北京高三理科解三角形大题专题带答案
解三角形高考大题-带答案
解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以62cos cos(4530)4CBE +=-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE=-+.故2sin 30cos15AE =122624⨯=+62=-. 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。
(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。
解三角形(解答题)(2018-2022)高考真题汇编(新高考卷与全国理科)
解三角形(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)一、解答题(共26题;共255分)1.(10分)在 △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知 4a =√5c ,cosC =35.(Ⅰ)求 sinA 的值;(Ⅰ)若 b =11 ,求 △ABC 的面积.2.(10分)记 △ABC 的三个内角分别为A ,B ,C ,其对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为 S 1,S 2,S 3 ,已知 S 1−S 2+S 3=√32,sinB =13.(1)(5分)求 △ABC 的面积;(2)(5分)若 sinAsinC =√23,求b .3.(10分)记 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sinCsin(A −B)=sinBsin(C −A) .(1)(5分)若 A =2B ,求C ; (2)(5分)证明: 2a 2=b 2+c 2 .4.(10分)记 △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 sinCsin(A −B)=sinBsin(C −A) .(1)(5分)证明: 2a 2=b 2+c 2 ;(2)(5分)若 a =5,cosA =2531 ,求 △ABC 的周长.5.(10分)在 △ABC 中, sin2C =√3sinC .(I )求 ∠C :(II )若 b =6 ,且 △ABC 的面积为 6√3 ,求 △ABC 的周长.6.(10分)记 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知 cosA 1+sinA =sin2B 1+cos2B . (1)(5分)若 C =2π3, 求B ;(2)(5分)求 a 2+b 2c 2的最小值.7.(10分)已知点A(2,1)在双曲线 C : x 2a 2−y 2a 2−1=1(a >1) 上,直线 l 交C 于P ,Q 两点,直线AP,AQ的斜率之和为0.(1)(5分)求l的斜率;(2)(5分)若tan∠PAQ=2√2,求PAQ的面积.8.(10分)在△ABC中,角A,B,C所对的边长分别为a,b,c,b=a+1,c=a+2.(1)(5分)若2sinC=3sinA,求△ABC的面积;(2)(5分)是否存在正整数a,使得△ABC为钝角三角形?若存在,求出a的值;若不存在,说明理由.9.(10分)已知在△ABC中,c=2bcosB,C=2π3.(1)(5分)求B的大小;(2)(5分)在下列三个条件中选择一个作为已知,使△ABC存在且唯一确定,并求出BC边上的中线的长度.①c=√2b;②周长为4+2√3;③面积为SΔABC=3√34;10.(15分)在△ABC,角A,B,C所对的边分别为a,b,c,已知sinA:sinB:sinC= 2:1:√2,b=√2.(1)(5分)求a的值;(2)(5分)求cosC的值;(3)(5分)求sin(2C−π6)的值.11.(10分)记ⅠABC的内角A,B,C的对边分别为a.,b.,c,已知b2=ac,点D在边AC 上,BDsinⅠABC=asinC.(1)(5分)证明:BD = b:(2)(5分)若AD = 2DC .求cosⅠABC.12.(10分)△ABC中,sin2A-sin2B-sin2C=sinBsinC.(1)(5分)求A;(2)(5分)若BC=3,求△ABC周长的最大值.13.(10分)在①ac=√3,②csinA=3,③c=√3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sinA=√3sinB,C=π6,▲ ?注:如果选择多个条件分别解答,按第一个解答计分.14.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13.(Ⅰ)求角C的大小;(Ⅰ)求sinA的值;(Ⅰ)求sin(2A+π4)的值.15.(10分)在ⅠABC中,角A,B,C的对边分别为a,b,c,已知a=3,c=√2,B=45°.(1)(5分)求sinC的值;(2)(5分)在边BC上取一点D,使得cos∠ADC=−45,求tan∠DAC的值.16.(10分)在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)a的值:(Ⅰ)sinC和△ABC的面积.条件①:c=7,cosA=−1 7;条件②:cosA=18,cosB=916.注:如果选择条件①和条件②分别解答,按第一个解答计分.17.(10分)在锐角ⅠABC中,角A,B,C的对边分别为a,b,c,且2bsinA=√3a.(Ⅰ)求角B;(Ⅰ)求cosA+cosB+cosC的取值范围.18.(10分)在ⅠABC中,角A,B,C的对边分别为a,b,c.(1)(5分)若a=3c,b= √2,cos B= 23,求c的值;(2)(5分)若sinAa=cosB2b,求sin(B+π2)的值.19.(10分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3csinB=4asinC.(Ⅰ)求cosB的值;(Ⅰ)求sin(2B+π6)的值.20.(10分)ⅠABC的内角A、B、C的对边分别为a,b,c,已知asin A+C2=bsinA(1)(5分)求B;(2)(5分)若ⅠABC为锐角三角形,且c=1,求ⅠABC面积的取值范围.21.(10分)在ⅠABC中,a=3,b-c=2,cosB=- 12.(I)求b,c的值:(II)求sin(B+C)的值.22.(10分)在ⅠABC中,a=3,b-c=2,cosB=- 12.(I)求b,c的值;(II)求sin(B-C)的值.23.(10分)∆ABC的内角A,B,C的对边分别为a,b,c.设(sinB-sinC)2=sin2A-sinBsinC。
2023届高考数学大题专项(三角函数与解三角形)练习(附答案)
(1)若 D 为 BC 的中点,且△CDF 的面积等于△ABC 的面积,求∠ABC;
(2)若∠ABC=45°,且 BD=3CD,求 cos∠CFB.
参考答案
1.解 (1)f(0)=2cos20+sin 0=2.
(2)方案一:选条件①.f(x)的一个周期为 π.
f(x)=2cos2x+sin 2x=(cos 2x+1)+sin 2x=√2
6.(山东潍坊一模,17)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知向量 m=(c-a,sin B),n=(b-a,sin
A+sin C),且 m∥n.
(1)求 C;
(2)若√6c+3b=3a,求 sin A.
7.(山东模考卷,18)在△ABC 中,∠A=90°,点 D 在 BC 边上.在平面 ABC 内,过点 D 作 DF⊥BC,且
-B =4√3sin B
cos
2
sin
2
3
B+ sin B =6sin Bcos B+2√3sin2B=2√3sin 2B当 2B-
π
6
π
2π
π
π
+√3.因为 0<B< ,所以- <2B6
3
6
6
7π
.
6
π
π
,即 B= 时,△ABC 面积取得最大值 3√3.
2
3
4.解 (1)在△ABC 中,因为 a=3,c=√2,B=45°,由余弦定理 b2=a2+c2-2accos B,得 b2=9+2
由正弦定理得,c2=a+b2.
因为 a=4,所以 b2=c2-4.
2021年北京市高考数学专题复习:解三角形(含答案解析)
(2)若a+c=3 ,b=2,求△ABC的面积S.
15.在△ABC中,a,b,c分别是角A,B,C的对边,已知 , ,且 .
(1)求sinB的值;
(2)若b=2,△ABC的面积为 ,求△ABC的周长.
16.在△ABC中,内角A、B、C所对的边分别是a、b、c,且sinA﹣sinC sinB,sinB sinC.
(1)求cosA的值;
(2)求cos(2A )的值.
17.已知△ABC的内角A,B,C的对边分别为a,b,c,且ainB=bcos(A ).
(Ⅰ)求角A;
(Ⅱ)若b=2,c a,求△ABC的面积.
18.在△ABC中,角A、B、C的对边分别为a,b,c,已知(2a﹣c)cosB=bcosC.
(1)求角B;
(2)若BD=2DC,sin∠BAD sin∠CAD,求△ABC的面积.
8.△ABC的内角A,B,C的对边分别为a,b,c,已知6sinBsinC=1﹣cos2C,AD为∠BAC的角平分线.
(Ⅰ)求 的值;
(Ⅱ)若 ,求AD的长.
9.在△ABC中,角A,B,C的对边分别为a,b,c.已知 asinC=ccosA,A∈(0, ).
(1)求C;
(2)若c ,△4BC的面积为 ,求△ABC的周长.
13.在△ABC中,角A,B,C所对的边分别为a,b,c.已知acosC=( b﹣c)cosA.
(1)求A;
(2)若a=2 ,b=2 ,求△ABC的面积.
14.在△ABC中,角A,B,பைடு நூலகம்所对的边分别是a,b,c,且2a csinB+2bcosC.
在△ABC中,角A,B,C的对边分别为a,b,c,已知,a=3 .
解三角形专题(高考题)练习【附答案】
解三角形专题(高考题)练习【附答案】1、在b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。
(I )求锐角B 的大小; (II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。
(1)解:m ∥n ⇒ 2sinB(2cos2B2-1)=-3cos2B⇒2sinBcosB =-3cos2B ⇒ tan2B =- 3 ……4分∵0<2B <π,∴2B =2π3,∴锐角B =π3……2分 (2)由tan2B =- 3 ⇒ B =π3或5π6①当B =π3时,已知b =2,由余弦定理,得:4=a2+c2-ac ≥2ac -ac =ac(当且仅当a =c =2时等号成立) ……3分∵△ABC 的面积S △ABC =12 acsinB =34ac ≤ 3∴△ABC 的面积最大值为 3 ……1分②当B =5π6时,已知b =2,由余弦定理,得: 4=a2+c2+3ac ≥2ac +3ac =(2+3)ac(当且仅当a =c =6-2时等号成立) ∴ac ≤4(2-3)……1分∵△ABC 的面积S △ABC =12 acsinB =14ac ≤2- 3∴△ABC 的面积最大值为2- 3……1分5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=⋅,且22=b ,求c a 和b 的值. 解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B …………6分 (II )解:由2cos ,2==⋅B a BC BA 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以a =c = 6 6、在ABC ∆中,5cos A =,10cos B =. (Ⅰ)求角C ; (Ⅱ)设2AB =ABC ∆的面积.(Ⅰ)解:由5cos A =,10cos B =,得02A B π⎛⎫∈ ⎪⎝⎭、,,所以sin sin 510A B == …… 3分因为2cos cos[()]cos()cos cos sin sin C A B A B A B A B π=-+=-+=-+=…6分且0C π<< 故.4C π=………… 7分(Ⅱ)解:根据正弦定理得sin sin sin sin 10AB AC AB B AC C B C ⋅=⇒== ………….. 10分所以ABC ∆的面积为16sin .25AB AC A ⋅⋅= 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足 (I )求A 的大小;(II )求)sin(6π+B 的值.解:(1)由m//n 得0cos 1sin 22=--A A……2分即01cos cos 22=-+A A1c o s 21c o s -==∴A A 或 ………………4分1cos ,-=∆A ABC A 的内角是 舍去 3π=∴A ………………6分(2)a c b 3=+ 由正弦定理,23sin 3sin sin ==+A C B (8)分π32=+C B23)32s i n (s i n =-+∴B B π ………………10分23)6sin(23sin 23cos 23=+=+∴πB B B 即8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
北京市十年高考数学真题(2013-2022)与优质模拟题汇编专题05三角函数与解三角形(解析版)
大数据之十年高考真题(2013-2022)与优质模拟题(北京卷)专题05三角函数与解三角形1.【2022年北京卷05】已知函数f(x)=cos 2x −sin 2x ,则( ) A .f(x)在(−π2,−π6)上单调递减B .f(x)在(−π4,π12)上单调递增C .f(x)在(0,π3)上单调递减D .f(x)在(π4,7π12)上单调递增【答案】C 【解析】因为f (x )=cos 2x −sin 2x =cos2x .对于A 选项,当−π2<x <−π6时,−π<2x <−π3,则f (x )在(−π2,−π6)上单调递增,A 错; 对于B 选项,当−π4<x <π12时,−π2<2x <π6,则f (x )在(−π4,π12)上不单调,B 错; 对于C 选项,当0<x <π3时,0<2x <2π3,则f (x )在(0,π3)上单调递减,C 对; 对于D 选项,当π4<x <7π12时,π2<2x <7π6,则f (x )在(π4,7π12)上不单调,D 错. 故选:C.2.【2021年北京7】函数f(x)=cosx −cos2x ,试判断函数的奇偶性及最大值( ) A .奇函数,最大值为2 B .偶函数,最大值为2 C .奇函数,最大值为98D .偶函数,最大值为98【答案】D由题意,f(−x)=cos(−x)−cos(−2x)=cosx −cos2x =f(x),所以该函数为偶函数, 又f(x)=cosx −cos2x =−2cos 2x +cosx +1=−2(cosx −14)2+98, 所以当cosx =14时,f(x)取最大值98. 故选:D.3.【2020年北京卷10】2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ).真题汇总A.3n(sin30°n +tan30°n)B.6n(sin30°n+tan30°n)C.3n(sin60°n +tan60°n)D.6n(sin60°n+tan60°n)【答案】A 【解析】单位圆内接正6n边形的每条边所对应的圆周角为360°n×6=60°n,每条边长为2sin30°n,所以,单位圆的内接正6n边形的周长为12nsin30°n,单位圆的外切正6n边形的每条边长为2tan30°n ,其周长为12ntan30°n,∴2π=12nsin 30°n+12ntan30°n2=6n(sin30°n+tan30°n),则π=3n(sin30°n +tan30°n).故选:A.4.【2018年北京理科07】在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1B.2C.3D.4【答案】解:由题意d=√1+m2=|√m2+1sin(θ+α)−2|√m+1,tanα=1m=y x,∴当sin(θ+α)=﹣1时,d max=12√m+1≤3.∴d的最大值为3.故选:C.5.【2016年北京理科07】将函数y=sin(2x−π3)图象上的点P(π4,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=12,s的最小值为π6B.t=√32,s的最小值为π6C.t=12,s的最小值为π3D.t=√32,s的最小值为π3【答案】解:将x=π4代入得:t=sinπ6=12,将函数y=sin(2x−π3)图象上的点P向左平移s个单位,得到P ′(π4−s ,12)点,若P ′位于函数y =sin2x 的图象上, 则sin (π2−2s )=cos2s =12,则2s =±π3+2k π,k ∈Z , 则s =±π6+k π,k ∈Z ,由s >0得:当k =0时,s 的最小值为π6,故选:A .6.【2022年北京卷13】若函数f(x)=Asinx −√3cosx 的一个零点为π3,则A =________;f(π12)=________. 【答案】 1 −√2 【解析】∵f(π3)=√32A −√32=0,∴A =1∴f(x)=sinx −√3cosx =2sin(x −π3)f(π12)=2sin(π12−π3)=−2sin π4=−√2故答案为:1,−√27.【2020年北京卷12】若函数f(x)=sin(x +φ)+cosx 的最大值为2,则常数φ的一个取值为________. 【答案】π2(2kπ+π2,k ∈Z 均可)【解析】因为f (x )=cosφsinx +(sinφ+1)cosx =√cos 2φ+(sinφ+1)2sin (x +θ), 所以√cos 2φ+(sinφ+1)2=2,解得sinφ=1,故可取φ=π2.故答案为:π2(2kπ+π2,k ∈Z 均可).8.【2019年北京理科09】函数f (x )=sin 22x 的最小正周期是 . 【答案】解:∵f (x )=sin 2(2x ),∴f (x )=−12cos(4x)+12, ∴f (x )的周期T =π2, 故答案为:π2.9.【2018年北京理科11】设函数f (x )=cos (ωx −π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为 .【答案】解:函数f (x )=cos (ωx −π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,可得:ω⋅π4−π6=2kπ,k ∈Z ,解得ω=8k +23,k ∈Z ,ω>0 则ω的最小值为:23. 故答案为:23.10.【2017年北京理科12】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称,若sin α=13,则cos (α﹣β)= .【答案】解:方法一:∵角α与角β均以Ox 为始边,它们的终边关于y 轴对称, ∴sin α=sin β=13,cos α=﹣cos β,∴cos (α﹣β)=cos αcos β+sin αsin β=﹣cos 2α+sin 2α=2sin 2α﹣1=29−1=−79方法二:∵sin α=13, 当α在第一象限时,cos α=2√23, ∵α,β角的终边关于y 轴对称,∴β在第二象限时,sin β=sin α=13,cos β=﹣cos α=−2√23, ∴cos (α﹣β)=cos αcos β+sin αsin β=−2√23×2√23+13×13=−79 :∵sin α=13,当α在第二象限时,cos α=−2√23, ∵α,β角的终边关于y 轴对称,∴β在第一象限时,sin β=sin α=13,cos β=﹣cos α=2√23,∴cos (α﹣β)=cos αcos β+sin αsin β=−2√23×2√23+13×13=−79综上所述cos (α﹣β)=−79, 故答案为:−7911.【2015年北京理科12】在△ABC 中,a =4,b =5,c =6,则sin2A sinC= .【答案】解:∵△ABC 中,a =4,b =5,c =6,∴cos C =16+25−362×4×5=18,cos A =25+36−162×5×6=34∴sin C =3√78,sin A =√74, ∴sin2A sinC=2×√74×343√78=1.故答案为:1.12.【2014年北京理科14】设函数f (x )=A sin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0)若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f (2π3)=﹣f (π6),则f (x )的最小正周期为 .【答案】解:由f (π2)=f (2π3),可知函数f (x )的一条对称轴为x =π2+2π32=7π12, 则x =π2离最近对称轴距离为7π12−π2=π12.又f (π2)=﹣f (π6),则f (x )有对称中心(π3,0), 由于f (x )在区间[π6,π2]上具有单调性,则π2−π6≤12T ⇒T ≥2π3,从而7π12−π3=T4⇒T =π.故答案为:π.13.【2022年北京卷16】在△ABC 中,sin2C =√3sinC . (1)求∠C ;(2)若b =6,且△ABC 的面积为6√3,求△ABC 的周长. 【答案】(1)π6 (2)6+6√3 【解析】(1)解:因为C ∈(0,π),则sinC >0,由已知可得√3sinC =2sinCcosC ,可得cosC =√32,因此,C =π6.(2)解:由三角形的面积公式可得S △ABC =12absinC =32a =6√3,解得a =4√3.由余弦定理可得c 2=a 2+b 2−2abcosC =48+36−2×4√3×6×√32=12,∴c =2√3,所以,△ABC 的周长为a +b +c =6√3+6.14.【2021年北京16】已知在△ABC 中,c =2bcosB ,C =2π3.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使△ABC存在且唯一确定,并求出BC边上的中线的长度.①c=√2b;②周长为4+2√3;③面积为SΔABC=3√34;【答案】(1)π6;(2)答案不唯一,具体见解析.(1)∵c=2bcosB,则由正弦定理可得sinC=2sinBcosB,∴sin2B=sin2π3=√32,∵C=2π3,∴B∈(0,π3),2B∈(0,2π3),∴2B=π3,解得B=π6;(2)若选择①:由正弦定理结合(1)可得cb =sinCsinB=√3212=√3,与c=√2b矛盾,故这样的△ABC不存在;若选择②:由(1)可得A=π6,设△ABC的外接圆半径为R,则由正弦定理可得a=b=2Rsinπ6=R,c=2Rsin2π3=√3R,则周长a+b+c=2R+√3R=4+2√3,解得R=2,则a=2,c=2√3,由余弦定理可得BC边上的中线的长度为:√(2√3)2+12−2×2√3×1×cosπ6=√7;若选择③:由(1)可得A=π6,即a=b,则S△ABC=12absinC=12a2×√32=3√34,解得a=√3,则由余弦定理可得BC边上的中线的长度为:√b2+(a2)2−2×b×a2×cos2π3=√3+34+√3×√32=√212.15.【2020年北京卷17】在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a的值:(Ⅱ)sinC和△ABC的面积.条件①:c=7,cosA=−17;条件②:cosA=18,cosB=916.注:如果选择条件①和条件②分别解答,按第一个解答计分. 【答案】选择条件①(Ⅰ)8(Ⅱ)sinC =√32, S =6√3;选择条件②(Ⅰ)6(Ⅱ)sinC =√74, S =15√74.【解析】选择条件①(Ⅰ)∵c =7,cosA =−17,a +b =11∵a 2=b 2+c 2−2bccosA ∴a 2=(11−a)2+72−2(11−a)⋅7⋅(−17)∴a =8(Ⅱ)∵cosA =−17,A ∈(0,π)∴sinA =√1−cos 2A =4√37 由正弦定理得:asinA =csinC ∴4√37=7sinC ∴sinC =√32S =12basinC =12(11−8)×8×√32=6√3选择条件②(Ⅰ)∵cosA =18,cosB =916,A,B ∈(0,π)∴sinA =√1−cos 2A =3√78,sinB =√1−cos 2B =5√716由正弦定理得:asinA =bsinB ∴3√78=5√716∴a =6(Ⅱ)sinC =sin(A +B)=sinAcosB +sinBcosA =3√78×916+5√716×18=√74S =12basinC =12(11−6)×6×√74=15√74.16.【2019年北京理科15】在△ABC 中,a =3,b ﹣c =2,cos B =−12. (Ⅰ)求b ,c 的值;(Ⅱ)求sin (B ﹣C )的值. 【答案】解:(Ⅰ)∵a =3,b ﹣c =2,cos B =−12. ∴由余弦定理,得b 2=a 2+c 2﹣2ac cos B =9+(b −2)2−2×3×(b −2)×(−12), ∴b =7,∴c =b ﹣2=5;(Ⅱ)在△ABC 中,∵cos B =−12,∴sin B =√32, 由正弦定理有:c sinC=b sinB,∴sinC =csinB b =5×√327=5√314,∵b >c ,∴B >C ,∴C 为锐角, ∴cos C =1114,∴sin (B ﹣C )=sin B cos C ﹣cos B sin C=√32×1114−(−12)×5√314=4√37.17.【2018年北京理科15】在△ABC中,a=7,b=8,cos B=−1 7.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【答案】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cos B=−17,∴sin B=√1−cos2B=√1−(−17)2=4√37,由正弦定理得asinA =bsinB得sin A=asinBb=7×4√378=√32,则A=π3.(Ⅱ)由余弦定理得b2=a2+c2﹣2ac cos B,即64=49+c2+2×7×c×1 7,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=c sin A=3×√32=3√32.18.【2017年北京理科15】在△ABC中,∠A=60°,c=37a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【答案】解:(1)∠A=60°,c=37a,由正弦定理可得sin C=37sin A=37×√32=3√314,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=13 14,∴sin B=sin(A+C)=sin A cos C+cos A sin C=√32×1314+12×3√314=4√37,∴S△ABC=12ac sin B=12×7×3×4√37=6√3.19.【2016年北京理科15】在△ABC中,a2+c2=b2+√2ac.(Ⅰ)求∠B的大小;(Ⅱ)求√2cos A +cos C 的最大值.【答案】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+√2ac . ∴a 2+c 2﹣b 2=√2ac .∴cos B =a 2+c 2−b 22ac =√2ac 2ac =√22,∴B =π4(Ⅱ)由(I )得:C =3π4−A , ∴√2cos A +cos C =√2cos A +cos (3π4−A )=√2cos A −√22cos A +√22sin A=√22cos A +√22sin A=sin (A +π4). ∵A ∈(0,3π4),∴A +π4∈(π4,π),故当A +π4=π2时,sin (A +π4)取最大值1, 即√2cos A +cos C 的最大值为1.20.【2015年北京理科15】已知函数f (x )=√2sin x2cos x2−√2sin 2x2.(Ⅰ)求f (x )的最小正周期;(Ⅱ)求f (x )在区间[﹣π,0]上的最小值. 【答案】解:(Ⅰ)f (x )=√2sin x2cos x2−√2sin 2x2=√22sin x −√22(1﹣cos x ) =sin x cos π4+cos x sin π4−√22=sin (x +π4)−√22,则f (x )的最小正周期为2π; (Ⅱ)由﹣π≤x ≤0,可得 −3π4≤x +π4≤π4,即有﹣1≤sin(x +π4)≤√22,则当x =−3π4时,sin (x +π4)取得最小值﹣1, 则有f (x )在区间[﹣π,0]上的最小值为﹣1−√22.21.【2014年北京理科15】如图,在△ABC 中,∠B =π3,AB =8,点D 在边BC 上,且CD =2,cos ∠ADC =17. (1)求sin ∠BAD ; (2)求BD ,AC 的长.【答案】解:(1)在△ABC 中,∵cos ∠ADC =17,∴sin ∠ADC =√1−cos 2∠ADC =√1−(17)2=√4849=4√37, 则sin ∠BAD =sin (∠ADC ﹣∠B )=sin ∠ADC •cos B ﹣cos ∠ADC •sin B =4√37×12−17×√32=3√314.(2)在△ABD 中,由正弦定理得BD =AB⋅sin∠BAD sin∠ADB=8×3√3144√37=3,在△ABC 中,由余弦定理得AC 2=AB 2+CB 2﹣2AB •BC cos B =82+52﹣2×8×5×12=49, 即AC =7.22.【2014年北京理科18】已知函数f (x )=x cos x ﹣sin x ,x ∈[0,π2](1)求证:f (x )≤0; (2)若a <sinxx <b 对x ∈(0,π2)上恒成立,求a 的最大值与b 的最小值. 【答案】解:(1)由f (x )=x cos x ﹣sin x 得 f ′(x )=cos x ﹣x sin x ﹣cos x =﹣x sin x , 此在区间∈(0,π2)上f ′(x )=﹣x sin x <0,所以f (x )在区间∈[0,π2]上单调递减,从而f (x )≤f (0)=0. (2)当x >0时,“sinx x>a ”等价于“sin x ﹣ax >0”,“sinx x<b ”等价于“sin x ﹣bx <0”令g (x )=sin x ﹣cx ,则g ′(x )=cos x ﹣c , 当c ≤0时,g (x )>0对x ∈(0,π2)上恒成立,当c ≥1时,因为对任意x ∈(0,π2),g ′(x )=cos x ﹣c <0,所以g (x )在区间[0,π2]上单调递减,从而,g (x )<g (0)=0对任意x ∈(0,π2)恒成立,当0<c <1时,存在唯一的x 0∈(0,π2)使得g ′(x 0)=cos x 0﹣c =0,g (x )与g ′(x )在区间(0,π2)上的情况如下:x (0,x 0) x 0(x 0,π2)g ′(x ) + ﹣ g (x )↑↓因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0进一步g (x )>0对任意x ∈(0,π2)恒成立,当且仅当g(π2)=1−π2c ≥0即0<c ≤2π综上所述当且仅当c ≤2π时,g (x )>0对任意x ∈(0,π2)恒成立,当且仅当c ≥1时,g (x )<0对任意x ∈(0,π2)恒成立,所以若a <sinxx <b 对x ∈(0,π2)上恒成立,则a 的最大值为2π,b 的最小值为123.【2013年北京理科15】在△ABC 中,a =3,b =2√6,∠B =2∠A . (Ⅰ)求cos A 的值; (Ⅱ)求c 的值.【答案】解:(Ⅰ)由条件在△ABC 中,a =3,b =2√6,∠B =2∠A , 利用正弦定理可得 a sinA=b sinB,即3sinA=2√6sin2A =2√62sinAcosA. 解得cos A =√63.(Ⅱ)由余弦定理可得 a 2=b 2+c 2﹣2bc •cos A ,即 9=(2√6)2+c 2﹣2×2√6×c ×√63, 即 c 2﹣8c +15=0.解方程求得 c =5,或 c =3.当c =3时,此时a =c =3,根据∠B =2∠A ,可得 B =90°,A =C =45°, △ABC 是等腰直角三角形,但此时不满足a 2+c 2=b 2,故舍去.当c =5时,求得cos B =a 2+c 2−b 22ac =13,cos A =b 2+c 2−a 22bc =√63,∴cos2A =2cos 2A ﹣1=13=cos B ,∴B =2A ,满足条件. 综上,c =5.1.函数f (x )=cos (ωx −π3)(ω>0)的图像关于直线x =π2对称,则ω可以为( ) A .13B .12 C .23D .1【答案】C【解析】f(x)=cos(ωx −π3)(ω>0)对称轴为:ωx −π3=kπ⇒π2ω−π3=kπ⇒ω=2k +23(ω>0)(k ∈Z)当k =0时,ω取值为23. 故选:C.2.在△ABC 中,∠B =45°,c =4,只需添加一个条件,即可使△ABC 存在且唯一.条件:①a =3√2; ②b =2√5;③cosC =−45中,所有可以选择的条件的序号为( ) A .① B .①② C .②③ D .①②③【答案】B 【解析】对于①,c =4,∠B =45°,a =3√2,所以,b 2=a 2+c 2−2accosB =10,得b =√10,所以,此时,△ABC 存在且唯一,符合题意;对于②,c =4,∠B =45°,b =2√5,所以,csinC =bsinB ,解得sinC =csinB b=√105,因为c <b ,所以,∠C <∠B ,所以∠C 为锐角,此时,△ABC 存在且唯一,符合题意;对于③,c =4,∠B =45°,cosC =−45,所以,π2<C <π,得sinC =35,进而csinC =bsinB , 可得b =csinB sinC=2√235=10√23,明显可见,c=123<10√23=b ,与∠C >∠B 矛盾,故③不符题意.故可以选择的条件序号为:①② 故选:B模拟好题3.已知cosα=35,α是第一象限角,且角α,β的终边关于y轴对称,则tanβ=()A.34B.−34C.43D.−43【答案】D 【解析】∵cosα=35,α是第一象限角,∴sinα=√1−cos2α=45,tanα=sinαcosα=43,∵角α,β的终边关于y轴对称,∴tanβ=−tanα=−43.故选:D.4.将函数y=cos(2x+π2)的图象向右平移π2个单位长度后,所得图象对应的函数为()A.y=sin2x B.y=−sin2x C.y=cos2x D.y=−cos2x 【答案】A【解析】将函数y=cos(2x+π2)的图象向右平移π2个单位长度后,所得图象对应的函数为y=cos[2(x−π2)+π2]=cos(2x−π2)=sin2x.故选:A.5.半径为3的圆的边沿有一点A,半径为4的圆的边沿有一点B,A、B两点重合后,小圆沿着大圆的边沿滚动,A、B两点再次重合小圆滚动的圈数为()A.1B.2C.3D.4【答案】D【解析】设A、B两点再次重合小圆滚动的圈数为n,则n×2π×3=6nπ=k×2π×4=8kπ,其中k、n∈N∗,所以,n=4k3,则当k=3时,n=4.故A、B两点再次重合小圆滚动的圈数为4.故选:D.6.已知点P(cosθ,sinθ)在直线ax−y+3=0上.则当θ变化时,实数a的范围为()A.[−2√2,2√2]B.(−∞,−2√2]∪[2√2,+∞)C.[−3,3]D.(−∞,−3]∪[3,+∞)【答案】B【解析】∵点P(cosθ,sinθ)在直线ax −y +3=0上, ∴acosθ−sinθ+3=0,∴sinθ−acosθ=√1+a 2sin (θ−φ)=3,其中tanφ=a , ∵sin (θ−φ)≤1, ∴√1+a 2≥3,即a 2≥8, 解得a ≤−2√2或a ≥2√2.故选:B.7.已知函数f(x)= cos2x +cosx ,且x ∈[0,2π],则f(x)的零点个数为( ) A .1个 B .2个 C .3个 D .4个【答案】C 【解析】由cos2x +cosx =2cos 2x +cosx −1=(cosx +1)(2cosx −1)=0 可得cosx =−1或cosx =12,又x ∈[0,2π],则x =π,或x =π3,或x =5π3 则f(x)的零点个数为3 故选:C8.已知函数f(x)=√3sin2x −2cos 2x +1,将f(x)的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变,得到函数y =g(x)的图象,若g (x 1)⋅g (x 2)=−4,则|x 1−x 2|的值不可能为( ) A .5π4B .3π4C .π2D .π4【答案】C 【解析】∵f (x )=√3sin2x −cos2x =2sin (2x −π6),∴g (x )=2sin (4x −π6), ∴g (x )的最小正周期T =2π4=π2,∵g (x )max =2,g (x )min =−2,又g (x 1)⋅g (x 2)=−4, 不妨设g (x 1)=2,g (x 2)=−2∴x 1与x 2分别对应g (x )的最大值点和最小值点, ∴|x 1−x 2|=T2+kT =π4+kπ2(k ∈Z );当k =2时,|x 1−x 2|=5π4;当k =1时,|x 1−x 2|=3π4;当k =0时,|x 1−x 2|=π4 故选:C9.已知函数f (x )=sin (2x +φ)(0<φ<π2),若把f (x )的图像向左平移π12个单位后为偶函数,则φ=( ) A .−π6 B .−π3C .5π12D .π3【答案】D 【解析】由题意得:g (x )=f (x +π12)=sin (2x +π6+φ).∵g (x )为偶函数,∴π6+φ=π2+kπ(k ∈Z ),解得:φ=π3+kπ(k ∈Z ). ∵0<φ<π2, ∴φ=π3. 故选:D .10.已知△ABC ,则“sin A +cos A <1”是“△ABC 是钝角三角形”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】解:△ABC 中,0<A <π,∵sinA +cosA =√2sin(A +π4)<1,∴sin(A +π4)<√22,∵ π4<A +π4<π+π4,∴A +π4>3π4,∴A >π2,所以△ABC 是钝角三角形,充分性成立; 若△ABC 是钝角三角形,角A 不一定是钝角,反例:A =π6,此时sin A +cos A =sin π6+cos π6>1,必要性不成立; 故选:A.11.在△ABC 中,a =2,b =√3,A =2B ,则cosB =______.【答案】√33【解析】 解:在△ABC 中,由正弦定理可得asinA =bsinB , 即2sin2B=√3sinB ,即22sinBcosB =√3sinB , 所以cosB =√33.故答案为:√33.12.若sinαcosβ−cosαsinβ=cos60∘,请写出一组符合题意的α、β___________.【答案】α=45°、β=15°(答案不唯一)【解析】解:因为sinαcosβ−cosαsinβ=sin(α−β),cos60∘=cos(90∘−30∘)=sin30∘,所以sin(α−β)=sin30∘,所以α−β=30°+k×360°,k∈Z或α−β=150°+k×360°,k∈Z,不妨令α=45°、β=15°;故答案为:α=45°、β=15°(答案不唯一)13.已知△ABC的三个角A,B,C的对边分别为a,b,c,则能使cosAcosB =ba成立的一组A,B的值是________.【答案】A=B=π6(答案不唯一)【解析】由正弦定理得:a=2RsinA,b=2RsinB,∵cosAcosB =ba,∴cosAcosB=sinBsinA,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∵A∈(0,π),B∈(0,π)∴A=B=π6(答案不唯一).故答案为:A=B=π6(答案不唯一).14.若函数y=sin(2ωx+π3)的图像向右平移π6个单位长度后与函数y=cos(2ωx+π4)的图象重合,则ω的一个可能的值为___________;【答案】−54(答案不唯一)【解析】解:将函数y=sin(2ωx+π3)的图像向右平移π6个单位长度后,得到函数y=sin[2ω(x−π6)+π3]=sin(2ωx−πω3+π3)=sin[(2ωx−πω3−π6)+π2]=cos(2ωx−πω3−π6)的图像,即y=cos(2ωx−πω3−π6)与函数y=cos(2ωx+π4)的图像重合,即−πω3−π6=π4+2kπ,k ∈Z ,所以ω=−6k −54,k ∈Z ,故答案为:−54(答案不唯一).15.已知函数y =sin(ωx +φ)(ω>0)与直线y =12的交点中,距离最近的两点间距离为π3,那么此函数的周期是___________. 【答案】kπ且k ∈Z 【解析】根据正弦型函数的周期性,当sin(ωx +φ)=12,则: 若ωx 1+φ=π6,最近的另一个值为ωx 2+φ=5π6,所以ω(x 2−x 1)=2π3,而x 2−x 1=π3,可得ω=2. 故此函数的最小正周期是2πω=π,则函数的周期为kπ且k ∈Z . 故答案为:kπ且k ∈Z16.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知acosB =√3bsinA . (1)求角B 的大小;(2)从以下4个条件中选择2个作为已知条件,使三角形存在且唯一确定,并求△ABC 的面积. 条件①:a =3;条件②:b =2√2;条件③:cosC =−23;条件④:c =2. 【答案】(1)B =π6 (2)答案不唯一,见解析 【解析】(1)解:由acosB =√3bsinA 及正弦定理可得sinAcosB =√3sinAsinB ,∵A 、B ∈(0,π),则sinA >0,cosB =√3sinB >0,∴tanB =√33,故B =π6.(2)解:若选①②,由余弦定理可得b 2=a 2+c 2−2accosB ,即c 2−3√3c +1=0, 解得c =3√3±√232,此时,△ABC 不唯一;若选①③,已知a =3,B =π6,cosC =−23∈(−√32,−12),且C ∈(0,π),则C ∈(2π3,5π6),所以,B +C ∈(5π6,π),则△ABC 唯一, sinC =√1−cos 2C =√53,sinA =sin (C +B )=sinCcos π6+cosCsin π6=√15−26,由正弦定理b sinB =asinA 可得b =asinB sinA=9(√15+2)11, 所以,S △ABC =12absinC =12×3×9(√15+2)11×√53=45√3+18√522;若选①④,已知a =3,B =π6,c =2,此时△ABC 唯一,S △ABC =12acsinB =32;若选②③,已知b =2√2,B =π6,cosC =−23∈(−√32,−12),且C ∈(0,π),则C ∈(2π3,5π6),所以,B +C ∈(5π6,π),则△ABC 唯一, sinC =√1−cos 2C =√53,sinA =sin (C +B )=sinCcos π6+cosCsin π6=√15−26, 由正弦定理bsinB =csinC 可得c =bsinC sinB=4√103, 所以,S △ABC =12bcsinA =20√3−8√59;若选②④,已知b =2√2,B =π6,c =2,由余弦定理可得b 2=a 2+c 2−2accosB ,可得a 2−2√3a −4=0, ∵a >0,解得a =√3+√7,此时,△ABC 唯一,S △ABC =12acsinB =√3+√72;若选③④,已知B =π6,c =2,cosC =−23∈(−√32,−12),且C ∈(0,π),则C ∈(2π3,5π6),所以,B +C ∈(5π6,π),则△ABC 唯一, sinC =√1−cos 2C =√53,sinA =sin (C +B )=sinCcos π6+cosCsin π6=√15−26, 由正弦定理bsinB =csinC 可得b =csinB sinC=3√55,S △ABC =12bcsinA =5√3−2√510. 17.在 △ABC 中,c =√7,且 △ABC 同时满足条件①、条件②、条件③、条件④这四个条件中的三个,请选择三个条件并解答下列问题: (1)求边 b ; (2)求 S △ABC .条件① a +b =5; 条件②sin B =√217;条件③bcosB =4√77; 条件④cos A =√714.【答案】(1)答案见解析; (2)答案见解析; 【解析】(1)选①②③,因为sin B =√217,bcosB =4√77,所以cosB =√1−sin 2B =4√77,b =1,选②③④,因为sin B =√217,bcosB =4√77, 所以cosB =√1−sin 2B =4√77,b =1,选①②④,因为cos A =√714可得sinA =√1−cos 2A =3√2114, 由正弦定理可得asinA =bsinB ,所以a ×√217=b ×3√2114, 所以a =32b ,又a +b =5,所以b =2, 选①③④,因为bcosB =4√77,又cosB =a2+c 2−b 22ac所以b(a 2+c 2−b 2)=2ac 4√77,又c =√7,所以b(a2+7−b 2)=8a ,又a +b =5,所以b =2,a =3(2)选①②③,由(1) b =1,又a +b =5,所以a =4, 所以S △ABC =12acsinB =12×4×√7×√217=2√3,选②③④,由cos A =√714可得sinA =√1−cos 2A =3√2114, 由正弦定理可得asinA =bsinB ,又b =1,sin B =√217, 所以a =32,所以S △ABC =12acsinB =12×32×√7×√217=3√34, 选①②④,由(1)b =2,因为a +b =5, 所以a =3,所以S △ABC =12acsinB =12×3×√7×√217=3√32, 选①③④,由(1) b =2,因为a +b =5,所以a =3, 所以cosB =2√77,sinB =√1−cos 2B =√217,所以S △ABC =12acsinB =12×3×√7×√217=3√32, 18.在△ABC 中,√3sin(B +π6)=−cos(B +π6). (1)求B 的值;(2)给出以下三个条件:①a 2−b 2+c 2+3c =0;②a =√3,b =1;③S △ABC =15√34,若这三个条件中仅有两个正确,请选出正确的条件并回答下面问题: (i )求sinA 的值;(ii )求∠ABC 的角平分线BD 的长. 【答案】(1)B =2π3;(2)(i )sinA =3√314,(ii )BD =158.【解析】(1)由题设√3sin(B +π6)+cos(B +π6)=2sin(B +π3)=0,而π3<B +π3<4π3,所以B +π3=π,故B =2π3.(2)若①②正确,则c 2+3c +2=(c +1)(c +2)=0,得c =−1或c =−2, 所以①②有一个错误条件,则③是正确条件, 若②③正确,则S △ABC =12absinC =15√34,可得sinC =152>1,即②为错误条件;综上,正确条件为①③,(i )由2accosB =a 2+c 2−b 2,则c(3−a)=0,即a =3, 又S △ABC =12acsinB =15√34,可得c =5,所以9−b 2+25+15=0,可得b =7,则asinA =bsinB =√3,故sinA =3√314, (ii )由角平分线的性质知:AD =58×7=358且∠ABD =π3, 在△ABD 中BD sinA =AD sin∠ABD ,则BD =158.19.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知acosB =√3bsinA . (1)求角B 的大小;(2)从以下3个条件中选择2个作为己知条件,使三角形存在且唯一确定,并求△ABC 的面积. 条件①:a =3;条件②:b =2√2;条件③:cosC =−23;④c =2 【答案】(1)B =π6(2)答案见解析【解析】(1)由acosB =√3bsinA 和正弦定理得sinAcosB =√3sinBsinA ,因为0<A <π,所以sinA ≠0,所以cosB =√3sinB >0,tanB =√33,因为0<B <π,所以B =π6. (2)若选条件①:a =3;条件②:b =2√2,由(1)B =π6, 由余弦定理得(2√2)2=32+c 2−2×3c ×√32,解得c =3√3±√232, 因为答案不唯一,所以舍去.若选条件②:b =2√2;条件③:cosC =−23;由(1)B =π6, 因为cosC =−23,0<C <π,所以sinC =√53,由正弦定理得√53=2√212,解得c =4√103,由余弦定理得(4√103)2=8+a 2+2×2√2a ×23,解得a =2√30−4√23, 则△ABC 的面积为S =12absinC =20√3−8√59; 若选条件①:a =3;条件③:cosC =−23;由(1)B =π6, 因为cosC =−23,0<C <π,所以sinC =√53,所以sinA =sin (π−B −C )=sinBcosC +cosBsinC =12×(−23)+√32×√53=√15−26, 由正弦定理得√53=√15−26,解得c =30√3+12√511,则△ABC 的面积为S =12absinC =45√3+18√522. 若选条件①:a =3; ④c =2,由(1)B =π6, 则△ABC 的面积为S =12acsinB =32.若选条件②:b =2√2;④c =2,由(1)B =π6, 由余弦定理得(2√2)2=4+a 2−2×2a ×√32,解得a =√3+√7,则△ABC 的面积为S =12acsinB =12×2×(√3+√7)×12=√3+√72.若选条件③:cosC =−23;④c =2,由(1)B =π6,因为cosC =−23,0<C <π,所以sinC =√53,所以sinA =sin (π−B −C )=sinBcosC +cosBsinC =12×(−23)+√32×√53=√15−26, 由正弦定理得√53=√15−26,解得a =5√3−2√55, 则△ABC 的面积为S =12acsinB =12×2×5√3−2√55×12=5√3−2√510. 20.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(a −2c )cosB +bcosA =0. (1)求B ;(2)从以下条件中选择两个,使△ABC 存在且唯一确定,并求△ABC 的面积. ①若a =5;②b =3;③C =2π3;④△ABC 的周长为9.【答案】(1)B =π3; (2)选①④,面积为9√34.【解析】(1)因为(a −2c )cosB +bcosA =0,由正弦定理得(sinA −2sinC)cosB +sinBcosA =0, 2sinCcosB =sinAcosB +sinBcosA =sin(A +B)=sinC , 三角形中sinC ≠0,所以cosB =12,B ∈(0,π),所以B =π3; (2)因为B =π3,所以0<C <2π3,因此条件③不能确定三角形;若已知①②,则由正弦定理得sinA =asinB b=5sin π33=5√36>1,无解;若已知①④,即a =5,a +b +c =9,则b +c =4<a ,与三角形的性质矛盾,三角形不存在. 所以只有条件②④能确定三角形.b =3,a +b +c =9,则a +c =6,由(1)B =π3,b sinB=a sinA=c sinC=a+c sinA+sinC,即3sin π3=6sinA+sinC ,所以sinA +sinC =√3,sinA +sinC =sinA +sin(2π3−A)=sinA +sin 2π3cosA −cos2π3sinA =32sinA +√32cosA =√3sin(A +π6)=√3,sin(A +π6)=1,又A ∈(0,2π3),所以A =π3,从而C =π3, △ABC 为等边三角形,唯一确定,面积为S =12×32×sin π3=9√34.。
解三角形专题(高考题)练习【附答案】
解三角形专题(高考题)练习【附答案】1、在ABC ∆中,已知内角3A π=,边23BC =.设内角B x =,面积为y .(1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 2、已知ABC ∆中,1||=AC ,0120=∠ABC ,θ=∠BAC , 记→→∙=BC AB f )(θ,(1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域;3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量()2sin ,3m B =-,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。
(I )求锐角B 的大小; (II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。
5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=⋅BC BA ,且22=b ,求c a 和b 的值. 6、在ABC ∆中,5cos 5A =,10cos 10B =. (Ⅰ)求角C ; (Ⅱ)设2AB =,求ABC ∆的面积.7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足 (I )求A 的大小;(II )求)sin(6π+B 的值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
专题解三角形大题(含答案)
专题解三角形大题(含答案)靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
今天,你,做数学题了吗?1.在△ABC中,已知bcosA+a=c,求B的大小和△ABC的面积。
根据正弦定理和余弦定理,可以得到sinBcosA+sinA=sinC和cosB=(c-a2-b2)/2ab。
代入已知条件,解得B=π/3,S△ABC=absinB=√3/4.2.在△ABC中,已知(b-a)sinB+asinA=csinC,且c=2,求角C的度数和△ABC面积的最大值。
同样利用正弦定理和余弦定理,可以得到a2+b2-c2=ab和cosB=(c-a2-b2)/2ab。
解得C=π/3,S△ABC=absinC=√3.3.在△ABC中,已知a+b+c=2,求sinC和如果△ABC是钝角三角形,求其面积。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得sinC=√3/2,若△ABC是钝角三角形,面积为0.4.在△ABC中,已知2cosC(acosB+bcosA)=c,求角C和如果c=2,求△ABC面积的最大值。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得C=π/3,S△ABC=absinC=√3.当c=2时,代入面积公式,解得S△ABC=√3.5.在四边形ABCD中,已知∠D=2∠B,且AD=2,CD=6,cosB=1/3,求△ACD的面积和AB的长。
根据余弦定理,可以得到AC2=40-24cosB=32,再根据海龙公式和正弦定理,可以解得S△ACD=8√3和AB=2√7.6.在△ABC中,已知bsin(A+C)=asinC,且a=2c,求sinB和△ABC的周长。
代入正弦定理和已知条件,解得sinB=1/2,周长为3c。
1.由$a^2+b^2-c^2=ab$,得到$ab+4=a^2+b^2$。
由不等式$a^2+b^2\geq 2ab$,得到$ab+4\geq 2ab$,因此$ab\leq 4$。
2020年高考理科数学 《解三角形》题型归纳与训练及答案解析
2020年高考理科数学 《解三角形》题型归纳与训练【题型归纳】题型一 正弦定理、余弦定理的直接应用例1ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin2BA C +=. (1)求cos B(2)若6a c +=,ABC ∆面积为2,求b . 【答案】(1)15cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin2BB =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABC S ∆=,则172ac =. 由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【答案】π3【解析】1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=.【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。
【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。
例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.【答案】34【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B=π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。
北京高三理科解三角形大题专题(带答案)
解三角形大题专题(2014石景山一模)15.(本小题满分13分)ABC A,B,C a,b,c a b c3a2b sin A 在△中,角的对边分别为,且,.(Ⅰ)求角的大小;Ba b7c ABC2(Ⅱ)若,,求边的长和△的面积.(2014西城一模)15.(本小题满分13分)222在△ABC中,角A,B,C所对的边分别为a,b,c.已知.b c a bc(Ⅰ)求的大小;A6(Ⅱ)如果,,求△ABC的面积.B b 2cos3(2014 海淀二模)15.(本小题满分13 分)在锐角中,且.ABC a 2 7 sin A b 21(Ⅰ)求的大小;B(Ⅱ)若 a 3c ,求c 的值.(2015西城二模)15.(本小题满分13 分)在锐角△ABC 中,角A,B ,C 所对的边分别为a,b ,c ,已知a =7 ,b =3,.(Ⅰ)求角 A 的大小;(Ⅱ)求△ABC 的面积.(2013 丰台二模)15.(13 分)已知ABC 的三个内角分别为A,B,C, 且 22sin (B C) 3sin 2A. (Ⅰ)求 A 的度数;(Ⅱ)若BC 7, AC 5,求ABC 的面积S.(2014 延庆一模)15.(本小题满分13 分)在三角形ABC 中,角A, B,C 所对的边分别为a,b,c ,且a 2,3C ,cos B .4 5(Ⅰ)求sin A的值;(Ⅱ)求ABC 的面积.(2015 顺义一模)15. (本小题满分13 分)在ABC 中,角A, B, C 所对的边分别为a, b, c ,已知 3 2,sin 6b B ,3 B A .2(I) 求a的值;(II) 求cosC 的值.(2016 东城一模)(15)(本小题共13 分)在△ABC 中,BC 2 2 ,AC 2 ,且cos2 A B .2(Ⅰ)求AB 的长度;(Ⅱ)若 f (x) sin(2 x C) ,求y f ( x) 与直线3y 相邻交点间的最小距离.2ABC 中,BC 2 , ABC .(Ⅰ)若2 5cos ,AB 5, 求AC 的长度;2 5(Ⅱ)若B AC ,AB f ( ) ,求 f ( )的最大值.6(2016 西城一模)15.(本小题满分13 分)在△ABC 中,角 A ,B ,C 所对的边分别为a,b,c,设 A ,sin B 3sin C .3(Ⅰ)若a 7 ,求b的值;(Ⅱ)求tan C 的值.2π△A B C a b cABC A b3△ABC 在中,角,,的对边分别是,,,且,,的面3153积为.4a(I)求边的边长;(II)求cos2B的值.(2015东城一模)(15)(本小题共13分)在△ABC中,b2,3cos C,△ABC的面积为474.(Ⅰ)求a的值;(Ⅱ)求sin2A值.(2015 海淀二模)(15)(本小题满分13 分)在ABC 中,c 5 ,b 2 6 ,3 6a cos A.2(Ⅰ)求a的值;(Ⅱ)求证: B 2 A .(2014 顺义一模)15.(本小题共13 分)已知ABC 中,角A、B、C 所对的边分别为a、b、c ,且满足sin A( 3 cos A sin A)32(1)求角 A ;(2)若a 2 2 ,S ABC 2 3 ,求b、c的值(2015 石景山期末)15.(本小题共13 分)如图所示,在四边形ABCD 中,AB DA ,CE 7 ,2ADC ;E 为AD3边上一点,DE 1,EA 2 ,BEC .3 (Ⅰ)求sin∠CED 的值;(Ⅱ)求BE 的长.(2015 朝阳二模)15.(本小题共13 分)在梯形ABCD中,(Ⅰ)求AC的长;(Ⅱ)求梯形ABCD的高.(2015 丰台二模)15.(本小题共13 分)在△ABC 中,A 30 ,BC 2 5 ,点D 在AB 边上,且BCD 为锐角,CD 2 ,△BCD 的面积为4.(Ⅰ)求cos BCD 的值;(Ⅱ)求边AC 的长.(2016海淀一模)15.(本小题满分13 分)如图,在△ABC 中,点D在边AB上,且A DDB13.记∠ACD=,∠BCD=.(Ⅰ)求证:A CBCsin3sin;(Ⅱ)若, , 19AB ,求BC 的长.6 2(2015 房山一模)15.(本小题共13 分)已知函数 2f (x) sin(2 x ) 2cos x 1(x R) .6(Ⅰ)求 f (x) 的单调递增区间;(Ⅱ)在△ABC 中,三个内角A, B, C 的对边分别为a, b,c ,已知 1f A ,且△ABC 外接2 圆的半径为3,求a的值.(2013 石景山一模)15.(本小题满分13 分)已知函数f ( x) sin(2 x ) cos2x.6(Ⅰ)求函数 f (x)的单调递增区间;(Ⅱ)在△ABC 中,内角A、B、C 的对边分别为a、b、c.已知3f ( A) , a 2,B ,2 3求△ABC 的面积.(2013 朝阳二模)15.(13 分)在△ABC 中,A, B,C 所对的边分别为a,b,c ,且A A A2f (A) 2cos sin( ) sin2 2 22 cos A 2 .(Ⅰ)求函数 f ( A) 的最大值;(Ⅱ)若 f ( A) 0,C , a 6 ,求 b 的值.12(2014 东城一模)15. (本小题共13 分)在ABC 中,s inaA 3 cosbB(1)求角 B 的值;(2)如果 b 2,求ABC 面积的最大值(2013 东城一模)(15)(13 分)在△中,三个内角,,的对边分别为,,,且.ABC A B C a b c b sin A 3acosB (Ⅰ)求角;Bb 2 3 ac(Ⅱ)若,求的最大值.(2014 丰台二模)(15)(本小题满分13 分)已知△ABC 中,∠A, ∠B, ∠C 的对边长分别为a,b,c , 且 2 2 3oa b ab , C 60 . (Ⅰ)求 c 的值;(Ⅱ)求 a b 的取值范围.WORD 格式(2014 石景山一模)15.(本小题满分13 分)解:(Ⅰ)因为3a 2bsin A,所以3sin A 2sin B sinA ⋯⋯2分因为0 A ,所以sin A 0 ,所以sin 3B ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分2因为0 B ,且a b c ,所以 B 60 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(Ⅱ)因为a2,b 7,所以由余弦定理得 2 2 2 1( 7) 2 2 2c c ,即c2 2c 3 0,2解得c 3或c 1(舍),所以c边的长为3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分1 1 3 3 3S ac B .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 分= sin 2 3 ABC2 2 2 2(2014 西城一模)15.(本小题满分13 分)(Ⅰ)解:因为b2 c2 a2 bc ,所以cos A 2 2 2 1b c a ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分3WORD格式2bc 2又因为A(0, π) ,所以πA .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分53(Ⅱ)解:因为c os 6B ,B (0, π) ,3所以 2 3sin 1 cosB B .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分3由正弦定理a bsin A sin B,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分得 a b sin Asin B3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分2 2 2因为b c a bc ,所以 2 2 5 0c c ,WORD格式解得c16,因为c0,所以c61⋯⋯⋯11分故△ABC的面积1sin323S bc A.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13分22(2014海淀二模)15.解:(Ⅰ)由正弦定理可得a bsin A sin B----------------------------2分因为a27sin A,b21所以sin sin21sin3b A ABa27sin A2---------------------------5分在锐角A BC中,B60---------------------------7分(Ⅱ)由余弦定理可得2222cosb ac ac B----------------------------9分又因为a3c所以222219c c3c,即23c-------------------------------11分解得c3-------------------------------12分经检验,由2221b c acos A02bc27可得A90,不符合题意,所以c3舍去.--------------------13分(2015西城二模)(2013 丰台二模)15.解:(Ⅰ) 22sin (B C) 3sin 2A.22sin A 2 3sin Acos A, ⋯⋯⋯⋯⋯⋯⋯⋯⋯.2 分sin A 0, sin A 3cos A, tan A 3 , ⋯⋯⋯⋯⋯⋯⋯⋯⋯.4 分0 A , A 60 °. ⋯⋯⋯⋯⋯⋯⋯⋯.6 分2 AB2 AC2 AB AC(Ⅱ)在ABC 中, 2 cos 60BC , BC 7, AC 5,49 2 AB 2 AB ABAB 25 5 , AB 5 24 0, 8或AB 3(舍),⋯⋯⋯⋯.10 分113S ABCAB AC sin 605 8 10 3 . ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯.13 分222(2014 延庆一模) 15.(本小题满分 13 分)解:(Ⅰ)3cos B,54sin B⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 1分5sin A sin( B C )⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 2 分 sin B cosC cos B s in C ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 4 分 4 2 3 2 7 2⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 6分5 25210(Ⅱ)b sinB a sin A ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 8 分 b 24 ,7 2 510 8 2 b⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯10分7S1ABCsin ab 2C ,⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 11 分1 2 28 2 7 228 7 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯⋯ 1分3(2015 顺义一模) 16. 解:(I) 在 ABC 中 ,因为B A, 2所以 BA,即 22 B ,⋯ ⋯ (2)分所以 sin sin sincosABB B ..........................................4 分2222 6 31 sin B 1 ...........................................5 分3 3由正弦定理,a bsin A sin B得a33 2b sin A 3sin B 633. ...........................7 分(II) 因为B A ,即2 B A ,2所以B 为钝角, A为锐角.由(I)可知,sin 3A ,3所以22 3 6cos A 1 sin A 1 . ...........................................9 分3 3又6 3sin B ,cos B , ...........................................10 分3 3所以cos C cos A B cos A B ...........................................11 分...........................................12 分cos AcosB sin A s in B6 3 3 63 3 3 32 23............................................13 分(2016 东城一模)(15)(本小题共13 分)解:(Ⅰ)Q cos C cos A B cos A B2 2C 45 ⋯⋯ 3 分Q BC 2 2 ,AC 2 ,2 2 2 2 cos (2 2)2 22 8 2 cos450 AB AC BC AC BC C 4AB 2 ⋯⋯7 分(Ⅱ)由3f (x) sin(2 x ) ,4 2解得 2 2x k 或4 322x 2k ,k Z ,4 3解得5x k 或x2 k2 ,1 1 2424k1,k2 Z .因为x1 x2 (k1 k2 ) ≥,当k1 k2 时取等号,6 6所以当3f (x) 时,相邻两交点间最小的距离为26. ⋯⋯⋯⋯13 分(2015 延庆一模)17. (本小题满分13 分)解:(Ⅰ)cos 2 52 5 ,2 2 5 23 cos 2cos 1 2 ( ) 12 5 5 ⋯⋯⋯⋯⋯⋯⋯2 分2 2 2 2 cos AC AB BC AB BC25 4 2 5 2 3 517 ⋯⋯⋯⋯⋯⋯⋯⋯ 5 分AC 17 ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅱ)5BAC , ABC , BCA ⋯⋯⋯⋯⋯⋯7 分6 6AB BC 25 1sin( ) sin6 6 24⋯⋯⋯⋯⋯⋯⋯⋯9 分5AB 4sin( ) ,65 5f ( ) 4sin( ), (0, ) ⋯⋯⋯⋯⋯⋯⋯⋯10 分6 65 5(0, ) 6 6,当56 2时,即3时f 的最大值为4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 分( )(2016 西城一模)15.(本小题满分13 分)(1)解:因为s in B 3sin C ,由正弦定理a b csin A sin B sin C,得b 3c ,由余弦定理 2 2 2 2 cosa b c bc A 及πA ,a 7 ,得32 27 b c bc所以2b b2 ( )2 7b ,解得 b 3 .3 3(2)解:由πA ,得32πB C ,3所以2πsin( C)3sin C .3即3 1cosC sin C 3sin C ,2 2所以3 5cos C sin C ,2 2所以3 tan C.5(2014 朝阳二模)15.(本小题满分13 分)解:(Ⅰ)由1S bc A得, 1 3 sin 15 3sinABCS c .ABC22 3 4所以c 5 .由 2 2 2 2 cosa b c bc A 得,2 32 52 23 5 cos 49a ,3所以a 7.⋯⋯⋯⋯⋯7 分7 3a b(Ⅱ)由得,sin B ,3sin A sin B2所以sin 3 3B .14所以 2 71cos 2B 1 2sin B .⋯⋯⋯⋯⋯13 分98(2015 东城一模)(2015 海淀二模)(15)(共13 分)解:(Ⅰ)因为3 6a cosA,2所以 a2 2 23 6b c a2 2bc. ⋯⋯⋯⋯⋯⋯3 分因为c 5 ,b 2 6 ,所以 23a 40a 49 3 0 .解得:a 3,或49a (舍). ⋯⋯⋯⋯⋯⋯ 6 分3(Ⅱ)由(Ⅰ)可得:2 6 cosA3 .3 6 3所以2 1cos2 A 2cos A 1 . ⋯⋯⋯⋯⋯⋯9 分3因为a3,c 5 ,b 2 6 ,所以cosB2 2 2 1a c b2ac 3. ⋯⋯⋯⋯⋯⋯11 分所以cos 2A cos B . ⋯⋯⋯⋯⋯⋯12 分因为c b a ,所以 A (0, ) .3因为B(0, ) ,所以 B 2 A . ⋯⋯⋯⋯⋯⋯13 分另解:因为A(0, ) ,所以2 3 sin A 1 cos A .3由正弦定理得:2 6 3 sin B 33.所以sin 2 2B .3所以3 6 2 2sin 2A 2 sin B. ⋯⋯⋯⋯⋯⋯12 分3 3 3因为c b a ,所以 A (0, ) ,B (0, ) .3 2所以 B 2 A . ⋯⋯⋯⋯⋯⋯13 分(2014 顺义一模)即3 1sin 2A cos 2A 1 sin(2 A ) 1————5 分2 2 6Q 0 A ,112A6 6 6由sin(2 A ) 1得26 A ,6 2A ———7分3(2015 石景山期末)15.(本小题共13 分)(Ⅰ)设C ED .在CED 中,由余弦定理,得2 2 2 2 cosCE CD DE CD DE CDE ⋯⋯⋯⋯⋯⋯⋯ 2 分得CD 2+CD-6=0,解得CD=2(CD=-3 舍去).⋯⋯⋯⋯⋯⋯⋯4 分在CED 中,由正弦定理,得sin21CED ⋯⋯⋯⋯⋯⋯⋯ 6 分7(Ⅱ)由题设知0(,),所以3 cos2 77⋯⋯⋯⋯⋯⋯⋯8 分而2AEB ,所以32 2 2cos AEB cos()=cos cos sin sin3 3 31 3 12 73 21 7 = cos sin2 2 2 7 2 7 14 . ⋯⋯⋯⋯⋯⋯11 分在Rt EAB 中,BEcos 2AEB4 7 . ⋯⋯⋯⋯⋯⋯⋯13 分(2015 朝阳二模)15.(本小题共13 分)解:(Ⅰ)在中,因为,所以.由正弦定理得:,即.(Ⅱ)在中,由余弦定理得:,整理得,解得(舍负).过点作于,则为梯形的高.因为,,所以.在直角中,.即梯形的高为.(2015 丰台二模)18.(本小题共13分)解:(Ⅰ)因为1S BC CD sin BCD 4,BCD2所以2 5 sin BCD .5因为BCD 为锐角,所以2 5 52cos BCD 1 ( ) .⋯⋯⋯⋯⋯⋯6 分5 52 2 2 ,(Ⅱ)在BCD 中,因为DBCD BC 2CD BC cos BCD所以DB 4.因为 2 CD 2 BC2DB ,所以CDB 90 .所以ACD 为直角三角形.因为 A 30 ,所以AC 2CD 4 ,即AC 4 .⋯⋯⋯⋯⋯⋯13 分(2016 海淀一模)15.解:(Ⅰ)在ACD 中,由正弦定理, 有AC ADsin ADC sin⋯⋯⋯⋯⋯⋯⋯2 分在BCD 中,由正弦定理, 有BC BDsin BDC sin⋯⋯⋯⋯⋯⋯⋯4 分因为ADC BDC π, 所以sin ADC sin BDC ⋯⋯⋯⋯⋯⋯⋯ 6 分因为A DDB 13, 所以A CBCsin3sin⋯⋯⋯⋯⋯⋯⋯7 分(Ⅱ)因为π,6π,2由(Ⅰ)得ACBCπsin 2 3π 23sin6⋯⋯⋯⋯⋯⋯⋯9 分设AC 2k, BC 3k,k 0 , 由余弦定理,2 2 2 2 cosAB AC BC AC BC ACB ⋯⋯⋯⋯⋯⋯⋯11 分代入, 得到 2 2 2π19 4k 9k 2 2k 3k cos ,3解得k 1, 所以BC 3. ⋯⋯⋯⋯⋯⋯⋯13 分(2015 房山一模)15.(本小题共13 分)2 ⋯⋯⋯⋯⋯⋯2分3 1解:(Ⅰ)∵ f ( x) sin(2 x ) 2 cos x 1 sin 2x cos2x cos 2x6 2 23 2 sin12x cos 2x2= sin(2 x )⋯⋯⋯⋯⋯⋯3分6由2k 2x 2k (k2 6 2 Z) 得,k x k (k3 6Z) 5 分∴ f (x) 的单调递增区间是[ k , k ]( k Z) ⋯⋯⋯⋯⋯⋯7 分3 6(Ⅱ)∵ 1f (A) sin( 2 A ) ,0 A ,6 22 A 26 6 6于是2A6 5 6∴A⋯⋯⋯⋯⋯10 分3∵ABC 外接圆的半径为3a由正弦定理2Rsin A,得3a 2R s in A 2 3 3,⋯⋯⋯⋯⋯13分2(2013 石景山一模)15.(本小题满分13 分)解:(Ⅰ)( ) sin(2 ) cos2f x x x6sin 2 xcos cos2 x sin cos2 x6 63 3sin 2x cos2x⋯⋯⋯⋯ 1 分2 21 33( sin 2x cos2 x)2 23 sin(2 x ) ⋯⋯⋯⋯ 3 分3令+2 2 +2k x k2 3 25+k x +k ⋯⋯⋯⋯ 5 分12 12函数 f ( x)的单调递增区间 5 + + ( )k ,k k Z . ⋯⋯⋯⋯ 6 分12 12(Ⅱ)由3f ( A) ,21sin(2 A )= ,3 2因为A 为ABC 内角,由题意知2A ,所以352A3 3 3因此25A ,解得3 6A .⋯⋯⋯⋯8 分4由正弦定理asin Absin B ,得b 6 ,⋯⋯⋯⋯10分由A ,由4 B ,可得3sin6 2C ,⋯⋯⋯⋯12 分4∴ 1 sin 1 2 6 6 2 3 3s ab C .⋯⋯⋯⋯13 分2 2 4 2(2013 朝阳二模)(15)(本小题满分13 分)解:(Ⅰ)因为A A A A2 2f ( A) 2cos sin sin cos2 2 2 2sin A cos A 2 sin( A ) .4因为A 为三角形的内角,所以0 A ,所以 A .4 4 4所以当A,即 423 A 时, f (A) 取得最大值,且最大值为2 . ⋯ ⋯ ⋯ 6分4(Ⅱ)由题意知( )2 sin() 0 f A A,所以 sin( A) 0 . 44又因为A,所以 A0 ,所以 44 44A.4又因为 C,所以 12B.3由正弦定理ab sin A sin B得,b 6 sin aB sin3 3sin A sin4. ⋯ ⋯ ⋯ ⋯13 分(2014 东城一模) 15.(共 13 分)解:⑴因为ab sin A sin B , s in A3cos B ab, 所以 sin B= 3 cos B , tan B= 3 .因为 B (0 ,π) . 所以 π B = .3 ⑵因为 πB= ,3所以cosB2 2 21 ac b2ac2, 因为 b 2 ,所以 22 = 4 2 a c ac ac ,所以 ac 4 (当且仅当 a c 时,等号成立),所以 1S △ac , sin B3 , ABC2所以 △ ABC 面积最大值为3 .(2013 东城一模)(15)(共 13 分)解:(Ⅰ)因为b sin A3a cosB ,由正弦定理可得 sin Bsin A3sin A cosB ,因为在△中,,ABCsin A 0所以 tan B3 .又,0 B所以.B32222cosb ac ac B (Ⅱ)由余弦定理,因为,,B b23322所以12a c ac.222因为,a c ac所以.ac12a c ac1223当且仅当时,取得最大值.(2014丰台二模)。
专题4-4 三角函数与解三角形大题综合归类-(原卷 版)
专题4-4 三角函数与解三角形大题综合归类目录一、热点题型归纳【题型一】三角函数求解析式:“识图”................................................................................................. 1 【题型二】图像与性质1:单调性与值域................................................................................................ 3 【题型三】图像与性质2:恒等变形:结构不良型 ................................................................................ 4 【题型四】图像与性质3:恒成立(有解)求参数 ................................................................................ 5 【题型五】图像与性质4:零点与对称轴................................................................................................ 6 【题型六】解三角形1:面积与周长常规................................................................................................ 8 【题型七】解三角形2:计算角度与函数值 ............................................................................................ 9 【题型八】解三角形3:求面积范围(最值) ...................................................................................... 10 【题型九】解三角形4:周长最值 ......................................................................................................... 11 【题型十】解三角形5:巧用正弦定理求“非对称”型 ...................................................................... 11 【题型十一】解三角形6:最值范围综合.............................................................................................. 12 二、真题再现 ............................................................................................................................................ 12 三、模拟测试 .. (14)【题型一】三角函数求解析式:“识图”【典例分析】(2023·全国·高三专题练习)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.1.(2023·全国·高三专题练习)已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将()f x 图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()g x ≥.2.(2022·四川·宜宾市教科所三模(理))已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x ;(2)若2f α⎛⎫= ⎪⎝⎭()0,πα∈,求cos2α的值.3.(2022·全国·高三专题练习)已知函数()()sin ,0,0,2f x A x x R A ωϕωϕπ⎛⎫=+∈>>< ⎪⎝⎭部分图象如图所示.(1)求()f x 的最小正周期及解析式; (2)将函数()y f x =的图象向右平移3π个单位长度得到函数()y g x =的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型二】图像与性质1:单调性与值域【典例分析】(2022·浙江·高三开学考试)已知函数()21cos cos 2f x x x x =⋅-. (1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值.【变式演练】1.(2022·湖北·高三开学考试)已知函数2()sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)若[0,]x π∈,求出()f x 的单调递减区间.2.(2022·黑龙江·双鸭山一中高三开学考试)已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.3.(2022·全国·高三专题练习)已知函数()()()2sin cos cos 04f x x x x ππωωωω⎛⎫=--+> ⎪⎝⎭的最小正周期为π.(1)求()f x 图象的对称轴方程;(2)将()f x 的图象向左平移6π个单位长度后,得到函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【题型三】图像与性质2:恒等变形:结构不良型【典例分析】(2023·全国·高三专题练习)在①sin α=①2tan 40αα-=这两个条件中任选一个,补充到下面的问题中,并解答.已知角a 是第一象限角,且___________. (1)求tan α的值;(2)3)cos()cos(3)2πααπαπ+++-的值.注:如果选择多个条件分别解答,按第一个解答计分.【变式演练】1.(2022·北京·二模)已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件①、条件①这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π;条件①:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件①:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.2.(2023·全国·高三专题练习)已知函数()()sin cos 0,0f x a x x a ωωω=>>.从下列四个条件中选择两个作为已知,使函数()f x 存在且唯一确定.条件①:π14f ⎛⎫= ⎪⎝⎭;条件①:()f x 为偶函数;条件①:()f x 的最大值为1;条件①:()f x 图象的相邻两条对称轴之间的距离为π2. 注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(1)求()f x 的解析式;(2)设()()22cos 1g x f x x ω=-+,求函数()g x 在()0,π上的单调递增区间.3.(2023·全国·高三专题练习)已知函数()()2sin cos f x a x x x x =∈R ,若__________.条件①:0a >,且()f x 在x ∈R 时的最大值为1条件①:6f π⎛⎫= ⎪⎝⎭请写出你选择的条件,并求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.注:如果选择条件①和条件①分别解答,按第一个解答计分.【题型四】图像与性质3:恒成立(有解)求参数【典例分析】(2023·全国·高三专题练习)已知函数()π2sin()3f x x =+.(1)若不等式()3f x m -≤对任意ππ[,]63x ∈-恒成立,求整数m 的最大值;(2)若函数()π()2g x f x =-,将函数()g x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移12π个单位,得到函数()y h x =的图象,若关于x 的方程()102h x k -=在π5π[,]1212x ∈-上有2个不同实数解,求实数k 的取值范围.【变式演练】1.(2023·全国·高三专题练习)已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =,()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.2.(2023·全国·高三专题练习)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)先将函数()f x 的图象向右平移3π个单位长度,再将所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象.(i )若0m >,当[0,]x m ∈时,()g x 的值域为[2],求实数m 的取值范围;(ii )若不等式2()(21)()10g x t g x t -+--≤对任意的,32x ππ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.3.(2022·全国·高三专题练习)已知:函数()2sin cos f x x x x =. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间;(3)若函数()()g x f x k =-在π0,4⎡⎤⎢⎥⎣⎦上有两个不同的零点,写出实数k 的取值范围.(只写结论)【题型五】图像与性质4:零点与对称轴【典例分析】(2022·全国·高三专题练习)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【变式演练】1.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根()123123,,x x x x x x <<,求实数a 的取值范围和1232x x x ++的值.2.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,若方程()0g x m -=在70,3π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求m 的取值范围及()123tan 2x x x ++的值.3.(2023·全国·高三专题练习)已知数2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪ ⎪⎝⎭⎝⎭的相邻两对称轴间的距离为2π. (1)求()f x 的解析式;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(3)对于第(2)问中的函数()g x ,记方程4()3g x =在4,63x ππ⎡⎤∈⎢⎥⎣⎦上的根从小到大依次为12,,n x x x ,若m =1231222n n x x x x x -+++++,试求n 与m 的值.【题型六】解三角形1:面积与周长常规【典例分析】(2022·安徽·高三开学考试)在ABC 中,点,M N 分别在线段,BC BA 上,且,BM CM ACN BCN =∠=∠,3,22AB AM AC ===.(1)求BM 的长;(2)求BCN △的面积.【变式演练】1.(2022·北京·高三开学考试)在ABC 中,角A ,B ,C 的对边分别为,,,sin2sin =a b c C C . (1)求C ∠;(2)若1b =,且ABCABC 的周长.2.(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知ABC 的三个内角,,A B C 所对的边分别为a ,b ,c ,)tan tan tan tan 1+=B C B C . (1)求角A 的大小;(2)若1a =,21)0c b -=,求ABC 的面积.3.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0B b A -=. (1)求A ;(2)若c =a =ABC 的面积.【题型七】解三角形2:计算角度与函数值【典例分析】(2022·全国·高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.【变式演练】1.(2021·天津静海·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足()()2sin 2sin 2sin a b A b a B c C -+-=. (1)求角C 的大小;(2)若c =4a b +=,求ABC 的面积.(3)若cos =A ,求()sin 2A C -的值.2.(2022·北京市第二十二中学高三开学考试)已知ABC 的内角,,A B C 所对的对边分别为,,a b c ,周长为1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.3.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)222S a c b =+-. (1)求角B 的大小;(2)若2a c =,求sin C .【题型八】解三角形3:求面积范围(最值)【典例分析】(2022·云南·昆明一中高三开学考试)已知ABC 的内角,,A B C 所对边分别为,,a b c ,且222sin sin sin sin A B C B C -=. (1)求A ;(2)若a =ABC 面积的最大值.【变式演练】1.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若a =ABC 面积的最大值.2.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知ABC 的外接圆半径R =tan tan B C +=.(1)求B 和b 的值;(2)求ABC 面积的最大值.3.(2021·江苏·矿大附中高三阶段练习)ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin cos sin (2cos )A B B A =-.(1)若b c +,求A ;(2)若2a =,求ABC 的面积的最大值.【题型九】解三角形4:周长最值【典例分析】(2022·黑龙江·双鸭山一中高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B C A B +-=. (1)求角C 的大小;(2)若ABCABC 周长的取值范围.【变式演练】1.(2022·广东·深圳外国语学校高三阶段练习)已知ABC 中,内角,,A B C 所对边分别为,,a b c ,若()2cos cos 0a c B b C --=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.2.(2022·湖北·襄阳五中高三开学考试)在锐角ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,从条件①:3sin cos tan 4A A A =,条件①12=,条件①:2cos cos cos a A b C c B -=这三个条件中选择一个作为已知条件. (1)求角A 的大小;(2)若2a =,求ABC 周长的取值范围.3.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,= (1)求角A ;(2)若4a =,求b c +的取值范围.【题型十】解三角形5:巧用正弦定理求“非对称”型【典例分析】(2022·四川成都·模拟预测(理))①ABC 中,角,,A B C 所对边分别是,,a b c ,tan tan 2tan tan A AB C bc,cos cos 1b C c B +=.(1)求角A 及边a ; (2)求2b c +的最大值.【变式演练】1.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos2B C B C A -=+. (1)求角A 的大小;(2)若a =2b c +的最大值.2..(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,①23cos cos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔(2)求2a c -的范围.【题型十一】解三角形6:最值范围综合【典例分析】(2022·浙江·高三开学考试)记ABC 内角,,A B C 的对边分别是,,a b c ,已知tan tan 2tan tan tan B CB A A=-.(1)求证:2222b c a +=;(2)求2abc 的取值范围.【变式演练】1.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,已cos sin B b C =+. (1)求C 的大小;(2)若ABC 为锐角三角形且c =22a b +的取值范围.2.(2022·湖南湘潭·高三开学考试)设ABC 的内角,,A B C 的对边分别为,,a b c ,A 为钝角,且tan bB a =.(1)探究A 与B 的关系并证明你的结论; (2)求cos cos cos A B C ++的取值范围.1.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值. 2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin A C =,求b . 3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(·浙江·高考真题(理))已知ABC 的内角,,A B C 所对的对边分别为,,a b c 1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.6.(2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.7.(山东·高考真题)已知函数()2sin 2y x ϕ=+,x ∈R ,π02ϕ<<,函数的部分图象如下图,求(1)函数的最小正周期T 及ϕ的值: (2)函数的单调递增区间.8.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.9.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC11.(2023·全国·高三专题练习)在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.1.(2022·浙江省杭州学军中学模拟预测)已知函数()()sin y f x A x B ωϕ==++(其中A ,ω,ϕ,B 均为常数,且0A >,0>ω,ϕπ<)的部分图像如图所示.(1)求()f x 的解析式;(2)若5()126g x f x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,,02x π⎛⎫∈- ⎪⎝⎭,求()g x 的值域.2.(2022·全国·高三专题练习)已知向量(sin a x =,(1,cos )b x =.(1)若a b ⊥,求sin 2x 的值;(2)令()f x a b =⋅,把函数()f x 的图像上每一点的横坐标都缩短为原来的一半(纵坐标不变),再把所得的图像沿x 轴向左平移6π个单位长度,得到函数()g x 的图像,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2023·全国·高三专题练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π;条件①:()00f =;条件①:()f x 图象的一条对称轴为4x π=. 注:如果选择多组条件分别解答,按第一个解答计分.4.(2023·全国·高三专题练习)已知函数()()()3,sin 26f x x x a a a g x x π⎛⎫=--+∈=+ ⎪⎝⎭R .(1)若()f x 为奇函数,求实数a 的值;(2)若对任意[]10,1x ∈,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使()()12f x g x =成立,求实数a 的取值范围.5.(2023·全国·高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值; 6、(2022·安徽·高三开学考试)记ABC 的内角,,A B C 的对边分别为,,a b c ,且23,2b c B C ==.(1)求cos C ;(2)若5a =,求c .7.(2022·广西·模拟预测(文))设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=. (1)证明:()sin 2sin sin A B B A -=; (2)若3A B =,求B 的值.8.(2022·全国·高三专题练习)在①2cos cos c b B a A -=;①sin cos 2AA =;()sin a C C =,这三个条件中任选一个,补充在下面的横线上,并加以解答.在ABC 中,角,,A B C 的对边分别是,,a b c ,若__________.(填条件序号) (1)求角A 的大小;(2)若3a =,求ABC 面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.9.(2021·福建省华安县第一中学高三期中)在①π1cos cos 32B B ⎛⎫-=+ ⎪⎝⎭,①sin (sin sin )sin a A c C A b B +-=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中.问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =______________. (1)求角B ;(2)求a c +的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 10.(2022·山东烟台·三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos cos 2cos b a A C c A =+. (1)求角A ;(2)若4a =,求2c b -的取值范围.11.(2023·全国·高三专题练习)在ABC 中,点D 在边BC 上,3AB =,2AC =. (1)若AD 是BAC ∠的角平分线,求:BD DC ;(2)若AD 是边BC 上的中线,且AD =,求BC .12.(2022·全国·模拟预测(文))在①3cos210cos 10A A +-=,①sin cos A A -=①tan 2A =三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______ (1)求cos A ;(2)sin sin B C 的最大值.。
2024年高考数学复习大题全题型专练:专题07 解三角形(解析版)
专题7解三角形一、解答题1.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A .(1)证明:2222a b c ;(2)若255,cos 31a A ,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c ,即可得解.(1)证明:因为 sin sin sin sin C A B B C A ,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C ,所以2222222222222a c b b c a a b c ac bc ab ac bc ab,即22222222222a c b a b c b c a ,所以2222a b c ;(2)解:因为255,cos 31a A,由(1)得2250b c ,由余弦定理可得2222cos a b c bc A ,则50502531bc ,所以312bc,故 2222503181b c b c bc ,所以9b c ,所以ABC 的周长为14a b c .2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B.(1)若23C ,求B ;(2)求222a b c 的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos 2A B A B 化成 cos sin A B B ,再结合π02B ,即可求出;(2)由(1)知,π2C B ,π22A B ,再利用正弦定理以及二倍角公式将222a b c 化成2224cos 5cos B B ,然后利用基本不等式即可解出.(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ,即 1sin cos cos sin sin cos cos 2B A B A B A BC ,而π02B ,所以π6B ;(2)由(1)知,sin cos 0BC ,所以πππ,022C B ,而πsin cos sin 2B C C,所以π2C B ,即有π22A B .所以222222222sin sin cos 21cos sin cos a b A B B B c C B2222222cos 11cos 24cos 555cos cos B B B BB .当且仅当22cos 2B 时取等号,所以222a b c的最小值为5.3.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C .(1)求sin A 的值;(2)若11b ,求ABC 的面积.【答案】(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab以及4a 可解出a ,即可由三角形面积公式in 12s S ab C 求出面积.(1)由于3cos 5C ,0πC ,则4sin 5C.因为4a ,由正弦定理知4sin A C,则sin 45A C .(2)因为4a ,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a ,即26550a a ,解得5a ,而4sin 5C ,11b ,所以ABC 的面积114sin 51122225S ab C .4.(2022·北京·高考真题)在ABC 中,sin 2C C.(1)求C ;(2)若6b ,且ABC 的面积为ABC 的周长.【答案】(1)6 (2)6+【解析】【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.(1)解:因为 0,C ,则sin 0C2sin cos C C C ,可得cos 2C ,因此,6C .(2)解:由三角形的面积公式可得13sin 22ABC S ab C a,解得a .由余弦定理可得2222cos 48362612c a b ab C ,c所以,ABC 的周长为6a b c .5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B.(1)求ABC 的面积;(2)若sin sin A C,求b .【答案】(2)12【解析】【分析】(1)先表示出123,,S S S ,再由123S S S2222a c b ,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b ac B A C,即可求解.(1)由题意得22221231,,2S a S S,则222123S S S a b c 即2222a c b ,由余弦定理得222cos 2a c b B ac ,整理得cos 1ac B ,则cos 0B ,又1sin 3B ,则22cos 3B ,1cos 4ac B ,则12sin 28ABC S ac B ;(2)由正弦定理得:sin sin sin b a c B A C,则229sin sin sin sin sin 423b a c ac B A C A C ,则3sin 2b B ,31sin 22b B .6.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sin sin sin sin C A B B C A .(1)若2A B ,求C ;(2)证明:2222a b c 【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得, sin sin C C A ,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得 sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再根据正弦定理,余弦定理化简即可证出.(1)由2A B , sin sin sin sin C A B B C A 可得, sin sin sin sin C B B C A ,而π02B ,所以 sin 0,1B ,即有 sin sin 0C C A ,而0π,0πC C A ,显然C C A ,所以,πC C A ,而2A B ,πA B C ,所以5π8C.(2)由 sin sin sin sin C A B B C A 可得,sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C ,然后根据余弦定理可知,22222222222211112222a cb bc a b c a a b c ,化简得:2222a b c ,故原等式成立.7.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB m ,15AD m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20 ,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)【答案】(1)23.3m(2)当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.14【解析】【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD ,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值.(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD 则AE EH ,所以直角ADE 与直角HED △全等所以20ADE HDE在直角HED △中,tan 2015tan 20EH DH90250HDF ADE在直角FHD △中,tan 5015tan 50HF ADsin 20sin 5015tan 20tan 5015cos 20cos50EF EH HFsin 2050sin 20cos50cos 20sin 501515cos 20cos50cos 20cos50sin 70151523.3cos 20cos50cos50(2)设ADE ,902HDF ,则15tan AE ,15tan 902FH 115151515tan 15tan 90215tan 222tan 2EFD S EF DHV 11515tan 22ADE S AD AE V 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADE DEF S S S22512253tan 4tan 42当且当13tan tan ,即tan 时取得等号,此时15tan 158.73AE即当tan 3 时,梯形AEFD 的面积取得最小值2则此时梯形FEBC 的面积有最大值1530255.142所以当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.148.(2022·全国·模拟预测)在 ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,且 sin sin sin 6b a b c A B C S .(1)求角B 的大小;(2)若1a b ,2c b ,求cos A ,cos C 的值.【答案】(1)3(2)17,1114【解析】【分析】(1)由三角形的面积公式结合正弦余弦定理化简即可得到答案;(2)由余弦定理计算即可.(1)由in 12s S ab C ,又 sin sin sin 3sin b a b c A B C ab C ,由0b ,则 sin sin sin 3sin a b c A B C a C .由正弦定理得 3a b c a b c ac ,所以222a c b ac .由余弦定理得2221cos 222a cb ac B ac ac ,因为0B ,所以3B .(2)因为222a c b ac ,1a b ,2c b ,所以 2221212b b b b b ,解得7b ,所以8a ,5c .所以2222227581cos 2707b c a A bc ,22222287511cos 211214a b c C ab .9.(2022·全国·模拟预测)在ABC 中,角A B C ,,的对边长分别为a b c ,,,ABC 的面积为S ,且24cos cos tan S a B ab A B.(1)求角B 的大小;(2)若322AB BC ,,点D 在边AC 上,______,求BD 的长.请在①AD DC ;②DBC DBA ;③BD AC 这三个条件中选择一个,补充在上面的横线上,并完成解答.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)π3B (2)答案不唯一,具体见解析【解析】【分析】(1)根据面积公式可得2cos cos cos c B a B b A ,利用正弦定理以及和角关系可得1cos 2B ,进而可求.(2)根据余弦定理可求出AC ,然后在ABD △和在DBC △中分别用余弦定理即可求①.根据面积公式即可求解②③.(1)因为24cos cos tan S a B ab A B ,所以214sin 2cos cos sin cos ac B a B ab A B B,所以22cos cos cos ac B a B ab A ,即2cos cos cos c B a B b A .由正弦定理,得2sin cos sin cos sin cos C B A B B A ,所以 2sin cos sin sin C B A B C .因为 0,πC ,所以sin 0C ,所以1cos 2B.又 0,πB ,所以π3B.(2)若选①.法一:在ABC 中,由余弦定理,得2222233π132cos 222cos 2234AC AB BC AB BC B ,所以ACAD DC 在ABD △中,由余弦定理,得2222cos AB BD DA BD DA ADB ,即2134cos 16BD BD ADB .在DBC △中,由余弦定理,得2222cos BC BD DC BD DC CDB ,即2913cos 416BD CDB .又πADB CDB ,所以cos cos 0ADB CDB .所以29134248BD ,所以374BD .法二:因为AD DC ,所以D 为AC 的中点,所以 12BD BA BC ,所以222124BD BA BC BA BC 19337422cos6044216.所以BD BD 若选②.在ABC 中,ABC ABD CBD S S S ,即1π1π1πsin sin sin 232626BA BC BA BD BD BC ,即1311131222222222BD BD ,解得BD 若选③.在ABC 中,由余弦定理,得2222cos AC AB BC AB BC B2233π13222cos 2234 ,所以AC .因为1sin 2ABC S BA BC B △12ABC S BD AC △,BD 10.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C A B C ,a b .(1)求角B ;(2)若3a ,7b ,D 为AC 边的中点,求BCD △的面积.【答案】(1)23B (2)1538【解析】【分析】(1)根据同角三角函数的关系,结合两角和差的正余弦公式化简即可(2)由余弦定理可得5c ,再根据BCD △的面积为ABC 面积的一半,结合三角形的面积公式求解即可(1)由cos 2cos tan sin C A B C,有tan sin cos 2cos B C C A ,两边同乘cos B 得sin sin cos cos 2cos cos B C B C A B ,故 cos 2cos cos B C A B ,即cos 2cos cos A A B .因为a b ,所以A 为锐角,cos 0A ,所以1cos 2B .又因为 0,B ,所以23B .(2)在ABC 中,由余弦定理2221cos 22a c b B ac ,即2949162c c ,故23400c c ,解得5c 或8c 舍).故11235sin 223BCD ABC S S △△11.(2022·福建·三明一中模拟预测)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且22cos c b a C .(1)求角A ;(2)若M 为BC 的中点,AM ABC 面积的最大值.【答案】(1)π3A 【解析】【分析】(1)解法一:根据正弦定理边化角求解即可;解法二:利用余弦定理将cos C 用边表示再化简即可;(2)解法一:根据基底向量的方法得1()2AM AB AC ,两边平方化简后可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可;解法二:设BM MC m ,再分别在ABM ,ACM △和ABC 中用余弦定理,结合cos cos 0AMB AMC 可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可(1)解法一:因为22cos c b a C ,由正弦定理得:sin 2sin 2sin cos C B A C ,所以sin 2sin()2sin cos C A C A C 2sin cos 2cos sin 2sin cos 2cos sin A C A C A C A C ,因为sin 0C ,所以12cos 1,cos 2A A,为0πA ,所以π3A .解法二:因为22cos c b a C ,由余弦定理得:222222a b c c b a ab,整理得222bc b c a ,即222a b c bc ,又由余弦定理得2222cos a b c bc A所以12cos 1,cos 2A A,因为0πA ,所以π3A .(2)解法一:因为M 为BC 的中点,所以1()2AM AB AC ,所以222124AM AB AB AC AC ,即22132cos 43c b bc ,即2212b c bc ,而222b c bc ,所以122bc bc 即4bc ,当且仅当2b c 时等号成立所以ABC 的面积为113sin 4222ABC S bc A △即ABC 解法二:设BM MC m ,在ABM 中,由余弦定理得2232cos c m AMB ,①在ACM △中,由余弦定理得2232cos b m AMC ,②因为πAMB AMC ,所以cos cos 0AMB AMC 所以①+②式得22262b c m .③在ABC 中,由余弦定理得22242cos m b c bc A ,而π3A ,所以2224m b c bc ,④联立③④得:22222212b c b c bc ,即2212b c bc ,而222b c bc ,所以122bc bc ,即4bc ,当且仅当2b c 时等号成立.所以ABC 的面积为11sin 4222ABC S bc A △ABC 12.(2022·北京市第十二中学三模)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin a B A .(1)求角B 的大小;(2)从以下4个条件中选择2个作为已知条件,使三角形存在且唯一确定,并求ABC 的面积.条件①:3a ;条件②:b ;条件③:2cos 3C ;条件④:2c .【答案】(1)6B(2)答案不唯一,见解析【解析】【分析】(1)由正弦定理化简可得出tan B 的值,结合角B 的取值范围可求得角B 的值;(2)选①②,利用余弦定理可判断ABC 不唯一;选①③或②③或③④,利用三角形的内角和定理可判断ABC 唯一,利用正弦定理结合三角形的面积可判断ABC 的面积;选①④,直接判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积;选②④,利用余弦定理可判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积.(1)解:由cos sin a B A 及正弦定理可得sin cos sin A B A B ,A ∵、 0,B ,则sin 0A ,cos 0 B B ,tanB 6B .(2)解:若选①②,由余弦定理可得2222cos b a c ac B ,即210c ,解得 c ,此时,ABC 不唯一;若选①③,已知3a ,6B,21cos 32C ,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A C B C C由正弦定理sin sin b a B A 可得 92sin sin 11a B b A,所以, 9211sin 32211ABC S ab C △;若选①④,已知3a ,6B,2c ,此时ABC 唯一,1322sin ABC S ac B;若选②③,已知b 6B ,21cos 32C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A CBC C 由正弦定理sin sin b c B C 可得sin 410sin 3b C c B ,所以,120385sin 29ABC S bc A △;若选②④,已知b 6B,2c ,由余弦定理可得2222cos b a c ac B ,可得240a ,0a ∵,解得a ABC 唯一,1sin2ABC S ac B △若选③④,已知6B ,2c ,231cos 322C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,5sin 3C, 152sin sin sin cos cos sin 666A CBC C ,由正弦定理sin sin b c B C 可得sin sin 5c B b C ,1sin 210ABC S bc A △.13.(2022·内蒙古·海拉尔第二中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为,,a b c ,且sin cos (cos )sin .232B BC C (1)当π3B,求sin sin C A 的值(2)求B 的最大值.【答案】(1)sin C +sin A =1(2)2π3【解析】【分析】(1)代入π3B ,解得313sin cos 223C C ,对sin sin C A 变形得到1sin sin sin cos 12C A C C ,求出答案;(2)对题干条件两边同乘以2cos2B ,变形得到sin sin sin C A B ,利用正弦定理得到a c ,利用余弦定理和基本不等式求出B 的最大值.(1)由题意得:ππsin coscos )sin 66C C ,1cos 2C C则π31sin sin sin sin sin cos sin cos 1322C A C C C C C C(2)sin cos cos )sin 22B B C C ,两边同乘以2cos 2B 得:22sin cos cos )2sin cos 222B B B C C ,即 sin 1cos cos )sin C B C B ,整理得:sin sin sin C A B ,由正弦定理得:3a cb ,由余弦定理得: 2222222cos 1226ac b ac a c b b B ac ac ac,因为 22143a c acb ,当且仅当ac 时等号成立,此时21cos 162b B ac ,由于 0,πB ,而cos y x 在 0,π上单调递减,故B 的最大值为2π314.(2022·广东·大埔县虎山中学模拟预测)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且222ab a b c .(1)求角C ;(2)若△ABC 的面积534S ,且c △ABC 的周长.【答案】(1)π3(2)6【解析】【分析】(1)利用余弦定理求得cos C 的值,进而求得角C 的值;(2)依据题给条件得到关于a b ,的方程组,求得+a b 的值,进而求得△ABC 的周长.(1)因为222ab a b c ,由余弦定理,得到2221cos 22a b c C ab ,又0πC ,所以π3C ;(2)因为△ABC 的面积4S ,且c π3C所以有221sin 212S ab C ab a b ,联立22526ab a b ,则6a b ,所以△ABC 的周长为6a b c 15.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan tan tan 0B C B C .(1)求角A 的大小;(2)若2B D D C ,2AD ,且AD 平分BAC ,求ABC 的面积.【答案】(1)60A (2)332【解析】【分析】(1)由两角和的正切公式化简后求解(2)由AD 是角平分线得到2c b ,再利用面积公式求解(1)tan tantan tan tan tan 0tan()1tan tan B C B C B C B C B C故tan A 60A ;(2)设BC 边的高为h ,所以11sin 22ABD S AB AD BAD BD h ,11sin 22ABC S AC AD DAC CD h 又AD 是角平分线,所以BAD DAC所以AB BD AC DC,即2c b ,又ABC ABD ACD S S S ,则111sin 602sin 302sin 30222bc c b ,解得b c ,133sin 6022ABC S bc △.16.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,3a ,2b ,sin A m .(1)若ABC 唯一确定,求m 的值;(2)设I 是ABC 的内切圆圆心,r 是ABC 内切圆半径,证明:当21c r 时,IC IA IB .【答案】(1)1(2)证明见解析【解析】【分析】(1)若01m ,根据sin A m ,b a ,可知A 可以为锐角,也可以为钝角,ABC 有两种情况,若1m ,则三角形为直角三角形,ABC 有唯一解.(2)由21c r 可推导出ABC 为直角三角形,故可计算出,,IC IA IB 的值,即得证.(1)设AB 边上的高为c h ,则sin 20c h b A m .当1m 时,由勾股定理,若A 为锐角,则c A 为钝角,则c ABC 存在两种情况,不能被唯一确定.当1m 时,ABC 为直角三角形,其中A 为直角顶点,c 可以唯一确定,即ABC 唯一确定,故m 的值为1.(2)当21c r 时,由余弦定理,22223cos 23a b c r r C ab ,故由同角三角函数的关系可得sin C所以ABC 的面积1sin 2S ab C另一方面, 132S a b c r r r3r r ,两边平方可得 213r r r r ,解得r ,21c r ABC 是以A 为直角顶点的直角三角形.因此有222112922IC,IC22211322IA 2IA ;22211322IB ,IB 所以有IC IA IB 成立.17.(2022·上海市光明中学模拟预测)已知在三角形ABC 中,2a b ,三角形的面积12S .(1)若4b ,求 tan A B ;(2)若3sin 5C ,求sin sin A B ,.【答案】(1)(2)25sin 5A ,sin B 或6205sin 205A ,sin B 【解析】【分析】(1)根据面积公式及4b ,得到3sin 4C ,分C 为锐角和C 为钝角时,求出cos C ,进而求出tan C ,求出 tan A B ;(2)由面积公式求出b a ,分C 为锐角和C 为钝角,由余弦定理和正弦定理求出答案.(1)∵2113sin 2sin 16sin 12sin 224S ab C b C C C 而sin tan()tan(π)tan cos CA B C C C分情况讨论,当C 为锐角时,cos 0cos C C∴tan()A B当C 为钝角时,cos 0cos C Ctan()A B (2)22113sin 2sin 12225S ab C b C b ,因为0b ,所以b a分情况讨论,当C 为锐角时,4cos 0cos 5C C由余弦定理,222cos 366c a b ab C c由正弦定理,10sin sin sin sin sin sin 5a b c A A B C A B ,sin 5B当C 为钝角时,4cos 0cos 5C C ,由余弦定理,222cos 164c a b ab C c由正弦定理,sin sin sin sin a b c A A B C,sin B 18.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c,已知cos sin B b C .(1)求C 的大小;(2)若ABC为锐角三角形且c 22a b 的取值范围.【答案】(1)3C(2)(5,6]【解析】【分析】(1)利用正弦定理边化角,再分析求解即可;(2)22224sin 4sin 3a b A A,再利用三角函数求值域即可.(1)cos sin B b C及正弦定理可得sin sin sin )B C B C A B Ccos sin B C B C ,所以sin sin cos B C B C ,因为B 、(0,)C ,则sin 0Bsin 0C C,则tan C 3C.(2)依题意,ABC为锐角三角形且c2sin sin sin a b c A B C ,所以2sin a A ,2sin 2sin()2sin 3b B A C A,所以222221cos 21cos 234sin 4sin 44322A A a b A A142cos 2222cos 222c 2cos 2222os 23A A A A A2c 42co os 242sin 246s 2cos 2sin 2A A A A A A,由于23A B ,所以022032A A,解得62A ,所以23A ,52666A ,所以푠� 2�∈12,1,所以2sin 2(1,2]6A ,所以2sin 24(5,6]6A.所以22a b 的取值范围是(5,6].19.(2022·辽宁实验中学模拟预测)在① sin sin sin sin A C a b c B C ,② 2222cos 2a b c a c B a,③ sin cos 6a B C B b这三个条件中选一个,补充在下面问题中,并解答.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且__________.(1)求B(2)若b ABC 的平分线交AC 于点D ,且5BD,求ABC 的面积.【答案】(1)=3B【解析】【分析】(1)若选条件①,先用正弦定理将角转化为边的关系,再利用余弦定理即可;若选条件②,先用余弦定理将边转化为角的关系,再利用正弦定理即可;若选条件③,先用三角形的内角之和为 ,再利用正弦定理即可;(2)利用角平分线的性质得到ABC ABD BCD S S S △△△,结合余弦定理和三角形的面积公式即可(1)选择条件①:根据正弦定理,可得:a c abc b c 可得:222a c b ac 根据余弦定理,可得:2221cos 22a cb B ac 0,,=3B B 选择条件②:根据余弦定理,可得:2cos (2)cos =cos 2abC a c B b C a根据正弦定理,可得:(2sin sin )cos sin cos A C B B C整理可得:2sin cos sin()sin A B B C A可得:1cos 2B 0,,=3B B选择条件③:易知:A B C可得:sin cos()6a A B b根据正弦定理,可得:sin sin cos(sin 6A A B B可得:1sin cos()sin 62B B B B整理可得:tan B 0,,=3B B(2)根据题意,可得:ABC ABD BCDS S S △△△可得:1143143sin sin sin 23256256ac a 整理可得:54a c ac 根据余弦定理,可得:2222cosb ac ac ABC可得:2213=a c ac ,即2()313a c ac 可得:225()482080ac ac 解得:4ac 或5225ac (舍)故1=sin 23ABC S ac △20.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos 2B C B C A .(1)求角A 的大小;(2)若a 2bc 的最大值.【答案】(1)3A (2)【解析】【分析】(1)利用两角和的余弦公式、二倍角的余弦公式可得出关于cos A 的方程,结合1cos 1A 可求得cos A 的值,再结合角A 的取值范围可求得角A 的值;(2)由正弦定理结合三角恒等变换化简得出 2b c B ,结合正弦型函数的有界性可求得2b c 的最大值.(1)解:由已知可得 cos 25cos cos sin sin cos 25cos A B C B C A B C 2cos 25cos 2cos 5cos 13A A A A ,即22cos 5cos 20A A ,0A ∵,则1cos 1A ,解得1cos 2A ,因此,3A .(2)解:由正弦定理可得2sin sin sin b c aBC A,所以, 24sin 2sin 4sin 2sin 4sin 2sin 3b c B C B B A B B 4sin sin 5sin B B B B B B,其中 为锐角,且tan,因为3A ,则203B ,23B ,所以,当2B 时,即当2B 时,2b c 取得最大值。
2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习(附答案)
2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习1.[2023ꞏ新课标Ⅰ卷]已知在△ABC中,A+B=3C,2sin (A-C)=sin B.(1)求sin A;(2)设AB=5,求AB边上的高.2.△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.3.[2023ꞏ新课标Ⅱ卷]记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC面积为3,D为BC的中点,且AD=1.(1)若∠ADC=π3,求tan B;(2)若b2+c2=8,求b,c.4.[2022ꞏ新高考Ⅰ卷,18]记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A 1+sin A=sin 2B1+cos 2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.5.[2023ꞏ全国乙卷(理)]在△ABC 中,已知∠BAC =120°,AB =2,AC =1. (1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.6.[2023ꞏ河北石家庄模拟]在①cos C =217 ,②a sin C =c cos ⎝⎛⎭⎫A -π6 ,这两个条件中任选一个,补充在下面问题中的横线处,并完成解答.问题:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,B =π3 ,D 是边BC 上一点,BD =5,AD =7,且________,试判断CD 和BD 的大小关系________.注:如果选择多个条件分别解答,按第一个解答计分.7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2 a +b =2c ,求sin C .8.[2022ꞏ全国乙卷(理),17]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C sin (A -B )=sin B sin (C -A ).(1)证明:2a 2=b 2+c 2;(2)若a =5,cos A =2531 ,求△ABC 的周长.参考答案1.答案解析:方法一 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -π4 )=sin (3π4 -A ),展开并整理得2 (sin A -cos A )=22 (cos A +sin A ), 得sin A =3cos A ,又sin 2A +cos 2A =1,且sin A >0,所以sin A =31010 .(2)由正弦定理BCsin A =AB sin C ,得BC =AB sin C ×sin A =522×31010 =35 ,由余弦定理AB 2=AC 2+BC 2-2AC ꞏBC cos C ,得52=AC 2+(35 )2-2AC ꞏ35 cos π4 , 整理得AC 2-310 AC +20=0, 解得AC =10 或AC =210 ,由(1)得,tan A =3>3 ,所以π3 <A <π2 ,又A +B =3π4 ,所以B >π4 ,即C <B ,所以AB <AC ,所以AC =210 ,设AB 边上的高为h ,则12 ×AB ×h =12 ×AC ×BC sin C ,即5h =210 ×35 ×22 ,解得h =6,所以AB 边上的高为6.方法二 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -C )=sin [π-(A +C )]=sin (A +C ),所以2sin A cos C -2cos A sin C =sin A cos C +cos A sin C , 所以sin A cos C =3cos A sin C , 易得cos A cos C ≠0,所以tan A =3tan C =3tan π4 =3,又sin A >0,所以sin A =332+12 =31010 . (2)由(1)知sin A =31010 ,tan A =3>0,所以A 为锐角,所以cos A =10,所以sin B =sin (3π4 -A )=22 (cos A +sin A )=22 ×(1010 +31010 )=255 ,由正弦定理AC sin B =ABsin C ,得AC =AB ꞏsin Bsin C =5×25522=210 ,故AB 边上的高为AC ×sin A =210 ×31010 =6.2.答案解析:(1)由正弦定理和已知条件得BC 2-AC 2-AB 2=AC ꞏAB .① 由余弦定理得BC 2=AC 2+AB 2-2AC ꞏAB cos A .②由①②得cos A =-12 .因为0<A <π,所以A =2π3 .(2)由正弦定理及(1)得AC sin B =AB sin C =BCsin A =23 ,从而AC =23 sin B ,AB =23 sin (π-A -B )=3cos B -3 sin B .故BC +AC +AB =3+3 sin B +3cos B =3+23 sin ⎝⎛⎭⎫B +π3 . 又0<B <π3 ,所以当B =π6 时,△ABC 周长取得最大值3+23 . 3.答案解析:(1)因为D 为BC 的中点,所以S △ABC =2S △ADC =2×12 ×AD ×DC sin ∠ADC =2×12 ×1×DC ×32 =3 , 解得DC =2,所以BD =DC =2,a =4.因为∠ADC =π3 ,所以∠ADB =2π3 .在△ABD 中,由余弦定理,得c 2=AD 2+BD 2-2AD ꞏBD cos ∠ADB =1+4+2=7,所以c =7 .在△ADC 中,由余弦定理,得b 2=AD 2+DC 2-2AD ꞏDC ꞏcos ∠ADC =1+4-2=3,所以b =3 .在△ABC 中,由余弦定理,得cos B =c 2+a 2-b 22ac =7+16-32×4×7=5714 ,所以sin B =1-cos 2B =2114 .(2)因为D 为BC 的中点,所以BD =DC .因为∠ADB +∠ADC =π,所以cos ∠ADB =-cos ∠ADC ,则在△ABD 与△ADC 中,由余弦定理,得AD 2+BD 2-c 22AD ꞏBD =-AD 2+DC 2-b 22AD ꞏDC , 得1+BD 2-c 2=-(1+BD 2-b 2),所以2BD 2=b 2+c 2-2=6,所以BD =3 ,所以a =23 .在△ABC 中,由余弦定理,得cos ∠BAC =b 2+c 2-a 22bc =8-122bc =-2bc ,所以S △ABC =12 bc sin ∠BAC =12 bc 1-cos 2∠BAC=12 bc 1-⎝⎛⎭⎫-2bc 2=12 b 2c 2-4 =3 ,解得bc =4.则由⎩⎪⎨⎪⎧bc =4b 2+c 2=8 ,解得b =c =2. 4.答案解析:(1)由已知条件,得sin 2B +sin A sin 2B =cos A +cos A cos 2B .所以sin 2B =cos A +cos A cos 2B -sin A sin 2B =cos A +cos (A +2B )=cos [π-(B +C )]+cos [π-(B +C )+2B ]=-cos (B +C )+cos [π+(B -C )]=-2cos B cos C ,所以2sin B cos B =-2cos B cos C , 即(sin B +cos C )cos B =0.由已知条件,得1+cos 2B ≠0,则B ≠π2 ,所以cos B ≠0,所以sin B =-cos C =12 .又0<B <π3 ,所以B =π6 .(2)由(1)知sin B =-cos C >0,则B =C -π2 ,所以sin A =sin (B +C )=sin (2C -π2 )=-cos 2C .由正弦定理,得a 2+b 2c 2 =sin 2A +sin 2B sin 2C =cos 22C +cos 2Csin 2C =(1-2sin 2C )2+(1-sin 2C )sin 2C =2+4sin 4C -5sin 2C sin 2C=2sin 2C +4sin 2C -5≥22sin 2C ꞏ4sin 2C -5=42 -5,当且仅当sin 2C =22 时,等号成立,所以a 2+b 2c 2 的最小值为42 -5. 5.答案解析:(1)如图,由余弦定理得BC 2=AB 2+AC 2-2AB ꞏAC ꞏcos ∠BAC =22+12+2×2×1×12 =7,得BC =7 .方法一 由正弦定理ACsin ∠ABC =BC sin ∠BAC ,得sin ∠ABC =1×327=2114 .方法二 由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ꞏBC =4+7-12×2×7 =5714 , 所以sin ∠ABC =1-cos 2∠ABC =21 .(2)方法一 由sin ∠ABC =2114 ,得tan ∠ABC =35 ,又tan ∠ABC =DA AB =DA 2 ,所以DA =235 ,故△ADC 的面积为12 DA ꞏAC ꞏsin (120°-90°)=12 ×235 ×1×12 =3 .方法二 △ABC 的面积为12 AC ꞏAB ꞏsin ∠BAC =12 ×1×2×32 =32 ,S △ADC S △BAD=12AC ꞏAD ꞏsin ∠CAD12AB ꞏAD ꞏsin ∠BAD =sin 30°2×sin 90° =14 ,故△ADC 的面积为15 S △ABC =15 ×3 =3.6.答案解析:设AB =x ,在△ABD 中由余弦定理可得:49=x 2+25-2ꞏx ꞏ5ꞏcos π3 =x 2+25-5x , 即x 2-5x -24=0,解得x =8. 方案一 选条件①.由cos C =217 得sin C =277 , ∵A +B +C =π,∴sin A =sin (B +C )=32 ×217 +12 ×277 =5714 ,在△ABC 中由正弦定理可得:BC 5714 =8277,解得:BC =10,∴CD =BD =5. 方案二 选条件②.由正弦定理可得:a =2R sin A ,c =2R sin C ,代入条件a sin C =c cos ⎝⎛⎭⎫A -π6 得:sin A sin C =sin C ꞏ⎝⎛⎭⎫32cos A +12sin A =32 cos A sin C +12 sin A sin C ,∴12 sin A sin C =3cos A sin C ,因为A 为三角形内角,所以tan A =3 ,故A =π3 , 所以△ABC 为等边三角形,所以BC =8,∴CD =3,所以CD <BD .7.答案解析:(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12 . 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2 sin A +sin (120°-C )=2sin C ,即62 +3 cos C +12 sin C =2sin C ,可得cos (C +60°)=-2.由于0°<C <120°,所以sin (C +60°)=22 ,故 sin C =sin (C +60°-60°)=sin (C +60°)cos 60°-cos (C +60°)sin 60°=6+2 .8.答案解析:(1)证明:∵sin C sin (A -B )=sin B sin (C -A ),∴sin C sin A cos B -sin C cos A sin B =sin B sin C cos A -sin B cos C sin A , ∴sin C sin A cos B =2sin B sin C cos A -sin B cos C sin A . 由正弦定理,得ac cos B =2bc cos A -ab cos C .由余弦定理,得a 2+c 2-b 22 =b 2+c 2-a 2-a 2+b 2-c 22. 整理,得2a 2=b 2+c 2.(2)由(1)知2a 2=b 2+c 2.又∵a =5,∴b 2+c 2=2a 2=50.由余弦定理,得a 2=b 2+c 2-2bc cos A ,即25=50-5031 bc ,∴bc =312 .∴b +c =b 2+c 2+2bc =50+31 =9, ∴a +b +c =14.故△ABC 的周长为14.。
历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编(附答案)
历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =.(1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c .4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123123S S S B -+==. (1)求ABC 的面积;(2)若sin sin 3A C =,求b . 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC C . 9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.2.(2023∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别是,,a b c .已知2,120a b A ==∠= . (1)求sin B 的值; (2)求c 的值; (3)求()sin B C -的值.3.(2022∙天津∙高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.4.(2021∙天津∙高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =. (I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.5.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.6.(2020∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知 5,a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.7.(2020∙浙江∙高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.8.(2020∙江苏∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.考点04 求三角形的高、中线、角平分线及其他线段长1.(2023∙全国新Ⅰ卷∙高考真题)已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.考点05 三角形中的证明问题1.(2022∙全国乙卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ; (2)证明:2222a b c =+2.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.参考答案考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积. 条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分. 【答案】(1)2π3A =; (2)选择①无解;选择②和③△ABC【详细分析】(1)利用正弦定理即可求出答案; (2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【答案详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角, 则cos 0B ≠,则2sin 7B b =,则7sin sin sin b a BA A ===,解得sin 2A =, 因为A 为钝角,则2π3A =. (2)选择①7b =,则sin 7B ===2π3A =,则B 为锐角,则3B π=, 此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin 14B ==,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B ⎛⎫=+=+=+ ⎪⎝⎭131********⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯=选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C ,解得sin C =,因为C 为三角形内角,则11cos 14C ==, 则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭11121421414⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7522144ABC S ac B ==⨯⨯⨯=△ 2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)4【详细分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【答案详解】(1)因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc Abc A A+-===,解得:1bc =.(2)由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A Ba Bb Ac A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B BA B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以sin 2A =,故ABC的面积为11sin 122ABC S bc A ==⨯△.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积. 【答案】(1)14;【详细分析】(1)首先由余弦定理求得边长BC的值为BCcos 14B =,最后由同角三角函数基本关系可得sin 14B =; (2)由题意可得4ABDACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积. 【答案详解】(1)由余弦定理可得:22222cos BC a b c bc A ==+-41221cos1207=+-⨯⨯⨯= ,则BC =222cos 214a c b B ac +-===,sin ABC ∠==(2)由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则11121sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯=⎪⎝⎭△△. 4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积. 【答案】;(2)22.【详细分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab +-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【答案详解】(1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin 45A C ==. (2)因为4a ,由余弦定理,得2222221612111355cos 22225a a aa b c C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.5.(2019∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2). 【详细分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅ ,又根据正弦定理和1c =得到ABC S 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C 的值域.【答案详解】(1)[方法一]【最优解:利用三角形内角和为π结合正弦定理求角度】 由三角形的内角和定理得222A C Bπ+=-, 此时sinsin 2A C a b A +=就变为sin sin 22B a b A π⎛⎫-= ⎪⎝⎭. 由诱导公式得sin cos 222B B π⎛⎫-= ⎪⎝⎭,所以cos sin 2B a b A =.在ABC 中,由正弦定理知2sin ,2sin a R A b R B ==, 此时就有sin cossin sin 2BA AB =,即cos sin 2B B =,再由二倍角的正弦公式得cos2sin cos 222B B B=,解得3B π=. [方法二]【利用正弦定理解方程求得cos B 的值可得B ∠的值】 由解法1得sin sin 2A CB +=, 两边平方得22sinsin 2A CB +=,即21cos()sin 2A CB -+=. 又180A BC ++=︒,即cos()cos A C B +=-,所以21cos 2sin B B +=, 进一步整理得22cos cos 10B B +-=, 解得1cos 2B =,因此3B π=. [方法三]【利用正弦定理结合三角形内角和为π求得,,A BC 的比例关系】 根据题意sinsin 2A Ca b A +=,由正弦定理得sin sin sin sin 2A C A B A +=, 因为0A π<<,故sin 0A >, 消去sin A 得sin sin 2A CB +=. 0<B π<,02A C π+<<,因为故2A C B +=或者2A CB π++=, 而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=, 又因为A BC π++=,代入得3B π=,所以3B π=.(2)[方法一]【最优解:利用锐角三角形求得C 的范围,然后由面积函数求面积的取值范围】 因为ABC 是锐角三角形,又3B π=,所以,6262A C ππππ<<<<, 则1sin 2ABCS ac B ==V 22sin 1sin 3sin 24sin 4sin C a A c B c C Cπ⎛⎫- ⎪⎝⎭⋅⋅=⋅=⋅=22sincos cos sin 333sin 8tan C CC C ππ-=. 因为,62C ππ⎛⎫∈ ⎪⎝⎭,所以tan C ⎫∈+∞⎪⎪⎝⎭,则1tan C ∈,从而ABC S ⎝⎭∈ ,故ABC面积的取值范围是82⎫⎪⎪⎝⎭. [方法二]【由题意求得边a 的取值范围,然后结合面积公式求面积的取值范围】 由题设及(1)知ABC的面积4ABC S a =△. 因为ABC 为锐角三角形,且1,3c B π==,所以22221cos 0,21cos 0,2b a A bb a C ab ⎧+-=>⎪⎪⎨+-⎪=>⎪⎩即22221010.b a b a ⎧+->⎨+->⎩, 又由余弦定理得221b a a =+-,所以220,20,a a a ->⎧⎨->⎩即122a <<,所以82ABC S << ,故ABC面积的取值范围是⎝⎭. [方法三]【数形结合,利用极限的思想求解三角形面积的取值范围】如图,在ABC 中,过点A 作1AC BC ⊥,垂足为1C ,作2AC AB ⊥与BC 交于点2C . 由题设及(1)知ABC的面积ABC S =△,因为ABC 为锐角三角形,且1,3c B π==,所以点C 位于在线段12C C 上且不含端点,从而cos cos cc B a B⋅<<, 即1cos3cos 3a ππ<<,即122a <<,所以82ABC S << , 故ABC面积的取值范围是82⎛⎫⎪ ⎪⎝⎭.【整体点评】(1)方法一:正弦定理是解三角形的核心定理,与三角形内角和相结合是常用的方法; 方法二:方程思想是解题的关键,解三角形的问题可以利用余弦值确定角度值; 方法三:由正弦定理结合角度关系可得内角的比例关系,从而确定角的大小. (2)方法一:由题意结合角度的范围求解面积的范围是常规的做法;方法二:将面积问题转化为边长的问题,然后求解边长的范围可得面积的范围;方法三:极限思想和数形结合体现了思维的灵活性,要求学生对几何有深刻的认识和灵活的应用.6.(2017∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积. 【答案】(1)23π,4;(2【答案详解】试题详细分析:(1)先根据同角的三角函数的关系求出tan A = 从而可得A 的值,再根据余弦定理列方程即可求出边长c 的值;(2)先根据余弦定理求出cos C ,求出CD 的长,可得12CD BC =,从而得到12ABD ABC S S ∆∆=,进而可得结果. 试题解析:(1)sin 0,tan A A A =∴= 20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =. (2)2222cos c b a ab C =+-Q,1628422cos C ∴=+-⨯⨯,2cos 2cos AC C CD C ∴=∴===12CD BC ∴=,1142222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=12ABD ABC S S ∆∆∴==7.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=. (1)求角C ;(2)若c =2ABC S ∆=,求ABC ∆的周长. 【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C (2)11sin 6222∆=⇒=⇒=ABC S ab C ab ab又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.8.(2015∙浙江∙高考真题)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan()24A π+=.(1)求2sin 2sin 2cos AA A+的值;(2)若,34B a π==,求ABC ∆的面积. 【答案】(1)25;(2)9 【答案详解】(1)利用两角和与差的正切公式,得到1tan 3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan()24A π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin 5C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=. 考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.9.(2015∙全国∙高考真题)已知,,a b c 分别是ABC ∆内角,,A B C 的对边, 2sin 2sin sin B A C =. (1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积. 【答案】(1)14;(2)1 【答案详解】试题详细分析:(1)由2sin 2sin sin B A C =,结合正弦定理可得:22b ac =,再利用余弦定理即可得出cos ;B(2)利用(1)及勾股定理可得c ,再利用三角形面积计算公式即可得出 试题解析:(1)由题设及正弦定理可得22b ac = 又a b =,可得2,2b c a c ==由余弦定理可得2221cos 24a c b B ac +-==(2)由(1)知22b ac =因为90B = ,由勾股定理得222a c b += 故222a c ac +=,得c a == 所以的面积为1考点:正弦定理,余弦定理解三角形10.(2015∙山东∙高考真题)设()2sin cos cos 4f x x x x π⎛⎫=-+ ⎪⎝⎭.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.【答案】(Ⅰ)单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(Ⅱ)ABC ∆【答案详解】试题详细分析:(Ⅰ)首先利用二倍角公式化简函数()f x 的解析式,再利用正弦函数的单调性求其单调区间;(Ⅱ)首先由02A f ⎛⎫= ⎪⎝⎭结合(Ⅰ)的结果,确定角A 的值,然后结合余弦定理求出三角形ABC ∆面积的最大值. 试题解析:解:(Ⅰ)由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=-sin 21sin 21sin 2222x x x -=-=- 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (Ⅱ)由1sin 0,22A f A ⎛⎫=-= ⎪⎝⎭得1sin 2A =由题意知A 为锐角,所以cos 2A =由余弦定理:2222cos a b c bc A =+-可得:2212b c bc =+≥即:2bc ≤ 当且仅当b c =时等号成立.因此1sin 2bc A ≤所以ABC ∆面积的最大值为24考点:1、诱导公式;2、三角函数的二倍角公式;3、余弦定理;4、基本不等式.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长. 【答案】(1)π6A =(2)2+【详细分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决; (2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长. 【答案详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 12A A =,即sin()1π3A +=,由于ππ4π(0,π)(,333A A ∈⇒+∈,故ππ32A +=,解得π6A = 方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=⇔=,解得cos A = 又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A '==,即tan A = 又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A == ,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==, 则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=, 又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21t A A t ==+整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-, 又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=, 由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412b c==,解得b c == 故ABC的周长为2+2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3c . 【答案】(1)π3B =(2)【详细分析】(1)由余弦定理、平方关系依次求出cos ,sin C C,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【答案详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===, 因为()0,πC ∈,所以sin 0C >,从而sin 2C ===,又因为sin C B =,即1cos 2B =, 注意到()0,πB ∈, 所以π3B =. (2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而1,4222a cbc +====, 由三角形面积公式可知,ABC 的面积可表示为21113sin 222228ABC S ab C c c ==⋅⋅= , 由已知ABC的面积为323=所以c =3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =. (1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c . 【答案】(2)2b c ==.【详细分析】(1)方法1,利用三角形面积公式求出a ,再利用余弦定理求解作答;方法2,利用三角形面积公式求出a ,作出BC 边上的高,利用直角三角形求解作答.(2)方法1,利用余弦定理求出a ,再利用三角形面积公式求出ADC ∠即可求解作答;方法2,利用向量运算律建立关系求出a ,再利用三角形面积公式求出ADC ∠即可求解作答. 【答案详解】(1)方法1:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ABD △中,2π3ADB ∠=,由余弦定理得2222cos c BD AD BD AD ADB =+-⋅∠, 即2141221()72c =+-⨯⨯⨯-=,解得c =cos 14B ==,sin B ===,所以sin tan cos 5B B B ==. 方法2:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ACD 中,由余弦定理得2222cos b CD AD CD AD ADC =+-⋅∠,即214122132b =+-⨯⨯⨯=,解得b =,有2224AC AD CD +==,则π2CAD ∠=,π6C =,过A 作AE BC ⊥于E,于是3cos ,sin 2CE AC C AE AC C ====,52BE =,所以tan 5AE B BE ==. (2)方法1:在ABD △与ACD 中,由余弦定理得222211121cos(π)4211121cos 42c a a ADC b a a ADC ⎧=+-⨯⨯⨯-∠⎪⎪⎨⎪=+-⨯⨯⨯∠⎪⎩,整理得222122a b c +=+,而228b c +=,则a =,又11sin 22ADC S ADC =⨯∠=,解得sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.方法2:在ABC 中,因为D 为BC 中点,则2AD AB AC =+ ,又CB AB AC =-,于是2222224()()2()16AD CB AB AC AB AC b c +=++-=+= ,即2416a +=,解得a =,又11sin 2ADC S ADC =⨯∠ sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S,已知123123S S S B -+==. (1)求ABC 的面积; (2)若sin sin 3A C =,求b . 【答案】(2)12【详细分析】(1)先表示出123,,S S S,再由1232S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB AC =,即可求解.【答案详解】(1)由题意得22221231,,22444S a a S b S c =⋅⋅===,则222123S S S -+==, 即2222a c b +-=,由余弦定理得222cos 2a c b B ac +-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos 3B ==,1cos 4ac B ==,则1sin 28ABC S ac B == ; (2)由正弦定理得:sin sin sin b a c B A C ==,则229sin sin sin sin sin 43b ac ac B A C A C =⋅==,则3sin 2b B =,31sin 22b B ==. 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 【答案】(1)见解析 (2)14【详细分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. 【答案详解】(1)证明:因为()()sin sin sin sin C A B B C A -=-, 所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+;(2)解:因为255,cos 31a A ==, 由(1)得2250bc +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长. 【答案】(1)6π(2)6+【详细分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.【答案详解】(1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos 2C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABC S ab C a === ,解得a =.由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC 的周长为6a b c ++=.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.【答案】(1)π6;(2)5.【详细分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. 【答案详解】(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-,所以30,,,424B C πππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以222222222sin sin cos 21cos sin cos a b A B B Bc C B +++-==()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-≥=.当且仅当2cos B =222a b c +的最小值为5. 8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC =2,求C . 【答案】(1(2)15︒.【详细分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论;(2)方法一 :将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【答案详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B == (2)[方法一]:多角换一角 30A C +=︒ ,sin sin(30)A C C C ∴=︒-1cos sin(30)22C C C ==+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒. [方法二]:正弦角化边由正弦定理及150B =︒得22sin sin sin ====a c bR b A C B.故sin ,sin 22==a c A C b b .由sin 2A C =,得a +=.又由余弦定理得22222cos =+-⋅=+b a c ac B a 2+c ,所以()222()2=++a a c ,解得a c =.所以15=︒C .【整体点评】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.其中第二问法一主要考查三角恒等变换解三角形,法二则是通过余弦定理找到三边的关系,进而求角.9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【详细分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【答案详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b cA B C===,所以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤,当且仅当0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭,易知当6C π=时,max ()b c +=所以ABC周长的最大值为3+【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.10.(2018∙全国∙高考真题)在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠; (2)若DC =,求BC . 【答案】(1)5;(2)5. 【详细分析】(1)方法一:根据正弦定理得到sin sin BD AB A ADB =∠∠,求得sin 5ADB ∠=,结合角的范围,利用同角三角函数关系式,求得cos 5ADB ∠==;(2)方法一:根据第一问的结论可以求得cos sin 5BDC ADB ∠=∠=,在BCD △中,根据余弦定理即可求出.【答案详解】(1)[方法1]:正弦定理+平方关系在ABD △中,由正弦定理得sin sin BD AB A ADB =∠∠,代入数值并解得sin 5ADB ∠=.又因为BD AB >,所以A ADB ∠>∠,即ADB ∠为锐角,所以cos 5ADB ∠=. [方法2]:余弦定理在ABD △中,2222cos 45BD AB AD AB AD =+-⋅ ,即2254222AD AD =+-⨯⨯⨯,解得:AD =所以,2254cos5ADB +-∠==. [方法3]:【最优解】利用平面几何知识如图,过B 点作BE AD ⊥,垂足为E ,BF CD ⊥,垂足为F .在Rt AEB 中,因为45A ∠=︒,=2AB ,所以AE BE ==.在Rt BED △中,因为5BD =,则DE ===.所以cos ADB ∠=[方法4]:坐标法以D 为坐标原点,DC 为x 轴,DA为y 轴正方向,建立平面直角坐标系(图略).设BDC α∠=,则(5cos ,5sin )B αα.因为45A ∠=︒,所以(0,5sin A α.从而2AB ==,又α是锐角,所以cos 5α=,cos sin ADB α∠===(2)[方法1]:【通性通法】余弦定理在BCD △,由(1)得,cos 5ADB ∠=,()2222cos 90BC BD DC BD DC ADB︒=+-⋅-∠2252525ADB =+-⨯⨯∠=,所以=5BC .[方法2]:【最优解】利用平面几何知识作BF DC ⊥,垂足为F ,易求,BF =FC =,由勾股定理得=5BC .【整体点评】(1)方法一:根据题目条件已知两边和一边对角,利用正弦定理和平方关系解三角形,属于通性通法;方法二:根据题目条件已知两边和一边对角,利用余弦定理解三角形,也属于通性通法; 方法三:根据题意利用几何知识,解直角三角形,简单易算.方法四:建立坐标系,通过两点间的距离公式,将几何问题转化为代数问题,这是解析思想的体现. (2)方法一:已知两边及夹角,利用余弦定理解三角形,是通性通法. 方法二:利用几何知识,解直角三角形,简单易算.11.(2017∙全国∙高考真题)△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2) 3【答案详解】试题详细分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC 的周长为3+试题解析:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =. 故2sin sin 3B C =. (2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +故ABC 的周长为3+点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.12.(2017∙山东∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .【答案】34A π=,a =【答案详解】试题详细分析:先由数量积公式及三角形面积公式得3cos 613sin 32c A c A =-⎧⎪⎨⨯=⎪⎩,由此求A ,再利用余弦定理求a .试题解析:因为6AB AC ⋅=-, 所以cos 6bc A =-, 又3ABC S =△, 所以sin 6bc A =,因此tan 1A =-,又0πA <<, 所以3π4A =, 又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(a =+-⨯⨯,所以a = 【考点】解三角形【名师点评】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.13.(2017∙全国∙高考真题)△ABC 的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin2B AC +=.(1)求cos B ;(2)若6a c +=,△ABC 的面积为2,求b . 【答案】(1)1517;(2)2. 【答案详解】试题详细分析:(1)利用三角形的内角和定理可知A C B π+=-,再利用诱导公式化简()sin A C +,利用降幂公式化简28sin 2B,结合22sin cos 1B B +=,求出cos B ;(2)由(1)可知8sin 17B =,利用三角形面积公式求出ac ,再利用余弦定理即可求出b . 试题解析:(1)()2sin 8sin2BA C +=,∴()sin 41cosB B =-,∵22sin cos 1B B +=, ∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =; (2)由(1)可知8sin 17B =, ∵1sin 22ABC S ac B =⋅=,∴172ac =, ∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=, ∴2b =.14.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =ABC S ∆=ABC ∆的周长.【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 622∆=⇒=⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.15.(2015∙浙江∙高考真题)在ABC ∆中,内角 A ,B , C 所对的边分别为a , b ,c ,已知 4A π=,22b a -=122c .(1)求tan C 的值;(2)若ABC ∆的面积为3,求 b 的值. 【答案】(1)2;(2)3b =.【答案详解】(1)根据正弦定理可将条件中的边之间的关系转化为角之间满足的关系,再将式 子作三角恒等变形即可求解;(2)根据条件首先求得sin B 的值,再结合正弦定理以及三角 形面积的计算公式即可求解.试题解析:(1)由22212b a c -=及正弦定理得2211sin sin 22B C -=, ∴2cos 2sin B C -=,又由4A π=,即34B C π+=,得cos 2sin 22sin cos B C C C -==,解得tan 2C =;(2)由tan 2C =,(0,)C π∈得sin 5C =,cos 5C =,又∵sin sin()sin()4B A C C π=+=+,∴sin B =3c b =,又∵4A π=,1sin 32bc A =,∴bc =3b =. 考点:1.三角恒等变形;2.正弦定理.16.(2015∙山东∙高考真题)ABC 中,角A B C ,,所对的边分别为,,a b c .已知cos ()39B A B ac =+==求sin A 和c 的值.【答案】,1.3【详细分析】由条件先求得sin sin C A ,,再由正弦定理即可求解.【答案详解】在ABC 中,由cos 3B =,得sin 3B =.因为A B C π++=,所以sin sin()9C A B =+=,因为sin sin C B <,所以C B <,C 为锐角,cos 9C =,因此sin sin()sin cos cos sin A B C B C B C =+=+39393=⨯+⨯=.由sin sin a c A C =,可得sin sin 9cc A a C ===,又ac =1c =.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.【答案】(1)4(2)4 (3)5764【详细分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【答案详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍); 则4,6a c ==.(2)法一:因为B为三角形内角,所以sin B ===再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭, 由(2)法一知sin 16B =,。
高三数学复习专题练习题:解三角形(含答案)
⾼三数学复习专题练习题:解三⾓形(含答案)⾼三数学复习专题练习:解三⾓形(含答案)⼀. 填空题(本⼤题共15个⼩题,每⼩题5分,共75分)1.在△ABC 中,若2cosBsinA=sinC,则△ABC ⼀定是三⾓形.2.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 3.已知△ABC 的三边长分别为a,b,c,且⾯积S △ABC =41(b 2+c 2-a 2),则A= . 4.在△ABC 中,BC=2,B=3π,若△ABC 的⾯积为23,则tanC 为 . 5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.在△ABC 中,若∠C=60°,则c b a ++ac b+= . 9.如图所⽰,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km, 灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.10.⼀船⾃西向东匀速航⾏,上午10时到达⼀座灯塔P 的南偏西75°距塔68海⾥的M 处,下午2时到达这座灯塔的东南⽅向的N 处,则这只船的航⾏速度为海⾥/⼩时. 11. △ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .12. 在△ABC 中,⾓A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则⾓B 的值为 . 13. ⼀船向正北航⾏,看见正西⽅向有相距10 海⾥的两个灯塔恰好与它在⼀条直线上,继续航⾏半⼩时后,看见⼀灯塔在船的南偏西600,另⼀灯塔在船的南偏西750,则这艘船是每⼩时航⾏________ 海⾥.14.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的⾯积为 .15.在△ABC 中,⾓A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .(资料由“⼴东考神”上传,如需更多⾼考复习资料,请上 tb ⽹搜“⼴东考神”)⼆、解答题(本⼤题共6个⼩题,共75分)1、已知△ABC 中,三个内⾓A ,B ,C 的对边分别为a,b,c,若△ABC 的⾯积为S ,且2S=(a+b )2-c 2,求tanC 的值. (10分)2、在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (11分)(1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.3、在△ABC 中,a 、b 、c 分别是⾓A ,B ,C 的对边,且C B cos cos =-ca b+2. (12分)(1)求⾓B 的⼤⼩;(2)若b=13,a+c=4,求△ABC 的⾯积.4、△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (12分) (1)求⾓A 的⼤⼩;(2)若a=3,求bc 的最⼤值;(3)求cb C a --?)30sin(的值.5、已知△ABC 的周长为)12(4+,且sin sin B C A +=. (12分)(1)求边长a 的值;(2)若A S ABC sin 3=?,求A cos 的值.6、在某海岸A 处,发现北偏东 30⽅向,距离A 处)(13+n mile 的B 处有⼀艘⾛私船在A 处北偏西 15的⽅向,距离A 处6n mile 的C 处的缉私船奉命以35n mile/h 的速度追截⾛私船. 此时,⾛私船正以5 n mile/h 的速度从B 处按照北偏东 30⽅向逃窜,问缉私船⾄少经过多长时间可以追上⾛私船,并指出缉私船航⾏⽅向. (12分)ACB3015· ·参考答案:⼀、填空题:1、等腰;2、53;3、45°;4、33;5、60°;6、45°或135°;7、65π;8、1;9、3a ;10、2617;11、2;12、3π或32π;13、10;14、103;15、33。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档解三角形大题专题20141513 分)(.(本小题满分石景山一模)B,Ca,b,cA,ABCca?b?Asin2b3a?中,角.,的对边分别为,且在△B的大小;(Ⅰ)求角c ABC2a?7?b的面积.,求边的长和△(Ⅱ)若,13201415分)(.(本小题满分西城一模)222 aBACbcABC bca?b?c?.在△中,角,,所对的边分别为.已知,,A的大小;(Ⅰ)求6b?2?Bcos ABC 的面积.,(Ⅱ)如果,求△3标准文案.实用文档(2014海淀二模)15.(本小题满分13分)A7sina?2ABC?b?21. 且在锐角中,B的大小;(Ⅰ)求c c3a?的值(Ⅱ)若.,求20151513 分)西城二模)(.(本小题满分 b 3 a C ABC AB ab c 7,,=,所对的边分别为=在锐角△中,角,,,,已知.A 的大小;(Ⅰ)求角ABC 的面积.(Ⅱ)求△标准文案.实用文档(2013丰台二模)15.(13分)2(B?C)?32sinsin2A.的三个内角分别为已知A,B,C,且ABC?(Ⅰ)求A的度数;BC?7,AC?5,求(Ⅱ)若的面积S. ABC?20141513 分)(.(本小题满分延庆一模)?3c,a,b,AB,C?C?Bcos2ABCa?.在三角形中,角,且所对的边分别为,,45Asin的值;(Ⅰ)求ABC?的面积.(Ⅱ)求标准文案.实用文档(2015顺义一模)15.(本小题满分13分)?6ABC??32,sinBb?B?A?c,a,bA,B,C. 在已知,中角,所对的边分别为, 32a; (I)求的值Ccos. 的值(II)求分)15)(本小题共13(2016东城一模)(2???A?cosB?22BC?2?ACABC.中,,且在△,2AB(Ⅰ)求的长度;3?y)()?Cy?xf(fx)?sin(2x相邻交点间的最小距离.,求(Ⅱ)若与直线2标准文案.实用文档分)(本小题满分13(2015延庆一模)15.?ABC??ABC?BC?2. 中,,?25AC5AB??cos的长度;求(Ⅰ)若,, 52?????BAC)(f)(AB?f的最大值,(Ⅱ)若,求.6(2016西城一模)15.(本小题满分13分)?sinB?3sinCbCABC△ca?ABA.,,所对的边分别为,在,中,角,,设3b7a?的值;,求(Ⅰ)若tanC的值.(Ⅱ)求标准文案.实用文档13 分)(本小题满分朝阳二模)(201415.2πcaA?ACb?bABC△3△ABC的面中,角,且,,,的对边分别是在,,,B3315 .积为4a I 的边长;()求边Bcos2 II的值.()求(2015东城一模)(15)(本小题共13分)73?cosCABCABCb2?的面积为在△.中,,△,44a(Ⅰ)求的值;A2sin(Ⅱ)求值.标准文案.实用文档分)海淀二模)(15)(本小题满分13(20156362b?A?cosa5??ABCc . ,中,,在2a的值;(Ⅰ)求A??2?B(Ⅱ)求证:.2014(顺义一模)15.(本小题共13分)c、ba、AB、C、?ABC)sincosA?A3sinA(,且满足已知中,角所对的边分别为3?2A;)求角(132?Sc、b22a?)若的值,,求(2ABC?标准文案.实用文档(2015石景山期末)15.(本小题共13分)?27CE?EDAAB?AD??ADC ABCD为,如图所示,在四边形,中,;3?2EA?1DE???BEC.,,边上一点,3∠CED的值;(Ⅰ)求sin BE的长.(Ⅱ)求15132015分).朝阳二模)(本小题共(ABCD中,在梯形AC的长;(Ⅰ)求ABCD的高.(Ⅱ)求梯形标准文案.实用文档分)(本小题共13(2015丰台二模)15.?BC?2530?A?ABCBCDCD?2ABD,,在△中,点且在为锐角,,边上,BCD的面积为4.△cos?BCD的值;(Ⅰ)求(Ⅱ)求边AC的长.(2016海淀一模)15.(本小题满分13 分)AD1???,∠上,且在边AB=BCD=.记∠ACD.ABC 如图,在△中,点D3DB?sinAC?;(Ⅰ)求证:?3sinBC????19??,,?AB,求(Ⅱ)若BC 的长.26标准文案.实用文档(2015房山一模)15.(本小题共13分)?2x?1(x?2cos?R(fx)?sin(2x?)).已知函数6f(x)的单调递增区间;(Ⅰ)求1??ABCABC?Afc,B,Ca,b,A且△,已知中,三个内角,的对边分别为(Ⅱ)在△2 a3. ,求外接圆的半径为的值分)15石景山一模).(本小题满分13(2013?)?cos2(fx)?sin(2x?x.已知函数6f(x)的单调递增区间;(Ⅰ)求函数?3?)f(AB?a?2,,.已知,cbaCBA中,△(Ⅱ)在ABC内角、、的对边分别为、、23的面积.ABC求△标准文案.实用文档分)(13(2013朝阳二模)15.AAA2ABC?sin?A)?2cos?)?sin(f(cb,a,CB,A,且,在△所对的边分别为中,222A2cos. 2)A(f的最大值;(Ⅰ)求函数??6?,a)?0,C?f(A的值.,求(Ⅱ)若b1213分)东城一模)15. (本小题共(2014sinA3cosB ABC??在中,ab B 的值;)求角(1b?2?ABC面积的最大值)如果(2,求标准文案.实用文档(2013东城一模)(15)(13分)bABCC ca BA bsinA?3acosB.中,三个内角,,,在△的对边分别为,,且B;(Ⅰ)求角ac32b?的最大值.(Ⅱ)若,求(2014丰台二模)(15)(本小题满分13分)22o cb,a,3??ab?ab60?C. , B∠C的对边长分别为且,,∠AABC已知△中,∠,的值;(Ⅰ)求c ba?. (Ⅱ)求的取值范围标准文案.实用文档2014 石景山一模)(1513 分).(本小题满分Asin2b3a?,解:(Ⅰ)因为..............................2 ABsin3sinA?2sin分,所以?sinA?00?A?,,所以因为3..............................4 ?sinB分所以,2?a?b??B?c0 (6)60?B分,所以因为.,且2a?7b?,,(Ⅱ)因为1222??c2?2c(7)?2??203?2cc??,所以由余弦定理得,即2c?3c??1(舍),或解得c3..............................10 分边的长为所以.11333 (13)S=acsinB??2?3??分.ABC?22222014 西城一模)(1513分).(本小题满分222bca?c?b?,(Ⅰ)解:因为2221??cabcosA??………………………………3 分,所以2bc2A?(0,π),又因为π?A……………………………… 5 分.所以36B?(0,π)cosB?(Ⅱ)解:因为,,332……………………………7Bcos?B?1?sin所以.分3ab?………………………………9 由正弦定理分,BsinsinAAsinb?a?3……………………………10得分.Bsin222bca?b?c?,因为2 0?5cc?2?,所以标准文案.实用文档61?c?,解得0?c,因为……………………………111?c?6分所以.3132?ABC……………………………13 ?SA?bcsin的面积分.故△222014海淀二模)(ba?----------------------------2分15.解:(Ⅰ)由正弦定理可得BsinsinA21??a27sinA,b 因为3AsinA21sinb?B??sin 分---------------------------5 所以2aAsin2760?BABC?---------------------------7分在锐角中,222Baccosb??a2?c 分----------------------------9 (Ⅱ)由余弦定理可得c3a?又因为22223??3c21?9c?cc -------------------------------11所以分,即3c?-------------------------------12分解得2221ab??c?90A???A0cos?经检验,由可得,不符合题意,bc2723c?分舍去.--------------------13所以西城二模)(2015标准文案.实用文档(2013丰台二模)2 .2AC?)?32sinsin(B (Ⅰ)15.解:2AAcosA?23?2sinsin 分……………………….2 ,3??tanAsinA?3cosA,0,sinA??……………………….4分,?60?A?A??,0 .6分°. ……………………222 ?ACABBC??AC?AB?ABC?60 2cos , (Ⅱ)在中,5,AC?BC?7,228AB?,??5AB24?0??AB?AB49???255,AB3?AB? .10或),(舍…………分标准文案.实用文档311 3??5?608??S??10sinAB?AC?…………………….13分. ABC?222 延庆一模)(2014 1513分).(本小题满分43??sinBcosB? ……………………1分解:(Ⅰ),55)sin(B?CsinA??........................2分CsincosB?sinBcosC? (4)分274232……………………6分?????105252ab? ……………………8分(Ⅱ)AsinsinB2b??427,51028……………………10分??b71C?absin?S……………………11分,ABC?22218 ???2?2728?………………………………13分7顺义一模)(2015?ABC??AB?,中,因为15.解:(I)在2?????BB?A?,即…….............................................................2分, 所以22??????Bcos???sin?BsinsinA?B??分所以..........................................4????22????2????362???sin1????B1分...........................................5????33??标准文案.实用文档3?23Absin ba3?3a???. ,...........................7得分由正弦定理BsinAsin Bsin63???AB???AB,即,(II)因为22BA为锐角,所以. 为钝角3?sinA, 可知,由(I)32??632A?1?sin??cosA?1 ...........................................9分所以. ????33??63,cosB???sinB, 又...........................................10分33?????BA?cosA?B?cosC?cos????所以...........................................11分??...........................................12分??cosAcosB?sinAsinB??3636??????????3333??22.? 3...........................................13分(2016东城一模)(15)(本小题共13分)2????????coscosC?cos??BA?BAQ??解:(Ⅰ)??2C?45?0……3分BC?22Q AC?2,,22222?AB?AC?BC?2AC?BCcosC?(22)?2?82cos45?40?AB?2……7分?3)x??sin(2)(fx?,由(Ⅱ)24标准文案.实用文档??2?????2kk?2x??2x??2Z?k或解得,,3443?5?Z?k,k??x??kx?k?解得或,. 2112212424??x?x?(k?k)≥??kk?因为,当时取等号,211221663??x)f(时,相邻两交点间最小的距离为所以 . 当…………13分262015延庆一模)( 13分)15. (本小题满分?25 ?cos,解:(Ⅰ)52?253?22?)?1??1?2cos??2cos(…………………2分525?222?cosBC?2ABAB?BC??AC?3?2?5??25?4?2517? (5)分?AC?17……………………6分??5?? ???,???BAC?BCA,?ABC………………7(Ⅱ)分66ABBC2???4???15 9分……………………?sin)sin(?266?5?)?AB4sin(??,6??55???)(0,?4sin(??(?f),)分……………………10 66??55?)??(0,,66???5??????时,即时当362?)(f4…………………………13分的最大值为(2016西城一模)15.(本小题满分13分)标准文案.实用文档(1)解:因为,CB?3sinsinabc,得,由正弦定理cb?3??sinAsinBsinCπ22222及由余弦定理,,得A2bc?c??bcccosa??7?bb7a??A32bb22.,解得所以7?b?()?3b?33ππ2 ,)解:由,得(2?AC?B?332π.所以C?3sin?Csin() 331,即C3sin?sinC?Ccos2235,所以CcosC?sin223所以.tanC?5 (2014朝阳二模)15.(本小题满分13分)11??153bcS?sinAⅠ?sin?cS??3.)由解:(得,ABC?ABC?22345c?.所以??222?49523a??5??3??cos222Aa?b?c2?bccos,由得,3a?77 分................所以73?ab?sinBⅡ,(得,)由3sinAsinB2 33?sinB.所以14712?B?2sin?cos2B113 分.所以 (98)(东城一模)2015标准文案.实用文档海淀二模)(2015分)15)(共13(63A?cosa解:(Ⅰ)因为,2222a36b??c??a分………………3 所以. bc2262b?5c?因为,,20??340a?3a49?. 所以493a??a? 6分………………(舍). 解得:,或362?A?3?cos. (Ⅱ)由(Ⅰ)可得:36312?A?cos2A?2cos1分………………9 所以. 36?2b5c?a?3,,,因为2221?cba??Bcos?分………………11 所以.3ac2B?coscos2A分………………12 所以.ab??c因为,标准文案.实用文档?)?(0,A. 所以3)?B?(0,,因为?B?2?A. ………………13分所以)?A?(0,,另解:因为32??cosAsinA?1. 所以3263?. 由正弦定理得:sinB3322?sinB.所以32362sin2A?2???sinB?所以………………12分. 333c?b?a,因为 ??)(0,B?)A?(0,所以,. 32?B?2?A. 所以………………13分(2014顺义一模)?131?cos2Asin2A?1??)sin(2A?分————即5226???11??A0?Q?2??A??,666?????A???sin(2A)1A2???得分,由———73662标准文案.实用文档石景山期末)(2015 分).(本小题共1315?CED???CED .(Ⅰ)设在中,由余弦定理,得222CDEcos?CD??CDDE?DE??CE2 2分…………………2 4分.…………………=2(CD=-3舍去)得CDCD+-6=0,解得CD21?CEDsin?CED?分…………………在6 中,由正弦定理,得7 72???cos?)(0?,分(Ⅱ)由题设知…………………,所以873?2???AEB?,所以而3???222???(?coscos??=cos)cosAEB?sinsin333732112713?????cos??sin??=?分………………11. 147722222 74?BE?EAB?Rt 13分…………………在中,. AEBcos?(2015朝阳二模)1513 分).(本小题共.由正弦定理得:,所以中,因为解:(Ⅰ)在.,即,中,由余弦定理得:(Ⅱ)在.整理得,解得(舍负)标准文案.实用文档的高.于,则为梯形过点作.因为,所以,.在直角中,.即梯形的高为(2015丰台二模)15.(本小题共13分)14BCD??sinS??BC?CD解:(Ⅰ)因为,BCD?252?sin?BCD所以.5BCD?为锐角,因为5252??()cos?BCD?1分………………6 .所以55222BCD??cosBCDB?CD??2CD?BC BCD?(Ⅱ)在中,因为,4?DB所以.222BCCD?DB?因为,??90?CDB所以.ACD?所以为直角三角形.?30A?44AC?2CD?AC?.,所以分………………13,即因为2016海淀一模)(.解:(Ⅰ)15ADACACD??中,由正弦定理,有2分…………………在?sin?ADCsin BDBC BCD??有中,由正弦定理分…………………4 在,?sinsin?BDC BDCsin??sinBDC?ADC???π?ADC分因为…………………6所以,?sin1ACAD?? 7分…………………所以, 因为?3sin3BCDBππ????, (Ⅱ)因为,62标准文案.实用文档πsin3AC2??由(Ⅰ)得 (9)分π2BC3sin60?k3k,AC?2k,BC?,由余弦定理设,222ACB?ABBC?AC??BCcos?2AC?分…………………11π222cos??3kk?2?2k19?4k?9, ,得到代入331BC?k?,所以解得13分. …………………2015房山一模)( 13分)15.(本小题共?132………………2解:分(Ⅰ)∵xcos2?cos2xxx)?sin(2?)?2cos?x?1?sin2xf(22613?………………3分= xcos2?x?2sin)?sin(2x226?????????Z由 ) 5分Z)得,??k?x??(?2kx?2???2??kk(k?k63262???? 7 ∴的单调递增区间是分Z) ………………)(xf??kk?]([?,k63????1??(Ⅱ)∵,,?0?A?(fA)??22)?A??sin(2A?62666??5于是?2A?66?分∴……………10?A3ABC?3∵外接圆的半径为aR?2由正弦定理,得Asin3?3A?2Ra??32sin分……………13,22013石景山一模)(分)15.(本小题满分13?x?sin(2)(fx?x)cos2?解:(Ⅰ)6标准文案.实用文档???cos2sinx?cos2x?sin2xcos6633x??cos2sin2x分 (122)31)x2x?cos2?3(sin22?)?3sin(2x? 3分…………3?????kk??2x??+2+2令232??5??kx?+k+??分 (5)1212??5????)k??,+kZ+k()xf( 6的单调递增区间分函数…………. ??1212???31?)f(A)=A?sin(2(Ⅱ)由,,223??52???0?A???2AABC?A内角,由题意知因为,所以为3333??5???2A?A…………8分因此,解得.634ba?6?b…………10分由正弦定理,得,BAsinsin??26??Csin?B?A 12,由,可得由分,…………4343??23611…………13分∴.?2???s?absinC6?2422(2013朝阳二模)13分)(15)(本小题满分AAAA22cosA)sin???2cossinf(解:(Ⅰ)因为2222?)A?cosA?2sin(??sinA.4?A0??A为三角形的内角,所以,因为??????A??. 所以444标准文案.实用文档??3?2A?A??)Af(所以当时,………6分取得最大值,且最大值为,即. 424??0)sin(?0A?(A)?2sin(A??)f(Ⅱ)由题意知,所以.44???????0A???A?A??,所以又因为,所以.44444????C?B又因为.,所以123?sin6?ba Bsina3?3???b………….得,由正弦定理分13?BsinsinA Asinsin4东城一模)(2014 1513分).(共baB3cossinA?,解:⑴因为,?BAsinsinba.,所以3tanBsin=3cosBB=)π(0B?,.因为π=B .所以3π=B ,⑵因为32221a??cb ?cosB?,所以22ac 2?b,因为22,所以ac?2ac=?a4?c ca? 4?ac时,等号成立),所以(当且仅当1acS?,所以,3sinB?ABC△2ABC△.所以面积最大值为3(2013东城一模)13分)(15)(共BbsinA?3acos,解:(Ⅰ)因为Bcos3sinA?sinBsinA由正弦定理可得,ABC0?Asin中,,因为在△3tanB?. 所以??0B?又,??B所以.3标准文案.实用文档222Bcosca??2acb?,(Ⅱ)由余弦定理??B3?2b,因为,322ac?a?c12?所以.22ac2a?c?,因为12ac?.所以ac1232ca??时,当且仅当取得最大值.(2014丰台二模)标准文案.。