第12章 脉宽调制(PWM)逆变器

合集下载

pwm逆变器工作原理

pwm逆变器工作原理

pwm逆变器工作原理
PWM逆变器是一种将直流电源转换为交流电源的电子器件。

它的基本工作原理是通过一系列的开关操作,将直流电源转换为一系列的脉冲信号,然后再将这个脉冲信号转换成交流信号。

在PWM逆变器中,通常会使用一组开关器件,如晶体管或IGBT,来控制直流电源的通断。

这些开关器件会在一定的频率范围内开关,从而产生一个类似于正弦波的交流信号。

这个交流信号可以用来驱动电机、照明灯具、加热器等交流负载。

PWM逆变器的控制方式通常采用脉宽调制(PWM)技术。

这种技术通过控制开关器件的开关时间,来调节输出电压的频率和幅值。

通过调整PWM信号的占空比,可以控制输出电压的大小和频率,从而实现负载的控制和调节。

在PWM逆变器中,通常会使用高频变压器来将PWM信号转换成交流信号。

这个变压器通常具有多个线圈,可以将PWM信号转换成多个不同电压和频率的交流信号。

这些交流信号可以进一步处理和调节,以满足负载的需求。

总之,PWM逆变器的工作原理是通过一系列的开关操作,将直流电源转换成交流信号,并通过控制PWM信号的占空比来调节输出电压的大小和频率,以满足负载的需求。

pwm脉宽调制原理

pwm脉宽调制原理

pwm脉宽调制原理
PWM脉宽调制原理
PWM,即脉宽调制(Pulse Width Modulation),是一种通过控制信号的脉冲宽度来实现模拟信号的技术。

在电子领域中,PWM技术被广泛应用于控制系统、变频调速、电源供应等方面。

PWM脉宽调制原理基本上可以概括为通过改变信号的占空比来控制输出信号的电压或功率。

在PWM脉宽调制中,信号的周期是固定的,而脉冲的宽度则根据控制信号的变化而改变。

通过控制脉冲的宽度,可以实现对输出信号的精确控制。

通常情况下,信号的占空比被定义为脉冲的宽度与周期的比值,通常以百分比表示。

PWM脉宽调制技术的原理可以简单地解释为:当信号的占空比增大时,输出信号的电压或功率也会随之增大;反之,当信号的占空比减小时,输出信号的电压或功率也会相应减小。

因此,通过改变信号的占空比,可以实现对输出信号的精确控制。

在实际应用中,PWM脉宽调制技术被广泛应用于电子设备中,如直流电机的调速控制、逆变器的控制、电源供应的调节等。

通过PWM 技术,可以实现对电子设备的精确控制,提高系统的稳定性和效率。

除了在电子设备中的应用外,PWM脉宽调制技术还被广泛应用于照明领域。

通过调节LED灯的PWM信号,可以实现对灯光的亮度和
颜色的精确控制,实现节能和环保的效果。

总的来说,PWM脉宽调制技术是一种非常有效的控制技术,可以广泛应用于电子设备、照明领域等各个领域。

通过控制信号的脉冲宽度,可以实现对输出信号的精确控制,提高系统的稳定性和效率。

PWM技术的不断发展和应用将为电子领域带来更多的创新和发展。

pwm逆变电路原理

pwm逆变电路原理

pwm逆变电路原理
PWM逆变电路是一种经典的功率电子变换电路,用于将直流
电源转换为可控的交流电源。

其原理基于脉宽调制(Pulse Width Modulation)技术,通过控制开关器件的导通时间与断
开时间的比例,可以实现对输出电压的调节。

PWM逆变电路的核心部分是一个全桥逆变器,由4个可控开
关器件组成。

通常,这些开关器件是MOSFET或IGBT,用于控制电流的通断。

在正半周中,两个对角的开关器件同时导通,使得直流电源的正负极与交流负载的两个端点相连接;而在负半周中,另外两个对角开关器件引导电流,实现相反的连接。

通过频繁切换开关状态,可以在负载中产生高频的脉冲信号。

PWM逆变电路的输出电压由导通时间与断开时间的比例决定。

当导通时间较长时,输出电压会接近正电压;反之,断开时间长,则输出电压近似为负电压。

通过调节导通与断开时间的比例,可以实现对输出电压幅值的控制。

此外,通过改变开关频率,还可以调节输出电压的频率。

为了实现精确的输出电压调节,PWM逆变电路通常配备一个
控制电路。

该控制电路可以监测输出电压,并与参考电压进行比较,以生成适当的控制信号。

控制信号通过适当驱动开关器件的导通与断开,从而实现输出电压的稳定调节。

总之,PWM逆变电路利用脉宽调制技术和全桥逆变器构成,
通过控制开关器件的导通与断开时间,实现对直流电源转换为可控的交流电源,并通过控制电路实现对输出电压的精确调节。

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM(Pulse Width Modulation)逆变电路是一种通过改变电压或电流波形的占空比来实现电能转换的技术。

它广泛应用于各种电源逆变器、交流电机驱动器、太阳能逆变器、UPS(不间断电源系统)等领域。

本文将介绍PWM逆变电路的基本原理、常见的控制方法以及应用实例。

PWM逆变电路的基本原理是通过将直流电压转换为交流电压,使得输出波形的频率和幅值可以根据需求进行调节。

其核心部件是逆变器,通常由开关元件(如功率开关管)和输出变压器组成。

逆变器通过快速开关开关闭合,产生一系列电压脉冲,然后经过输出变压器将直流电压转换为交流电压。

PWM逆变电路的控制方法有多种,常见的包括:固定频率脉宽调制(Fixed Frequency Pulse Width Modulation,FFPWM)、固定频率电压脉宽调制(Constant Frequency Voltage Pulse Width Modulation,CFVPWM)、固定频率电流脉宽调制(Constant Frequency Current Pulse Width Modulation,CFCPWM)以及多重脉冲脉宽调制(Multiple Pulse Width Modulation,MPWM)等。

固定频率脉宽调制是PWM逆变电路中最简单的控制方法之一,其特点是输出频率和开关频率固定,可以通过调节脉宽来实现输出波形的幅值控制。

固定频率电压脉宽调制在固定频率脉宽调制的基础上增加了电压控制环节,通过反馈控制使输出电压达到设定值。

固定频率电流脉宽调制则在固定频率脉宽调制的基础上增加了电流控制环节,通过反馈控制使输出电流达到设定值。

多重脉冲脉宽调制是在固定频率脉宽调制的基础上引入多个脉冲周期,通过交错控制来改善输出波形的谐波含量。

1.电力电子逆变器:将直流电能转换为交流电能。

通过控制PWM逆变电路的开关元件,可以实现交流电压的频率和幅值的调节,广泛应用于电力系统、电动机驱动器及电力调速系统等。

pwm逆变原理

pwm逆变原理

pwm逆变原理
PWM(Pulse Width Modulation)逆变原理是一种常见的控制技术,广泛应用于电力电子领域。

它通过周期性地改变波形的脉冲宽度来控制电力输出。

PWM逆变的基本原理是将直流电源通过开关器件(如MOSFET或IGBT)进行高频切换,从而产生一个接近正弦波形的交流电压输出。

这种高频切换的脉冲信号可以通过改变脉冲的占空比来调节输出电压和电流的大小。

在PWM逆变电路中,一个重要的元件是PWM控制器。

PWM控制器通过测量输出信号的电压或电流,并与设定值进行比较,然后调整开关器件的工作状态,以使输出保持在设定值附近。

常用的PWM控制策略有基于单脉冲宽度调制(SPWM)和三角波调制(TPWM)。

在SPWM控制策略中,PWM控制器根据输出信号与设定值的差异来调整脉冲宽度,以维持输出电压的稳定性。

具体来说,PWM控制器会比较输出信号与参考信号(通常为一个正弦波形)之间的差异,并通过调整脉冲的宽度来控制开关器件的开关时间,以调节输出电压。

TPWM控制策略则是基于一个三角波形和一个参考信号的比较。

PWM控制器会通过比较三角波形和参考信号的相对位置,来决定开关器件何时进行切换。

通过调整三角波的周期和幅值,可以实现输出电压的调节。

PWM逆变器广泛应用于各种领域,包括交流电机驱动、太阳能发电系统、UPS电源以及电力调制等。

它具有高效率、快速响应、输出电压可调、输出电流可控等优点。

总之,PWM逆变原理通过脉冲宽度的调制来实现电力输出的控制。

它是一种有效的电力电子技术,在现代工业和电子设备中扮演着重要的角色。

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM逆变电路是一种将直流电能转换为交流电能的电路。

它通过以一定的频率和变化占空比的脉冲宽度调制信号,使得输入的直流电压经过逆变器变换后,输出成为一定频率和幅值可调的交流电压。

PWM逆变电路主要用于交流传动,太阳能发电系统,UPS等领域。

PWM逆变电路的基本结构包括直流输入电源、逆变器和输出滤波电路。

其中,直流输入电源将直流电压提供给逆变器,逆变器利用PWM技术将直流电压转换为交流电压,输出滤波电路对逆变器输出的脉冲波进行滤波,得到平滑的交流电压输出。

脉宽调制控制是最常用的PWM逆变电路控制方法。

它通过改变逆变器输入脉冲信号的占空比,控制逆变器输出交流电压的幅值。

具体实现方法是利用比较器将一个三角波信号与一个参考电压进行比较,产生一个PWM波形信号。

这个PWM波形信号的脉宽由比较器输出的高低电平确定,通过改变三角波信号的频率和参考电压的大小,可以改变脉冲宽度从而控制逆变器输出电压的幅值。

频率调制控制是通过改变逆变器输入脉冲信号的频率,控制逆变器输出交流电压的频率。

与脉宽调制控制不同,频率调制控制中,逆变器输出的脉冲宽度保持不变。

具体实现方法是通过改变比较器的阈值电压,或者改变三角波信号的频率,从而改变逆变器输出信号的频率。

值得注意的是,PWM逆变电路的控制方法还可以根据需要,对脉宽调制控制和频率调制控制进行组合,以实现更复杂的控制策略。

总结起来,PWM逆变电路是一种将直流电能转换为交流电能的电路,其控制方法主要有脉宽调制控制和频率调制控制两种。

通过调整脉宽和频率,可以实现对逆变器输出交流电压幅值和频率的精确控制。

脉冲宽度调制(PWM)技术原理

脉冲宽度调制(PWM)技术原理

一、PWM技术原理由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PwM技术。

PwM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。

采用PwM方式构成的逆变器,其输人为固定不变的直流电压,可以通过PwM技术在同一逆变器中既实现调压又实现调频。

由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。

又因为集凋压、调频于一身,所以调节速度快、系统的动态响应好。

此外,采用PwM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。

把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比γ为此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。

二、正弦波脉宽调制(sPwM)1.sPwM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。

各矩形脉冲的宽度自可由理论计算得出,但在实际应用中常由正弦调制波和三角形载波相比较的方式来确定脉宽:因为等腰三角形波的宽度自上向下是线性变化的,所以当它与某一光滑曲线相交时,可得到一组幅值不变而宽。

度正比于该曲线函数值的矩形脉冲。

若使脉冲宽度与正弦函数值成比例,则也可生成sPwM波形。

在工程应用中感兴趣的是基波,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m脉宽δi有线性关系在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。

逆变器的PWM调制技术

逆变器的PWM调制技术
电力电子技术的基本概况
逆变电路
逆变器的PWM调制技术
1.1 PWM调制技术的基本思想
脉宽调制技术
在不改变电路结构的前提 下使输出电压的波形明显 得到改善 。
调制
在原有方波输出的电平中对称地增加若干个“电压 缺口”,以模拟多重化技术中“阶梯”数的变化, 使之在保证基波输出幅值的前提下,达到减少或消 除部分谐波的目的。
直流–交流逆变电路中的控制信号uctr可以是恒定 的或随时间变化,该调制信号的输出是这个调制 信号与开关频率恒定的三角波进行比较后产生。 SPWM通过改变占空比实现控制,它不仅可有效 的控制平均直流输出电压的幅值,而且还能根据 调制信号的频率来控制逆变器的基波输出频率。
三角波utri的频率
U
fs 载波频率
脉宽调制
逆变电路
改变输出电平的宽度,或改变电 压缺口的宽度,且这种缺口是由 输出的电平幅值直接跳变到零, 或直接跳变到负值的调制。
脉宽调制
PWM调制
PWM调制可使输出电压的谐波次数由较低的频段移 到较高的频段,高频滤波较容易实现,成本降低, 控制更加灵活。
逆变电路
利用半个周波
内的三个控制度, a1a2a3 1.0
0.4 0.2 0.0
1
逆变电路
Uctr
Utri 1/fs
t
t=0 UA0_1
Ud /2t -Ud /2 Uctr<Utri TA -: 通,TA+: 断 Uctr>Utri TA+: 通,TA-: 断
mf为奇数
ma=0.8 , mf=15 mf+2 2mf+1
h×f1 次谐波 3mf+2
mf
2mf
☹缺 点:PWM调制技术会产生很大的谐波分量。 ☺优点:PWM调制技术电路比较简单,所需开关

pwm逆变器原理

pwm逆变器原理

pwm逆变器原理
PWM逆变器原理是一种以脉冲宽度调制(PWM)技术为基础的电力转换器。

其主要工作原理如下:
1. 输入电源:PWM逆变器通常接收直流电源作为输入。

这个直流电源可以是电池、太阳能电池等。

2. 直流到交流转换:逆变器首先将直流电源转换为交流电。

通常情况下,逆变器通过一个开关电路(如MOSFET或IGBT)来控制输入电压的开关状态。

3. PWM调制:逆变器的核心部分是一个PWM调制模块。

PWM调制是通过在一段时间内改变开关电路的开关状态,来控制相应的输出电压。

根据需要,PWM调制模块可以产生多种不同的脉冲宽度和频率。

4. 输出滤波:逆变器输出的交流电通常会有一些脉冲成分,为了使输出电压更接近纯正弦波形,需要对输出进行滤波。

这通常通过一个滤波电路来实现,包括电感、电容等元件,以减小脉冲成分。

5. 输出负载:逆变器输出的交流电可以用来驱动各种负载,如电动机、照明灯、家电等。

总之,PWM逆变器的工作原理是将直流电源转换为可调控的交流电源,通过PWM调制和输出滤波,使其输出电压具有所需的波形和电压级别,以满足不同的应用需求。

第12章脉宽调制逆变器

第12章脉宽调制逆变器

流电压。改变触发脉冲f1频率 就改变输出u0的频率
若f1> f0 , 即在导通晶闸管电流未下降到零时,要触发另一晶 闸管导通,那么就必须采用强迫关断法。
f1触发脉冲频率, f0 RLC串联电路的固有频率。
2、桥式串联逆变电路
当VT1VT4导通时,电源Ud供电,在RLC电路中产生振荡电流, 当i0=0时, VT1VT4自然关断。当VT2VT3导通时,在RLC电路中 产生的振荡电流其方向相反,当ቤተ መጻሕፍቲ ባይዱ0=0时, VT2VT3自然关断。
2、电流源型:在直流回路中串入大电感以吸收无功 功率。故直流电源呈高阻抗,输出电流接近矩形波, 属于电流强制方式。由于直流中间回路电流Id的方向 是不变的,因此无需设反馈二极管。
12.2 晶闸管逆变器
一、串联逆变器 1、串联逆变器电路 组成及工作原理
触发VT1,L1、C、R振荡充电。 当振荡至iT1=0时,VT1管自然关 断。然后触发VT2管导通,电 容C通过L2和R振荡放电,当放 电电流等于0时,VT2管自然关 断。由于L1=L2,在VT1和VT2 分别导通时的振荡频率是相同 的,则负载电阻上获得的是交 换向电感 换向电容与R串联
t2
t3
t4
U AB U d
t1 t2 t3
t4
2 T0

T0 / 2
0
2 u AB dt
D1、 D4 输出矩形波交流电压有效值
二、单相桥式逆变器的电压控制 1、单脉冲宽度调制:在单脉冲宽度调制控制中,每半 周中只有一个脉冲且改变脉冲宽度控制逆变器输出电压。
三角波与基准信号比较产生脉冲驱动信号
为了限制瞬时过 电流di/dt,在四 个晶闸管回路中 分别串联了四个 小电感。

PWM逆变器

PWM逆变器

PWM逆变器主电路及输出波形
VT1/VT4 VT3/VT6 VT5/VT2
Uru
Urv
Urw
UC
归纳
调制信号正极性脉冲为上桥臂导通触发脉冲,负极 性脉冲为下桥臂导通触发脉冲。
逆变器输出的相电压与逆变桥对应相调制脉冲串 一致。
逆变器输出的线电压与逆变桥对应两相调制脉冲 串的逻辑与一致即 U AB K (vg1 vg6 vg3 vg4 ) 。
2、电流滞环跟踪PWM(CHBPWM)控制技术 ---期望逆变器输出电流为正弦波
在电机中,实际需要保证的应该是正弦波 电流,因为在交流电机绕组中只有通入三相平 衡的正弦电流才能使合成的电磁转矩为恒定值, 不含脉动分量。
对电流实行闭环反馈,并以电流滞环跟踪 形成触发脉冲信号的方法,称为电流滞环跟踪 PWM(CHBPWM---- Current Hysteresis Band PWM )控制技术。
滞环电流跟踪PWM方法有下述优点: 简单; 动态响应快; 直接限制开关器件峰值电流; 对直流电压Ud 的波动不敏感,滤波电容可
以取小。
各种新的脉宽调制法层出不穷。再比如:
3、瞬时空间矢量控制法(又称磁场轨迹PWM法、 或称电压空间矢量PWM)
即SVPWM调制技术,通过这种控制方法, 使异步电动机定子绕组产生的磁场接近圆形轨 迹。
(3)分段同步调制方式
实际应用中,多采用分段同步调制方式,它集
同步和异步调制方式之所长,而克服了两者的不 足。在一定频率范围内采用同步调制,以保持输 出波形对称的优点,在低频运行时,使载波比分 级地增大,以采纳异步调制的长处,这就是分段 同步调制方式。具体地说,把整个变频范围划分 为若干频段,在每个频段内都维持N 恒定,而对 不同的频段取不同的N 值,频率低时,N 值取大 些。采用分段同步调制方式,需要增加调制脉冲 切换电路,从而增加控制电路的复杂性。

第十二章脉宽调制PWM逆变器

第十二章脉宽调制PWM逆变器
1)逆变电路的分类 —— 根据直流侧电源性质的不同
直流侧是电压源
电压型逆变电路——又称为电压源
型逆变电路 Voltage Source Type Inverter-VSTI
直流侧是电流源
电流型逆变电路——又称为电流源
型逆变电路 Current Source Type Inverter-CSTI
12.2 电压型逆变电路
2)电压型逆变电路的特点
(1)直流侧为电压源或 并联大电容,直流侧电压 基本无脉动。 (2)输出电压为矩形波, 输出电流因负载阻抗不同 而不同。
(3)阻感负载时需提供 无功功率。为了给交流侧 向直流侧反馈的无功能量 提供通道,逆变桥各臂并 联反馈二极管。
图5-5 电压型全桥逆变电路
单相桥式逆变器的电压控制
S1~S4是桥式电路的4个臂,由电力电子器件及辅 助电路组成。
uo
Ud S1 io 负载 S3 uo S 4 io t1 t2 t
S2 a)
b)
图5-1 逆变电路及其波形举例
12.3 逆变电路的基本工作原理
S1、S4闭合,S2、S3断开时,负载电压uo为正。 S1、S4断开,S2、S3闭合时,负载电压uo为负。
单脉冲宽度调制 多脉动冲宽度调制 正弦脉宽调制 改进型正弦脉宽调制 相位移控制
5.2.1 单相电压型逆变电路
阻感负载时,还可采用移 相得方式来调节输出电压 -移相调压。
V3的基极信号比V1落后q (0< q <180 °)。V3、 V4的栅极信号分别比V2、 V1的前移180°-q。输 出电压是正负各为q的脉 冲。 改变q就可调节输出电压。
图5-7 单相全桥逆变 电路的移相调压方式
u G1 O u G2 O u G3 O u G4 O uo io O a)

pwm逆变电路的工作原理

pwm逆变电路的工作原理

pwm逆变电路的工作原理PWM逆变电路是一种电力电子变换器,它将直流电转换为交流电。

本文将详细介绍PWM逆变电路的工作原理,包括PWM模块及逆变模块两部分。

一、PWM模块PWM模块主要用于产生高频脉冲信号,控制逆变电路中开关器件的导通与截止,使得输出的交流电的电压大小和频率能够得到控制。

PWM 模块一般由比较器、锯齿波发生器、计数器和误差放大器组成。

锯齿波发生器产生一定频率的锯齿波,比较器将锯齿波与一定幅值的参考电压进行比较,所得到的误差信号经过误差放大器进行放大后控制开关器件的导通与截止。

通过调整参考电压和误差放大器的增益,可以实现PWM信号的占空比和频率的控制。

二、逆变模块逆变模块主要是指逆变桥,它由四个开关器件组成,作为PWM信号的控制对象。

在PWM信号的控制下,逆变桥沟通直流电源和负载,实现直流电的变换为交流电。

逆变桥的具体工作原理如下:1.当PWM信号占空比为100%,即输出高电平信号时,S1和S4导通,S2和S3截止,负载两端电压大小等于直流电源电压,符合正弦波的形式。

2.当PWM信号占空比为50%,即输出50%占空比的PWM信号时,S1和S4以及S2和S3交替导通和截止,平均电压大小等于直流电源电压的一半,输出电压具有矩形波形。

3.当PWM信号占空比小于50%,即输出低电平信号时,S1和S4导通,S2和S3截止,负载两端电压大小为负的直流电源电压,即负载两端电压完全相反,呈现负的正弦波形式。

通过以上三种情况的组合,就可以得到任意大小和频率的交流电输出。

总结PWM逆变电路是一种高效的电力电子变换器,通过PWM模块产生高频脉冲信号,控制逆变桥的开关器件的导通与截止,实现直流电的变换为交流电,具有调节范围广、输出电压稳定、可靠性高等优点,广泛应用于工业自动化、电力电子、数码产品等领域。

PWM脉宽调制原理

PWM脉宽调制原理

PWM脉宽调制,是靠改变脉冲宽度来控制输出电压,通过改变周期来控制其输出频率。

而输出频率的变化可通过改变此脉冲的调制周期来实现。

这样,使调压和调频两个作用配合一致,且于中间直流环节无关,因而加快了调节速度,改善了动态性能。

由于输出等幅脉冲只需恒定直流电源供电,可用不可控整流器取代相控整流器,使电网侧的功率因数大大改善。

利用PWM逆变器能够抑制或消除低次谐波。

加上使用自关断器件,开关频率大幅度提高,输出波形可以非常接近正弦波。

PWM变频电路具有以下特点:1. 可以得到相当接近正弦波的输出电压2. 整流电路采用二极管,可获得接近1的功率因数3. 电路结构简单4. 通过对输出脉冲宽度的控制可改变输出电压,加快了变频过程的动态响应现在通用变频器基本都再用PWM控制方式,所以介绍一下PWM控制的原理PWM基本原理脉宽调制(PWM)。

控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。

也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次斜波谐波少。

按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。

在采样控制理论中有一个重要的结论,即冲量相等而形状不同的窄脉冲加在具有惯性的环节上,其效果基本相同。

冲量既指窄脉冲的面积。

这里所说的效果基本相同。

是指该环节的输出响应波形基本相同。

如把各输出波形用傅里叶变换分析,则它们的低频段特性非常接近,仅在高频段略有差异。

根据上面理论我们就可以用不同宽度的矩形波来代替正弦波,通过对矩形波的控制来模拟输出不同频率的正弦波。

例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。

这些脉冲宽度相等,都等于∏/n ,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。

如果把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积(即冲量)相等,就得到一组脉冲序列,这就是PWM波形。

脉宽调制逆变的基本原理

脉宽调制逆变的基本原理

脉宽调制逆变的基本原理脉宽调制逆变(Pulse Width Modulation,简称PWM)是一种将直流电源转换为交流电源的技术,它的基本原理是通过控制开关器件的导通时间来调节输出电压的脉宽比,从而实现输出电压的控制。

下面将详细介绍PWM逆变的基本原理。

PWM逆变的原理主要包括以下几个方面:开关器件、脉宽调制器、滤波器和输出负载。

1. 开关器件:PWM逆变电路通常由开关管控制电源的导通和截止,常见的开关器件有MOSFET(金属-氧化物-半导体场效应晶体管)和IGBT(绝缘栅双极性晶体管)等。

开关器件的导通和截止通过脉宽调制器产生的PWM信号控制。

2. 脉宽调制器:脉宽调制器主要用于产生PWM信号,它根据输入的控制信号和参考信号进行比较,然后通过比较结果控制开关器件的导通和截止时间,从而改变输出电压的脉宽比。

脉宽调制器常用的方法包括:基于模拟比较的PWM调制法和基于数字控制的PWM调制法。

2.1 基于模拟比较的PWM调制法:基于模拟比较的PWM调制法是将输入的控制信号与参考信号进行比较,通过比较结果操控开关器件的导通和截止。

比较器的输出信号可以通过RC滤波电路等方式滤掉高频噪声,得到平滑的PWM信号。

2.2 基于数字控制的PWM调制法:基于数字控制的PWM调制法是将输入的控制信号和参考信号转换成数字信号,通过数字控制器进行比较和处理,并通过数字-模拟转换器(Digital-to-Analog Converter,DAC)将数字信号转换为模拟PWM信号。

3. 滤波器:滤波器用于平滑PWM信号,将其转换为连续的电压波形。

PWM信号的脉冲宽度改变频率很高,如果不经过滤波处理,输出电压会出现很大的纹波。

常见的滤波器包括:RL滤波器和LC滤波器。

RL滤波器由电阻和电感构成,主要用于去除PWM信号的高频成分;LC滤波器由电感和电容构成,可以实现更好的滤波效果,用于去除PWM信号的高频成分和低频成分,使输出电压更加平滑。

三相pwm逆变器工作原理

三相pwm逆变器工作原理

三相pwm逆变器工作原理
三相PWM逆变器是一种将直流电源变换为三相交流电源的电子装置。

它采用了PWM(脉宽调制)技术来控制输出的电压和频率。

工作原理如下:
1. 输入直流电源通过整流电路进行滤波,将直流电源转换为稳定的直流电压。

2. 控制电路根据输入的控制信号,通过三相桥臂中的IGBT (绝缘栅双极型晶体管)或MOSFET(金属氧化物半导体场效应晶体管)开关元件来控制电流的流向和大小。

3. 控制电路根据输入的控制信号生成PWM信号,将其发送给三相桥臂中的开关元件,以控制每个开关元件的导通时间和断开时间。

4. 通过不同的PWM信号控制方式,可以调整输出电压的幅值和频率。

一般情况下,采用空间矢量调制(SVPWM)方式,将三相PWM信号转换成一个类似正弦波的输出电压。

5. 输出的交流电压通过滤波电路平滑处理,得到稳定的三相交流电源。

三相PWM逆变器的工作原理可以通过调节控制信号的幅值和频率,实现对输出电压的精确控制。

它在工业应用中广泛应用于变频调速、电力传输和分布式发电等领域。

pwm的逆变原理

pwm的逆变原理

pwm的逆变原理
PWM逆变原理
PWM逆变原理是指通过对PWM信号进行逆变操作,将直流
电源转换为交流电源的一种技术。

在实际应用中,逆变器常被用于太阳能发电系统、电动汽车、UPS电源等领域。

PWM逆变原理的基本思想是利用高频开关管将直流电源的电
量分时段快速开关,通过改变开关管导通比例及时序来控制输出电压的波形。

具体实现时,需要先将直流电源经过整流电路获得稳定的直流电压,然后经过PWM控制电路控制开关管的
导通与断开。

在逆变过程中,PWM信号的高电平和低电平分别控制了开关
管的导通和断开。

高电平时,开关管导通,直流电源输出给负载;低电平时,开关管断开,直流电源不与负载相连接。

通过调整PWM信号的高电平和低电平的占空比,可以控制输出电
压的大小以及频率。

逆变器的输出电压可以是单相交流电、三相交流电,甚至是多相交流电,具体配置根据不同应用场景而定。

逆变器不仅可以将直流电源转变为交流电源,还可以实现对输出电压的调节,满足不同负载要求。

总而言之,PWM逆变原理是通过对PWM信号进行逆变操作,将直流电源转换为交流电源。

通过对PWM信号的高电平和低
电平进行控制,可以实现对输出电压的调节。

三相逆变器调制

三相逆变器调制

三相逆变器调制1. 介绍三相逆变器是一种将直流电能转换为交流电能的装置。

它通常由六个功率开关管和相关控制电路组成,可以实现将直流电源转换为三相交流电源。

逆变器在可再生能源领域应用广泛,如太阳能发电和风力发电系统中。

调制技术是控制逆变器输出波形的关键。

三相逆变器调制技术包括脉宽调制(PWM)和正弦波调制(SPWM)。

本文将详细介绍三相逆变器的调制原理、常用的PWM和SPWM调制方法以及它们的优缺点。

2. 三相逆变器的调制原理三相逆变器的调制原理基于两个基本概念:多级切换和合成波形控制。

多级切换是指通过控制功率开关管的导通和关断来实现输出波形的控制。

在三相逆变器中,每个输出相都由两个功率开关管控制,通过不同的开关组合方式可以产生不同的输出波形。

合成波形控制是指通过对各个输出相进行合理组合,使得输出波形接近所需的交流电源波形。

通过合成波形控制,可以实现对输出电压幅值、频率和相位的精确控制。

3. 脉宽调制(PWM)脉宽调制是一种常用的三相逆变器调制技术。

它通过改变功率开关管导通和关断的时间比例,控制输出电压的幅值。

脉宽调制有多种实现方式,其中最常见的是基于三角波比较器的脉宽调制。

该方法通过将一个固定频率、可变幅值的三角波与一个固定幅值的正弦波进行比较,得到一个PWM信号。

具体步骤如下: 1. 产生一个固定频率、可变幅值的三角波。

2. 产生一个固定幅值的正弦波。

3. 将三角波与正弦波进行比较。

4. 根据比较结果控制功率开关管的导通和关断。

脉宽调制可以实现精确控制输出电压幅值,并且具有较好的谐波性能。

然而,由于采用了离散化控制方法,其输出电压存在一定程度上的失真。

4. 正弦波调制(SPWM)正弦波调制是另一种常用的三相逆变器调制技术。

它通过改变正弦波的频率和相位,控制输出电压的幅值、频率和相位。

正弦波调制的基本思想是将所需的交流电源波形分解为多个基本频率的正弦波,并通过控制每个基本频率正弦波的幅值、频率和相位来合成所需的交流电源波形。

电力电子技术中的PWM调制技术是什么

电力电子技术中的PWM调制技术是什么

电力电子技术中的PWM调制技术是什么在电力电子技术领域中,脉宽调制(PWM)技术是一种常用的调节电压或电流的方法。

PWM技术通过改变电压或电流的占空比(即高电平与总周期的比值)来实现对输出的调整。

本文将介绍PWM调制技术的基本原理及其应用。

一、PWM调制技术的基本原理PWM调制技术的基本原理是通过调节信号的脉冲宽度来控制输出电压或电流的大小。

PWM信号通常由一个固定频率的基准信号和一个可变宽度的调制信号叠加而成。

根据调制信号的宽度,可以将基准信号分为高电平和低电平两部分,从而实现对输出信号的控制。

PWM调制技术的原理可以通过以下公式来表示:V_avg = (D/T) * V_ref其中,V_avg表示输出电压(或电流)的平均值,D表示调制信号的脉冲宽度,T表示基准信号的周期,V_ref表示基准电压(或电流)。

通过调整调制信号的占空比D/T,可以实现对输出信号的精确控制。

当D/T=0时,输出信号的平均值为0;当D/T=1时,输出信号的平均值等于基准信号的幅值。

通过改变D/T的值,可以在这两个极限之间调节输出信号的大小。

二、PWM调制技术的应用1. 电力转换器在电力转换器中广泛应用PWM调制技术。

通过PWM技术,可以精确控制电力转换器的输出波形,以满足不同的需求。

例如,在直流-交流变换器(DC-AC)中,PWM技术可以用来实现对输出交流电压的频率和幅值的调节。

在交流-直流变换器(AC-DC)中,PWM技术可以用于实现对输出直流电压的稳定控制。

2. 变频驱动器PWM调制技术也被广泛应用于变频驱动器中。

变频驱动器通过调节电机的频率和电压,实现对电机转速的控制。

PWM技术可以精确地控制电机供电的电压和频率,从而实现对电机转速的调节。

这种调制方法可以提高电机的效率和响应速度。

3. LED调光在LED照明领域,PWM调制技术被用于实现LED的调光。

通过改变PWM信号的占空比,可以控制LED的亮度。

由于LED的亮度与电流的关系是非线性的,PWM调制技术可以提供更精确的亮度控制,而且可以降低功耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Id
2
1
iVT
wt
1
iVT
Id
2
wt
a)
图2-45 单相全波电路的整流和逆变
电 动 机 输 出 电 功 率
2-4
2.7.1 逆变的概念
从上述分析中,可以归纳出产生逆变的条件
有二:
有直流电动势,其极性和晶闸管导通方向一致, 其值大于变流器直流侧平均电压。 晶闸管的控制角a > /2,使Ud为负值。
EM Ce n
(2-113)
(2-114) (2-115)
3X Id B (R +R + 2 ) C B M e a1 a2 a3 I
转速与电流的机械特性关系式为
n 1 . 17 U 2 cos a Ce R I d U Ce
n
其机械特性是一组平行的直线,其斜 率由于内阻不一定相同而稍有差异。
2-15
2.8.1
工作于整流状态时
U d E M R I d U
此时,整流电路直流电压的平衡方程为 (2-112)
式中, R
EM
R I d
RB RM
3X B 2

为电动机的反电动势 负载平均电流Id所引起的各种电压降,包括:
– 变压器的电阻压降 I d R B – 电枢电阻压降 I d R M – 由重叠角引起的电压降 3 X B I d ( 2 )
2-11
2.7.3 逆变失败与最小逆变角的限制
g —— 换相重叠角的确定:
1) 查阅有关手册 举例如下:
整流电压 整流电流 变压器容量 短路电压比Uk% 220V 800A 240kV。A 5%
g
15~20
2) 参照整流时g 的计算方法
cos a - cos( a g ) Id X
B
2 U 2 sin
逆变时允许采用的最小逆变角b 应等于
bmin=d +g+q′
(2-109)
d ——晶闸管的关断时间tq折合的电角度
tq大的可达200~300ms,折算到电角度约4~5。
g —— 换相重叠角
随直流平均电流和换相电抗的增加而增大。
q′——安全裕量角
主要针对脉冲Leabharlann 对称程度(一般可达5)。值约取为10。
调节a 角,即可调节电动机的转速。
O a1<a2<a3
d 图2-49 三相半波电流连续时以 电流表示的电动机机械特性
2-17
2.8.1
工作于整流状态时
2) 电流断续时电动机的机械特性
当负载减小时,平波电抗器中的电感储能减小,致使电流不 再连续,此时其机械特性也就呈现出非线性。
当Id减小至某一定值Id min以后,电流变为断续,这个 E 0是不存在 的,真正的理想空载点远大于此值。 E
n b '1 b '2 b '3 b '4
1 C
(U d 0 cos b I d R )
n 正组变流器
(2-123)
a 增大方向 b 增大方向
Id
反组变流器e
b '增大方向
a1 a2 a3 a4 a =b =
2
a '= b '= 2
a '增大方向
a '4 a '3 a '2
a '1
有源逆变电路——交流侧和电网连结。
应用:直流可逆调速系统、交流绕线转子异步电动机串级调速 以及高压直流输电等。 无源逆变电路——变流电路的交流侧不与电网联接,而直接接到负 载,将在第5章介绍。
对于可控整流电路,满足一定条件就可工作于有源逆 变,其电路形式未变,只是电路工作条件转变。既工 作在整流状态又工作在逆变状态,称为变流电路。
工作于有源逆变状态时
d M d
1) 电流连续时电动机的机械特性
电流连续时的机械特性由 U - E I R 决定的。 E 逆变时由于U -U cos b , 反接,得
d d0
M
E M - (U d 0 cos b I d R )
(2-122)
因为EM=Cen,可求得电动机的机械特性方程式
a 60 电动机的实际空载反电动势都

2U 2 。
E0 ( 2U2)
断续区特性的近似直线
E0' a > 60 时为: 2U 2 cos(a - 3) 。(0.585U2)
主电路电感足够大,可以只考虑电流连续 O 段,完全按线性处理。 当低速轻载时,可改用另一段较陡的特性 来近似处理,等效电阻要大一个数量级。
3
b g
i VT
2
i VT
i VT
1
i VT
3
图2-47 交流侧电抗对逆变换相过程的影响 如果b <g 时(从图2-47右下角的波形中可清楚地看到),该通的晶闸 管(VT2)会关断,而应关断的晶闸管(VT1)不能关断,最终导致逆 变失败。 2-10
2.7.3 逆变失败与最小逆变角的限制
2) 确定最小逆变角bmin的依据
晶闸管发生故障,该断时不断,或该通时不通。
交流电源缺相或突然消失。 换相的裕量角不足,引起换相失败。
2-9
2.7.3 逆变失败与最小逆变角的限制
换相重叠角的影响:
当b >g 时,换相结束时,晶 闸管能承受反压而关断。
ud ua ub uc ua ub
O
p
wt b <g wt
a
id O i VT
2
b g b >g
sin( EM 2U 2 cos 7 6 1- e
sin( 7 6 e
- q c tan
- b q - ) - sin(
7 6
- b - )e
- q c tan
- q c tan
(2-124)
7 6 - b - )e
- q c tan
n
EM Ce
半控桥或有续流二极管的电路,因其整流电压ud 不能出现负值,也不允许直流侧出现负极性的电 动势,故不能实现有源逆变。 欲实现有源逆变,只能采用全控电路。
2-5
2.7.2三相桥整流电路的有源逆变工作状态
逆变和整流的区别:控制角 a 不同
0<a < /2 时,电路工作在整流状态。
/2< a < 时,电路工作在逆变状态。
b '增大方向 a 增大方向 b 增大方向
Id
理想空载转速上翘很多,机械特 性变软,且呈现非线性。 逆变状态的机械特性是整流状态 的延续。 纵观控制角 a变化时,机械特性得 变化。

m
(2-110)
g
根据逆变工作时 a
cos g 1 2U
2
-b
B
,并设 b
,上式可改写成
(2-111)
Id X
sin

m
这样, bmin一般取30~35。
2-12
2.8 晶闸管直流电动机系统
2.8.1 工作于整流状态时
2.8.2 工作于有源逆变状态时 2.8.3 直流可逆电力拖动系统
可沿用整流的办法来处理逆变时有关波形与参数 计算等各项问题。
把a > /2时的控制角用- a = b表示,b 称为逆变角。 逆变角b和控制角a的计量方向相反,其大小自b =0的 起始点向左方计量。
2-6
2.7.2三相桥整流电路的有源逆变工作状态
三相桥式电路工作于有源逆变状态,不同逆变角时的 输出电压波形及晶闸管两端电压波形如图2-46所示。
2-13
2.8 晶闸管直流电动机系统· 引言
晶闸管直流电动机系统——晶闸管可控整流装
臵带直流电动机负载组成的系统。
是电力拖动系统中主要的一种。 是可控整流装臵的主要用途之一。
对该系统的研究包括两个方面:
其一是在带电动机负载时整流电路的工作情况。
其二是由整流电路供电时电动机的工作情况。本
节主要从第二个方面进行分析。
u2 ua ub uc ua ub uc ua ub uc ua ub
O
wt b=
3
b=
4 u cb uab u ac u bc u ba u ca
b=
6 u cb u ab u ac u bc u ba u ca u cb u ab u ac u bc
u d u ab u ac u bc u ba u ca
Id
图2-50 电流断续时电动势的特性曲线 分界线
很小也可引起很大的转速变化。
随着a 的增加,进入断续区的电 流值加大。
a1 a2 a3 a4 a5
断续区 连续区
O
图2-51 考虑电流断续时
不同a 时反电动势的特性曲线 a 1 < a 2 <a 3 <60,a 5> a 4>60
Id
2-19
2.8.2
输出直流电流的平均值亦可用整流的公式,即 I
I VT Id 3 0 . 577 I d

U - E R
每个晶闸管导通2/3,故流过晶闸管的电流有效值为:
(2-106)
从交流电源送到直流侧负载的有功功率为:
Pd R I d E M I d
2
(2-107)
当逆变工作时,由于EM为负值,故Pd一般为负值, 表示功率由直流电源输送到交流电源。 在三相桥式电路中,变压器二次侧线电流的有效值为:

2U 2 cos Ce
- b q - ) - sin(
(2-125)
Id
3 2U 2 2 Z cos
[cos(
7 6
相关文档
最新文档