概率统计分布表(常用)

合集下载

6.2数理统计中几种常用的分布.

6.2数理统计中几种常用的分布.

性质3. 设T~t(n),则:T ~F(1,n) .
2
证明:
由t分布定义 T
2
X Y /n
其中X∼N(0,1),Y~χ (n),且X与Y相互独立. 2 2 (1) / 1 X /1 2 F T 2 Y /n ( n) / n
且 2 (1)与 2 ( n)相互独立.
由F分布定义, ∴ F = T2~F(1,n) .
2
条件: 的点χ

P ( n)
2 2



2
( n )
f ( x)dx
2
(n)为χ 2(n)分布的上分位点.
χ (n)分布 的上分位点 图形如右图.
χ2(n)分布的上分位点可以查 附表5.
2Hale Waihona Puke 13例1:求2 2 0 ( 10 ) , )。 .05 0.1 (20
1.) 因为
P X z0.05 1 P X z0.05 1 0.05 0.95.
P X 1.64 0.9495.
P X 1.65 0.9505.
z0.05 1.64 1.65 1.645. 2
4
2.)
P X z0.005 1 PX z0.005 1 0.005 0.995.

i 1 n i 1
n
EX i2 n.
2 DX i
D D(



2n.
10
4.应用中心极限定理可得,若 若 X ~ 2 (n) ,则当n充分大时, X n 2n 的分布近似正态分布N(0,1).
11
2 (n)
分布的密度函 数的图形如右 图.

概率论-分布及其分位数

概率论-分布及其分位数
分布及其分位数
U—分布 正态总体样本均值的分布
设总体 X ~ N , 2 , X1, X2,..., Xn 是 X 的一
个样本, 则样本均值服从正态分布X1 nFra bibliotekn i 1
Xi
~
N
,
2
n
U
X
1 n
n i1
Xi
~
N 0,1
n n
概率分布的分位数(分位点)
定义 对总体X和给定的 (0<<1),若存在x,
f(y)
上分位数或上侧临界值,
其几何意义见图5-5所示.
其中f(y)是 2-分布的概率密度. O
图5-5 2(n) x
显然,在自由度n取定以后,2(n)的值只与有关.
例如,当n=21,=0.05时,由附表3(P254)可查得,
02.05(21) 32.67 即 P 2(21) 32.67 0.05.
即 t(n)≈u , n>45.
一般的t分布临界值表中,详列至n=30,当 n>30就用标准正态分布N(0, 1)来近似.
四、F分布
定义5.5 设随机变量X~ 2(n1)、Y~ 2(n2),且
与相互独立,则称随机变量
F
X Y
n1 n2
服从第一自由度为n1,第二自由度为n2的F分布,
记作 F~F(n1,n2).
02.1(9)≈查 14.684.



14.684x
16 9
≈26.105
n2) F 2
图6-4
(n1,
n2)
x
例 设总体X~N( , 42), X1,X2,…,X10是n=10简
单随机样本, S2为样本方差,已知P{S2>}=0.1,求

(最全)高中数学概率统计知识点总结

(最全)高中数学概率统计知识点总结

概率与统计一、普通的众数、平均数、中位数及方差1、 众数 :一组数据中,出现次数最多的数。

2、平均数 : ①、常规平均数:xx 1x 2x n②、加权平均数: xx 1 1 x 2 2x nnn12n3、中位数: 从大到小或者从小到大排列,最中间或最中间两个数的平均数 。

4、方差: s 21[( x 1 x) 2 ( x 2 x )2( x nx )2 ]n二、频率直方分布图下的频率1、频率 =小长方形面积: f S y 距 d ;频率 =频数 / 总数2、频率之和 : f 1f 2f n 1 ;同时 S 1 S 2S n1 ;三、频率直方分布图下的众数、平均数、中位数及方差1、众数: 最高小矩形底边的中点。

2、平均数: x x 1 f 1 x 2 f 2 x 3 f 3 x n f nx x 1 S 1 x 2 S 2x 3 S 3x n S n3、中位数: 从左到右或者从右到左累加,面积等于0.5 时 x 的值。

4、方差: s 2( x 1x )2 f 1 ( x 2 x) 2 f 2( x n x) 2 f n四、线性回归直线方程 : ? ? ?bxy an(x ix )( y iy )nx i y i nxy??其中: b i 1i 1,a?ybxnn( x i x )2x i 2nx 2i 1i11、线性回归直线方程必过样本中心( x , y ) ;??0 : 负相关。

2、 b 0 : 正相关; b?3、线性回归直线方程: y? ?bx a?的斜率 b 中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析?i1、残差 : ?iy i?i 越小越好;ey (残差 =真实值—预报值)。

分析:e2、残差平方和 :n? )2(y i,i 1y in( y iy )2( y 1 y )2 ( yy )2( yy )2分析:①意义:越小越好;②计算:?i?12?2n?ni 1n ?i )23、拟合度(相关指数) : R 21( yy ,分析:① . R 20,1②. 越大拟合度越高;i 1的常数;ny)2i ( y i1nn4、相关系数 : ri ( x i x )( y i y)x i y i nx y1i 1nx)2 ny) 2 nx) 2 ny )2i 1( x i i ( y i( x i ( y i1i 1i 1分析:① . r[ 1,1]的常数;② . r 0: 正相关; r0: 负相关③. r[0,0.25] ;相关性很弱;r(0.25,0.75) ;相关性一般;r [0.75,1] ;相关性很强;六、独立性检验 x 1 x 21、2×2 列联表 :合计2、独立性检验公式 bc)2y 1 a b a b ①. k 2(an( add )y 2cdc db)(c d )(a c)(b合计a cb dn②.犯错误上界 P 对照表3、独立性检验步骤①.计算观察值n(ad bc) 2k : k;(a b)(c d )(a c)(b d )②.查找临界值 k0:由犯错误概率P,根据上表查找临界值k0;③.下结论: k k0:即犯错误概率不超过P 的前提下认为:, 有 1-P 以上的把握认为:;k k0:即犯错误概率超过P 的前提认为:,没有 1-P 以上的把握认为:;【经典例题】题型 1 与茎叶图的应用例 1( 2014 全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50 位市民。

卡方分布分位表

卡方分布分位表

卡方分布分位表1. 什么是卡方分布?卡方分布(chi-squared distribution )是统计学中常用的概率分布之一,它是一种单参数分布。

卡方分布常用于分析成功与失败之间的关系,比如独立性检验、拟合优度检验等。

2. 卡方分布的概率密度函数卡方分布的概率密度函数(probability density function, PDF )可以表示为:f (x;k )=12k 2Γ(k 2)x k 2−1e −x 2其中,k 是卡方分布的自由度参数,Γ 是伽马函数。

3. 卡方分布分位表的作用卡方分布分位表(chi-squared distribution quantile table )是用于计算卡方分布的分位数的一种表格。

分位数是统计学中用于表示分布特征的关键指标之一。

通过查表可以快速找到给定分布和自由度下的分位数,从而帮助我们进行各种统计分析。

4. 卡方分布分位表的使用方法使用卡方分布分位表,首先需要确定自由度(degrees of freedom, df )和置信水平(confidence level, α)。

然后在表格中找到对应自由度和置信水平的值,就可以得到相应的分位数。

以下是示例卡方分布分位表的一部分: 自由度 (k ) 0.995 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01 0.005 10.00004 0.00016 0.00393 0.01579 0.21072 2.70554 3.84146 5.02389 6.63490 7.87944自由度(k) 0.995 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01 0.0052 0.01003 0.020100.050640.103180.710724.605175.991467.377769.2103410.596623 0.07172 0.114830.215800.351851.441796.251397.814739.3484011.3448712.83816……………………………例如,如果自由度为3,置信水平为0.95,则对应的分位数为3.84146。

概率论与数理统计 7.2 数理统计中的三大分布

概率论与数理统计 7.2 数理统计中的三大分布
数理统计
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025

第3章 常用概率分布(田间试验与统计分析 四川农业大学)

第3章 常用概率分布(田间试验与统计分析 四川农业大学)

P(“至少1粒种子出苗”) = P(x=1)+P(x=2)+…+P(x=6) = C610.6710.335 C62 0.6720.334 C66 0.6760.330 = 0.0157+0.0799+0.2162 +0.3292+0.2672+0.0905 = 0.9987
二项分布的应用条件:
在统计学上,把小概率事件在一次试验中 看成是实际不可能发生的事件称为小概率事件 实际不可能性原理,亦称为小概率原理(small probability principle)。
小概率事件实际不可能性原理是统计学上 进行假设检验(显著性检验)的基本依据。
第二节 概率分布
事件的概率表示了一次试验某一个结果发生的 可能性大小。
标准正态分布的概率密度函数及分布函数分别 记作ψ(u)和Φ(u)。
(u)
1
u2
e2
2
(u) 1
u 1u2
e 2 du
2
u~N(0,1)
对于任何一个服从正态分布N(μ,σ2)的随 机变量x,都可以通过标准化变换:
u x
将其变换为服从标准正态分布的随机变量u。
一、正态分布的定义及其特征
(一) 正态分布的定义 若连续型随机变 量 x 的概率分布密度函数为
其中μ为平均数,σ2为方差,则称随机变量 x 服从正 态分布(normal distribution) , 记为x~N(μ, σ2)。
相应的概率分布函数为:
F(x) 1
e dx x

(
x) 2 2
对于样本是取自连续型随机变量的情况,这 条函数曲线将是光滑的。这条曲线排除了抽样和 测量的误差,完全反映了水稻行产量的变动规律。 这条曲线叫概率分布密度曲线,相应的函数叫概 率分布密度函数 。

常见的离散型随机变量的概率分布标准版文档

常见的离散型随机变量的概率分布标准版文档

(II) 贝努里概型 和 二项分布 例6 设生男孩的概率为p,生女孩的概率为 q=1-p,令X表示随机抽查出生的4个婴儿 中“男孩”的个数.
我们来求X的概率分布.
X表示随机抽查的4个婴儿中男孩的个数,
生男孩的概率为 p.
男女
X=0 X =1 X =2 X =3 X =4
X的概率分布是:
X可取值0,1,2,3,4.
X()=
1, = 1 0, = 2
例 5 200件产品中,有196件是正品,4
件是次品,今从中随机地抽取一件,若规

1, 取到合格品
X()=
0, 取到不合格品
则 P{X=1}=196/200=0.98, P{X=0}=4/200=0.02
故 X服从参数为0.98的两点分布 . 即 X ∼ B(1,0.98).
注: 贝努里概型对试验结果没有等可能 的要求,但有下述要求: (1)每次试验条件相同;
(2)每次试验只考虑两个互逆结果A或 A ,
且P(A)=p ,P(A)1p; (3)各次试验相互独立.
二项分布描述的是n重贝努里试验中出现 “成功”次数X的概率分布.
例8 某类灯泡使用时数在2000小时以上视为正 品.已知有一大批这类的灯泡,其次品率是0.2. 随机抽出20只灯泡做寿命试验,求这20只灯泡 中恰有3只是次品的概率.
X= X1+X2+ +Xn 其密度函数和分布函数常用 和
表示:
~N(0,1)
(IV)、标准正态分布
0,1的正态分布称为标准正态分布.
其密度函数和分布函数常用 (x)和(x)表示:
(x)
1
x2
e2,
x
2
(x) 1

概率分布与统计图表

概率分布与统计图表
1. 关于
心,左右对称。 2. 在 在 处取得概率密度函数的最大值, 处有拐点,表现为 钟形曲线。即正
对称。即态分布以均数为中
态曲线在横轴上方均数处最高。
2018/10/26
6
3. 正态分布有两个参数,即均数µ 和标准差σ。
µ 是位置参数,σ是变异度参数(形状参数)。常用
N(µ ,σ2)表示均数为μ ,标准差为σ的正态分布;用
( 2)
2018/10/26
16
( 3)
查附表1,标准正态分布曲线下左侧面积为0.10所对应
的Z值为-1.28,所以80%的8岁男孩身高值集中在
X 1.28S 区间内,即116.9cm~129.2cm
2018/10/26
17
练习:
查附表,求标准正态分布曲线下的面积。 (-∞,-1.96),( -∞ ,-2.58), (-1.96,1.96),(-1,1),( -∞ ,0.00)。

S=4.79 cm ,估计(1)该地8岁男孩身高在130 cm以上者占该地8岁 男孩总数的百分比;(2)身高界于120cm~128cm者占该地8岁男孩
总数的比例;(3)该地80%男孩身高集中在哪个范围?
先做标准化变化:
理论上该地8岁男孩身高在130 cm以上者占该地8岁男孩 总数的7.21%。
2018/10/26 15
分析:正常人的血红蛋白过高过低均为异常,要制
定双侧正常值范围。
该指标的95%医学参考值范围为
2018/10/26 21
例4 某地调查110名正常成年男子的第一秒肺通 气量,得均数为4.2 L,标准差为0.7 L ,试估计该地 正常成年男子第一秒肺通气量的95%参考值范围。
分析:正常人的第一秒肺通气量近似正态分布,且只

(卫生统计学)第四章 常用概率分布

(卫生统计学)第四章 常用概率分布

第二节 Poisson分布的概念与特征
一、Poisson分布概念与特征
若某一随机变量X的取值为0,1,2,…,且X=k 的概率为:
P(X k) k e
k!
记作 X~P( λ )
其中 自然数e≈2.7182; λ 是大于0的常数,称X服从以λ 为参数的Poisson分布。
Poisson分布主要用于描述在单位时间(空间)内稀有事件的发生数。例如:放 射性物质在单位时间内的放射次数、单位容积内充分摇匀的水中的细菌数、染色 体异变数等。
350 300 250 200
人数
150 100
50 0
109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143
不同参数µ和σ下的正态分布曲线
正态分布函数
1.Gauss函数 (Gauss, 1777~1855 德国人)
某地正常成人心率(次/分)的频率分布
频数 1 5 12 13 26 31
组段 75~ 80~ 85~ 90~ 95~ 100~105
频数 24 15 9 7 5 2
心率频数分布
35
30
25
20
人数
15
10
5
0
45
50
55
60
65
70
75
80
85
90
95 100~105
正态曲线
例4-10 某地1986年120名8岁男孩身高频数图
百分位数法
例4-13
282名正常人尿汞值(g/L)测量结果
尿汞值 0~ 8.0~
16.0~ 24.0~ 32.0~ 40~ 48.0~ 56.0~ 64.0~72.0

常用概率分布间简介

常用概率分布间简介

其中 c 为常数,解方程(1)得
f ( ) c f ( )
f
(
)
k
e
1 2
c
2

k
为常数.
为使 f ( ) 为概率密度函数,
f
( )d
1,

k
e
1 2
c
2
dy
1
故必须 c 0 ,不妨令 c 1 ( 0 ),代入(2)解得 2
k 1 , 2 Biblioteka 于是f ( ) 1
2
e2 2 , R ,
2
这是均值为 0,方差为 2 的正态分布的概率密度函数.
.
X
~
N(0, 2)
,
则Y
X2
~
Ga(
1 2
,
1 2
2
)
.
(1) (2)
Ga( n , 1) 2(n) . 22
m
Xi ~ N(0,1) , i 1,2,,n 且相互独立 , 则 X
X
2 i
~
2(n) .
i 1
⒊ 相当误差(比率)的概率分布
m

Xi
~
N(0, 2 ) ,i
1,2,, m,m 1,,m n且相互独立,则
i 1
二、随机误差的概率分布
⒈ 高斯随机误差模型 随机变量的高斯分解
可观测的指标
X
不可观测的随机干扰
指标的标准值(生产控制参数,理论均值)
原始测量误差的概率分布
由棣莫弗提出,高斯推证,拉普拉斯再证,原始测量误差的概率分布为:
~ N (0 , 2 )
高斯的推证要点如下:
设测量误差 X 的密度函数为 f ( ) ,由“最大后验概率”的原则得

第3节 常用统计分布(三个常用分布)

第3节 常用统计分布(三个常用分布)

例2
设X
~
N
(
,
2
),
Y
2
~
2 (n),且X ,Y相互独立,
试求 T X 的概率分布.
Yn
解 因为X ~ N(, 2),所以 X ~ N(0,1)
又Y
2
~
2 (n),且X ,Y独立,则
X
与Y
2
独立,
由定理得
T (X ) / X ~ t(n) (Y / 2) / n Y n
n
事实上,它们受到一个条件的约束:
Xi nX
i 1
n
i 1
Xi
X
1
n
(
i 1
Xi
nX )
1
0
0.
例1
设X1 ,
X 2 ,
,
X

6





体N
(0,1)的



本,
求C1
,
C
使
2

Y C1( X1 X 2 )2 C2( X 3 X4 X5 X6 )2
服 从 2分 布.

X1
2
4
则C1 1 2 ,C2 1 4 .
3. t 分布 定义 设 X ~ N (0, 1), Y ~ 2 (n), 且 X , Y
独立,则称随机变量 T X 服从自由度为 n Y /n
的 t 分布, 记为T ~ t(n).
t 分布又称学生氏(Student)分布. t(n) 分布的概率密度函数为
2. 2分布(卡方分布)
定义、设 X1, X 2 ,L , X n 相互独立,同服从 N (0, 1)

标准正态分布表025

标准正态分布表025

标准正态分布表025标准正态分布表025是统计学中常用的一种表格,用于计算正态分布的概率。

正态分布是一种连续概率分布,其概率密度函数呈钟形曲线,均值为0,标准差为1。

标准正态分布表025可以帮助我们在进行正态分布概率计算时节省时间,提高计算的准确性。

在标准正态分布表025中,横坐标为Z值,纵坐标为Z值对应的累积概率。

通过查表可以得到给定Z值下的累积概率,也可以通过给定累积概率来反查对应的Z 值。

这对于统计学中的假设检验、置信区间估计等问题非常有用。

使用标准正态分布表025时,首先需要计算出所关注的变量的Z值,即将原始数据转化为标准正态分布的变量。

然后根据Z值在表格中查找对应的累积概率。

例如,如果我们要计算Z值为1.96时的累积概率,可以在表格中找到Z值为1.9和0.06的交叉点,对应的累积概率为0.9750。

这意味着在标准正态分布下,Z值小于1.96的概率为0.9750。

另外,标准正态分布表025也可以用于反查。

例如,如果我们希望找到累积概率为0.95对应的Z值,可以在表格中找到累积概率为0.9500的数值,对应的Z值为1.64。

这意味着在标准正态分布下,Z值小于1.64的概率为0.95。

在实际应用中,标准正态分布表025可以帮助我们进行各种与正态分布相关的统计推断。

例如,在制造业中,我们可以利用标准正态分布表025来进行质量控制,判断产品的合格率;在医学研究中,我们可以利用标准正态分布表025来进行药效学研究,评估药物的疗效;在金融领域,我们可以利用标准正态分布表025来进行风险评估,制定投资策略。

总之,标准正态分布表025是统计学中一项非常有用的工具,它可以帮助我们快速准确地计算正态分布的概率,为决策提供科学依据。

通过熟练掌握标准正态分布表025的使用方法,我们可以更好地应用统计学原理解决实际问题,提高工作效率,取得更好的成果。

第4章 几种常见的概率分布

第4章 几种常见的概率分布

6. 正态分布的单双侧临界值
面积为,已知 上侧临界值 P(U> u )= α ,下侧临界值 P (U <- u )= α (附表 3 上侧临界值)
若将一定曲线下面积α,平分到两侧尾区,则每侧曲线下面积为α/2,
即 P(
U U 2
)=
α,
U 这时的
U
2
称为α的双侧临界值。
面积为,已知
u 称为的上侧临界值。 附表3 (256页)给出了u的值。
N(0,1)
x=0 时,φ(x) 达到最大值
(1) 关于点(0,0.5)对称,该点也
是它的拐点
(2)x 取值离原点越远,φ (x) 值越小 (2) 曲线以 y = 0 和 y = 1 为渐近线;
(3)关于 y 轴对称,即φ(x)= φ (- x)
(3) Ф(1.960)-Ф(-1.960) = 0.95
种变量有它各自的概率而组成一个分布。这个分布就叫做二项概率分布,或简称二项分布
(binomial distribution) 由此得到计算二项分布任何一项概率的通式为:p(x) =Cnx φ
x(1- φ)n-x
二项分布是一种离散型随机变量的概率分布
性质
n
Cnx x (1 )nx 1
x0
m
一指定时间范围内或在指定的面积或体积内某一事件出现的个体数的分布 泊松分布是一种离散型随机变量的概率分布
实例 调查某种猪场闭锁育种群仔猪畸形数,共记录 200 窝, 畸形仔猪数的分布情况如下表所
示。试判断畸形仔猪数是否服从泊松分布。 畸形仔猪数统计分布
解:根据泊松分布的平均数与方差相等这一特征,若畸形仔猪数服从泊松分布,则由观察数 据计算的平均数和方差就近于相等。样本均数和方差 S2 计算结果如下:

几个常用的分布和临界值

几个常用的分布和临界值

7 2 P X i 4 i 1
解:∵总体为N(0,0.52) ∴Xi~N (0,0.52 ) i=1,2,…,7 Xi 0 1) 从而 0.5 2 X i ~ N (0,
2 (7) 由 分布定 有 ( 2 X i ) 4 X ~
2
7
2
7
i 1
自由度n是指(3.1)式右端的独立变量个数。

2
分布的概率密度为
n x 1 1 x2 e 2, n n f ( x ) 2 2 2 0,
x 0, 其它.
(3.2)
由第二章知, 分布密度函数f ( x)的图像:
2
n 1 分布的密度函数正是参数为2 , 2 的 分布。
t分布的概率密度函数 f ( x)的图像为:
f(x)
f ( x )的图形关于x 0 对称, 当n充分大时,图形接 近于标准正态变量概率密 度的图形.
x f(x)
m
n
m n
x
3. F分布
定义4 设X ~ (m), Y ~ (n), 且X , Y独立,则称随机变量 X /m (3.7) Y /n 服从自由度为m, n的F分布, 记为F ~ F (m, n).其中m称为第一自由 F 度,n称为第二自由度
1-α

t ( n)
t1 (n)
4.F分布的临界值
定义8 对于给定的正数 称满足条件 P{F F (m, n)}
F ( m , n )
f ( x)dx
的实数F (m, n)为F (m, n)分布的临界值. 如图所示:
F分布的临界值 有表可查(见附表5) .
二 几个重要分布的临界值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档