同济汽车操纵稳定性实验报告新终审稿)

合集下载

操纵稳定性试验总结

操纵稳定性试验总结

1 . 稳态回转试验测量的量:横摆角速度AngleRateDown,前进车速speed 侧倾角Angroll 汽车重心的侧偏角纵向的加速度侧向加速度试验方法:半径为15或20米的圆,缓慢而均匀的加速,直至侧向加速度达到6.5m/s2.记录整个过程,左右方向各三次。

实验开始时车身处于正中位置。

考核指标:转弯半径比特性、前后轴侧偏角差值特性、侧倾角特性(侧倾角大小)。

不足转向度U:U按前、后桥侧偏角差值与侧向加速度关系曲线上侧向加速度值为2m/s2处的平均斜率的一半计算。

车身侧倾刚度:拟合A y—(α1-α2)曲线,微分,取侧向加速等于2时的值。

.2. 转向轻便性:测量的量:转向盘作用力矩Torque、转向盘转角angel、前进车速speedforward、转向盘半径。

试验方法:驾驶员操纵转向盘,以10km/h的车速匀速沿双纽线绕8字行驶,车速稳定后开始记录方向盘转角和力矩。

汽车沿双纽线绕行一周为一次,全部试验进行三次。

考核指标:转向盘的最大作用力、力矩;转向盘(左、右)的最大转角、转向盘作用功、转向盘平均摩擦力、力矩;3. 转向回正性能测量的量:前进车速speedforward、横摆角速度AngrateDown(yaw)、侧向加速度Accellateral 试验方法:一定要使用转向盘转角开关,触发switch低速回正性能试验:在半径15米的圆上,调整车速使侧向加速度达到4m/s2,误差0.2m/s2;稳定车速开始记录,三秒后突然松开方向盘,至少记录松开后4S的汽车运动过程。

高速回正性能试验:驾驶车速为最高车速的70%,侧向加速度为2m/s2.其他同上。

试验左转、右转各三次考核指标:稳定时间、残留横摆角速度、横摆角速度超调量、横摆角速度自然频率、相对阻尼系数、横摆角速度总方差。

评分标准:按松开转向盘后3S时的残留横摆角速度绝对值Δr及横摆角速度总方差Er两项指标进行评价。

4. 脉冲测量的量:汽车前进车速speedforward、转向盘转角Angle、侧向加速度Accellateral、横摆角速度AngRatedown试验方法:以100km/h的车速直线行驶使其横摆角速度为0,然后给转向盘一个三角脉冲输入,试验时向左(或向右)转动转向盘,并迅速转会原处保持不动,记录全部过程,直至汽车回到直线行驶位置。

同济汽车操纵稳定性实验报告新

同济汽车操纵稳定性实验报告新

《汽车平顺性和操作稳定性》实验报告学院(系)汽车学院专业车辆工程(汽车)学生姓名同小车学号******同济大学汽车学院实验室2014年11 月1.转向轻便性实验实验目的驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。

操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。

转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。

实验仪器设备参量方向盘转矩方向盘转角车速仪器测力方向盘测力方向盘GPS测速仪实验条件试验车:依维柯实验场地与环境于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。

双扭线的极坐标方程见下,形状如下图实验当天天气晴好,无风,气温20度***在ψ=0 时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d ,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1 倍,并圆整到比此乘积大的一个整数来确定。

试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。

通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。

转向轻便型实验数据记录转向盘转向盘转向盘转向盘转向盘作转向盘转向盘平均车速最大作最大作右转最左转最用功平均摩平均摩(Km/h) 用力矩用力大转角大转角擦力矩擦力(J )(N ·m) (N) (°) (°) (N ·m) (N)第一周 6.49 31.6 274 -277 44.71 0.094 0.46 9.99 第二周7.16 34.9 281 -284 47.72 0.095 0.46 10.03 第三周 6.35 30.9 283 -289 45.43 0.092 0.45 10.09 均值 6.67 32.5 279.3 -283 45.96 0.094 0.46 10.04 方向盘转角-转矩曲线2.蛇形试验实验目的本项试验是包括车辆- 驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。

汽车操纵稳定性-稳态回转实验

汽车操纵稳定性-稳态回转实验

汽车操纵稳定性-稳态回转试验一、试验目的1、了解稳态回转实验方法和数据处理过程。

2、加深理解车辆参数变化对车辆操作稳定性的影响。

二、试验内容1、行驶圆周为15米,试验车绕着圆周旋转,直到车速传感器对准地上标识,锁定方向盘。

2、第一圈以最低稳定速度行驶,记录数据。

3、记录不同车速下的7组数据。

4、改变前轮气压,再测一次。

三、试验对象、仪器、条件四、试验数据胎压:F—0.35Mpa R—0.26Mpa胎压:F —0.2Mpa R —0.26Mpa五、 数据处理1)计算转弯半径比Ri/R0与侧向加速度ay由2i s R π= ;22(/)y i iv s t a R R ==可得Ri 与ay 如下表:由上表可得到两次试验的侧向加速度与转弯半径比的关系曲线,如下:2)计算汽车前后轴侧偏角差值(δ1-δ2)与侧向加速度ay 关系表格,并绘制曲线。

已知轴距L=2800mm ,12036011()2i L R R δδπ-=-则可作前后轴侧偏角差值(δ1-δ2)与侧向加速度ay关系曲线,如下:六、试验比较分析1、转弯半径比比较由两组试验的结果可见,第二次试验,前胎胎压降低后,相同车速下,转弯半径比要大于第一次试验。

这说明胎压减小后,汽车侧偏加重,轮胎侧向刚度降低。

2、侧向加速度ay与转弯半径比Ri/R0的关系比较可得,随着转弯半径的上升,胎压低的那组试验侧向加速度的上升没有第一次试验快。

这就说明,在相同的侧向加速度下,第二组的侧偏角要比第一组大,这是由于胎压低导致轮胎侧向刚度降低导致的。

从两次试验可得随侧向加速度得增大,转弯半径比也随之增大,且二者转弯半径比相差越大。

这说明随着车速上升,胎压小的车侧偏程度上升快。

3、前后侧偏角之差δ1-δ2与侧向加速度ay的关系由图可得,胎压低时,曲线上翘程度大,相同侧向加速度下,第二次试验前后侧偏角之差大于第一次试验,也说明了胎压降低,轮胎侧偏刚度下降且下降快。

汽车操纵稳定性的研究与评价

汽车操纵稳定性的研究与评价

汽车操纵稳定性的研究与评价随着汽车工业的不断发展,汽车性能得到了显著提升。

汽车操纵稳定性作为衡量汽车性能的重要指标之一,直接影响着驾驶者的操控感受和行车安全。

因此,对汽车操纵稳定性进行深入研究,提高其评价水平,对于提升汽车产品竞争力具有重要意义。

汽车操纵稳定性研究主要涉及车辆动力学、控制理论、机械系统等多个领域,其目的是在各种行驶条件下,保证汽车具有良好的操控性能和稳定性。

然而,目前汽车操纵稳定性研究仍存在一定的问题,如评价标准不统测试条件不完善等,制约了其发展。

汽车操纵稳定性对于保证驾驶安全具有重要意义。

在行驶过程中,车辆受到外部干扰或自身惯性力的影响,容易导致车身失稳,从而引发交通事故。

良好的汽车操纵稳定性通过有效抑制车身晃动、调整轮胎磨损,为驾驶者提供稳定的操控感,降低交通事故风险。

影响汽车操纵稳定性的因素主要包括以下几个方面:(1)车辆动力学性能:车辆的加速、减速、转弯等动力学性能直接影响驾驶者的操控感受和行车安全。

(2)轮胎性能:轮胎的抓地力、摩擦系数等性能对车辆的操控性和稳定性具有重要影响。

(3)悬挂系统:悬挂系统的设计直接影响车辆的侧倾、振动等特性,从而影响操纵稳定性。

(4)驾驶者的操控技巧:驾驶者的预判、反应速度、操控技巧等直接影响车辆的操纵稳定性。

为提高汽车操纵稳定性,需要采取相应的控制策略。

其中,最重要的是采取主动控制策略,包括:(1)防抱死制动系统(ABS):通过调节制动压力,防止轮胎抱死,提高制动过程中的稳定性。

(2)电子稳定系统(ESP):通过传感器实时监测车辆状态,对过度转向或不足转向进行纠正,保证车辆稳定行驶。

(3)四轮驱动(4WD):通过将驱动力分配到四个轮胎上,提高车辆的加速性能和操控稳定性。

汽车操纵稳定性的评价主要从以下几个方面进行:(1)侧向稳定性:评价车辆在侧向受力情况下的稳定性。

(2)纵向稳定性:评价车辆在纵向受力情况下的稳定性。

(3)横向稳定性:评价车辆在横向受力情况下的稳定性。

汽车操纵稳定性试验解析汇报

汽车操纵稳定性试验解析汇报

汽车操纵稳定性试验解析!汽车的操稳性不仅影响到汽车驾驶的操纵方面,而且也是决定汽车安全行驶的一个主要性能;为了保证安全行驶,汽车的操稳性受到汽车设计者很大的重视,成为现代汽车的重要使用性能之一,如何试验并评价汽车的操稳性显得极其重要。

汽车操控稳定性分为两个方面:1、操控性: 指汽车能够确切的响应驾驶员转向指令的能力;2、稳定性:指汽车受到外界扰动(路面扰动或阵风扰动)后恢复原来运动状态的能力。

一、常用试验仪器1、陀螺仪:用于汽车运动状态下测动态参数,如汽车行进方位角,汽车横摆角速度,车身侧倾角及纵倾角等;2、光束水准车轮定位仪:测车轮外倾角,主销内倾角,主销外倾角,车轮前束,车轮最大转角及转角差;3、车辆动态测试仪:测汽车横摆角速度,车身侧倾角及纵倾角,汽车横向加速度与纵向加速度等运动参数;4、力矩及转角仪:测转向盘转角或力矩;5、五轮仪和磁带机等。

二、试验分类三、稳态回转试验01试验步骤1、在试验场上,用明显的颜色画出半径为15m或20m的圆周;2、接通仪器电源,使之加热到正常工作温度;3、试验开始前,汽车应以侧向加速度为3m/s2的相应车速沿画定的圆周行驶500m以使轮胎升温。

4、以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对称面上的车速传感器在半圈内都能对准地面所画的圆周时,固定转向盘不动,停车并开始记录,记下各变量的零线,然后,汽车起步,缓缓连续而均匀地加速(纵向加速度不超过0·25m/s2),直至汽车的侧向加速度达到6·5m/s2为止,记录整个过程。

5、试验按向左转和右转两个方向进行,每个方向试验三次。

每次试验开始时车身应处于正中央。

02评价条件1、中性转向点侧向加速度值An:前后桥侧偏角之差与侧向加速度关系曲线上斜率为零的点的侧向加速度值,越大越好;2、不足转向度:按前后桥侧偏角之差与侧向加速度关系曲线上侧向加速度2m/s2点的平均值计算,越小越好;3、车厢侧倾度K:按车厢侧倾角与侧向加速度关系曲线上侧向加速度2m/s2点的平均斜率计算,越小越好。

汽车操纵稳定性1

汽车操纵稳定性1

汽车操纵稳定性实验报告姓名:班级:指导老师:日期:汽车操纵稳定性实验一、实验目的1、通过本次实验学习并应用Simulink仿真。

2、通过实验加深对汽车操纵稳定性知识的理解,并掌握汽车前轮角阶跃输入下的瞬态响应的基本原理和实验方法。

3、通过实验的建模编程仿真培养运用理论知识解决转向系统中遇到的实际问题的能力。

二、实验方法通过软件MATLAB的控制系统仿真Simulink模块进行仿真。

三、实验过程1、建立模型2、编写程序程序如下:m=2480;a=1.33;b=1.48;k1=-25000;k2=-35000;Iz=2600;u=20;K=m*(a/k2-b/k1)/(a+b)^2;l=((a+b)*4/u^2+(a+b)*K*4)*180/pi;mm=m*u*Iz;h=-(m*(a^2*k1+b^2*k2)+Iz*(k1+k2));c=m*u*(a*k1-b*k2)+(a+b)^2*k1*k2/u;b1=-m*u*a*k1;b0=(a+b)*k1*k2;Wo=sqrt(c/mm);j=h/(2*Wo*mm);B1=b1/mm;B0=b0/mm;new_system('ex01');open_system('ex01');add_block('built-in/Step','ex01/Step','position',[20,90,5 0,130]);add_block('built-in/TransferFcn','ex01/Fcn1','position',[70,90,100,130]);add_block('built-in/Scope','ex01/Scope','position',[140,9 0,200,130]);add_line('ex01','Step/1','Fcn1/1');add_line('ex01','Fcn1/1','Scope/1');set_param('ex01','stoptime','6');set_param('ex01/Step','time','0','before','0','after','5. 898');set_param('ex01/Fcn1','Numerator','19.066','Denominator', '[1,3.534,9.8131]');[t,x,y]=sim('ex01',[0,6]);plot(t,x(:,2));四、实验结果1、运行结果图:2、Simulink仿真模块:。

第十七讲汽车操纵稳定性试验

第十七讲汽车操纵稳定性试验

侧倾刚度
方法:车身固定,保持左右轮负荷之和恒定的条件下, 使左右轮交互上下移动,由左右轮负荷变化算出侧倾扭矩, 由左右轮位移求得侧倾角,两者之比为侧倾刚度。 车轮定位──测定车轮外倾角、前束、主销后倾角、 轮距等 方法:使用专门的车轮定位仪。 车轮定位参数影响转向特性、越线响应特性、直线行驶 特性(自动回正)和方向盘操纵力。
2.
转弯性能试验
a.稳态横摆响应试验(稳态圆周行驶试验)
目的:主要用于定量测定不足转向、中性转向或过多 转向。 测量参数: 横摆角速度;横向加速度;纵向车速;方 向盘转角(与力矩) ;侧倾角;质心侧偏角。 试验方法:
• 圆周半径恒定,分级提高车速,作匀速圆周行驶DIN/ISO4138, • 方向盘转角恒定,分级提高车速作匀速行驶,显然R会改变。 • 横向加速度恒定,分级提高车速,作匀速行驶,调整方向盘转 角ESV。
评价方法:
汽车横摆角速度随时间变化曲线应落在规定的区域内; 松开方向盘2秒后,80Km/h时 4 ° /s , 0 。 40Km/h时,
同济大学汽车实验室
操纵稳定性道路试验
同济大学汽车实验室
操纵稳定性道路试验
同济大学汽车实验室
操纵稳定性道路试验
4.转向操纵力试验
a.静态转向操纵力试验 反映停车、入库时的操纵力情况 b.低速转向操纵力试验 用双纽线进行转向轻便性试验 c. 蛇形穿杆试验
2. 惯性矩测定 方法:用两根钢丝绳将汽 车吊起,测定其回转摆动 周期T,算出惯性矩。具体 如下 围绕z轴的惯性矩
T 2 r1 r2W Jz 4 2 h
T2 h 围绕x轴的惯性矩 J x ( 4 2 g ) hW
T2 h 围绕y轴的惯性矩 J y ( 2 ) hW g 4

汽车操稳性实验报告

汽车操稳性实验报告

汽车操稳性实验目录汽车操稳性实验 (1)1.实验目的 (2)2.实验条件 (2)3.试验仪器设备 (2)4.试验内容 (3)5.试验数据 (3)6.数据处理 (4)7.实验总结 (8)1.实验目的了解汽车稳态回转试验方法和数据处理过程。

加深理解车辆参数变化对车辆操作稳定性的影响。

2.实验条件试验汽车:应是按厂方规定装备齐全的汽车,试验前,应测定车轮定位参数,对转向系、悬架系进行检查,并按规定进行调整紧固和润滑。

只有认定汽车已符合厂方规定的技术条件时,方可进行试验。

轮胎:试验时若用新轮胎,轮胎至少应经过200km正常行驶的磨合,若用旧轮胎,试验终了时,残留花纹的高度应不小于1.6mm。

轮胎气压应符合GB/T12534 中的3.2条的规定。

载质量:试验汽车应为厂定最大总质量状态(驾驶员、试验员及仪器的质量,计入总质量)和轻载状态;乘员和装载物(推荐用沙袋)的分布应符合GB/T 12534的规定。

轴载质量必须符合厂方规定。

注:轻载状态是指除驾驶员、试验员及仪器外,没有其它加载物的状态。

对于承载能力小的汽车,如果轻载质量已经超过最大总质量的70%,则不必进行轻载状态的试验。

试验场地与环境:试验场地应为干燥平坦且清洁的水泥或沥青路面,任意方向的坡度不大于2%;试验时的风速应不大于5m/s;大气温度在0-40度之间。

3.试验仪器设备光学车速仪、秒表、桩桶光学车速仪:测速范围0.5-200km/h,配合二次仪表使用,可输出TTL脉冲和模拟信号,脉冲信号的标尺为:10mm/P。

4.试验内容1)在试验场地上,用明显颜色画出半径为15米的圆周。

试验开始前,汽车应以侧向加速度为3的相应车速沿画定的圆周行驶500米以使轮胎升温。

驾驶员操纵汽车以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对称平面上的车速传感器能对准地面所画圆周时,固定方向盘不动。

然后汽车以最低速度,匀速行使一周,记下行使距离和时间。

然后提高车速,重复以上过程,至少测量六组数据。

同济汽车操纵稳定性实验报告新终审稿

同济汽车操纵稳定性实验报告新终审稿

同济汽车操纵稳定性实验报告新终审稿实验报告:同济汽车操纵稳定性实验摘要:本实验以同济汽车为研究对象,通过系统的实验设计和精确的测量手段,对同济汽车的操纵稳定性进行了全面而深入的研究。

通过实验结果分析和对比,得出一系列结论,为同济汽车的设计和改进提供了理论依据和实际参考。

1.引言:操纵稳定性是汽车行驶安全和驾驶舒适性的重要指标之一、为了更好地了解同济汽车的操纵稳定性性能,开展了本次实验。

本实验的目的是通过操纵稳定性实验,评估同济汽车的操纵稳定性性能,并通过实验结果进行分析和解释。

2.实验方法:本实验采用了减速器放大、转向力矩测量、侧向加速度测量等一系列实验方法,以获取同济汽车的操纵稳定性性能指标。

实验中先对同济汽车的车速、转向角度、侧向加速度等进行测量,然后对实验结果进行数据处理和分析。

3.实验结果与讨论:通过对实验数据的处理和分析,我们得到了同济汽车的操纵稳定性性能指标。

首先,通过减速器放大和转向力矩测量,我们得到了同济汽车的转向灵敏度。

转向灵敏度越高,意味着车辆对车主的操纵指令的响应越快。

其次,通过侧向加速度测量,我们得到了同济汽车的侧倾角。

侧倾角越小,意味着车辆在急转弯等情况下的横向稳定性越好。

最后,通过实验结果的对比和分析,我们发现同济汽车的操纵稳定性性能在一些方面有待改善。

例如,转向灵敏度较低,导致车辆转向响应不够迅速;侧倾角较大,影响了车辆在高速行驶时的稳定性。

4.改进建议:基于对同济汽车操纵稳定性实验的结果和分析,我们提出了以下改进建议:首先,可以通过调整转向系统的参数,提高同济汽车的转向灵敏度,增强车辆的转向响应;其次,可以通过改变车身结构和改进悬挂系统,减小同济汽车的侧倾角,提高车辆的横向稳定性。

5.结论:通过本次实验,我们深入了解了同济汽车的操纵稳定性性能,并提出了对于不足之处的改进建议。

这对于同济汽车的设计和改进具有重要意义,可以提高车辆的行驶安全性和驾驶舒适性。

附录:1.同济汽车的技术参数表2.实验数据记录表3.实验过程的照片及记录注:以上为虚拟助手生成的模拟实验报告,实际内容与同济汽车实验无关。

汽车操控稳定性研究

汽车操控稳定性研究

汽车操控稳定性研究一(车辆车身各部件对车辆操纵稳定性影响的研究1. 电动助力转向系统对汽车操控稳定性的影响在电动助力转向系统中引入横摆角速度反馈传感器 ,建立了包含电动助力转向系统的人 -车系统数学模型 ;经模拟仿真分析 ,表明该模型在 EPS中引入横摆角速度负反馈可以显著改善前轮角阶跃输入下车辆的横摆角速度的瞬态响应 ;并且EPS助力矩响应曲线上升平稳缓慢 ,有利于汽车在低附着系数路面高速转向行驶时的操纵 ,从而提高汽车的行驶安全性。

1.1. 横摆角速度反馈当汽车的运动进入失稳状态时 ,驾驶员很容易做出过度转向的车辆 ,可在 EPS 中引入一个负反馈 ,以降低系统的助力矩 ,削弱驾驶员快速改变前轮转向角的能力。

1.2. 仿真结果及结论对于不引入反馈的系统 ,瞬态响应曲线的振荡幅度很大 ,收敛较慢 ,稳定性较差。

引入反馈后 ,系统的超调量显著降低 ,并很快的趋于稳态值 ,但反应时间较前者增长。

引入反馈后 (实线表示 )系统在横摆角速度出现剧烈振荡的阶段 ( t < 1 s)提供远小于常规系统 (虚线表示 )的助力矩。

这样转向系能提供给驾驶员更多的“路感”,同时也使转向系变得较“迟钝”,削弱了驾驶员快速控制前轮转向的能力[ 6 ] ,防止因驾驶员 (错误的 )快速转向操纵而导致的系统不稳定。

另外 ,带有反馈的系统提供的助力矩曲线很平滑 ,而不带反馈的系统却出现了一定的波动。

抑制助力矩的波动不仅有利于保持车辆的稳定性 ,也有利于延长助力电机的寿命。

因此在 EPS引入横摆角速度反馈可以减少前轮阶跃输入车辆的横摆角速度瞬态响应的时间 ,显著降低超调量 ,可明显改善车辆的行驶稳定性 ,但会增长反应时间。

为 EPS引入横摆角速度反馈后 , EPS系统的助力矩上升较慢 ,但增长平稳 ,不出现明显的振荡。

这有利于汽车横摆角速度出现剧烈波动的失稳状态下汽车的操纵 ,提高汽车的行驶安全性。

2. 悬架特性对操纵稳定性的影响汽车的不足转向度是汽车操纵稳定性的一个重要评价指标,在汽车概念设计阶段,通过悬架在各种工况下的K&C性能分析,可计算分析整车的基本动力学特性,协助完成目标设定、目标改进和整车操稳性能优化提升等工作。

汽车操纵稳定性实验指导书

汽车操纵稳定性实验指导书

汽车操纵稳定性实验指导书课程编号:课程名称:实验一汽车转向轻便性实验一、实验目的汽车的转向轻便性和操纵稳定性是现代汽车重要的使用性能,通过对实验了解和掌握测试系统的安装调试、基本实验方法并学会数据处理和运用理论知识对汽车操纵稳定性研究、评价。

以培养学生解决实际工程问题的能力。

二、实验的主要内容了解测试系统的组成和测试原理,汽车转向轻便性实验的数据的实时采集和处理。

测定汽车在低速大转角时的转向轻便性,与操纵稳定性其他试验项目一起,共同评价汽车的操纵稳定性。

采集测量变量及参数方向盘转角;方向盘力矩;方向盘直径。

三、实验设备和工具1.测量仪器汽车方向盘转角——力矩传感器汽车操纵稳定性数据采集和分析仪2.实验车辆小型客车一辆3.标明试验路径的标桩16个。

四、实验原理测定汽车在道路上进行转向行驶时,驾驶员作用在方向盘上的力矩和方向盘转角的变化关系评价汽车的转向操纵性能五、验方法和步骤1.实验准备试验场地应为干燥、平坦而清洁的水泥或柏油路面。

任意方向上的坡度不大于2%。

在试验场地上,用明显颜色画出双纽线路径(图1),双纽线轨迹的极坐标方程为:轨迹上任意点的曲率半径R为:当Ψ=0°时,双纽线顶点的曲率半径为最小值,即双纫线的最小曲率半径(m)应按试验汽车的最小转弯半径(m)乘以 1.05倍,并圆整到比此乘积大的一个整数来确定。

并据此画出双纽线,在双纽线最宽处、顶点和中点(即结点)的路径两侧共放置16个标桩(图1)。

标桩与试验路径中心线的距离,按汽车的轴距确:定,当试验汽车轴距大于2.5m时,为车宽一半加50cm,当试验汽车轴距小于或等于2m时,为车宽一半加30cm。

图1 双纽线路径示意图2.试验方法2.1接通仪器电源,使之预热到正常工作温度。

2.2汽车以低速直线滑行,驾驶员松开方向盘,停车后,记录方向盘中间位置及方向盘力矩零线。

2.3驾驶员操纵方向盘使汽车沿双纽线路径行驶。

车速为10土1km/h。

待车速稳定后,开始记录方向盘转角及力矩,并记录(或显示)车速作为监督参数,直到汽车绕双纽线行驶满三周。

操纵稳定性试验总结

操纵稳定性试验总结

1 . 稳态回转试验测量的量:横摆角速度AngleRateDown,前进车速speed 侧倾角Angroll 汽车重心的侧偏角纵向的加速度侧向加速度试验方法:半径为15或20米的圆,缓慢而均匀的加速,直至侧向加速度达到6.5m/s2.记录整个过程,左右方向各三次。

实验开始时车身处于正中位置。

考核指标:转弯半径比特性、前后轴侧偏角差值特性、侧倾角特性(侧倾角大小)。

不足转向度U:U按前、后桥侧偏角差值与侧向加速度关系曲线上侧向加速度值为2m/s2处的平均斜率的一半计算。

车身侧倾刚度:拟合A y—(α1-α2)曲线,微分,取侧向加速等于2时的值。

.2. 转向轻便性:测量的量:转向盘作用力矩Torque、转向盘转角angel、前进车速speedforward、转向盘半径。

试验方法:驾驶员操纵转向盘,以10km/h的车速匀速沿双纽线绕8字行驶,车速稳定后开始记录方向盘转角和力矩。

汽车沿双纽线绕行一周为一次,全部试验进行三次。

考核指标:转向盘的最大作用力、力矩;转向盘(左、右)的最大转角、转向盘作用功、转向盘平均摩擦力、力矩;3. 转向回正性能测量的量:前进车速speedforward、横摆角速度AngrateDown(yaw)、侧向加速度Accellateral 试验方法:一定要使用转向盘转角开关,触发switch低速回正性能试验:在半径15米的圆上,调整车速使侧向加速度达到4m/s2,误差0.2m/s2;稳定车速开始记录,三秒后突然松开方向盘,至少记录松开后4S的汽车运动过程。

高速回正性能试验:驾驶车速为最高车速的70%,侧向加速度为2m/s2.其他同上。

试验左转、右转各三次考核指标:稳定时间、残留横摆角速度、横摆角速度超调量、横摆角速度自然频率、相对阻尼系数、横摆角速度总方差。

评分标准:按松开转向盘后3S时的残留横摆角速度绝对值Δr及横摆角速度总方差Er两项指标进行评价。

4. 脉冲测量的量:汽车前进车速speedforward、转向盘转角Angle、侧向加速度Accellateral、横摆角速度AngRatedown试验方法:以100km/h的车速直线行驶使其横摆角速度为0,然后给转向盘一个三角脉冲输入,试验时向左(或向右)转动转向盘,并迅速转会原处保持不动,记录全部过程,直至汽车回到直线行驶位置。

汽车操作稳定性范文

汽车操作稳定性范文

汽车操作稳定性范文首先,悬挂系统对于车辆的稳定性起着关键作用。

一个稳定的悬挂系统可以提供更好的路面接触,减少车辆的倾斜和侧滑现象。

常见的悬挂系统有独立悬挂和梁式悬挂两种。

独立悬挂可以使车轮更好地适应路面变化,保持较好的路面抓地力,从而提高车辆的稳定性。

而梁式悬挂由于刚性较强,相对稳定性较差。

其次,转向系统对于车辆的操控性和稳定性同样非常重要。

一个良好的转向系统应该具备良好的回馈性、精准度和灵敏度。

在紧急情况下,驾驶者可以准确地控制车辆的转向,避免事故的发生。

刹车系统是保证车辆安全的关键部件之一,对于车辆的操控和稳定性起着至关重要的作用。

一个优秀的刹车系统应该具备良好的刹车感觉、响应速度和制动力量。

驾驶者可以通过控制刹车系统来保持车辆的稳定性和安全性。

车身结构也对车辆的稳定性产生较大的影响。

一个结构合理的车身可以提供较好的刚性和稳定性。

在面对弯道、急转弯等行驶情况时,一个稳定的车身结构可以减少动力侧滑和倾斜,提高车辆的操控性和稳定性。

此外,轮胎的选择和状况也对车辆的操控性和稳定性起着至关重要的作用。

轮胎是车辆与路面之间唯一的接触面,对车辆的抓地力和操控性具有重要的影响。

驾驶者应选择适合路况和自身需求的轮胎,并保持良好的轮胎状况,例如适时更换磨损严重的轮胎以确保车辆的操控性和稳定性。

为提高汽车的操作稳定性,制造商在设计和制造过程中也应该加强相应的措施。

首先,通过模拟计算和试验等方法来优化汽车的悬挂系统、转向系统和刹车系统等关键部件。

其次,应该合理设计车身结构,提高车身刚性。

此外,还可以通过各种控制系统来提高汽车的操控性,例如电子稳定控制系统(ESC)、主动安全系统等。

这些系统可以通过感知驾驶环境和车辆状态,准确预测潜在的危险并及时采取相应的控制措施,提高车辆的稳定性和安全性能。

总之,汽车操作稳定性是衡量一辆汽车性能的重要指标,影响着驾驶者的操控感受和行驶安全。

通过优化车辆的悬挂系统、转向系统、刹车系统、车身结构和轮胎等关键因素,以及加强制造商在设计和制造过程中的技术和措施,可以提高汽车的操作稳定性,为驾驶者提供更好的操控性和安全性能。

汽车操纵稳定性测试实验

汽车操纵稳定性测试实验

操稳性测试
一、理论基础
1、操纵稳定性定义: 操稳性好的表现:
(1) 根据道路、地形和交通情况的限制,汽车能 够正确地按驾驶员通过操纵机构所给定的方向 行驶。 (2) 汽车在行驶过程中具有抵抗力图改变其行驶 方向的各种干扰,并保持稳定性的适当能力。
差的表现:速度达到一定值时发“飘”,
转向迟钝,过多转向,丧失路感等方面。
4.实验步骤
(5) 处理试验数据 ② 平均转向盘角为
i

ij j 1
4
4
转向盘转角变化过程
操稳性测试
五、实验方法和步骤
4.实验步骤
(5) 处理试验数据
③ 平均横摆角速度为
1 4 ri rij 4 j 1
横摆角速度变化过程
操稳性测试
五、实验方法和步骤
4.实验步骤
(5) 处理试验数据
(3) 试验按自行规定的车速间隔,从高到低,每1 个车速各进行1次,共10次(撞倒标桩的次数不 计在内)。 (4) 准确记录试验的各项有效数据。 (5) 处理试验数据,并拟合画出平均横摆角速度 与车速的关系图,平均转向盘角与车速的关系 图,平均车身侧倾角与车速的关系图和平均侧 向加速度与车速的关系图。
轿车、小型客车及最大总质量≤2.5 t的载 货汽车 最大总质量>2.5 t而≤6 t的载货汽车及中 型客车 最大总质量>6 t而≤15 t的货车及大型客车 最大总质量>15 t的载货汽车及客车 标桩间 距/m 基准车速 /(km/h ) 65 30 50 60 50
50
操稳性测试
五、实验方法和步骤
操稳性测试
Байду номын сангаас
一、理论基础
2.汽车操纵稳定性的基本内容 :

汽车操纵稳定性检测

汽车操纵稳定性检测

路况条件
道路类型
不同类型的道路如柏油路、水泥路、土路等对车 辆操纵稳定性有不同的影响。
道路坡度
道路坡度会使车辆产生额外的分力,影响操纵稳 定性。
道路曲线
道路曲线会使车辆产生离心力,影响操纵稳定性 。
05
汽车操纵稳定性提升措施
车辆性能改进
优化悬挂系统
悬挂系统对车辆的操纵稳定性有着重要影响。通过改进悬挂系统 的设计和参数,可以提高车辆的操纵稳定性和乘坐舒适性。
汽车操纵稳定性检测
汇报人: 日期:
目录
• 汽车操纵稳定性检测概述 • 汽车操纵稳定性检测系统 • 汽车操纵稳定性检测实验 • 汽车操纵稳定性影响因素 • 汽车操纵稳定性提升措施 • 汽车操纵稳定性检测案例分析
01
汽车操纵稳定性检测概述
定义与重要性
定义
汽车操纵稳定性检测是指对汽车在行驶过程中,驾驶员按照预定目标和路线进行 操纵的能力进行评估和测试。
03
汽车操纵稳定性ቤተ መጻሕፍቲ ባይዱ测实验
实验准备与步骤
实验目的
检测汽车的操纵稳定性,确保车辆在行驶过程中具有良好的操控性能和安全性。
实验设备
测试仪器、测试软件、车辆等。
实验准备与步骤
实验步骤 1. 准备实验场地,确保路面平坦、无障碍物,并按照要求设置测试区域。
2. 对测试仪器进行校准,确保测试数据的准确性。
重要性
汽车操纵稳定性是影响行车安全的重要因素,不良的操纵稳定性可能导致交通事 故的发生。通过对汽车操纵稳定性的检测,可以评估车辆的安全性能,为驾驶员 提供可靠的驾驶依据,同时为车辆的维修和改进提供数据支持。
检测目的和意义
目的
汽车操纵稳定性检测的目的是评估车辆在行驶过程中的操控性能,判断车辆在 高速行驶、紧急变道、转向等情况下是否稳定可靠,以保障行车安全。

汽车操纵稳定性稳态回转试验及评价

汽车操纵稳定性稳态回转试验及评价

一般的极限侧向加速度取值区间为 0.60.9。
!"
转向盘转角,()
线性区转向盘转角梯度
#$
$%
对转向盘转角与侧向加速度关系曲线上侧向加速
度为 0.10.35 所对应的区间做线性拟合,其斜率为线
&$
&%
性区转向盘转角梯度,亦表征了车辆不足转向特性,反
'$
映了汽车在通过弯道时驾驶员的转向操作量,适度的
争力中占据着核心地位。操纵稳定性又是底盘设计开 不断地调整转向盘转角使试验车保持在预定圆周上,
发中重要、复杂的环节。操纵稳定性评价包含稳态评价 直至汽车无法保持沿预定圆周行驶。记录转向盘转角、
与动态评价,实际的操纵稳定性问题都是动态问题,尤 转向盘力矩、行驶车速、横摆角速度、侧向加速度、车身
其是驾驶员的主观感受,但合理的稳态特性是汽车具 侧倾角等变量,亦可进行车轮矢量测量。对于最高车速
随着汽车普及率的提高,用户对汽车操纵稳定性 情况,因固定车速法需较大面积的试验场地,故多采用
[2]156
的要求也越来越高。如果汽车的操纵稳定性较差,不仅 固定转弯半径法 。
会降低用户的驾驶体验,而且会增加发生交通事故的
固定转弯半径法是汽车以最低稳定车速沿预定的
风险,因此,汽车操纵稳定性在保障和提升汽车产品竞 圆周(推荐半径为 100m)行驶,然后缓慢加速,过程中
围,如表 2所示。
表 车身侧倾梯度设计范围表
车型 运动型车 普通乘用车 皮卡 货车
车身侧倾梯度 ($ $4 $5 -+-$
实例分析
()/
味着能以较高的车速通过弯道,对行驶安全有利;高质
按照前文的试验方法及评价指标,对某 SUV车型

汽车操纵稳定性评价方法研究

汽车操纵稳定性评价方法研究

汽车操纵稳定性评价方法研究汽车的操纵稳定性是衡量汽车行驶质量的一个重要指标。

一辆汽车的操纵稳定性,不仅关乎乘坐者的安全与舒适,也直接影响车辆的市场竞争力。

为了精确地评价一辆汽车的操纵稳定性,需要运用科学的测试方法和评价标准。

评价方法1. 车载试验车载试验是评价一辆汽车操纵稳定性的一个重要手段。

通过在车内安装多种测试仪器,如惯性测量单元(IMU)、制动力反馈(BBFM)、转向率传感器(TSR)等,对汽车在不同的路况和驾驶状态下进行测试和分析。

车载试验可以动态地评估汽车的加速度、制动、转向等指标,及时反馈车辆运动学和动力学参数的变化,有利于发现和整改车辆操纵稳定性的缺陷,提高行驶安全性和舒适性。

2. 静态试验静态试验是对汽车操纵稳定性的一种简单而又直接的评估方式。

通过推拉车测量系统、悬架测试机等设备对汽车的悬架系统、悬挂刚度、车身刚度等进行测试分析,从而评估汽车悬架系统的稳定性。

静态试验方法可以帮助设计人员优化汽车结构设计,提高车辆操纵稳定性。

3. 路试路试是指在真实路况下对汽车操纵稳定性进行评估。

通过在不同路段进行测试,如山路、高速公路等,可以评估车辆在不同路况下的操纵稳定性。

路试有利于检测车辆在实际操作中的运动学和动力学性能,全面评估车辆的操纵稳定性。

评价标准1. 车辆侧倾角(roll angle)车辆在转弯时的侧倾角是评估操纵稳定性的一个重要指标。

一辆汽车悬挂系统的稳定性能够直接影响车辆的侧倾角大小。

在较高的车辆侧倾角下,车辆容易失去操纵,导致事故的发生。

2. 车辆侧向加速度(Lateral Acceleration)侧向加速度能够反映车辆在转弯时的稳定性。

较小的侧向加速度代表车辆的稳定性较好。

在高速公路上行驶,若车辆的侧向加速度过大,则容易导致车辆失去操纵。

3. 车辆制动减速度(Braking Deceleration)车辆制动减速度是一个反映汽车操纵稳定性的重要指标。

在制动时,车辆制动减速度越大,代表汽车的稳定性越好。

汽车操纵稳定性试验文档共35页文档

汽车操纵稳定性试验文档共35页文档

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
汽车操纵稳定性试验文档
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人能 所向披 靡。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同济汽车操纵稳定性实验报告新文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-《汽车平顺性和操作稳定性》实验报告学院(系)汽车学院专业车辆工程(汽车)学生姓名同小车学号 000001同济大学汽车学院实验室2014年11月1.转向轻便性实验实验目的驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。

操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。

转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。

实验仪器设备实验条件试验车:依维柯实验场地与环境于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。

双扭线的极坐标方程见下,形状如下图实验当天天气晴好,无风,气温20度在ψ=0时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1倍,并圆整到比此乘积大的一个整数来确定。

试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。

通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。

转向轻便型实验数据记录方向盘转角-转矩曲线2. 蛇形试验实验目的本项试验是包括车辆-驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。

也可以用来考核汽车在接近侧滑或侧翻工况下的操纵性能,在若干汽车操纵稳定性对比试验时,作为主观评价的一种感性试验。

实验原理将试验车辆以不同车速行驶于规定的蛇形试验中,通过实验仪器可以得到行驶时的车速,方向盘转角,横摆角速度,车身侧倾角。

试验方法遵照GB/T 6323.1-94汽车操纵稳定性试验方法蛇形试验实验仪器记录下列测量变量所使用的仪器方向盘转角:测力方向盘横摆角速度:陀螺仪车身侧倾角:陀螺仪汽车通过有效标桩区的时间:秒表实验数据记录(1)将实验结果填入下表:车型:依维柯实验路面:平坦水泥路面(圆形试车场)标桩间距:30m天气:晴温度:30度风速:10m/s依维柯换悬架:蛇形横摆角速度与车速关系实验数据的意义和结果分析由于前三张图线可以大体看出,在蛇形试验的条件下,车辆方向盘转角与车速基本无关,一直维持在某个常数附近;汽车横摆叫速度与汽车车速大致呈线性关系,车速越高,车辆横摆叫速度越大;而车身侧倾角与车速大致呈线性关系,车速越高时车身侧倾角越大。

由于蛇形绕桩试验时摆放位置不变,故驾驶员在行驶时无论车速快慢,所需转动方向盘的角度大致相同;而车速高时,车辆在较短的时间完成左右的穿梭,故r会随着uc的增大而增大,在高速转向时,uy也较大,故慢性力会导致侧倾角也越大。

本次试验结果显示横摆角速度与车身侧倾角呈线性关系。

3. 汽车平顺性试验实验目的1.通过对汽车在随机不平的路面上行驶时振动对乘员及货物影响的测定,评价汽车的平顺性;2.通过对汽车行驶过单个凸块时的冲击对乘员及货物影响的测定,评价汽车的平顺性。

实验仪器与设备加速度传感器,GPS测速仪,DASP速采系统实验原理1.随机输入:本试验采用道路随机输入,及实际道路试验。

因试验车为轿车,加速度传感器安装在左侧前排和后排座椅上;若为客车,安装在驾驶员座椅左侧后轴上和最后排座椅上。

其他类型汽车安装在驾驶员座椅上,车厢地板中心及局车厢边板、后板300mm处,安装在座椅上的加速度传感器应能测三个方向的震动。

传感器应与人体紧密接触,并且在人体与座椅间放入一安装传感器的垫盘,试验时,汽车在稳速段要稳住车速,然后以规定的车速匀速驶过试验路段,在进入试验路段时启动测试仪器,同时测量通过试验路段的时间,计算平均车速。

样本记录长度不短于3min,对于人体振动评价用加权加速度均方值,处理数据用三分之一倍频法。

2.脉冲输入:标准采用三角形的单凸块作为脉冲输入,其凸块尺寸随车重变化,可参照相应标准,加速度传感器安装位置同随机输入。

将凸块放置在试验道路中央,并按汽车车轮距调整好两个凸块的距离,为保证汽车左右车轮同时驶过凸块,应将两凸块放在与汽车行驶方向垂直的一条线上。

试验时汽车以规定的车速匀速驶过凸块,试验车速为10KM/H,20KM/H,30KM/H40KM/H,50KM/H,60KM/H。

在汽车驶过后且冲击响应消失后,停止记录,每种车速的试验次数不得少于八次。

3.车辆平顺性试验测试简图:加速度传感器——电荷放大器——收集信号——速采系统。

4. 汽车稳态回转试验试验内容测定汽车定方向盘转角稳态回转时的汽车前进车速、汽车横摆角速度、绘制转弯半径比与侧向加速度关系曲线、汽车前后轴侧偏角速度差值与侧向加速度的关系曲线,计算稳态回转的特征参数。

试验目的通过试验掌握汽车稳态回转试验的原理以及实验方法,掌握仪器的使用方法以及试验数据的处理方法。

试验条件试验车辆-依维柯场地-圆形试车场试验仪器-陀螺仪、GPS测试仪、数据采集器试验数据处理及结果表达1.转弯半径比Ri/R0与侧向加速度ay,关系曲线。

2.根据记录的横摆角速度及汽车前进车速,用下述公式计算各点的转弯半径及侧向加速度。

Ri=Vi/ωi,ayi=Vi*ωi,i=1,2,3,,n式中:Vi——第i点车速,m/sωi——第i点横摆角速度,rad/sRi——第i点转弯半径,mayi——第i点侧向加速度,m/s/sn——采样点数进而算出各点的转弯半径比(Ri/R0)(R0为初始半径,m)。

根据计算结果,绘出(R/R0)—ay曲线2. 汽车前后侧偏角差值(δ1一δ2)与侧向加速度ay关系曲线对于两轴汽车,汽车稳态回转时,(δ1一δ2)用下式确定:δ1一δ2=360/2∏?*L(1/R0-1/Ri)式中:δ1、δ2——前后轴侧偏角,0L——汽车轴距,m(全顺汽车:L=3.55m)Ri、R0、——第各点转弯半径及初始半径,m,根据计算结果,绘制(δ1一δ2)—ay关系曲线。

3. 不足转向度u及不足转向度评价记分值Nu。

1)不足转向度u按前后轴侧偏角差值与侧向加速度值为2m/s/s处的平均斜率计算。

2)不足转向度的评估记分值Nu:根据,GB/T13047《汽车操纵稳定性指标与评价方法》经过计算,可得六、转向回正性能试验1 主题内容与适用范围本标准规定了汽车操纵稳定性试验方法中的转向回正性能试验方法。

本标准适用于轿车、客车、货车及越野汽车,其他类型汽车可参照执行。

2 引用标准GB/T 12534汽车道路试验方法通则GB/T 12549汽车操纵稳定性术语及其定义3 测量变量和仪器设备3.1 测量变量a.汽车前进速度;b.横摆角速度;c.侧向加速度。

3.2 试验仪器设备3.2.1 试验仪器设备应符合GB/T 12534中3.5条规定。

3.2.2 各测量用仪器,其测量范围及最大误差满足表1的要求。

3.2.3 包括传感器及记录仪器在内的整个测量系统的频带宽度不小于3Hz。

3.2.4 各种传感器按各自使用说明书进行安装。

4 试验条件4.1 试验汽车4.1.1 试验汽车是按厂方规定装备齐全的汽车。

试验前,测定车轮定位参数,对转向系、悬架系进行检查、调整和紧固,按规定进行润滑。

只有认定试验汽车已符合厂方规定的技术条件,方可进行试验。

测定及检查的有关参数的数值,记入附录A(补充件)中。

4.1.2 试验时若用新轮胎,试验前至少应经过200km正常行驶的磨合;若用旧轮胎,试验终了残留花纹高度不小于1.5mm。

轮胎气压应符合GB/T 12534中3.2条的规定。

4.1.3 试验汽车在厂定最大总质量(驾驶员,试验员及测试仪器质量,计入总质量)状态下进行。

货车的装载物(推荐用砂袋)均匀分布于货箱内;客车的装载物(推荐用砂袋)分布于座椅和地板上,其比例应符合GB/T 12534中表1的规定。

轴载质量必须符合厂方规定。

4.2 试验场地与环境a.试验场地为干燥、平坦而清洁的,用水泥混凝土或沥青铺装的路面,任意方向的坡度不大于2%;b.风速不大于5m/s;c.大气温度在0~40℃范围内。

5 试验方法5.1 低速回正性能试验5.1.1 在试验场地上用明显的颜色画出半径为15m的圆周。

5.1.2 试验前试验汽车沿半径为15m的圆周、以侧向加速度达3m/s2的相应车速,行驶500m,使轮胎升温。

5.1.3 接通仪器电源,使其达到正常工作温度。

5.1.4 试验汽车直线行驶,记录各测量变量零线,然后调整转向盘转角,使汽车沿半径为15±1m的圆周行驶,调整车速,使侧向加速度达到4±0.2m/s2,固定转向盘转角,稳定车速并开始记录,待3s后,驾驶员突然松开转向盘并做一标记(建议用一微动开关和一个讯号通道同时记录),至少记录松手后4s的汽车运动过程。

记录时间内油门开度保持不变。

对于侧向加速度达不到4±0.2m/s2的汽车,按试验汽车所能达到的最高侧向加速度进行试验,应在试验报告中(表2备注)加以说明。

5.1.5 试验按向左转与向右转两个方向进行,每个方向三次。

5.2 高速回正性能试验5.2.1 对于最高车速超过100km/h的汽车,要进行本项试验。

5.2.2 试验车速按被试汽车最高车速的70%并四舍五入为10的整数倍。

5.2.3 接通仪器电源,使其达到正常的工作温度。

5.2.4 试验汽车沿试验路段以试验车速直线行驶,记录各测量变量的零线。

随后驾驶员转动转向盘使侧向加速度达到2±0.2m/s2,待稳定并开始记录后,驾驶员突然松开转向盘并做一标记(建议用一微动开关和一个讯号通道同时记录),至少记录松手后4s内的汽车运动过程。

记录时间内油门开度保持不变。

5.2.5 试验按向左转与向右转两个方向进行,每个方向三次。

6 试验数据处理与结果表达6.1 试验数据处理横摆角速度时间历程曲线分两大类:收敛型(图1中曲线1~4)与发散型(图1中曲线5、6)。

对于发散型,不进行数据处理;对于收敛型,按向左转与向右转分别确定下述指标。

6.1.1 时间坐标原点在微动开关时间历程曲线上,松开转向盘时微动开关所做的标记。

6.1.2 稳定时间从时间坐标原点开始,至横摆角速度达到新稳态值(包括零值)为止的一段时间间隔。

其均值按下式确定:6.1.3 残留横摆角速度在横摆角速度时间历程曲线上,松开转向盘3s时刻的横摆角速度值(包括零值),按下式确定:6.1.4 横摆角速度超调量在横摆角速度时间历程曲线上,横摆角速度响应第一个峰值超过新稳态值的部分与初始值之比(见图2)。

横摆角速度超调量均值按下式确定:6.1.5 横摆角速度自然频率6.1.6 相对阻尼系数可先由公式(6)求得衰减率D'i,后,再由公式(7)求得相对阻尼系数,或由图4查得相对阻尼系数。

相关文档
最新文档