02634生物化学(二)大纲

合集下载

《生物化学II》教学大纲

《生物化学II》教学大纲

《生物化学II》教学大纲Biochemistry II课程编码:27A11409 学分:5.0 课程类别:专业必修课计划学时:104 其中讲课:56 实验或实践:48适用专业:生物技术推荐教材:王镜岩等主编,生物化学第三版,高等教育出版社参考书目:1.张丽萍主编,简明生物化学,高等教育出版社,2008.2.Garrett and Grisham: Biochemistry (影印版),高等教育出版社,2005.3.张楚富主编,生物化学原理,高等教育出版社,2003.4.黄熙泰等主编,现代生物化学(第二版),化学工业出版社,2005.5.杨荣武主编,生物化学学习指南与习题解析,刚等教育出版社,2007.课程的教学目的与任务通过对本课程的学习,使学生对各类化学物质的结构、性质、功能、代谢方面的基本理论、基本规律、基本概念有全面、系统的认识,牢固掌握生物化学中有关的基本原理,具备从事同生物化学有关的科学活动的初步能力,并为后续课程的学习打好坚实的基础。

课程基本教学任务包括:糖、脂肪蛋白质和核酸的生物合成及分解代谢。

实验课程是《生物化学Ⅱ》理论课的课程内实验课,课程目的是为了让学生掌握生物化学操作的基本理论、基本操作技术和学会生物化学技术应用,为今后开展分子生物学研究打下实验技能基础。

课程教学内容包括:转氨酶活性的测定;血糖含量的测定;植物组织中可溶性糖含量的测定;乳酸脱氢酶同工酶的琼脂糖凝胶电泳;脂肪酸的β-氧化;饱食、饥饿、肾上腺素、胰岛素对肝糖原含量的影响;糖酵解中间产物的测定量的影响;小麦萌发前后淀粉酶活性的比较;细胞色素C的提取制备与含量测定等。

课程的基本要求生物化学是生命的化学,是研究生物体化学组成和化学变化规律的一门科学,是生物技术系专业的一门重要专业基础课。

本课程要求学生掌握糖、脂类、蛋白质和核酸等生命大分子在机体代谢的过程和特点,了解以蛋白质和核酸为基础药物研究以及人类疾病产生的的生物化学基础。

生化(2)复习串讲(完整全)生物化学

生化(2)复习串讲(完整全)生物化学
酶催化的补充柠檬酸循环中间代谢物的供给的反应,例如由丙酮酸羧化生成草酰乙酸 的反应。 Cori循环
肌收缩(尤其是氧供应不足时)通过糖酵解产生乳酸,因为肌肉内糖异生活性低,所 以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖,葡萄糖入血后又可被 肌肉摄取,这就构成了一个循环,也称为乳酸循环。
3、 F-6-P磷酸化,生成1,6-二磷酸果糖(F-1,6-2P)
磷酸果糖激酶 是关键反应步骤,决定酵解速度,是一个限速 酶,该步反应再消耗一分子ATP★
4、 F-1,6-2P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP)
醛缩酶 产生二个三碳糖,即一个醛糖和一个酮糖#
5、 磷酸三碳糖的异构化
磷酸丙糖异构酶
一、糖代谢
糖酵解(glycolysis): 一个由10步酶促反应组成的糖分解代谢途径,通过该途径,一分子葡萄糖转换为两分
子丙酮酸,同时净生成两分子ATP和两分子NADH. 巴斯德效应(Pasteur effect):
氧一存在、下糖,酵代解谢速度的放概慢的述现象。
底物水平磷酸化(substrate phosphorylation): ADP或某些其它的核苷-5ˊ-二磷酸的磷酸化是通过来自一个非核苷酸底物的磷酰基的
丙酮酸羧化支路
PEP
CO2 GDP
GTP
Pyruvate
acetyl-CoA
CO2 + ATP
ADP + Pi
oxaloacetate
NADH+H+
NAD+
malate
Citrate
NADPH
Pyruvate
HMP途径
以6-P-G为起始物,经过两个阶段共8步反应,最后重新生成6-P-G的 过程。 HMP要循环一轮,必须有6个6-P-G同时进入循环,但最终只有 1个6-P-G被彻底分解为6CO2+12(NADPH+H+)+Pi。

生物化学(二)自学考试大纲

生物化学(二)自学考试大纲

生物化学(二)(2634)自学考试大纲一、课程的性质与设置的目的(一)本课程的性质和特点基础生物化学是农学、植保、土化、食科、园艺、林学等农科类专业的一门重要的专业基础课。

随着生物科学的发展,生物化学对于从事分子生物学、遗传学、植物生理学等研究工作者有着极为重要的作用。

主要特点是基本概念多,生物分子的结构及代谢过程的反应步骤复杂,因此学习生物化学必须从一些小分子记起,再记基本生物分子,最后掌握生物大分子的结构,有了分子结构的基础之后才能学好生物大分子的代谢过程。

(二)本课程的地位、任务与作用生物化学是专业基础课,必须在掌握该门主要内容的基础上才能掌握其它专业基础课和专业课,其主要任务是学习生物分子的结构、性质和功能,代谢反应的途径和调节控制原理。

对自学者要按照全日制普通高校相同课程的要求进行水平合格考试。

目的是检测课程应考者是否达到课程合格水平,是否掌握氨基酸、核苷酸、脂肪酸、甘油和单糖的结构、性质,是否掌握由这些基本生物分子所构成相应生物大分子(如蛋白质、核酸、脂类、多糖)的结构和性质,是否掌握这些生物大分子在体内的代谢过程。

(三)本课程的基本要求自学者在学习的过程中,要制订切实可行的自学计划,除做好读书笔记外,还应进行适当的题解,这样才能做到检查学习,促进思考,达到巩固所学知识的目的。

学习生物化学应牢记并掌握基本内容,首先要解决理解与记忆的关系,在真正对原理充分理解的基础上,就可以比较容易熟记基本的内容。

学习、理解和记忆重要生物化学原理的有效方法是:既要注意不同章节之间的密切联系和整体内容的融会贯通,又要注意总结各章节和全课程的核心和重点。

(四)本课程与相关课程的联系生物化学是运用化学的原理和方法研究生命体内的化学组成和生命现象,所以生物化学与化学特别是有机化学和物理化学有着不可分割的联系。

学习生物化学的基础是化学,生物化学又是植物生理学、遗传学、细胞生物学、栽培学、育种学等专业基础课和专业课的基础,在本专业的学习过程中具有承上启下的作用。

生物化学复习提纲

生物化学复习提纲

生物化学复习提纲一、蛋白质化学(一)蛋白质的组成和结构1、氨基酸的结构和分类20 种常见氨基酸的结构通式和特点氨基酸的分类方法(根据侧链性质)2、肽键和多肽链肽键的形成和结构特点多肽链的方向性(N 端和 C 端)3、蛋白质的一级结构定义和测定方法(如 Edman 降解法)一级结构与生物功能的关系4、蛋白质的二级结构α螺旋、β折叠、β转角和无规卷曲的结构特点和形成条件维系二级结构的化学键(氢键)5、蛋白质的三级结构定义和结构特点维系三级结构的化学键(疏水作用、离子键、氢键、范德华力等)6、蛋白质的四级结构概念和多亚基蛋白质的结构特点四级结构与功能的关系(二)蛋白质的性质1、两性解离和等电点蛋白质的两性解离性质等电点的定义和测定方法2、胶体性质蛋白质胶体稳定的原因破坏胶体稳定性的方法(如盐析)3、变性和复性变性的概念和因素(物理因素、化学因素)复性的条件和意义4、沉淀反应盐析、有机溶剂沉淀、重金属盐沉淀等方法的原理和应用5、颜色反应双缩脲反应、茚三酮反应等的原理和应用二、核酸化学(一)核酸的组成和结构1、核苷酸的组成碱基、戊糖和磷酸的结构和种类核苷酸的命名和缩写2、 DNA 的结构DNA 的双螺旋结构模型(Watson 和 Crick 模型)双螺旋结构的特点(碱基互补配对、大沟和小沟等) DNA 的三级结构(超螺旋结构)3、 RNA 的结构mRNA、tRNA、rRNA 的结构特点和功能各种 RNA 在蛋白质合成中的作用(二)核酸的性质1、紫外吸收DNA 和 RNA 的紫外吸收峰值紫外吸收在核酸定量分析中的应用2、变性和复性DNA 变性的概念和特点(增色效应)复性的条件和杂交技术的原理3、核酸的水解酸水解、碱水解和酶水解的特点和产物三、酶学(一)酶的概念和特点1、酶的定义和催化作用酶作为生物催化剂的作用原理酶与一般催化剂的异同点2、酶的特点高效性、专一性、可调节性、不稳定性等3、酶的命名和分类酶的命名方法(系统命名法和习惯命名法)酶的分类(氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶)(二)酶的结构与功能1、酶的活性中心活性中心的概念和组成活性中心与催化作用的关系2、酶原与酶原激活酶原的概念和生理意义酶原激活的机制和实例3、同工酶同工酶的概念和生理意义同工酶在临床上的应用(三)酶的作用机制1、降低反应的活化能活化能的概念酶降低活化能的方式2、酶的催化机制邻近效应和定向效应诱导契合学说酸碱催化、共价催化等(四)影响酶促反应速率的因素1、底物浓度米氏方程和米氏常数的意义底物浓度对反应速率的影响曲线(双曲线)2、酶浓度酶浓度与反应速率的关系3、温度温度对酶促反应速率的影响(最适温度)低温和高温对酶活性的影响4、 pHpH 对酶促反应速率的影响(最适 pH)酶的酸碱稳定性5、抑制剂不可逆抑制剂和可逆抑制剂的作用机制竞争性抑制、非竞争性抑制和反竞争性抑制的特点和动力学特征6、激活剂激活剂的种类和作用机制四、生物氧化(一)生物氧化的概念和特点1、生物氧化的定义和意义生物氧化与体外氧化的异同点2、呼吸链呼吸链的组成成分(NADHQ 还原酶、泛醌、细胞色素还原酶、细胞色素 c、细胞色素氧化酶)呼吸链的电子传递顺序和偶联机制3、 ATP 的生成氧化磷酸化的概念和机制(化学渗透学说)ATP 合酶的结构和作用机制底物水平磷酸化的概念和实例(二)生物氧化过程中能量的产生和转移1、自由能的变化和氧化还原电位自由能变化与反应方向的关系氧化还原电位的概念和测定2、高能化合物高能磷酸化合物(如 ATP、GTP 等)其他高能化合物(如硫酯键、甲硫键等)五、糖代谢(一)糖的消化和吸收1、食物中糖的种类单糖、双糖和多糖的常见类型2、糖的消化参与消化的酶(如淀粉酶、麦芽糖酶等)消化的部位和产物3、糖的吸收吸收的部位和机制(主动运输、被动扩散)(二)糖的无氧氧化1、糖酵解的过程十步反应的具体过程和酶的作用能量的产生和消耗2、糖酵解的生理意义在缺氧条件下为机体提供能量是某些组织和细胞的主要供能方式(三)糖的有氧氧化1、有氧氧化的过程三个阶段(糖酵解、丙酮酸氧化脱羧、三羧酸循环)的反应过程和酶的作用能量的产生和计算2、三羧酸循环反应过程和特点三羧酸循环的生理意义3、有氧氧化的生理意义(四)磷酸戊糖途径1、反应过程氧化阶段和非氧化阶段的反应2、生理意义生成 NADPH 和磷酸核糖(五)糖原的合成与分解1、糖原的合成合成的途径和关键酶2、糖原的分解分解的途径和关键酶3、糖原合成与分解的生理意义(六)糖异生1、糖异生的途径从丙酮酸等非糖物质合成葡萄糖的过程2、糖异生的生理意义维持血糖浓度的相对稳定补充肝糖原储备六、脂代谢(一)脂类的消化和吸收1、脂肪的消化参与消化的酶(如胰脂肪酶等)消化的产物(甘油一酯、脂肪酸等)2、脂类的吸收吸收的部位和方式(二)甘油三酯的代谢1、甘油三酯的合成合成的部位和原料合成的途径(甘油二酯途径、甘油一酯途径)2、甘油三酯的分解脂肪动员的概念和关键酶脂肪酸的β氧化过程(活化、转运、β氧化、能量产生)(三)磷脂的代谢1、磷脂的合成合成的部位和原料常见磷脂(如卵磷脂、脑磷脂等)的合成途径2、磷脂的分解参与分解的酶和产物(四)胆固醇的代谢1、胆固醇的合成合成的部位和原料合成的过程和关键酶2、胆固醇的转化转化为胆汁酸、类固醇激素等的途径七、氨基酸代谢(一)蛋白质的营养作用1、必需氨基酸和非必需氨基酸必需氨基酸的种类食物蛋白质的营养价值评价2、蛋白质的互补作用概念和意义(二)氨基酸的一般代谢1、氨基酸的脱氨基作用转氨基作用、氧化脱氨基作用、联合脱氨基作用的机制和特点体内主要的转氨酶和 L谷氨酸脱氢酶2、氨的代谢氨的来源和去路鸟氨酸循环的过程和生理意义3、α酮酸的代谢生成非必需氨基酸、转变为糖或脂肪(三)个别氨基酸的代谢1、一碳单位的代谢一碳单位的概念和种类一碳单位的载体和来源一碳单位的生理功能2、含硫氨基酸的代谢甲硫氨酸的代谢(SAM、同型半胱氨酸等)半胱氨酸的代谢(牛磺酸、谷胱甘肽等)3、芳香族氨基酸的代谢苯丙氨酸和酪氨酸的代谢(多巴胺、黑色素等)色氨酸的代谢(5-羟色胺等)八、核苷酸代谢(一)嘌呤核苷酸的代谢1、嘌呤核苷酸的合成从头合成的途径和关键酶补救合成的途径和酶2、嘌呤核苷酸的分解代谢最终产物(尿酸)痛风症的发病机制(二)嘧啶核苷酸的代谢1、嘧啶核苷酸的合成从头合成的途径和关键酶补救合成的途径和酶2、嘧啶核苷酸的分解代谢最终产物九、物质代谢的联系与调节(一)物质代谢的相互联系1、糖、脂、蛋白质代谢之间的相互联系糖可以转变为脂肪和蛋白质脂肪不能大量转变为糖和蛋白质蛋白质可以转变为糖和脂肪2、核酸与物质代谢的相互联系核酸的合成需要糖、脂、蛋白质代谢提供原料核酸的代谢产物可以参与物质代谢的调节(二)代谢调节1、细胞水平的调节酶活性的调节(变构调节、共价修饰调节)酶含量的调节(基因表达调控)2、激素水平的调节激素的分类和作用机制激素对物质代谢的调节作用3、整体水平的调节神经系统对物质代谢的调节饥饿和应激状态下物质代谢的变化。

《生物化学II》课程介绍与教学大纲

《生物化学II》课程介绍与教学大纲

《生物化学II》课程简介课程编号:03044039课程名称:生物化学II/Biochemistry II学分:1.5学时:24适用专业:制药工程建议修读学期:第4学期开课单位:化学生物学与制药工程先修课程:生物化学I考核方式与成绩评定标准:考试,百分制教材与主要参考书目:《生物化学简明教程》(第5版)张丽萍、杨建雄主编高等教育出版社 (2015年8月)《生物化学》(第8版)姚文兵人民卫生出版社 (2016年6月)《生物化学》(上、下册) (第3版)王镜岩、朱圣庚、徐长法主编高等教育出版社 (2002年9月) 《生物化学原理》(第2版)杨荣武高等教育出版社 (2012年9月)内容概述:生物化学(biochemistry)又称为生命的化学,是研究生物体内化学分子与化学反应的科学,从分子水平探讨生命现象的本质,即研究生物体的分子(蛋白质、核酸)结构与功能、物质代谢与调节及其在生命活动中的作用。

生物化学是生命科学领域重要的基础学科,是一门生物学与化学相结合的科学。

近年来,它的飞速发展推动了整个生命科学和医学向分子水平纵深发展。

《生物化学II》是制药工程专业的专业基础课。

生物化学的研究主要采用化学的原理和方法,但也融入了生物物理学、生理学、细胞生物学、遗传学和免疫学等的理论和技术,使之与众多学科有着广泛的联系和交叉。

本课程接续《生物化学I》课程,旨在通过课堂讲授介绍生物化学的重要概念和理论,并使学生了解某些与生物医药技术相关的生物化学进展,为学生学习后续课程奠定扎实的基础。

As the chemistry of life, biochemistry is the study of chemical molecules and chemical reactions in organisms. It explains the essence of life at the molecular level, including the structure and function of biological macromolecules (proteins, nucleic acids, etc.) as well as their metabolism and its regulation in life activities. As an important basic subject, biochemistry lays the foundation of life sciences. ‘Biochemistry II’covers the central dogma of molecular biology and hormone chemistry.《生物化学II》教学大纲课程编号:03044039课程名称:生物化学II/Biochemistry II学分:1.5学时:24适用专业:制药工程建议修读学期:第4学期一、课程性质、目的与任务课程性质:生物化学(biochemistry)又称为生命的化学,是研究生物体内化学分子与化学反应的科学,从分子水平探讨生命现象的本质,即研究生物体的分子(蛋白质、核酸)结构与功能、物质代谢与调节及其在生命活动中的作用。

2024年度《生物化学》教学大纲

2024年度《生物化学》教学大纲
了解基因表达调控和信号传导的基本原 理。
2024/3/23
熟悉生物小分子代谢途径及其调控机制 。 具备运用生物化学知识分析和解决问题 的能力。
6
课程安排及考核方式
2024/3/23
课程安排
包括课堂讲授、实验操作和讨论课等。
考核方式
采用平时成绩、实验报告和期末考试相 结合的考核方式。平时成绩占总评成绩 的30%,实验报告占20%,期末考试占 50%。
2024/3/23
20
细胞信号传导途径和机制
03
膜受体介导的信号传导
包括离子通道型受体、G蛋白偶联受体和 酶联型受体介导的信号传导途径。
胞内受体介导的信号传导
信号传导的级联放大效应
包括类固醇激素受体、甲状腺激素受体和 维生素D受体等介导的信号传导途径。
通过磷酸化级联反应、酶促级联反应等方 式实现信号的放大和传递。
糖酵解
详细阐述糖酵解的过程、关键酶和 调控机制,以及糖酵解在能量供应
中的作用。
2024/3/23
糖异生
介绍糖异生的途径、关键酶和调控 机制,以及糖异生在维持血糖平衡 中的意义。
糖原合成与分解
阐述糖原合成与分解的过程、关键 酶和调控机制,以及糖原在能量储 存和释放中的作用。
13
脂类代谢及调控机制
01
药物设计与合成
药物作用机制研究
利用生物化学原理和方法设计和合成 具有特定生物活性的药物分子,如基 于酶抑制剂的药物设计。
应用生物化学技术揭示药物与生物大 分子(如蛋白质、核酸等)的相互作 用机制,阐明药物的疗效和副作用。
药物筛选与优化
通过高通量筛选技术从大量化合物中 筛选出具有潜在药理活性的候选药物 ,并利用生物化学方法进行结构优化 和活性评价。

2024版《高级生物化学二》课程教学大纲[1]

2024版《高级生物化学二》课程教学大纲[1]

测生物分子,如血糖、尿酸等。
24
生物化学技术在药物研发中的应用
2024/1/28
药物靶点的发现与验证
利用生物化学技术寻找和验证药物作用的靶点,为新药研发提供 方向。
药物设计与优化
基于靶点结构和作用机制,设计和优化药物分子结构,提高药物的 疗效和降低副作用。
药物代谢和药代动力学研究
研究药物在体内的吸收、分布、代谢和排泄过程,为药物的临床应 用提供科学依据。
期末考试成绩整体良好,表明学生对课程内容掌握得 较为扎实。
2024/1/28
29
对未来生物化学领域发展的展望
生物化学与医学的深度融合
随着生物医学的不断发展,生物化 学将在疾病诊断、治疗及预防等方 面发挥更加重要的作用。
生物化学与生物工程的结合
利用生物化学技术改良和优化生物 工程过程,提高生物工程产品的质 量和产量。
03
氨基酸代谢
包括氨基酸的脱氨基作用、转氨基作 用等,实现氨基酸的分解和转化。
代谢调控
生物小分子的代谢受到基因表达、酶 活性、激素等多种因素的调控,以维 持生物体内环境的稳定。
05
04
核苷酸代谢
包括嘌呤和嘧啶的合成与分解代谢, 参与核酸的合成与降解。
2024/1/28
13
生物小分子在生命活动中的作用
2024/1/28
生物化学在新能源领域的应用
探索生物化学在新能源领域的应用 潜力,如生物燃料电池、生物质能 转化等,为可持续发展做出贡献。
生物化学在环境保护中的应用
利用生物化学方法处理环境污染问 题,如废水处理、土壤修复等,为 环境保护提供新的解决方案。
30
THANKS
感谢观看
2024/1/28

生物化学ii(苏维恒)课堂讨论苏维恒

生物化学ii(苏维恒)课堂讨论苏维恒

表观遗传学和基因组学的应用
疾病诊断与治疗
表观遗传学和基因组学在疾病诊 断和治疗中具有广泛的应用,如
肿瘤、神经退行性疾病等。
药物研发
表观遗传学和基因组学在药物研 发中具有重要作用,如针对特定
基因突变的药物设计。
个体化医疗
个体化医疗是指根据个体的基因 组信息和其他生物学特征,为其 提供定制化的医疗方案。表观遗 传学和基因组学在个体化医疗中
糖类的结构和功能
糖类的结构
糖类是由碳、氢、氧三种元素组成的有机化合物,包括单糖、双糖和多糖。单糖 是最简单的糖类,如葡萄糖和果糖;双糖由两个单糖通过糖苷键连接而成,如蔗 糖和麦芽糖;多糖由多个单糖聚合而成,如淀粉和纤维素。
糖类的功能
糖类是生物体的主要能源物质,同时也是构成细胞膜、参与细胞识别等生物过程 的重要物质。
等。
苏教授在肿瘤细胞信号转导、细 胞凋亡和自噬等方面取得了重要
研究成果。
苏教授的研究成果为生物医学领 域的发展做出了重要贡献。
苏维恒教授的教学理念和方法
苏教授认为教学应该注重启发学 生的思考能力和实践能力。
苏教授在课堂上采用生动有趣的 教学方式,激发学生的学习兴趣
和主动性。
苏教授注重与学生的互动交流, 鼓励学生提出问题和思考,培养 学生的创新思维和解决问题的能
指南提供依据。
环境因素与生物化学
一些环境因素(如污染物、农药、重金属等)对人体健康的影响也涉及到生物化学过程。 了解这些影响有助于制定有效的预防措施和公共卫生策略,降低环境因素对健康的危害。
THANKS
等。
受体
受体是细胞表面的蛋白质,负 责识别和结合信号分子。
信号转导途径
信号转导途径是指信号分子与 受体结合后,通过一系列的化 学反应将信号传递到细胞内部 的过程。

生物化学2 复习提纲

生物化学2 复习提纲

一名词解释糖异生许多非糖物质如甘油、丙酮酸、乳酸以及某些氨基酸等能在肝脏中转变为糖原,称糖原的异生作用。

激酶催化ATP分子的磷酸基转移到底物上的酶称激酶,一般需要Mg2+或Mn2+作为辅因子,β氧化脂肪酸氧化分解的主要途径,脂肪酸被连续地在β碳氧化降解生成乙酰CoA。

该途径因脱氢和裂解均发生在β位碳原子而得名。

α-氧化植物种子萌发时脂肪酸的α碳原子被氧化成羟基,产生α羟脂酸,并进一步脱羧、氧化转化为少一个碳原子的脂酸。

ω-氧化脂肪酸末端甲基(ω端)可经氧化作用转变为ω-羟脂酸,再氧化成α,ω-二羧酸进行β氧化。

此途径称为ω氧化。

多酶融合体许多真核生物的多酶体系是多功能蛋白,不同的酶以共价键连在一起,称为单一的肽连,称为多酶融合体。

酮体脂肪酸β-氧化产生的乙酰CoA,在肌肉和肝外组织中直接进入TCA,然而在肝、肾脏细胞中还有另外一条去路:生成乙酰乙酸、D-β-羟丁酸、丙酮,这三种物质统称酮体。

酮血症当饥饿使糖原耗尽,食物中糖的供应又不足时,或因糖尿病而缺乏氧化糖的能力时,肝脏加速分解脂肪的速度,而产生过多的酮体,超过肝外组织的氧化能力。

又因为糖代谢减少,可与乙酰CoA缩合生成柠檬酸的草酰乙酸减少,更减少了酮体的去路,于是酮体积累与体内形成了酮血症。

转氨基作用是α-氨基酸和α-酮酸之间氨基转移作用,结果是原来的a.a生成相应的酮酸,而原来的酮酸生成相应的氨基酸。

生糖氨基酸凡能生成丙酮酸、α-酮戊二酸、琥珀酸、延胡索酸、草酰乙酸的aa.都称为生糖aa,它们都能生成Glc。

降解可生成能作为糖异生前体的分子,例如丙酮酸或柠檬酸循环中间代谢物的氨基酸。

生酮氨基酸Phe、Tyr、Leu、Lys、Trp。

在分解过程中转变为乙酰乙酰CoA,后者在动物肝脏中可生成乙酰乙酸和β-羟丁酸,因此这5种aa.称生酮aa.一碳单位具有一个碳原子的基团,包括:亚氨甲基(-CH=NH),甲酰基(HC=O-),羟甲基(-CH2OH),亚甲基(又称甲叉基,-CH2),次甲基(又称甲川基,-CH=),甲基(-CH3)苯丙酮尿症苯丙酮尿症是由于苯丙氨酸代谢途径中酶缺陷所致,因患儿尿液中排出大量苯丙酮酸等代谢产物而得名。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XX省高等教育自学考试大纲02634生物化学(二)江南大学编XX省高等教育自学考试委员会办公室一、课程性质及其设置目的与要求(一)课程性质和特点生物化学(二)是XX省高等教育自学考试食品科学与工程专业的一门必修基础课。

课程全面、系统地介绍与食品有关的生物化学基本理论、基本技术和方法,使学生掌握生物大分子的结构、功能和性质,以及它们之间的关系,掌握各类生物大分子在生物体内的代谢和调节方式,同时及时反映国内外有关生物化学的先进理论和成就。

本课程在加强基础理论的同时,又强调基本技能的训练,以培养学生分析、解决问题的能力。

其教学目的是使学生借助于生物化学的理论和研究方法,解决自己所学的专业和今后在生产实践、科研中所遇到的问题。

人类为了维持生命,必须从外界取得物质和能量。

人经口摄入体内的含有营养素(如蛋白质、碳水化合物、脂质、矿物质、水分等)的物料统称为食物或食料。

绝大多数的人类食物都是经过加工以后才食用的。

经过加工以后的食物称为食品。

人是生物体,人类的食物也主要来源于其它生物。

食品科学是一门以生物学、化学、工程学等为主要基础的综合学科。

为了最大限度地满足人体的营养需要和适应人体的生理特点,食品资源的开发、加工手段与方法的研究等都必须建立在对人及其食品的化学组成、性质和生物体在内、外各种条件下的化学变化规律了解的基础上。

(二)本课程的基本要求生物化学涉及的X围很广,学科分支越来越多。

根据研究的生物对象之不同,可分为动物生物化学、植物生物化学、微生物生化、昆虫生化等等。

随着生化向纵深发展,学科本身的各个组成部分常常被作为独立的分科,如蛋白质生化、糖的生化、核酸、酶学、能量代谢、代谢调控等等。

按照生物化学应用领域的不同,分为工业生化、农业生物化学、医学生物化学、食品生物化学。

食品生物化学是食品科学的一个重要的分支,是应用生物化学之一。

概括地说,食品生物化学研究的对象与X围就是人及其食品体系的化学及化学过程。

食品生物化学不仅涵盖生物化学的一些基本内容,而且还包括再食品生产和加工过程中与食品营养和感官质量有关的化学及生物化学知识。

本课程选用国内最具权威的生化教材(生物化学,王镜岩等主编,第三版),全书有40章,教材篇幅很大,为便于自学考生学习,首先说明考生不要求掌握的章节,但括号内的内容要求掌握:第六章蛋白质结构与功能的关系(了解肌红蛋白和血红蛋白的结构特点)第十五章核酸的研究方法第十六章抗生素第十七章激素第十九章代谢总论第二十章生物能学(掌握ATP在能量转运中的地位和作用)第二十七章光合作用第三十二章生物固氮第三十五章DNA重组通过对本课程的学习,要求应考者对生物化学总体上应达到以下要求:1、掌握蛋白质、酶、核酸和维生素的理化性质,结构功能;了解生物膜的结构和功能。

2、重点掌握糖、脂分解代谢和合成代谢,了解氨基酸分解和合成代谢的公共途径;了解核苷酸的分解代谢和合成代谢;掌握核酸的合成和蛋白质生物合成过程;3、掌握生物氧化的概念、特性记代谢调节基本理论。

(三)本课程与相关课程的联系生物化学从分子水平阐述生命现象的本质,是食品科学工程专业课程的重要基础课。

生物化学的学习为后续课程:微生物学、食品营养与食品卫生学、食品工艺学、食品化学、食品酶学和食品毒理学等打下扎实基础。

本课程力求介绍生物化学中的普遍科学理论与基本研究方法,旨在提高学生在今后新产品和新资源的开发与研究上有良好的理论指导和实验研究方法。

二、课程内容与考核目标第一章蛋白质化学(课本中3-7章)(一)课程内容这部分内容包括课本氨基酸(第三章)、蛋白质的共价结构(第四章)、蛋白质的三维结构(第五章)和蛋白质的分离纯化和表征(第七章)。

(二)学习要求要求通过对本章的学习能掌握20中基本氨基酸的特点,等电点,掌握蛋白质的一级结构和空间结构特征,掌握蛋白质的理化性质以及分离纯化方法。

(三)考核知识点和考核要求1.1蛋白质概念[1]领会⑴.蛋白质的化学组成[2]掌握:⑴.20种氨基酸的英文缩写,特殊氨基酸的理化性质⑵.蛋白质水解的特点[3] 熟练掌握:⑴.必需氨基酸的概念1.2蛋白质的结构[1]领会⑴.全面领会蛋白质一级结构的内涵[2]掌握:⑴.蛋白质的空间结构⑵.蛋白质水解的特点[3] 熟练掌握:⑴.α-螺旋和β-折叠⑵.结构域的概念1.3蛋白质的重要性质[1]领会⑴.蛋白质的沉淀作用[2]掌握:⑴.蛋白质的变性和变构作用⑵.蛋白质的紫外吸收性质[3] 熟练掌握:⑴.蛋白质的胶体性质,⑵.两性解离和等电点1.4蛋白质的分离、纯化和表征[1]领会⑴.蛋白质分子的大小与形状[2]掌握:⑴.蛋白质分离纯化的一般原则⑵.蛋白质分离纯化方法[3] 熟练掌握:⑴.盐溶、盐析的概念⑵.透析的方法第二章酶(课本中8、9、10章)(一)课程内容这部分内容包括课本酶通论(第八章)、酶促反应动力学(第九章)、酶的作用机理和酶的调节(第十章)。

(二)学习要求通过学习了解酶的催化特点、酶的结构特征,酶动力学反应以及酶工程的基本知识,重点掌握酶为什么具有高效性和专一性。

(三)考核知识点和考核要求2.1酶的概述[1]领会:⑴.酶的概念[2]掌握:⑴.酶催化作用特点⑵.酶的命名[3] 熟练掌握:⑴.酶与非生物催化剂的共性2.2酶的化学本质和结构[1]领会:⑴.酶的化学本质[2]掌握:⑴.酶分子的结构特点⑵.核酶与抗体酶[3] 熟练掌握:⑴.酶的活性中性2.3酶的催化作用机制[1]领会:⑴.与酶催化作用有关的因素[2]掌握:⑴.诱导契合学说和锁钥假说⑵.酶的中间产物学说[3] 熟练掌握:⑴.温度对酶活性的影响2.4 酶反应动力学[1]领会:⑴.酶反应速度的测定[2]掌握:⑴.底物浓度、酶浓度、激活剂和抑制剂对酶反应速度的影响⑵.温度、pH对酶促反应的影响[3] 熟练掌握:⑴.米氏方程的应用可逆抑制剂类型及特点2.5 酶活力的测定[1]领会:⑴.酶活力、酶单位、比活力的概念[2]掌握:⑴.酶活力测定法[3] 熟练掌握:⑴.酶分离纯化的一般原则和注意事项2.6 酶的分离、纯化及酶的固定化[1]领会⑴.酶活力、酶单位、比活力的概念[2]掌握:⑴.酶活力测定法,固定化酶的制备方法[3] 熟练掌握:⑴.酶分离纯化的一般原则和注意事项第三章维生素与辅酶(课本中11章)(一)课程内容本章介绍维生素的结构、性质和功能以及相关的辅酶;维生素缺乏时相关的缺乏病。

重点:脂溶性维生素与缺乏病;B族维生素与辅酶的关系。

(二)学习要求了解维生素的结构,重掌握维生素的结构特征、活性形式以及构成的辅酶的功能,重点掌握维生素的缺乏症。

(三)考核知识点和考核要求[1]领会:⑴.维生素的概念[2]掌握:⑴.维生素的分类,脂溶性和水溶性维生素的缺点⑵.维生素的活性形成、功能以及构成的辅酶形式[3] 熟练掌握:⑴.各维生素的缺乏症⑵.构成的辅酶形式第四章核酸化学(课本中12、13和14章)(一)课程内容本章包括课本的核酸通论(第十二章)、核酸的结构(第十三章)和核酸的物理化学性质(第十四章)。

(二)学习要求核酸是生物体内有一类与遗传密切相关的生物大分子。

掌握核酸的化学本质,区别碱基、核苷、核苷酸与多核苷酸之间在化学结构上的差别及其相互关系。

重点:碱基、核苷、核苷酸、DNA和RNA的结构、性质和功能。

难点:单核苷酸的两性解离,DNA和RNA的空间结构。

(三)考核知识点和考核要求4.1 核酸的组成[1]领会:⑴.核酸的类别、分类和功能[2]掌握:⑴.核苷酸的结构⑵.核酸在食品中的应用[3] 熟练掌握:⑴.DNA和RNA组成、结构及功能的异同点⑵.核苷酸的组成4.2 核酸的结构[1]领会:⑴.核酸(DNA和RNA)的一级结构[2]掌握:⑴.DNA的三级结构⑵.tRNA的二三级结构特点[3] 熟练掌握:⑴.DNA的二级结构⑵.原核和真核mRNA的结构特征4.3 核酸及核苷酸的性质[1]领会:⑴.一般理化性质[2]掌握:⑴.紫外吸收性质⑵.核酸和核苷酸的两性解离[3] 熟练掌握:⑴.核酸的变性和复性⑵.核酸的杂交第五章糖代谢(课本中1、22、23、25和26章)(一)课程内容这部分内容包括课本的第一章糖类、第二十二章糖酵解作用、第二十三章柠檬酸循环和第二十五章磷酸戊糖途径及其他代谢途径和第二十六章糖原的分解与合成。

(二)学习要求了解和掌握新陈代谢概念,在学习糖类化学的基础上,掌握糖在生物体内的主要代谢途径和能量转换规律。

重点:糖酵解与糖的有氧氧化过程及其有关的能量计算。

难点:糖的降解与产能的关系。

(三)考核知识点和考核要求5.1 新陈代谢概述[1]领会:⑴.新陈代谢的概念[2]掌握:⑴.新陈代谢的特点⑵.代谢的发生过程[3] 熟练掌握:⑴.分解代谢和合成代谢⑵.物质代谢与能量代谢5.2 糖类概述[1]领会:⑴.糖类的概念[2]掌握:⑴.重要的单糖、双糖。

寡糖和多糖的结构特点,包括构型和异头物⑵.淀粉的理化性质[3] 熟练掌握:⑴.纤维素的结构⑵.果胶质、半纤维素、透明质酸和黄原胶结构特点5.3 多糖的酶水解[1]领会:⑴.淀粉的水解与淀粉水解酶[2]掌握:⑴.α-淀粉酶、β-淀粉酶的酶解特点⑵.γ-淀粉酶、异淀粉酶的酶解特点[3] 熟练掌握:⑴.淀粉水解的不同程度的碘色反应⑵.淀粉的糊化和老化以及碘值的概念5.4 糖的中间代谢[1]领会:⑴.酵解与发酵的含义、糖的异生的概念、糖原的分解代谢和糖原的合成特点[2]掌握:⑴.糖酵解途径的反应历程及生理意义、丙酮酸的去路。

⑵.丙酮酸的氧化脱羧[3] 熟练掌握:⑴.三羧酸循环的途径及关键步骤⑵.回补途径、乙醛酸循环、磷酸戊糖途径的生理意义。

第六章脂类代谢及生物膜(课本中2、18、21、28和29章)(一)课程内容这部分内容包括课本的第二章脂质、第十八章生物膜的组成与结构、第二十一章生物膜与物质运输、第二十八章的脂肪酸的分解代谢、第二十九章脂类的生物合成。

(二)学习要求在学习脂化学的基础上,掌握脂类在生物体内的主要代谢途径。

重点是甘油三酯的代谢,难点是脂肪与糖类的相互转变。

(三)考核知识点和考核要求6.1脂类概述[1]领会:⑴.脂类的概念[2]掌握:⑴.甘油三酯(单纯脂)的结构、磷脂的结构和胆固醇的结构特征⑵.甘油三酯的理化性质[3] 熟练掌握:⑴.皂化值⑵.酸败及其原因6.2 甘油三脂的分解和脂肪酸代谢[1]领会:⑴.甘油三酯的酶水解、[2]掌握:⑴.甘油的代谢⑵.脂肪酸的氧化分解[3] 熟练掌握:⑴.饱和偶碳脂肪酸的β-氧化降解作过程⑵.酮体的概念6.3脂肪酸和甘油三酯的生物合成[1]领会:⑴.非线粒体酶系合成饱和脂肪酸途径、不饱和脂肪酸的合成、磷脂的合成[2]掌握:⑴.线粒体酶系合成途径-----饱和脂肪酸碳链延长途径⑵.甘油三酯的合成[3] 熟练掌握:⑴.脂代谢与糖代谢之间的关系⑵.脂肪酸分解的能量计算6.4生物膜与物质运输[1]领会:⑴.生物膜的化学组成[2]掌握:⑴.生物膜的“流体镶嵌”模型⑵.物质的过膜运输[3] 熟练掌握:⑴.被动运输与主动运输⑵.生物大分子的跨膜运输第七章蛋白质的降解与氨基酸的分解代谢(课本中30和31章)(一)课程内容这部分内容包括课本的第三十章蛋白质的降解与氨基酸的分解代谢,第三十一章氨基酸及重要衍生物的合成。

相关文档
最新文档