OP是∠MON的平分线,请你在图1中画出一对以OP所在直线为对称轴的全等三角形.(2)请你仿照这个作全等三角形的方法,解答下列问题:①如图2,在△ABC中,∠ACB=90°,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.猜想FE和DF之间的数量关系,直接写出结论.②如图3,在△ABC中,如果∠ACB≠90°,而①中的其它条件不变,请问①中结论是否仍然成立?若成立,请证明;若不成立,请说明理由.参考答案一、选择题1.选:D. 2.选:A. 3.选:A. 4.选:B.5.选:A. 6.选:C. 7.选:D. 8.选:C.二、填空题9、a5.10、 x>1.11、2×10﹣8.12、(a+2)(a﹣2).13、5x+3y=23.14、八.15、真命题.16、7﹣i.三、解答题17.【解答】解:(1)原式=4﹣3+1=2;(2)原式=m6+4m6=5m6.18.【解答】解:(1),①+②得5x=20,解得x=4,将x=4代入②得2×4﹣2y=15,解得y=﹣3.5,∴原方程组的解为;(2)原方程组可化为,②﹣①×5得3y=6,解得y=2,将y=2代入①得x+2=6,解得x=4,∴原方程组的解为.19.【解答】解:(1)去括号,得:x﹣3x+6>4,移项,得:x﹣3x>4﹣6,合并同类项,得:﹣2x>﹣2,系数化为1,得:x<1;(2)解不等式3(x﹣1)<5x+1,得:x>﹣2,解不等式2x﹣4≤,得:x≤3,则不等式组的解集为﹣2<x≤3.20.【解答】解:原式=x2﹣2x+1﹣x2﹣3x=﹣5x+1,当x=时,原式=﹣5×+1=0.21.【解答】证明:∵CE平分∠ACD∴∠2=∠ECD(角平分线的定义),∵∠1=∠2.(已知)∴∠1=∠ECD(等量代换))∴AB∥CD(内错角相等两直线平行).故答案为:2,ECD,角平分线的定义,ECD,等量代换,内错角相等两直线平行.22.【解答】证明:∵AB∥CD,∴∠ABC=∠DCE,在△ABC和△ECD中,,∴△ABC≌△ECD(AAS),∴CB=CD.23.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:,解得:,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×=3辆、至少享有B型车2000×=2辆.24.【解答】解:(1)如图1,在射线OP上取点A,作AB⊥OM于B,AC⊥ON于C,∵OP是∠MON的平分线,AB⊥OM,AC⊥ON,∴AB=AC,∴Rt△AOB≌Rt△AOC,则AOB和Rt△AOC是一对以OP所在直线为对称轴的全等三角形;(2)①FE=DF,理由如下:如图2,在AC上截取CH=CD,连接FH,∵AD是∠BAC的平分线,∠BAC=30°,∴∠BAD=∠CAD=15°,∴∠ADC=∠BAD+∠B=75°,∵CE是∠ACB的平分线,∠ACB=90°,∴∠ACE=∠BCE=45°,在△FCD和△FCH中,,∴△FCD≌△FCH(SAS),∴FH=FH,∠FHC=∠FDC=75°,∴∠AHF=105°,∵∠AEF是△BCE的外角,∴∠AEF=∠B+∠BCE=105°,∴∠AEF=∠AHF,∴△AEF≌△AHF(AAS),∴FE=FH,∴FE=DF;②、①中结论仍然成立,FE=DF,理由如下:如图3,在AC上截取CG=CD,连接FG,∵∠B=60°,∴∠BAC+∠BCA=120°∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC+∠FCA=(∠BAC+∠BCA)=60°,∴∠AFC=180°﹣60°=120°,∴∠CFD=60°,∵CE是∠ACB的平分线,∴∠ACE=∠BCE,在△FCD和△FCG中,∴△FCD≌△FCG(SAS),∴FD=FG,∠CFG=∠CFD=60°,∴∠AFE=∠AFG=60°,在△AFE和△AFG中,,∴△AFE≌△AFG(ASA),∴FG=FE,∴FE=DF.。
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。
A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。
A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。
()2. 任何两个有理数相乘都是无理数。
()3. 一个等边三角形的三个角都是60度。
()4. 两个锐角之和一定大于90度。
()5. 任何两个等腰三角形的底角相等。
()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。
3. 下列哪一个数是无理数______。
4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。
5. 下列哪一个图形是矩形______。
四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。
2. 简述勾股定理及其应用。
3. 简述有理数的定义和性质。
4. 简述平行四边形的性质和判定。
5. 简述等边三角形的性质和判定。
五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。
2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。
2023年部编版七年级数学(下册)期末试卷及答案(A4打印版)
2023年部编版七年级数学(下册)期末试卷及答案(A4打印版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.满足方程组35223x y mx y m+=+⎧⎨+=⎩的x,y的值的和等于2,则m的值为().A.2B.3C.4D.59.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.绝对值不大于4.5的所有整数的和为________.3.正五边形的内角和等于______度.4.若+x x -有意义,则+1x =___________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________. 6.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为________.三、解答题(本大题共6小题,共72分)1.解方程(组):(1)2321x y x y +=⎧⎨-=⎩(2)30.20.20.030.70.20.01x x ++-=2.甲、乙两名同学在解方程组5{213mx y x ny +=-=时,甲解题时看错了m ,解得7{22x y ==- ;乙解题时看错了n ,解得3{7x y ==-.请你以上两种结果,求出原方程组的正确解.3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D 为边OB 上一个动点,当AD ⊥AC 时,过点A 的直线PF 与∠ODA 的角平分线交于点P ,∠APD=90°,问AF 平分∠CAE 吗?并说明理由;(3)如图2,当点D 在线段OB 上运动时,∠ADM=100°,M 在线段BC 上,∠DAO 和∠BMD 的平分线交于H 点,则点D 在运动过程中,∠H 的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、B6、B7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、03、5404、15、±46、36°或37°.三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2) 2.85x=-.2、n = 3 , m = 4,2 {3 xy==-3、(1)6;(2)略;(3)略.4、∠BOE的度数为60°5、(1)75,54;(2)补图见解析;(3)600人.6、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)略。
2024北京燕山区初一(下)期末数学试题及答案
2024北京燕山初一(下)期末数 学2024年6月下面各题均有四个选项,其中只有一个....是符合题意的. 1.2的相反数是(A )-2 (B )2 (C) ±2 (D )1.4142.“一去二三里,烟村四五家,亭台六七座,八九十枝花。
”这首仅20个字的小诗,数字就占了一半.领悟到了数学和语文的学科融合。
下面四个“数”字的图片中可以通过平移图案(1)得到的是(A) (B) (C) (D)3.如图, AB 与CD 交于点O ,∠AOE 与∠AOC 互余,∠AOE = 20°,则∠BOD 的度数为 (A) 20° (B) 70° (C)90° (D)110° 4.下列各数中,比大6且比7小的数是(A) 28 (B) 43 (C) 643 (D) 585.一个一元一次不等式的解集在数轴上表示如图所示,则该不等式的解集为 (A) >−x 1 (B) <0x (C) x ≤2 (D)<x 26.小明同学统计了他所在小区居民每天早晨跑步的时间,并绘制了频数分布直方图. 如右图所示:①小明同学一共统计了 74 人; ②每天早晨跑步不足 30 分钟的有 14 人 ;③每天早晨跑步 30~40 分钟的人数最多 ;④每天早晨跑步 0~10 分钟的人数最少 .根据图中信息,上述说法中正确的是 (A) ①②③ (B) ②③④ (C) ①③④ (D)①②③④ 7.若,则下列不等式中错误的是 (A) −>−a 1b 1 (B) +>+a1b 1(C) >2a 2b(D) −>−2a 2b8.《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?其译文是 :今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,则可列二元一次方程组为>a b(A) ⎩+=⎨⎧+=x y x y ,501030.2 (B) ⎩+=⎨⎧+=x y x y ,105030.2(C) ⎩+=⎨⎧−=x y x y ,501030.2 (D) ⎩+=⎨⎧+=x y x y ,103050.29.一副三角尺按如图所示的位置摆放,那么∠α的度数是(A) 15° (B) 30° (C) 45° (D) 60°10.如图,在平面直角坐标系xOy 中,点A 的坐标为(4,0).线段 OA 以每秒旋转90°的速度,绕点O 沿顺时针方向连续旋转,同时,点P 从点O 出发,以每秒移动1个单位长度的速度,在线段OA 上,按照 O →A →O →A …的路线循环运动,则第1314秒时点P 的坐标为 (A)(0,1) (B)(0,2) (C)(-1,0) (D) (-2, 0) 二、填空题(本题共16分,每小题2分) 11.1625的平方根是 . 12.如图,把一块含有45°的直角三角形的三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是 .13.已知点P ,y (3)到x 轴的距离是2个单位长度,则P 点的坐标为 .14.如图,请你添加一个条件,使 AB ∥CD ,这个条件是 , 你的依据是 .15.下列调查,①了解我区饮用水的水质情况,选择抽样调查 ;②了解某种型号节能灯的使用寿命,选择全面调查 ;③了解歼-20新一代双发重型隐形战斗机各零部件的质量,选择抽样调查 ;④了解一批药品是否合格,选择全面调查.调查方式选择合理的是 .16.一辆匀速行驶的汽车在11:20距离A 地 50 km ,要在12:00之前驶过A 地,道路最高限速100km/h ,该车速度v 应满足的条件是 .17.如图,在平面直角坐标系xOy 中,线段CB 可以看作是线段AO 经过平移得到的,写出一种由线段AO 得到线段CB 的过程: .18.某段高速公路全长200千米,交警部门在距离入口10千米处设置了摄像头,并在以后每隔18千米处都设置一个摄像头;此外,交警部门还在高速公路上距离入口3千米处设立了限速标志牌,并在以后每隔5千米处都设置一块限速标志牌(如图).小糖糖坐在后座从入口开始数经过的摄像头和标志牌个数,数到7时发现此处同时设置有标志牌和摄像头.小糖糖此时离入口的距离是 千米.三、解答题(本题共64分,第19题5分,第20~21题,每题6分;第22题5分,第23题6分,24~27题,每题各7分,第28题8分)19.计算: —−+−32227122.20.解不等式组:⎩⎪−−⎨⎪⎧−<−x x x x ≤,26105178(1)并把解集在数轴上表示出来,再写出它的所有正整数...解.21. 解方程组:⎩−=⎨⎧+=x y x y 43 5.68,22.已知:如图,直线AB 、CD 被直线GH 所截,AEG EFD 112,68∠=︒∠=︒,求证: AB // CD . 完成下面的证明:证明:∵AB 与直线GH 相较于点E ,AEG ∠=︒112, ∴AEG 112∠==︒,∵EFD 68∠=︒.∴FEB EFD ∠+∠= .∴ // ( )(填推理的依据). 23.按要求画图,并解答问题:已知:如图,OC 平分∠AOB ,点D 在射线OA 上. (1)过点D 作直线DE ∥OB ,交OC 于点E ; (2)若∠=︒AOB 70,求∠DEC 的度数.24.如图,在平面直角坐标系x O y 中,A (4,3),B (3,1),C (1,2).将三角形ABC 向上平移3个单位长度,再向左平移4个单位长度,可以得到三角形A 1B 1C 1,其中点A 1、B 1、C 1分别与点A 、B 、C 对应. (1)画出平移后的三角形A 1B 1C 1; (2)直接写出A 1、B 1、C 1三个点的坐标;(3)已知点P 在y 轴上,以A 1、B 1、P 为顶点的三角形面积为2,求点P 的坐标.25.为了解某小区家庭4月份用气量情况(该小区共有300户家庭,每户家庭人数在2﹣5之间,这 300户家庭的平均人数约为3.4).(1)下面三个样本中, (填样本序号)的数据能较好地反映该小区家庭4月份用气量情况;Ca .抽样调查小区15户家庭4月份用气量统计表 (单位:m 3):d .用扇形统计图描述数据:根据以上信息,解答下列问题:①频数分布表整理数据中m = ,补全“频数分布直方图”,扇形统计图描述数据中n = ;②由样本可以估计出:该小区人均用气量超过m 63的家庭约为: 户;该小区人均用气量在5.5≤x <6.7m 3之间的家庭约为 户(结果保留整数).26.有48支队 520名运动员参加篮球、羽毛球比赛,其中每支篮球队10人,每支羽毛球队12人,每名运动员只能参加一项比赛.篮球、羽毛球队各有多少支参赛?27.如图,O 为直线AB 上一点,OC ⊥AB 于点O .点P 为射线OC 上一点,从点P 引两条射线分别交直线AB 于点D ,E (点D 在点O 左侧,点E 在点O 右侧,),过点O 作OF ∥PD 交PE 于点F ,G 为线段PD 上四月份家庭人均用气量频数直方图)3m (家庭数(频数一点,过G 做GM ⊥AB 于点M . (1)①依题意补全图形;②若∠PDO =27°,求∠POF 的度数;(2)直接写出表示∠EOF 与∠PGM 之间的数量关系的等式.28.若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“友好方程”,例如:方程的3x -6=0解为x=2.不等式组⎩<⎨⎧−>x x ,410的解集为x <<14.因为<<124.所以称方程3x-6=0为不等式组⎩<⎨⎧−>x x ,410的“友好方程”.(1)请你写出一个方程 ,使它为不等式组⎩−−⎨⎧−>−x x x x ≤,3(1)5232的“友好方程” ;(2)若关于x 的方程−=x k 24是不等式组⎩−+−⎨⎧+>x x x x ≥,3(1)2(21)9312 的“友好方程”,求k 的取值范围;(3)若关于x 的方程+−=x m 340是关于x 的不等式组⎩−⎨⎧+>x m m x m m ,≤2+133的“友好方程”,且此时不等式组有3个整数解,直接写出m 的取值范围初二数学试题 第 页(共 页)燕山地区2023—2024学年度第二学期七年级期末考试七年级数学试题参考答案及评分标准2024年6月一、选择题(本题共20分,每小题2分)题号12345678910答案ABBBCCDADD二、填空题(本题共16分,每小题2分)111213141516171854±25°(3,2)或(3,-2)∠CDA =∠DAB,内错角相等两直线平行,(答案不唯一)①75<v ≤100线段AO 向右平移四个单位,再向上平移两个单位得到线段CB .(答案不唯一)28三、解答题(本题共64分,第19题5分,第20~21题,每题6分;第22题5分,第23题6分,24~27题,每题各7分,第28题8分)19.解:原式=22-1-322+………………………3分=2………………………5分20.5178(1),1062x x x x ①.②-<-⎧⎪⎨--≤⎪⎩解: 3.x 由①,得>-……………………………………………1分2.x ≤由②,得…………………………………………2分∴3 2.x -<≤………………………………3分∴正整数解为1,2.………………………………5分……………………………………6分21.解:68,43 5.x y x y +=⎧⎨-=⎩①②②×2+①,得918x =.…………………………………………………………2分∴2x =.…………………………………………………………3分把2x =代入①,得初二数学试题 第 页(共 页)2+68y =.…………………………………………………………4分1y =………………………………………………………5分所以原方程组的解是2,1.x y =⎧⎨=⎩…………………………………………6分22.FEB∠…………………………………………………1分180︒…………………………………………………….2分AB ……………………………………………………….3分CD ………………………………………………………4分同旁内角互补,两直线平行…………………………5分23.(1)正确画出DE ∥OB ,标出点E ;…….………..……….2分(2)解:∵OC 平分AOB ∠(已知),∴12COB AOB ∠=∠(角平分线定义).….…….…………3分∵70AOB ∠=︒(已知),∴35COB ∠=︒(等量代换).………….………..……….4分∵DE ∥OB (已知),∴DEO COB ∠=∠(两直线平行,内错角相等).…………5分∴35DEO ∠=︒(等量代换).∴180********DEC DEO ∠=︒-∠=︒-︒=︒(补角定义)…6分24.(1)…………………………………2分(2)A 1(0,6)、B 1(-1,4)、C 1(-3,5)…………………………………5分初二数学试题 第 页(共 页)(3)∵点B 1到y 轴的距离为1∴×A 1P ×1=2∴A 1P =4…………………………………6分∴点P 的坐标为(0,2)或(0,10)…………………………………7分25.(1)样本3.……………………………1分(2)①m =9,……………………………2分补全“频数分布直方图”……………………………4分n=33.3%;……………………………5分②该小区人均用气量超过36m 的家庭约为:100户;该小区人均用气量在5.5≤x <6.7m 3之间的家庭约为180户.……………………………7分26.解:设有x 支篮球队和y 支羽毛球队参赛.根据题意,得列方程组⎩⎨⎧=+=+.520121048y x y x ,…………………………………4分解方程组得⎩⎨⎧==.2028y x ,…………………………………6分答:篮球、羽毛球队分别28支和20支参赛.………………………………7分27.(1)①依题意补全图形…….……….…...…2分②∵OF ∥PD ,∴∠1=∠2,∠3=∠PDO ,……………….…………….………………………...…3分∵∠PDO =27°,∴∠3=27°.∵OC ⊥AB ,∴∠1+∠3=90°,.……..……………………………………………………………...…4分∴∠POF =∠1=63°.………………………………….……………………………...…5分(2)∠PGM -∠EOF =90°……..…………………………….…………………….…...…7分12初二数学试题 第 页(共 页)28.(1)答案不唯一,方程的解大于1小于等于4都可以;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分(2)解不等式3+12x x >得:1x >-,解不等式得:∴⎩⎨⎧-+≥->+9)12(2)1(3213x x xx 的解集为41≤<-x ,关于x 的方程24x k -=的解为122x k =+,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分解得;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(3)314m <<⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分9)12(2)1(3-+≥-x x 4≤x。
七年级(下)期末数学试卷(解析版试卷)
七年级(下)期末数学试卷(解析版)一、填空题(每小题3分,共18分)1.如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=45度.【考点】K8:三角形的外角性质;K7:三角形内角和定理.【分析】根据三角形的外角的性质及三角形的内角和定理可求得.【解答】解:∵∠ABD是△ABC的外角,∴∠ABD=∠A+∠C=60°+50°=110°,∴∠1=180°﹣∠ABD﹣∠D=180°﹣110°﹣25°=45°.【点评】本题考查三角形外角的性质及三角形的内角和定理,比较简单.2.若方程组,则3(x+y)(3x﹣5y)的值是﹣63.【考点】98:解二元一次方程组.【分析】将x+y=7与3x﹣5y=﹣3代入原式即可求出答案.【解答】解:由题意可知:x+y=7与3x﹣5y=﹣3∴原式=3×7×(﹣3)=﹣63故答案为:﹣63【点评】本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.3.将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是(0,0).【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是1,纵坐标是2,向左平移1个单位,再向下平移2个单位得到新点的横坐标是1﹣1=0,纵坐标为2﹣2=0.即对应点的坐标是(0,0).故答案填:(0,0).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.为了了解全校学生的视力情况,小明、小华、小李三个同学分别设计了三个方案.①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况.②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况.③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况.以上的调查方案最合适的是③(填写序号).【考点】V4:抽样调查的可靠性.【分析】根据抽样调查和全面调查的意义分别分析得出即可.【解答】解:①小明:检查全班每个同学的视力,以此推算出全校学生的视力情况,样本具有片面性,不能作为样本,故此选项错误;②小华:在校医室找到2000年全校的体检表,由此了解全校学生视力情况,人数较多不易全面调查,故此选项错误;③小李:抽取全校学号为5的倍数的同学,检查视力,从而估计全校学生视力情况,此选项正确;故选;③.【点评】此题主要考查了抽样调查的可靠性,利用抽样调查和全面调查的定义得出是解题关键.5.不等式1﹣2x<6的负整数解是﹣2,﹣1.【考点】C7:一元一次不等式的整数解;C2:不等式的性质;C6:解一元一次不等式.【分析】根据不等式的性质求出不等式的解集,找出不等式的整数解即可.【解答】解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x>﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.【点评】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.6.如图所示,围棋盘放置在某个平面直角坐标系中,白棋②的坐标为(﹣7,﹣4),黑棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是(﹣3,﹣7).【考点】D3:坐标确定位置.【分析】根据点的平移规律,可得答案.【解答】解:黑棋④的坐标为(﹣6,﹣8),右移3个单位,再上移1个单位,得黑棋①的坐标(﹣3,﹣7),故答案为:(﹣3,﹣7).【点评】本题考查了坐标确定位置,利用点的平移规律:右加左减,上加下减是解题关键.二、选择题(每小题4分,共32分)7.4的平方根是()A.2 B.4 C.±2 D.±4【考点】21:平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣5)【考点】D1:点的坐标.【分析】根据点到x轴的距离是点的纵坐标的绝对值,可得答案.【解答】解:在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P 的坐标是(﹣3,5)或(﹣3,﹣5),故选:B.【点评】本题考查了点的坐标,利用了点到x轴的距离是点的纵坐标的绝对值确定点的纵坐标是解题关键.9.方程组的解是()A.B.C.D.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=1,则方程组的解为,故选B【点评】此题考查了解二元一次方程组,利用消元的思想,消元的方法有:代入消元法与加减消元法.10.在△ABC中,三边长为9、10、x,则x的取值范围是()A.1≤x<19 B.1<x≤19 C.1<x<19 D.1≤x≤19【考点】K6:三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得10﹣9<x<10+9,再解即可.【解答】解:由题意得:10﹣9<x<10+9,解得:1<x<19,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.11.不等式的解集在数轴上表示正确的是()A. B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+4≤6,得:x≤1,∴不等式组的解集为﹣3<x≤1,故选:A【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.下列说法正确的是()A.抽样调查选取样本时,所选样本可按自己的爱好抽取B.某工厂质量检查员检测某批灯泡的使用寿命采用普查法C.想准确了解某班学生某次数学测验成绩,采用抽样调查,但需抽取的样本容量较大D.检测某城市的空气质量,采用抽样调查【考点】V2:全面调查与抽样调查.【分析】根据全面调查和抽样调查的特点即可作出判断.【解答】解:A、选样本时,样本必须有代表性及普遍性,A错误;B、应用抽样调查方式,错误;C、要得到准确的成绩,应用全面调查,错误,所以,故选D.【点评】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.【点评】列方程组解应用题的关键是找准等量关系,同时能够根据等式的性质对方程进行整理变形,从而找到正确答案.14.一个多边形的每一个外角都是45°,那么这个多边形是()A.八边形B.九边形C.十边形D.十二边形【考点】L3:多边形内角与外角.【分析】任意多边形的外角和为360°,用360°除以45°即为多边形的边数.【解答】解:360°÷45°=8.故选:A.【点评】本题主要考查的是多边形的外角和的应用,明确正多边形的每个外角的数×边数=360°是解题的关键.三、解答题(本大题共9小题,满分70分)15.(6分)如图所示,已知AB∥CD,∠C=75°,∠A=25°,求∠E的度数.【考点】JA:平行线的性质.【分析】先根据平行线的性质得∠BFE=∠C=105°,然后根据三角形外角性质求∠E的度数.【解答】解:∵AB∥CD,∴∠BFE=∠C=75°,∵∠BFE=∠A+∠E,∴∠E=75°﹣25°=50°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.16.(6分)计算:+(﹣)【考点】2C:实数的运算.【分析】首先计算开方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:+(﹣)=3+(﹣2﹣)=3﹣﹣=﹣【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.(5分)如图所示,已知∠A=∠F,∠C=∠D,按图填空,并在括号内注明理由.∵∠A=∠F(已知)∴DF∥AC(内错角相等,两直线平行)∴∠D=∠ABD(两直线平行,内错角相等)又∵∠D=∠C(已知)∴∠C=∠ABD(等量代换)∴BD∥EC(同位角相等,两直线平行)【考点】JB:平行线的判定与性质.【分析】根据平行线的判定推出DF∥AC,根据平行线的性质得出∠D=∠ABD,求出∠C=∠ABD,根据平行线的判定得出即可.【解答】解:∵∠A=∠F(已知),∴DF∥AC(内错角相等,两直线平行),∴∠D=∠ABD(两直线平行,内错角相等),∵∠D=∠C(已知),∴∠C=∠ABD(等量代换),∴BD∥EC(同位角相等,两直线平行),故答案为:已知,DF,AC,内错角相等,两直线平行,两直线平行,内错角相等,已知,等量代换,BD,EC,同位角相等,两直线平行.【点评】本题考查了平行线的性质和判定定理,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.18.(7分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣1,1),现将△ABC平移,使点A变换为A′,点B′、C′分别是B、C的对应点,请画出平移后的△A′B′C′,并直接写出点B′、C′的坐标:B′(﹣3,0)、C′(0,﹣1).【考点】Q4:作图﹣平移变换.【分析】直接利用平移的性质得出对应点位置进而得出答案.【解答】解:如图所示:△A′B′C′即为所求,B′(﹣3,0)、C′(0,﹣1).故答案为:(﹣3,0);(0,﹣1).【点评】此题主要考查了平移变换,正确得出对应点位置是解题关键.19.(7分)如图,已知BD是∠ABC的角平分线,且∠C=∠DBC,∠BDA=72°,求△ABC各内角度数.【考点】K7:三角形内角和定理.【分析】由∠C=∠DBC、∠BDA=72°结合三角形外角的性质,即可得出∠C=∠DBC=36°,由BD是∠ABC的角平分线可求出∠ABC=2∠DBC=72°,再利用三角形内角和定理即可求出∠A 的度数.【解答】解:∵∠C=∠DBC,∠BDA=∠C+∠DBC=72°,∴∠C=∠DBC=36°.∵BD是∠ABC的角平分线,∴∠ABC=2∠DBC=72°,∴∠A=180°﹣∠ABC﹣∠C=72°.【点评】本题考查了三角形内角和定理、角平分线以及三角形外角的性质,牢记“三角形内角和是180°”是解题的关键.20.(8分)(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;98:解二元一次方程组;C4:在数轴上表示不等式的解集.【分析】(1)整理原方程组为一般式,再利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原方程组整理可得:,①+②,得:6x=10,解得:x=,②﹣①,得:4y=﹣6,解得:y=﹣,则方程组的解为;(2),解不等式①,得:x>﹣2,解不等式②,得:x≤1,∴不等式组的解集为﹣2<x≤1,将解集表示在数轴上如下:【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(9分)商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元,乙种商品每件进价35元,售价45元,若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件.【考点】9A:二元一次方程组的应用;8A:一元一次方程的应用.【分析】设商场购买甲种商品m件,购买乙种商品n件,根据该商场同时购进甲、乙两种商品共100件,恰好用去2700元列方程组求解即可.【解答】解:设商场购买甲种商品m件,购买乙种商品n件,由题意得:,解得:.答:该商场能购进甲种商品40件,乙种商品60件.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.22.(10分)某校九年级所有学生参加2011年初中毕业英语口语、听力自动化考试,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是10%;(3)扇形统计图中A级所在的扇形的圆心角度数是72°;(4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为561人.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)抽查人数可由B等所占的比例为46%,根据总数=某等人数÷比例来计算,然后可由总数减去A、B、C的人数求得D等的人数,再画直方图;(2)根据总比例为1计算出D等的比例.(3)由总比例为1计算出A等的比例,对应的圆心角=360°×比例.(4)用九年级学生数乘以这次考试中A级和B级的学生所占百分比即可.【解答】解:(1)抽查的人数为:23÷46%=50,∴D等的人数所占的比例为:1﹣46%﹣24%﹣20%=10%;D等的人数为:50×10%=5,(2)扇形统计图中D级所占的百分比是1﹣46%﹣24%﹣20%=10%;(3)扇形统计图中A级所在的扇形的圆心角度数是:20%×360°=72°.(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(10+23)÷50×850=561人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(12分)园林部门用3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,挂放在迎宾大道两侧,搭配每个造型所要花盆数如表,综合上述信息,解答下列问题.造型甲乙A 90盆30盆B 40盆100盆(1)符合题意的搭配方案有哪几种?(2)若搭配一个A种造型的成本为1000元,搭配一个乙种造型的成本为1200元,选(1)中那种方案的成本最低?【考点】CE:一元一次不等式组的应用.【分析】(1)设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,根据“3600盆甲种花卉”“2900盆乙种花卉”列不等式求解,取整数值即可.(2)总成本为:1000x+1200(50﹣x)=60000﹣2x.利用一次函数的性质进行解答即可.【解答】解:(1)设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,则有,解得30≤x≤32,所以x=30或31或32.第一方案:A种造型32个,B种造型18个;第二种方案:A种造型31个,B种造型19个;第三种方案:A种造型30个,B种造型20个.(2)总成本为:1000x+1200(50﹣x)=60000﹣2x.显然当x取最大值32时成本最低,为60000﹣2×32=53600答:第一种方案成本最低,最低成本是53600【点评】此题考查了一元一次不等式组的应用,也是一道实际问题,有一定的开放性,(1)利用所用花卉数量不超过甲、乙两种花卉的最高数量列不等式组解答;(2)为最优化问题,根据(1)的结果直接计算即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.若 m
+
1 m
=
3, 则m2
+
1 m2
的值为 __________.
35
二. 选择题:(每题 2 分,共 20 分)
6
16.下列的命题中,是真命题的是 ( )
(A)在所有连结两点的线中,直线最短. (B)两直线被第三直线所截,同位角相等. (C)不相交的两条直线,叫做平行线.
47 图6
(D)两条直线都和第三条直线垂直,则这两直线互相平行.
25.若-1<x<0,则代数式 x(1+x)(1-x)的值 ( )
(A)一定是正的 (B)一定是负的 (C)一定是非负的 (D)正负不能确定
三. 解答题:(每题 5 分,共 35 分)
26.计算: (3m-2n)(2n+3m)
27.计算:(a-3)(a2+3a+9)
28.已知:|2x+y-11|+(5x-4y-8)2=0,求 xy 的值.
D′
有___________________________.
4.如图 2,当∠_____=∠_____时,
D
A′
C′
图 1 B′
C
AD∥BC (
)
5.如图 3, AB∥CD, ∠2 比∠1 的 2 倍多 6°, 则∠2=_______.
A
图2
B A
1
B
6.命题“对顶角相等”的题设是:_________________, 结论是____________________.
A
B
11. −
4
a5b2
3
−
1
a2b
2
=
___________ .
3
3
12.当________时, (2a+1)0=1. 13.计算: (a+2)(a-2)(a2-4)=_____________.
C
D
E 图5
14. 如图 4,D 是 AC 的中点,AD=3, CB = 7 DC, 则AB = ________ 时,代数式 1-3x 的值为非负数.
图3
8. 3 −2 − (0.4)0 = _____ .
5
9.用科学记数法表示:0.000602=_________. A D C 图 4
B
10. x − y 2 = x + y 2 + _________. 4 3 4 3
(A)∠3+∠4=180° (B)∠5=∠4
(C) ∠5=∠7
(D)∠6+∠7=180°
20.已知 AB∥CD,CD∥EF,则 AB∥EF.这个推理的根据是 ( )
(A)平行公理 (B) 等量代换
(C)内错角相等,两直线平行
(D)平行于同一直线的两条直线平行
21.若∠A 和∠B 的两边分别平行且∠A 比∠B 的两倍少 30°,则∠B 是( )
(A)ct+st (B)ct+st-t2 (C)ct+st-2t2 (D)以上都不对
24.下列运算中,正确的是 ( ) (A)(3a6b)2=6a12b2 (B)(8a2b-6ab2)÷2ab=4a-3b
t s
(C) 3 11 4 9 = 9 4 3 16
图7
(D)(X-2Y)(2y-x)=x2-4xy+4y2
(A) 30° (B) 70° (C) 30°或 70° (D)100°
22.下列等式中,错误的是 ( )
t
(A)(a-b)2=(b-a)2
(B)(a+2b)2=a2+4b2
(A)(-a-b)2=(a+b)2 (D)(a+b)2-(a-b)2=4ab
23.如图 7 是 L 形的钢条截面,它的截面面积是 ( ) c
学无 止 境 29.计算:(3x2-2x+1)(3x2+2x-1) 30.计算:(-2xay)2·(xa-2ya)4÷[(-xy2)2]a
31.计算: (m-3n)2-(3n+m)2 32.若 x+y=2,xy=k+4,(x-y)2=12,求 k 的值.
学无 止 境 四.(5 分)过 C 点画 AB 的垂线,再过 AC 的中点画 BC 的平行线.
学无 止 境
初一( )班下学期期末数学试题 姓名____________ 学号 ____
一. 填空题:(每题 2 分,共 30 分)
D
C
1.如果∠A=23°34′,∠B=71°45′,∠A+∠B=___°___′A.
2.直线外一点与直线上各点所连结的线段中,_________最短.
B
3.如图 1,在长方体中,与棱 AD 垂直的平面
E F
即∠BAP=∠___ ∴AB∥CD (
2
)
C
P
D
图9
学无 止 境
1
17.如图 5,AB∥DE,∠B=120°,∠D=25°,则∠C= ( )
1 a
2 b
学无 止 境
(A) 50° (B) 80° (C) 85° (D) 95°
18.两条平行线被第三条直线所截,则一组同旁内角的角平分线互相 ( )
(A)垂直 (B)平行 (C)重合 (d)相交,但不垂直
19. 如图 6,若∠1=∠2,则错误的结论是 ( )
B
A
C
图8
五.(5 分)先化简,后求值:(a+2b)2(a-2b)2-(2a-b)2(2a+b)2, 其中 a2=2, b2=1.
六.(5 分) 如图 9,已知∠E=∠F, ∠1=∠2,求证:AB∥CD.
证明:∵∠E=∠F (已知)
∴___∥FB (
)
A
B
∴ ∠EAP=∠___ (
)
1
∵∠1=∠2 (已知) ∴ ∠EAP+∠1=∠____+∠2