【机械专业文献翻译】液压传动概述
1液压传动概述、液压油
液体的粘度
动力粘度μ的物理意义(绝对粘度) 动力粘度μ的物理意义(绝对粘度) μ = τdv/dy 液体在单位速度梯度下流动时, 液体在单位速度梯度下流动时,液层间单位面积上产生的内 摩擦力。 摩擦力。 SI制单位:Pa s 帕秒);CGS制单位 P(泊 );CGS制单位: cP(厘泊 厘泊) SI制单位:Pa·s(帕秒);CGS制单位:P(泊)、cP(厘泊) 制单位 换算关系:1Pa S=10P=103cP 换算关系:1Pa·S=10P=103cP 运动粘度ν=μ/ρ 运动粘度ν 无物理意义
通用液压油 可燃性液压油
石 油 型
合
抗磨液压油 地温液压油 磷酸脂液 水-乙二醇液 油包水液 水包油液
抗燃性液压油
成 型
乳
抗燃性液压油
化 型
2.1.2 液压油的物理性质 的物理性质
主要性质
密度 粘性 可压缩性
其 它 化 学 性 质 性 性 性 热 性 性 性
其 它 物 理 性 质
热膨胀性
密度:单位体积液压油的质量, 密度:单位体积液压油的质量,以ρ表示 ρ=m/V (kg/m3) 实际应用中可认为密度不受温度和压力变化 的影响。 的影响。 -般液压油的密度为900㎏/m3。 般液压油的密度为900㎏ 900
中国液压传动技术的发展概况
上个世纪五十年代末期开始发展液压工业, 上个世纪五十年代末期开始发展液压工业,其产品最 初只用于机床和锻压设备,后来才用到其他类设备上; 初只用于机床和锻压设备,后来才用到其他类设备上; 自1964年从国外引进一些液压元件生产技术后,即着 1964年从国外引进一些液压元件生产技术后, 年从国外引进一些液压元件生产技术后 手进行自行设计、研制和生产, 手进行自行设计、研制和生产,初步形成从低压到高压 的各种液压元件系列, 的各种液压元件系列,并在各种机械设备上得到广泛的 应用; 应用; 上个世纪80年代和90年代, 上个世纪80年代和90年代,国家对液压行业进行重点 80年代和90年代 改造,扩大对外交流与合作, 改造,扩大对外交流与合作,加速对国外先进液压元件 的引进、 的引进、消化和吸收
液压传动的基本概念
液压传动的基本概念一、概述液压传动是以液体(通常是油液)作为工作介质,利用液体压力来传递动力和进行控制的一种传动方式。
它通过液压泵,将电动的机械能转换为液体的压力能,又通过管路、控制阀等原件,经液压缸(或液压马达)将液体的压力能转换成机械能,驱动负载和实现执行机构的运动。
液压传动与机械传动、电气传动相比较,具有以下优点:(1)易于在较大的速度范围内实现无级变速。
(2)易于获得很大的力或力矩,因此承载能力大。
(3)在功率相同的情况下,液压传动的体积小、质量轻,因而动作灵敏,惯性小。
(4)传动平稳,吸振能力强,便于实现频繁换向和过载保护。
(5)操纵简单,易于采用电气、液压联合控制以实现制动化。
(6)由于采用油液为工作介质,液压传动系统的一些部件之间能自行润滑,使用寿命长。
(7)液压元件易于实现系列化、标准化、通用化,便于设计、制造,有利于推广应用。
液压传动亦存在如下缺点:(1)液压元件的制造精度和密封性能要求高,加工和安装都比较困难。
(2)泄漏难以避免,并且油液有一定的可压缩性,因此,传动比不能恒定,不适用于传动要求严格的场合。
(3)泄漏引起的能量损失(容积损失),是液压传动中主要的能量损失,此外油液在管道中受到的阻力以及机械摩擦等也会引起一定的能量损失,致使液压传动的效率较低。
(4)油液的黏度随温度变化而变化,当油温变化时,会直接影响传动机构的工作性能。
此外,在低温条件或高温条件下采用液压传动有较大的困难。
(5)油液中渗入空气时,会产生噪声,容易引起振动和爬行(运动速度不均匀)影响传动平稳。
(6)维修保养较困难,工作量大。
当液压系统产生故障时,故障原因不以查找,排除较困难。
二、液压传动原理图9—1为液压千斤顶的工作原理。
液压千斤顶主要由手动柱塞液压泵(杠杆1、泵体2、活塞3)和液压缸(活塞11、缸体12)两大部分构成。
大、小活塞与缸体、泵体的接触面之间,具有良好的配合,既能活塞移动顺利,又能形成可靠的密封。
【机械类文献翻译】液压系统设计
液压系统液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫•布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。
1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。
液压元件大约在19世纪末20世纪初的20年间,才开始进入正规的工业生产阶段。
1925年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。
20世纪初康斯坦丁•尼斯克(G •Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。
第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。
应该指出,日本液压传动的发展较欧美等国家晚了近20多年。
在1955年前后,日本迅速发展液压传动,1956年成立了“液压工业会”。
近20~30年间,日本液压传动发展之快,居世界领先地位。
液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油。
1.1液压传动概述
)
2
实质上就是说排出液压缸2的流量等于流入液压缸4的流量。 由上式可得负载的运动速 Q 度 。 v2 = A2 则活塞5的运动速度只取 决于液压缸4的流量。即: 在液压系统中执行机构的 速度只取决于流量。 速度只取决于流量 v2
A1 A2 h1 2 h2 4 3 缸
1.1.1 液压传动的定义 1 A1 A2 h1 2 h2 4 3 缸 v2
1.1.1 液压传动的定义
这个系统传递力:
如果活塞5上有重物W,则当活塞1上施加的F力 达到一定大小时,就能阻止重物W下降,这就是 说可以利用密封容积中的液体传递力。
泵 缸2
活塞1
活塞5
缸4
1.1.1 液压传动的定义
这个系统传递运动:
由于作用在密封容器内平衡液体表面上的压强 (液压力)将均匀地传递到液体中所有各点上, 且不改变大小(帕斯卡定律),这样:当活塞1 在力F力作用下向下运动时,重物将随之上升, 这说明密封容积中的液体不仅可以传递力,还可 以传递运动。
1.1.1 液压传动的定义
如图所示的系统中,有两个不同直径的液压缸2 和4,且缸内各有一个与内壁紧密配合的活塞1和 5。假设活塞在缸内自由滑动(无摩擦力),且 液体不会通过配合面产生泄漏。缸2、4下腔用一 管道3连通,其中充满液体。这些液体是密封在 缸内壁、活塞和管道组成的封闭容积中的。
泵 管道 缸2 缸4
运动速度取决于流量
A1h1 A2 h2 = ∆t ∆t
1 A1 A2 h1 2 h2 4 3 Q
v2
缸
1.1.1 液压传动的定义 下面介绍一个概念:流量Q(Flow)。 单位时间内从液压缸2中排出的液体体积或挤入液压缸4
A 1h 的体积称为流量Q(Flow)。那么,上式( ∆ t
《机械外文翻译文献翻译液压传动》
英文原文Hydraulic SystemHydraulic presser drive and air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdo m in 1795 • Braman Joseph (Joseph Braman ,1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of the world's first hydraulic press. Media work in 1905 will be replaced by oil-water and further improved.Hydraulic transmission There are many outstanding advantages, it is widely used, such as general industr- ial use of plastics processing machinery, the pressure of machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel indu- stry metallurgical machinery, lifting equipment, such as roller adjustment device; civil water projects with flo- od control and dam gate devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power plant installations, nuclear power plants, etc.; ship from the deck heavy machinery (winch), the bow doors, bulkhead valve, stern thruster, etc.; special antenna technology giant with control devices, measu- rement buoys, movements such as rotating stage; military-industrial control devices used in artillery, ship anti- rolling devices, aircraft simulation, aircraft retractable landing gear and rudder control devices and other devi- ces.A complete hydraulic system consists of five parts, namely, power components, the implementation of co- mponents, control components, auxiliary components and hydraulic oil.The role of dynamic components of the original motive fluid into mechanical energy to the pressure that the hydraulic system of pumps, it is to power the entire hydraulic system. The structure of the form of hydra- ulic pump gears are generally pump, vane pump and piston pump.Implementation of components (such as hydraulic cylinders and hydraulic motors) which is the pressure of the liquid can be converted to mechanical energy to drive the load for a straight line reciprocating movement or rotational movement.Control components (that is, the various hydraulic valves) in the hydraulic system to control and regulate the pressure of liquid, flow rate and direction. According to the different control functions, hydraulic pressure control valve can be divided into valves, flow control valves and directional control valve. Pressure control valves are divided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure relays, etc.; flow control valves including throttle, adjusting the valves, flow diversion valve sets, etc.; directional control valve includes a one-way valve , one-way fluid control valve, shuttle valve, valve and so on. Under the control of different ways, can be divided into the hydraulic valve control switch valve, control valve and set the value of the ratio control valve.Auxiliary components, including fuel tanks, oil filters, tubing and pipe joints, seals, pressure gauge, oil level, such as oil dollars.Hydraulic oil in the hydraulic system is the work of the energy transfer medium, there are a variety of mineral oil, emulsion oil hydraulic molding Hop categories.The role of the hydraulic system is to help humanity work. Mainly by the implementation of components to rotate or pressure into a reciprocating motion.Hydraulic system and hydraulic power control signal is composed of two parts, the signal control of some parts of the hydraulic power used to drive the control valve movement.Part of the hydraulic power means that the circuit diagram used to show the different functions of the interrelationship between components. Containing the source of hydraulic pump, hydraulic motor and auxiliary components; hydraulic control part contains a variety of control valves, used to control the flow of oil, pressure and direction; operative or hydraulic cylinder with hydraulic motors, according to the actual requirements of their choice.In the analysis and design of the actual task, the general block diagram shows the actual operation of equi - pment. Hollow arrow indicates the signal flow, while the solid arrows that energy flow.Basic hydraulic circuit of the action sequence - Control components (two four-way valve) and the spring to reset for the implementation of components (double-acting hydraulic cylinder), as well as the extending and retracting the relief valve opened and closed . For the implementation of components and control components, presentations are based on the corresponding circuit diagram symbols, it also introduced ready made circuit diagram symbols.Working principle of the system, you can turn on all circuits to code. If the first implementation of components numbered 0, the control components associated with the identifier is 1. Out with the implementation of components corresponding to the identifier for the even components, then retracting and implementation of components corresponding to the identifier for the odd components. Hydraulic circuit carried out not only to deal with numbers, but also to deal with the actual device ID, in order to detect system failures.DIN ISO1219-2 standard definition of the number of component composition, which includes the following four parts: device ID, circuit ID, component ID and component ID. The entire system if only one device, device number may be omitted.Practice, another way is to code all of the hydraulic system components for numbers at this time, components and component code should be consistent with the list of numbers. This method is particularly applicable to complex hydraulic control system, each control loop are the corresponding number with the systemWith mechanical transmission, electrical transmission compared to the hydraulic drive has the following advantages:1, a variety of hydraulic components, can easily and flexibly to layout.2, light weight, small size, small inertia, fast response.3, to facilitate manipulation of control, enabling a wide range of stepless speed regulation (speed range of 2000:1).4, to achieve overload protection automatically.5, the general use of mineral oil as a working medium, the relative motion can be self-lubricating surface, long service life;6, it is easy to achieve linear motion /7, it is easy to achieve the automation of machines, when the joint control of the use of electro-hydraulic, not only can achieve a higher degree of process automation, and remote control can be achieved.The shortcomings of the hydraulic system:1, as a result of the resistance to fluid flow and leakage of the larger, so less efficient. If not handled properly, leakage is not only contaminated sites, but also may cause fire and explosion.2, vulnerable performance as a result of the impact of temperature change, it would be inappropriate in the high or low temperature conditions.3, the manufacture of precision hydraulic components require a higher, more expensive and hence the price. 4, due to the leakage of liquid medium and the compressibility and can not be strictly the transmission ratio. 5, hydraulic transmission is not easy to find out the reasons for failure; the use and maintenance requirements for a higher level of technology.In the hydraulic system and its system, the sealing device to prevent leakage of the work of media within and outside the dust and the intrusion of foreign bodies. Seals played the role of components, namely seals. Medium will result in leakage of waste, pollution and environmental machinery and even give rise to malfunctioning machinery and equipment for personal accident. Leakage within the hydraulic system will cause a sharp drop in volumetric efficiency, amounting to less than the required pressure, can not even work. Micro-invasive system of dust particles, can cause or exacerbate friction hydraulic component wear, and further lead to leakage.Therefore, seals and sealing device is an important hydraulic equipment components. The reliability of its机械专业中英文文献翻译work and life, is a measure of the hydraulic system an important indicator of good or bad. In addition to the closed space, are the use of seals, so that two adjacent coupling surface of the gap between the need to control the liquid can be sealed following the smallest gap. In the contact seal, pressed into self-seal-style and self-styled self-tight seal (ie, sealed lips) two.The three hydraulic system diseases1, as a result of heat transmission medium (hydraulic oil) in the flow velocity in various parts of the existence of different, resulting in the existence of a liquid within the internal friction of liquids and pipelines at the sam- e time there is friction between the inner wall, which are a result of hydraulic the reasons for the oil tempera- ture. Temperature will lead to increased internal and external leakage, reducing its mechanical efficiency. At the same time as a result of high temperature, hydraulic oil expansion will occur, resulting in increased com- pression, so that action can not be very good control of transmission. Solution: heat is the inherent characte -ristics of the hydraulic system, not only to minimize eradication. Use a good quality hydraulic oil, hydraulic piping arrangement should be avoided as far as possible the emergence of bend, the use of high-quality pipe and fittings, hydraulic valves, etc.2, the vibration of the vibration of the hydraulic system is also one of its malaise. As a result of hydraulic oil in the pipeline flow of high-speed impact and the control valve to open the closure of the impact of the process are the reasons for the vibration system. Strong vibration control action will cause the system to error, the system will also be some of the more sophisticated equipment error, resulting in system failures. Solutions: hydraulic pipe should be fixed to avoid sharp bends. To avoid frequent changes in flow direction, can not avoid damping measures should be doing a good job. The entire hydraulic system should have a good damping measures, while avoiding the external local oscillator on the system.3, the leakage of the hydraulic system leak into inside and outside the leakage leakage. Leakage refers to the process with the leak occurred in the system, such as hydraulic piston-cylinder on both sides of the leakage, the control valve spool and valve body, such as between the leakage. Although no internal leakage of hydra- ulic fluid loss, but due to leakage, the control of the established movements may be affected until the cause system failures. Outside means the occurrence of leakage in the system and the leakage between the external environment. Direct leakage of hydraulic oil into the environment, in addition to the system will affect the working environment, not enough pressure will cause the system to trigger a fault. Leakage into the enviro- nment of the hydraulic oil was also the danger of fire. Solution: the use of better quality seals to improve the machining accuracy of equipment.Another: the hydraulic system for the three diseases, it was summed up: "fever, with a father拉稀" (This is the summary of the northeast people). Hydraulic system for the lifts, excavators, pumping station, dynamic, crane, and so on large-scale industry, construction, factories, enterprises, as well as elevators, lifting platforms, Deng Axle industry and so on.Hydraulic components will be high-performance, high-quality, high reliability, the system sets the direction of development; to the low power, low noise, vibration, without leakage, as well as pollution control, water-based media applications to adapt to environmental requirements, such as the direction of development; the development of highly integrated high power density, intelligence, mechatronics and micro-light mini-hydraulic components; active use of new techniques, new materials and electronics, sensing and other high-tech.Hydraulic coupling to high-speed high-power and integrated development of hydraulic transmission equ- ipment, development of water hydraulic coupling medium speed and the field of automotive applications to develop hydraulic reducer, improve product reliability and working hours MTBF; hydraulic torque converter to the development of high-power products, parts and components to improve the manufacturing process tech -nology to improve reliability, promote computer-aided technology, the development of hydraulic torque con- verter and power shift transmission technology supporting the use of ; Clutch fluid viscosity should increase the quality of products, the formation of bulk to the high-power and high-speed direction.Pneumatic Industry:Products to small size, light weight, low power consumption, integrated portfolio of development, the implementation of the various types of components, compact structure, high positioning accuracy of the direction of development; pneumatic components and electronic technology, to the intelligent direction of development; component performance to high-speed, high-frequency, high-response, high-life, high temp- erature, high voltage direction, commonly used oil-free lubrication, application of new technology, new technology and new materials.(1)used high-pressure hydraulic components and the pressure of continuous work to reach 40Mpa, the maximum pressure to achieve instant 48Mpa;(2) diversification of regulation and control;(3) to further improve the regulation performance, increase the efficiency of the powertrain;(4) development and mechanical, hydraulic, power transmission of the composite portfolio adjustment gear;(5) development of energy saving, energy efficient system function;(6) to further reduce the noise;(7) Application of Hydraulic Cartridge V alves thread technology, compact structure, to reduce the oil spill Water-based hydraulic systemsWater-based hydraulic systems traditionally have been used in hot-metal areas of steel mills. The obvious advantage of water systems in these industries is their fire resistance. Water-based hydraulic systems also have obvious cost advantages over oil-based fluid. First, non-toxic, biodegradable synthetic additives for water cost $5 to $6 per gallon. One gallon of concentrate can make 20 gallons of a 5% solution, so the cost of water-based hydraulic fluid actually can be less than 30 cents per gallon.Considering the costs associated with preventing and cleaning up environmental contamination, water-based hydraulic systems hold the potential for tremendous cost savings at the plant level. Oil that has leaked already becomes a very important problem. It must be collected, properly contained. Water containing synthetic additives, however, can by dumped into plant effluent systems.Cost savings at the plant level don't stop at the lower cost of the fluid and its disposal. Because water-based hydraulic fluid consists of 10 parts water and one part synthetic additive, 5 gallons of additive mixes with water to make 100 gallons of water-based fluid. A 50gallon container is certainly easier to handle than two 55-gallon drums, so warehousing is simpler, cleaner, and less cluttered. Transportation costs also are lower.Other potential plant-wide savings include improved safety for workers because the water-based fluid is non-toxic as well as non-flammable. These attributes can reduce plant insurance rates. Spills cost less to clean up because granular absorbents or absorbent socks are unnecessary. Water is "hot" againThe oil embargo in the 1970s sparked interest in water-based fluids as a less-costly alternative to oils. Even the most expensive water additives became attractive when designers learned that one gallon of concentrate would make 20 gallons of fluid.As oil prices gradually dropped, so did interest in water-based hydraulics. In retrospect, interest in water-based fluids centered around their cost saving potential. Most designers lost interest when they discovered that they could not just change the fluid in their systems from oil to water without making other substantial changes. They then become reluctant to accept other "disadvantages" - read substantial changes - of switching over to water-based hydraulics.What were viewed as disadvantages were really different rules that apply to water-based hydraulic systems? Designers probably resisted learning more about water-based hydraulics because they were intimated by all the work required to lean about how to design a new system or retrofit an older system. By closing their minds to this different technology, they missed the many other advantages of water-based fluid beyond initial cost. Now that environmental concerns have added disposal costs to the price of hydraulic fluids, water-based hydraulics has again become a hot topic.Fighting freezeWater-based hydraulic systems do, of course, have limits to their applications. One limitation is the potential of freezing. This possibility is probably the most significant blockade to more widespread application of机械专业中英文文献翻译water-based systems, especially in the mobile equipment industry. Longwall mining is by far the largest sector of mobile equipment that has been able to take advantage of water-based systems. Temperatures underground do not approach the freezing point of water, and fire resistance is essential. Mobile and even marine equipment used in temperate climates could cash in one the advantages of water based systems, but there is no guarantee that such equipment always will be used in above-freezing temperatures.Nevertheless, adding an anti-freeze to a water-based fluid can depress its freezing temperature to well below 32°F. Ethylene glycol - used in automotive anti-freeze - is toxic and is not biodegradable, so its use for anti-freeze in water-based hydraulic fluid would defeat the environmental advantage water-based fluid has. There is an alternative. Propylene glycol is not toxic and is biodegradable. It costs more than ethylene glycol and is not quite as effective antifreeze, so it must be used in slightly higher concentrations. Two more techniques to reduce freezing potential are to keep fluid circulating continuously and use hose where practical. Sealing the systemTwo more perceived problems with water hydraulic systems are bacterial infestation and difficulty in maintain proper concentrations. Sealing the system from atmosphere can hold bacterial growth in check. Addition of an anti-bacterial agent to the fluid can have a lasting effect on preventing bacterial buildup if air is excluded from the system.A sealed reservoir eliminates another problem suffered by many hydraulic systems: water ingression. This addresses another misconception about water-based systems: water-based systems not sealed from the atmosphere must be closely monitored to ensure that the additive concentration stays within tolerance. That is because water evaporates from the reservoir more readily than the additive does. Consequently, water evaporation causes the additive concentration to increase. When new fluid is added to a system, samples of the existing fluid must be taken to determine the concentration of additive in solution. These results then reveal the ratio of additive to fluid that must be added so that fluid concentration is correct.With a system that seals fluid from the atmosphere, the evaporation problem is virtually eliminated. Fluid that escapes by leakage is a solution containing water and additive. Therefore, the quantity of fluid in the system changes, but concentration does not. System fluid is replen ished simply by adding a pre-mixed solution of water and additive to the reservoir.中文原文液压传动液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫•布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。
液压传动概述.
3.控制元件:控制系统压力、流量、方 向的元件以及进行 信号转换、逻辑运算和放大等功能的信号控制元件,如压力 阀、流量阀、换向阀等。
黑体18号
按钮
二、液压传动原理、组成和特点
(二)液 压系统的 组成
4.辅助元件:保证系统正常工作除上述三种元件外的装置, 如油箱、滤油器等。
黑体18号
按钮
二、液压传动原理、组成和特点
液压传动概述
液压传动概述
1
液压传动发展概要
2
液压传动原理、组成及特点
一、液压传动发展概要
黑体 20号
17世纪帕斯卡提 出的液体 静压力传 动原理而 发展起来 的一门新 兴技术
一、液压传动发展概要
约瑟夫 布拉曼
1795年 英国
世界上 第一台 水压机
按钮
一、液压传动发展概要
1905年
将工作介 质水改为 油,性能 又进一步 得到改善
按钮
二、液压传动原理、组成和特点
(二)液 压系统的 组成
1.能源装置:将机械能转换为流体压力能的装置,如液 压泵
黑体18号
按钮
二、液压传动原理、组成和特点
(二)液 压系统的 组成
2.执行元件:将流体的压力能转换为机械能的元件,如 液压缸、液压马达。
黑体18号
按钮
二、液压传动原理、组成和特点
(二)液 压系统的 组成
(三)液压传动的特点:优点
(1)
能方便地进行无级调速,且调速范围大。
(2)
调节、控制简单,方便,省力,易实现自动化控制和过载保护。
(3)
因传动介质为油液,故液压元件有自我润滑作用,使用寿命长。
Байду номын сангаас(4)
第05章 液压传动概述
图5-1 液压千斤顶的工作原理 4,5- 1-杠杆 2-小活塞 3-小液压缸 4,5-钢球 6-大液压缸 10- 7-大活塞 8-重物 9-放油阀 10-油池
二、液压传动系统的组成 由图5 可见,液压传动系统由以下四部分组成: 由图5-2可见,液压传动系统由以下四部分组成: (1) 动力元件 (2) 执行元件 (3) 控制调节元件 (4) 辅助元件 对于图5 对于图5-2a所示的液压系统,若用国家标准GB786.1-93液压图 所示的液压系统,若用国家标准GB786.1-93液压图 GB786.1 形符号绘制时,其系统原理如图5 形符号绘制时,其系统原理如图5-2c所示。使用这些图形符号,可 所示。使用这些图形符号, 使液压系统图简单明了,便于绘制。 使液压系统图简单明了,便于绘制。
二、液压油的牌号 在进行液压油的选择时,主要是选择适当的牌号。 在进行液压油的选择时,主要是选择适当的牌号。油液的牌号是 根据它的粘度数值来划定的,因此选择液压油的牌号, 根据它的粘度数值来划定的,因此选择液压油的牌号,实际上是选择 液压油的粘度。 显然, 粘度较大的油液流动性较差。 具体来说, 液压油的粘度 。 显然 , 粘度较大的油液流动性较差 。 具体来说 , 在 40℃的实验条件下,32号液压油的平均运动粘度是32mm,46号液压油 号液压油的平均运动粘度是32mm,46 40 ℃的实验条件下,32号液压油的平均运动粘度是32mm,46号液压油 的平均运动粘度是46mm。 的平均运动粘度是46mm。 46mm 三、液压油的选择 在不同的环境温度和工作压力条件下,应该选用不同粘度的油。 在不同的环境温度和工作压力条件下,应该选用不同粘度的油。 为了减少漏损,在使用温度、压力较高或速度较低时, 为了减少漏损,在使用温度、压力较高或速度较低时,应采用粘度较 大的油;为了减少管路内的摩擦损失,在使用温度、 大的油;为了减少管路内的摩擦损失,在使用温度、压力较低或速度 较高时,应采用粘度较小的油。 较高时,应采用粘度较小的油。
液压传动——液压传动概述
液压传动——液压传动概述-CAL-FENGHAI.-(YICAI)-Company One1第1章液压传动概述1.1 液压传动发展概况1.1.1 液压传动的定义一部完整的机器由原动机部分、传动机构及控制部分、工作机部分(含辅助装置)组成。
原动机包括电动机、内燃机等。
工作机即完成该机器之工作任务的直接工作部分,如剪床的剪刀、车床的刀架等。
由于原动机的功率和转速变化范围有限,为了适应工作机的工作力和工作速度变化范围变化较宽,以及性能的要求,在原动机和工作机之间设置了传动机构,其作用是把原动机输出功率经过变换后传递给工作机。
一切机械都有其相应的传动机构借助于它达到对动力的传递和控制的目的。
传动机构通常分为机械传动、电气传动和流体传动机构。
流体传动是以流体为工作介质进行能量转换、传递和控制的传动。
它包括液压传动、液力传动和气压传动。
液压传动和液力传动均是以液体作为工作介质进行能量传递的传动方式。
液压传动主要是利用液体的压力能来传递能量;而液力传动则主要是利用液体的动能来传递能量。
1.1.2 液压传动的发展概况液压传动是一门新的学科,虽然从17世纪中叶帕斯卡提出静压传动原理,18世纪末英国制成世界上第一台水压机算起,液压传动技术已有二、三百年的历史。
但直到20世纪30年代它才较普遍地用于起重机、机床及工程机械。
在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。
第二次世界大战结束后,战后液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。
本世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。
因此,液压传动真正的发展也只是近三四十年的事。
当前液压技术正向迅速、高压、大功率、高效、低噪声、经久耐用、高度集成化的方向发展。
同时,新型液压元件和液压系统的计算机辅助设计(CAD)、计算机辅助测试(CAT)、计算机直接控制(CDC)、机电一体化技术、可靠性技术等方面也是当前液压传动及控制技术发展和研究的方向。
液压传动介绍
液压传动介绍一、液压传动的基本概念液压传动是一种利用液体传递能量和控制信号的传动方式。
它通过液体的流动和压力变化来实现动力传递和执行机构的运动控制。
液压传动系统由液压元件、液压介质和控制元件组成,通常应用于机械、船舶、航空航天等领域。
液压传动具有传动平稳、输出力矩大、传动效率高等优点。
二、液压传动的工作原理液压传动系统主要由液压泵、阀门、液压缸等组成。
其工作原理是通过液压泵将机械能转化为液压能,再通过阀门调整液压介质的流动和压力,最终由液压缸将液压能转化为机械能。
液压泵产生的压力驱动液压介质流动,完成动力传递。
阀门负责调整液压系统中的液压介质流量和压力,实现对执行机构的控制。
三、液压传动的优点液压传动具有以下优点:1.传动平稳:液体的可压缩性使得液压系统具有传动平稳的特点,适用于对传动精度要求高的场合。
2.输出力矩大:液压系统通过增大工作流体的压力来实现输出力矩的增大,能够满足大功率输出的需求。
3.传动效率高:液压传动系统中的液压泵和液压缸具有较高的传动效率,能够有效减少能量损失。
4.动力分配灵活:通过液压阀门的控制,可以实现对多个执行机构的动力分配,灵活性好。
5.自动化程度高:液压传动系统可以通过电控、计算机等自动化设备的配合,实现多种复杂动作和过程控制。
四、液压传动的应用领域液压传动广泛应用于各个领域,主要包括以下几个方面:1. 机械制造液压传动在机床、冶金设备、塑料机械等机械制造领域具有重要应用。
例如,数控机床中广泛采用液压传动系统来实现工作台和刀架的移动控制,提高加工精度和生产效率。
2. 船舶工程船舶工程中液压传动常用于操纵舵机、起重设备以及各种液压传动装置。
液压传动系统具有体积小、重量轻、可靠性高等特点,在船舶操纵和起重过程中扮演着重要角色。
3. 航空航天液压传动在航空航天领域的应用十分广泛,例如飞机起落架的收放、襟翼和襟翼执行机构的控制等都采用了液压传动系统。
液压传动具有承受高压、工作可靠等特点,能够适应高速飞行和复杂气象条件。
液压传动知识点总结
液压传动知识点总结一、液压传动概述液压传动是利用液体介质传递能量的一种动力传动方式。
它通过液压油泵将机械能转化为液压能,然后通过管道输送,最终由液压缸、液压马达等执行元件将液压能转化为机械能,从而驱动各种机械设备运动。
液压传动具有功率密度大、传动效率高、体积小、重量轻、动作平稳等优点,因此在工程机械、冶金设备、航空航天、军事装备等领域得到广泛应用。
二、液压传动的基本原理1. 液压传动基本原理液压传动的基本原理是利用液体在管道中传递流体压力来传递能量。
通过液压泵将机械能转化为液压能,然后利用管道输送并转换为机械能,最终驱动执行元件完成工作。
2. 液压传动的工作过程液压传动的工作过程包括液压泵的工作、液压缸/马达的工作和控制阀的工作。
当液压泵工作时,将液压油压力传递至液压缸/马达,从而驱动执行元件运动。
控制阀负责控制液压系统的工作状态,实现液压传动的正常运行。
三、液压传动的基本组成液压传动系统主要由液压泵、液压缸/马达、控制阀、液压油箱、管路和附件组成。
1. 液压泵液压泵主要用来将机械能转化为液压能,产生液压系统所需的压力和流量。
根据其工作原理和结构形式,液压泵有很多种类型,包括齿轮泵、叶片泵、柱塞泵等。
2. 液压缸/马达液压缸是将液压能转化为机械能的执行元件,用来产生线性运动。
液压马达则是将液压能转化为机械能的执行元件,用来产生旋转运动。
3. 控制阀控制阀是液压系统中的一个重要部件,主要用来控制、调节液压系统的压力、流量和流向,以实现对液压系统的控制。
常见的控制阀有溢流阀、节流阀、换向阀等。
4. 液压油箱液压油箱是存放液压油的容器,其中设置有油位计、滤油器、散热器等液压系统所需的附件。
5. 管路管路用于输送液压油,将压力和流量传递至液压缸/马达等执行元件。
6. 附件液压传动系统还包括压力表、流量表、液位计、滤油器等辅助附件,用于监控和调节液压系统的运行状态。
四、液压传动的工作原理1. 液压传动的液压能转换液压传动中,液压泵将机械能转换为液体流动的压力能,然后利用控制阀调节流量和流向,最终将液压能传递至液压缸/马达等执行元件,从而转换成机械能,驱动机械设备运动。
《液压传动》 讲义
《液压传动》讲义一、液压传动的概述液压传动是一种以液体为工作介质,通过液体的压力能来传递动力和运动的传动方式。
它在现代工业中有着广泛的应用,从重型机械到精密仪器,从航空航天到汽车制造,几乎无处不在。
液压传动的工作原理基于帕斯卡定律,即在密闭容器内,施加于静止液体上的压力将以等值同时传递到液体各点。
简单来说,就是通过一个小的力在一个较小的面积上产生高压,从而在一个较大的面积上产生较大的输出力。
液压传动具有许多优点。
首先,它能够提供较大的力和扭矩,适用于重载和大功率的应用场景。
其次,它的运动平稳,可以实现精确的速度和位置控制。
再者,液压系统的响应速度较快,能够快速适应工作条件的变化。
此外,它的结构紧凑,体积相对较小,布局灵活。
然而,液压传动也并非完美无缺。
液压系统的成本相对较高,尤其是对于高精度和高性能的系统。
液体的泄漏是一个常见的问题,这不仅会造成能源浪费,还可能污染环境。
同时,液压油的温度和粘度对系统的性能有较大影响,需要进行有效的温度控制和油液管理。
二、液压传动的组成部分一个完整的液压传动系统通常由以下几个主要部分组成:1、动力元件动力元件的作用是将原动机(如电动机、内燃机等)的机械能转换为液体的压力能。
常见的动力元件是液压泵,如齿轮泵、叶片泵和柱塞泵等。
液压泵通过吸入低压油,并将其压缩成高压油输出,为整个系统提供动力源。
2、执行元件执行元件的功能是将液体的压力能转换为机械能,以驱动工作机构实现直线运动或旋转运动。
液压缸和液压马达是最常见的执行元件。
液压缸用于实现直线往复运动,而液压马达则用于实现连续的旋转运动。
3、控制元件控制元件用于控制和调节液压系统中液体的压力、流量和方向,以满足工作机构的各种运动要求。
常见的控制元件包括各种类型的阀,如溢流阀、减压阀、节流阀、换向阀等。
通过这些阀的协同工作,可以精确地控制液压系统的工作状态。
4、辅助元件辅助元件包括油箱、油管、过滤器、密封件等,它们虽然不直接参与能量的传递和转换,但对于保证系统的正常工作和性能的稳定性起着至关重要的作用。
液压传动概述1
• 液压传动主要是利用液体的压力能来传递能量; • 液力传动则主要是利用液体的动能来传递能量。
•
液压传动的定义: 液压传动是以液体为 工作介质,并以压力能进行动力(或能量)传递、 转换与控工作原理 以液压千斤顶为例,说明液压传动系统的工作原 理。
小结
• • • • • 1.液压传动的工作原理: ①以油液作为工作介质 ②依靠密封容积的变化来传递运动 ③依靠油液内部的压力来传递动力 2.液压传动装置本质:
• 实现机械能→液压能→机械能的能量转换。
• • • • • • • • • •
3.液压传动系统的组成 ①动力部分(液压泵) 机械能 液压能 能源 ②执行部分(液压缸或液压马达) 液压能 机械能 直线运动或旋转运动 ③控制部分(控制阀) 控制液体压力、流量和方向。 压力阀、流量阀和换向阀 ④辅助部分(油箱、管路等) 输送液体、储存液体、过 滤液体、密封等,保证液压系统正常工作如油箱、油管、 管接头、滤油器等。 ⑤传动介质
课题二 液压传动的特点
• 一、液压传动的优点 • 1. 液压传动的各种元件,可根据需要方便、灵活地布置; • 2. 单位功率的重量轻,体积小,传动惯性小,反应速度 快; • 3. 液压传动装置的控制调节比较简单,操纵方便、省力, 可实现大范围的无级调速(调速比可达2000),当机、电、 液配合使用时,易于实现自动化工作循环; • 4. 能比较方便地实现系统的自动过载保护; • 5. 一般采用矿物油为工作介质,完成相对运动部件润滑, 能延长零部件使用寿命;
• 6. 很容易实现工作机构的直线运动或旋转运动; • 7. 当采用电液联合控制后,容易实现机器的自动 化控制,可实现更高程度的自动控制和遥控。 • 8. 由于液压元件已实现标准化、系列化和通用化, 所以液压系统的设计、制造和使用都比较方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附件1:外文资料翻译译文
1 液压传动概述
1.1 液压传动的发展概况
1.1.1 压传动的定义
一部完整的机器是由原动机部分、传动机构、控制部分及工作机部分组成。
原动机有几种类型,例如电动机、内燃机等。
工作机即完成该机器的工作任务的直接工作部分,如剪床的剪刀,车床的刀架、车刀、卡盘等。
由于原动机的功率和转速比是被限制的,为了覆盖工作机较大范围的工作力和工作速度的变化,以及操作性能的要求,在原动机和工作机之间设置了传动机构,其作用是把原动机输出功率经过变换后传递给工作机。
传动机构通常分为电气传动、机械传动和流体传动三类机构。
流体传动是通过液压、流体或气体来进行能量传递和控制的。
但需要认识到实际上只有两种液压系统:液力传动和液压传动(包括液力和气体)。
液压传动和液力传动均是以液体作为工作介质来进行能量传递的传达方式。
液力传动则主要是利用液体的动能来传递能量;而液压传动主要是利用液体的压力能来传递能量。
由于液压传动有许多突出的优点,因此,它被广泛的应用于工业的每个分支。
一些典型的运用像机械工程、建筑、海洋开发、交通运输、农业和航天航空
1.1.2 液压传动的发展概况
到18世纪中叶的工业革命,电能已经不能支持工业机器的传动需求。
18世纪末液压传动被用于驱动液力设备,例如起重机、压力机、绞车、压榨机、液力千斤顶、修剪机械、和支承机械。
在这些系统中,是一种由蒸汽机驱动液力的水泵,这种泵是通过压力将水通过管道传到工业机械来驱动各种机器的。
这些早期的液力系统有着许多的不足,例如设计问题,由于设计已经发展为艺术而多过了科学。
然而,直到19世纪电力成为新的有优势的技术。
这样的结果液压传动并没有起到推动的作用。
电力传动不久被发现在远距离传递上有良好的效果。
在19世纪最后的10年里液压传动技术只有小小的发展。
近代,1906年液压传动开始被重视,是当时用液
力系统代替了电力系统来控制和调节一艘来自美国弗吉尼亚洲军舰上的武器。
由于这次的运用,液力系统用油取代了水。
这个在流体领域的改变和后来设计问题的解答成为液压传动诞生前的重大的里程碑。
由于军事上的需求,直到第二次世界大战液压传动一直在运用,并且发展速度很快。
在第二次世界大战期间和第二次世界大战之后,航天航空工业的发展推动了液压传动技术的发展。
随着第二次世界大战造成的经济体系的扩展,液压传动并没有得到很好的运用。
现今,液压传动被广泛的运用于工业的每个分支。
一些典型的运用例如汽车、拖拉机、飞机、导弹、轮船和机械工具。
单独拿汽车来说,液压传动在液压制动装置、自动传送装置、动力转向装置、动力刹车、空气调节器、润滑、水冷却剂和汽油泵系统都被利用道。
这个改革运用到现代技术中,例如,电液封闭环系统、单片机和改进构成建筑物的材料将继续体现液压系统的优势。
1.2 液压传动的工作原理及系统构成
1.2.1 液压传动系统的工作原理
图1.1为磨床工作台液压系统工作原理图。
液压泵4在电动机的带动下旋转,油液由油箱1经过过滤器2倍吸入液压泵,由液压泵输入的压力油通过手动换向阀11、节流阀13、换向阀15进入液压缸18的作腔,推动活塞17和工作台19向右移动,液压缸18右腔的油液经换向阀15排回油箱。
如果将换向阀15转换成如图1.1(b)所示的状态,则压力油进入液压缸18的右腔,推动活塞17和工作台19向左移动,液压缸18左腔的油液经换向阀15排回油箱。
工作台19的移动速度由节流阀13来调节。
当节流阀开大时,进入液压缸18的油液增多,工作台的移动速度增大;当节流阀关小时,工作台的移动速度减小。
液压泵4输出的压力油除了进入节流阀13以外,其余的打开溢流阀7流回油箱。
如果将手动换向阀9转换成如图1.1(c)所示的状态,液压泵输出的油液经手动换向阀9流回油箱,这时工作台停止运动,液压系统处于缷荷状态。
图1.1 磨床工作台液压传动系统工作原理
1—油箱;2—过滤器;3、12、14—回油管;4—液压泵;5—弹簧;6—钢球;7—溢流阀;8、10—压力油臂;9—手动换向阀;11、16—换向手柄;13—节流阀;15—换向阀;17—活塞;18
—液压缸;19—工作台
1.2.2 液压传动系统的组成
一个完整的液压传动系统由以下几部分组成:
(1)液压泵(动力元件):是将原动机所输出的机械能转换成液体压力能的元件其作用是向液压系统提供压力油,液压泵是液压系统的心脏。
(2)执行元件:把液体压力能转换成机械能以驱动工作机构的元件。
执行元件包括液压缸和液压马达。
(3)控制元件:包括压力、方向、流量控制阀,是对系统中油液压力、流量、方向进行控制和调节的元件。
如换向阀15即属控制元件。
(4)辅助元件:上述三个组成部分以外的其它元件,如管道、管接头、油箱、滤油器等为辅助元件。
1.2.3 液压系统的图形符号
适合的工艺出版物和图册提供的图形便于有利于系统操作的理解和一些故障的排除。
一个图形可以以图示的方法来表达出装配图的中各种各样的零件图和显示出系统的操作方法和工作原理。
要理解懂得操作液压传动系统,读懂图形是必须要具有的基本能力。
同样,要理解一个系统的图形,那么图形里的各种符号的含义也必须要理解。
在实际工作中,除少数特殊情况外,一般都采用国标GB/T786.1—93所规定的液压图形符号来绘制,如图1.2所示。
图形符号表示元件的功能,而不表示元件的具体结构和参数;反映各元件在油路连接上的相互关系,不反映其空间安装位置;只反映静止位置或初始位置的工作状态,不反映其过渡过程。
它们可以画成任何尺寸。
除非复合的电路符号来表示多样的电路操作,其他每一个被画出来的符号标示的都是每一个组成部分的正常工作状态或中间状态。
图1.2 用图形符号表示的磨床工作台液压系统图
1—油箱;2—过滤器;3—液压泵;4—溢流阀;5—手动换向阀;6—节流阀;7—换向阀;
8—活塞;9—液压缸
1.3 液压传动的优缺点
1.3.1 液压传动系统的主要优点
液压传动系统为使用者提供许多的好处,包括:
(1)高马力,低质量比。
液压执行元件体积小、重量轻、结构紧凑。
(2)灵活、控制精确、可逆性,可实现大范围的无级调速、大负载和远程自动控制。
(3)部分旋转和直线运动可以精确的定位,还可以在运行的过程中进行调速。
(4)动力的连接在运动学上是不切实际的,令人满意的动力传输的方法是利用远程控制。
(5)一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长。
(6)简单、安全、搞适应性、可靠性和经济实惠。
(7)标准化。
液压传动工业已经为液压产品和动力产品制定了标准,便于设计、制造和使用。
1.3.2 液压传动系统的主要缺点
(1)油液污染能够损坏液压系统的操作。
(2)流体流动存在着泄漏。
(3)易燃的液压油液容易导致火灾。
(4)如果没有按照正确的方法使用,液压系统的管道会发生爆炸,而且高速喷出的油液和飞出的金属片都很有可能对人造成伤害。
(5)液势必需要进行过处理的。