一元二次方程趣味版 PPT
合集下载
21.1一元二次方程-完整版课件PPT
21.1 一元二次方程
探究一:一元二次方程的概念和一般形式
重点、难点知识★▲
活动1
问题:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一 个正方形,然后将四周突出部分折起,就能制作一个无盖长方体 盒子.如果要制作的无盖长方体盒子底面积为3600cm²,那么铁皮 各角应切去边长为多少cm的正方形?
(2)为什么要限制a≠0,b、c可以为0吗?
(3)一元二次方程3x2-x+2=0的一次项系数是1吗?为什么?
总结一元二次方程的特殊形式:
当c=0时, ax2 bx 0a 0 当b=0时, ax2 c 0a 0 当b=0,c=0时, ax 2 0a 0
探究一:一元二次方程的概念和一般形式
活动2 一元二次方程的一般形式的应用
例4 若关于x的方程 (m 1)x2 x c x2 是一元二次 方程,求m的取值范围. 【解题过程】
解:原方程整理得(m 2)x2 x c 0, 因其是一元二次方程,所以m-2≠0, 即m≠2.
【思路点拨】先将原方程化为一般形式,再根据一元二次 方程的二次项系数不能为0,求出m的范围.
一元二次方程的一般形式:ax2 bx c 0(a 0)
其中ax2是二次项,a是二次项系数; bx是一次项,b是一次项系数; c是常数项.
探究一:一元二次方程的概念和一般形式
重点、难点知识★▲
活动4 一元二次方程的一般形式: ax2 bx c 0(a 0)
问题: (1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
探究二:利用一元二次方程的概念解决简单的问题
重点、难点知识★▲
活动2 一元二次方程的一般形式的应用
练习4:若关于x的方程 (m 1)xm2 1 x c 0 是一元二次 方程,求m的值. 【解题过程】
探究一:一元二次方程的概念和一般形式
重点、难点知识★▲
活动1
问题:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一 个正方形,然后将四周突出部分折起,就能制作一个无盖长方体 盒子.如果要制作的无盖长方体盒子底面积为3600cm²,那么铁皮 各角应切去边长为多少cm的正方形?
(2)为什么要限制a≠0,b、c可以为0吗?
(3)一元二次方程3x2-x+2=0的一次项系数是1吗?为什么?
总结一元二次方程的特殊形式:
当c=0时, ax2 bx 0a 0 当b=0时, ax2 c 0a 0 当b=0,c=0时, ax 2 0a 0
探究一:一元二次方程的概念和一般形式
活动2 一元二次方程的一般形式的应用
例4 若关于x的方程 (m 1)x2 x c x2 是一元二次 方程,求m的取值范围. 【解题过程】
解:原方程整理得(m 2)x2 x c 0, 因其是一元二次方程,所以m-2≠0, 即m≠2.
【思路点拨】先将原方程化为一般形式,再根据一元二次 方程的二次项系数不能为0,求出m的范围.
一元二次方程的一般形式:ax2 bx c 0(a 0)
其中ax2是二次项,a是二次项系数; bx是一次项,b是一次项系数; c是常数项.
探究一:一元二次方程的概念和一般形式
重点、难点知识★▲
活动4 一元二次方程的一般形式: ax2 bx c 0(a 0)
问题: (1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
探究二:利用一元二次方程的概念解决简单的问题
重点、难点知识★▲
活动2 一元二次方程的一般形式的应用
练习4:若关于x的方程 (m 1)xm2 1 x c 0 是一元二次 方程,求m的值. 【解题过程】
《一元二次方程》PPT课件
解:如果设五个连续整数中的第一个数为x,那么后 面四个数依次可表示 为: x+1 , x+2 , x+3 , x+4 . 根据题意,可得方程:
x2 + (x + 1)2 + (x + 2)2 = (x + 3)2 + (x + 4)2.
化简得,x2 - 8x - 20=0. ②
该方程中未知数的个数 和最高次数各是多少?
解:(1)将方程式转化为一般形式,得(a-2)x2-x=0, 所以当a-2≠0,即a≠2时,原方程是一元二次方程;
(2)由∣a ∣+1 =2,且a-1 ≠0知,当a=-1时,原方 程是一元二次方程.
方法点拨:用一元二次方程的定义求字母的值的方 法:根据未知数的最高次数等于2,列出关于某个字 母的方程,再排除使二次项系数等于0的字母的值.
75 1 x 2 108
整理,得 25x2 50x 11 0 ②
课堂小结
概念
① 是整式方程; ② 只含有一个未知数; ③ 最高次数是2
一元二 次方程
一般形式
ax2+bx+c=0 (a ≠0) 其中(a≠0)是一元二次 方程的必要条件
变式:方程(2a-4)x2-2bx+a=0, (1)在什么条件下此方程为一元二次方程? (2)在什么条件下此方程为一元一次方程?
解(1)当 2a-4≠0,即a ≠2 时是一元二次方程
(2)当a=2 且 b ≠0 时是一元一次方程
思考:一元一次方程与一元二次方程有什么区别 与联系?
一元一次方程
一元二次方程
4.1 一元二次方程
-.
学习目标
1.理解一元二次方程的概念.(难点) 2.根据一元二次方程的一般形式,确定各项系数. 3.理解并灵活运用一元二次方程概念解决有关问 题.(重点)
x2 + (x + 1)2 + (x + 2)2 = (x + 3)2 + (x + 4)2.
化简得,x2 - 8x - 20=0. ②
该方程中未知数的个数 和最高次数各是多少?
解:(1)将方程式转化为一般形式,得(a-2)x2-x=0, 所以当a-2≠0,即a≠2时,原方程是一元二次方程;
(2)由∣a ∣+1 =2,且a-1 ≠0知,当a=-1时,原方 程是一元二次方程.
方法点拨:用一元二次方程的定义求字母的值的方 法:根据未知数的最高次数等于2,列出关于某个字 母的方程,再排除使二次项系数等于0的字母的值.
75 1 x 2 108
整理,得 25x2 50x 11 0 ②
课堂小结
概念
① 是整式方程; ② 只含有一个未知数; ③ 最高次数是2
一元二 次方程
一般形式
ax2+bx+c=0 (a ≠0) 其中(a≠0)是一元二次 方程的必要条件
变式:方程(2a-4)x2-2bx+a=0, (1)在什么条件下此方程为一元二次方程? (2)在什么条件下此方程为一元一次方程?
解(1)当 2a-4≠0,即a ≠2 时是一元二次方程
(2)当a=2 且 b ≠0 时是一元一次方程
思考:一元一次方程与一元二次方程有什么区别 与联系?
一元一次方程
一元二次方程
4.1 一元二次方程
-.
学习目标
1.理解一元二次方程的概念.(难点) 2.根据一元二次方程的一般形式,确定各项系数. 3.理解并灵活运用一元二次方程概念解决有关问 题.(重点)
《一元二次方程》数学PPT课件(10篇)
4-7x2=0
一般形式
二次项 一次项 常数项 系数 系数
3x2-5x+1=0
3 -5 1
1x2 +1x-8=0
1
-7x2 +4=0 或-7x2 +00x+4=0 -7
或7x2 - 4=0
7
1 -8
04 0 -4
抢答: 一元二次方程
2x2+x+4=0
-4y2+2y=0 3x2-x-1=0
4x2-5=0
二次项系数
一次项系数
例1:判断下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
(3)x+3y=36
(4)
1 x2
2 x
0
(5) x+1=0 (6) x2 6 (7)4x2 1 (2x 3)2 3
(8)( x )2 2 x 6 0
练习巩固
下列方程哪些是一元二次方程? 为什么? (1)7x2-6x=0 (2)2x2-5xy+6y=0
?
问题(1) 有一块矩形铁皮,长100㎝,宽50㎝,在
它的四角各切去一个正方形,然后将四周突出部 分折起,就能制作一个无盖方盒,如果要制作的方 盒的底面积为3600平方厘米,那么铁皮各角应切 去多大的正方形?
分析:
设切去的正方形的边长为xcm,
则盒底的长为 (100-2x)cm ,宽
为 (50-2x)cmБайду номын сангаас.
① 只含一个未知数;
②未知数的最高次数是2.
③ 都是整式方程;
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2 bx的形c 式0,我们把
一般形式
二次项 一次项 常数项 系数 系数
3x2-5x+1=0
3 -5 1
1x2 +1x-8=0
1
-7x2 +4=0 或-7x2 +00x+4=0 -7
或7x2 - 4=0
7
1 -8
04 0 -4
抢答: 一元二次方程
2x2+x+4=0
-4y2+2y=0 3x2-x-1=0
4x2-5=0
二次项系数
一次项系数
例1:判断下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
(3)x+3y=36
(4)
1 x2
2 x
0
(5) x+1=0 (6) x2 6 (7)4x2 1 (2x 3)2 3
(8)( x )2 2 x 6 0
练习巩固
下列方程哪些是一元二次方程? 为什么? (1)7x2-6x=0 (2)2x2-5xy+6y=0
?
问题(1) 有一块矩形铁皮,长100㎝,宽50㎝,在
它的四角各切去一个正方形,然后将四周突出部 分折起,就能制作一个无盖方盒,如果要制作的方 盒的底面积为3600平方厘米,那么铁皮各角应切 去多大的正方形?
分析:
设切去的正方形的边长为xcm,
则盒底的长为 (100-2x)cm ,宽
为 (50-2x)cmБайду номын сангаас.
① 只含一个未知数;
②未知数的最高次数是2.
③ 都是整式方程;
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2 bx的形c 式0,我们把
一元二次方程数学PPT课件
解: 3 2 + 2 − 2 − 6 + 6 = 0
3 2 = 0
二次项:3 2 . 其系数为3.
二次项: 2 、系数为1
一次项:-8,其系数为-8
一次项:0、系数: 0
常数项: -10
常数项:0
课堂测试
一元二次方程
3x2=6x-1
(x+3)(x -1)=6
5-7x2=0
一般
形式Βιβλιοθήκη 二次项二次项系数
一次项
一次项
系数
常数项
课堂测试
1、判断下列方程中,哪些是一元二次方程?
(1)X
2
1
+ -3=0
分母中有未知数
(2)X 3-3x+4=0
最高项次数为3
(3)X 2 -2y-3=0
有两个未知数
(4)Ax 2+bx+c=0
(5)4x 2+3x-2=(2x-1)2
a可能为0
化简之后是一元一次方程
情景思考
问题1:正方形桌面的面积是 4 m2,求它的边长?
分析:正方形的面积=边长×边长
解:设正方形桌面的边长是
2 = 4
情景思考
问题2:一个数的平方是这个数的
6倍,求这个数?
解:设这个数为,得
2 = 6
思考
观察下列各方程有什么共同点?
2
=4
2
= 6
1 2 1
− = 28
2023最新整理收集
do
something
第一单元 一元二次方程
1.1 一元二次方程
部 编 版 九 年 级 数 学 上 册
汇报人:xx
一元一次方程知识点回顾
3 2 = 0
二次项:3 2 . 其系数为3.
二次项: 2 、系数为1
一次项:-8,其系数为-8
一次项:0、系数: 0
常数项: -10
常数项:0
课堂测试
一元二次方程
3x2=6x-1
(x+3)(x -1)=6
5-7x2=0
一般
形式Βιβλιοθήκη 二次项二次项系数
一次项
一次项
系数
常数项
课堂测试
1、判断下列方程中,哪些是一元二次方程?
(1)X
2
1
+ -3=0
分母中有未知数
(2)X 3-3x+4=0
最高项次数为3
(3)X 2 -2y-3=0
有两个未知数
(4)Ax 2+bx+c=0
(5)4x 2+3x-2=(2x-1)2
a可能为0
化简之后是一元一次方程
情景思考
问题1:正方形桌面的面积是 4 m2,求它的边长?
分析:正方形的面积=边长×边长
解:设正方形桌面的边长是
2 = 4
情景思考
问题2:一个数的平方是这个数的
6倍,求这个数?
解:设这个数为,得
2 = 6
思考
观察下列各方程有什么共同点?
2
=4
2
= 6
1 2 1
− = 28
2023最新整理收集
do
something
第一单元 一元二次方程
1.1 一元二次方程
部 编 版 九 年 级 数 学 上 册
汇报人:xx
一元一次方程知识点回顾
人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)
解:设小道的宽度为x米,得(20-2x)(10-x)=120整理得x2-要建造一个长10m,宽5m玻璃顶观景亭,如图所示在它的四角建造四个截面为正方形的承重柱. 已知需要用到玻璃的面积为45m2,那么承重柱的宽度多少?
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程
《一元二次方程》教学PPT课件-人教版九年级上册数学
=0
②设x1=
-
b 2
+m,x2=
-
b 2
-m
(m≥0)
a
a
c
③根据韦达定理可得:x1·x2 = a
将第二步中的设定代入,求得m
④再求得x1, x2。
人教版九年级上册数学《一元二次方程》
【例题】
封面 目录
方程解法 之 特殊方法 • 赋值法
1、解方程 2x²-140x+1650=0 解:第一步将方程两边同时除以a=2
方程化为:x²-70x+825=0,此时可知:- =35
设x1=35+m,x2=35-m (m≥0) 根据韦达b定理可知:x1·x2 = 825
则有:2 (35+m)(35-m)=825 a 解得:m=20
∴ 方程的解为:x1=55, x2=15。
人教版九年级上册数学《一元二次方程》
D 拓展训练 ● 推导求根公式 ● 几何意义 ● 韦达定理
封面 目录
人教版九年级上册数学《一元二次方程》
基本概念 之 四种形式
【一般形式】
ax²+bx+c=0(a≠0)
【配方式】
( ) b x+ 2a
2=
b2-4ac 4a2
【变形式】
ax²+bx=0(a≠0) ax²+c=0(a≠0) ax²=0(a≠0)
【两根式】
a(x-x1)(x-x2)=0
封面 目录
5、法国的韦达(1540~1603)除推出一元方程在复数范围内恒有解外,还给出了根与 系数的关系。
人教版九年级上册数学《一元二次方程》
基本概念 之 判定条件
【判定条件】
一元二次方程成立必须同时满足三个条件: ①是整式方程,即等号两边都是整式。 方程中如果有分母,且未知数在分母上,那么这个方程就是分 式方程,不是一元二次方程; 方程中如果有根号,且未知数在根号内,那么这个方程也不是 一元二次方程(是无理方程)。 ②只含有一个未知数; ③未知数项的最高次数是2。
21.1一元二次方程(22张ppt)课件
学习目标
?
1.理解一元二次方程的概念,掌握 一元二 次方程的一般 形式,正确认 识各项及其各项的系数; 2.灵活应用一元二次方程概念解决 有关问题。
要设计一座2m高的人体雕像,修雕像的 上部(腰以上)与下部(腰以下)的高度 比,等于下部与全部的高度比,雕像的下 部应设计为多高?
雕像上部的高度AC和下部的高度BC有怎样的关系? A
1 部比赛共 x x 1 场. 2
列方程
1 xx 1 28 2
1 2 1 x x 28 2 2
整理,得 化简,得
x x 56
2
③
由方程③可以得出参赛队数.
问题3:新七(1)班成立,各新同学初次同班,为 表友谊,全班同学互送贺卡,全班共送贺卡1560 张,求七(1)班现有多少名学生?
解:设七(1)班有m名学生,则:
m(m-1)=1560
整理,得:m2-m=1560
化简,得:m2-m-1560=0 ④
由方程④可以得出参赛队数.
方程① ② ③ ④有什么特点?
x2+2x-4=0 ①
x2-75x+350=0 ②
x2-x=56 ③
m2-m-1560=0 ④
(1)这些方程的两边都是整式, (2)方程中只含有一个未知数,未知数的最高次数是2. 像这样的等号两边都是整式,只含有一个未知数(一元), 并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
3 2 x 2a 0 2
中
练习:
1、已知x=1是关于x的一元二次方程 2x²+kx-1=0的一个根,求k的值.
2、已知x=0是关于x的一元二次方程 (a-1)x²+x+a²-1=0的一个根,求a的 值.
?
1.理解一元二次方程的概念,掌握 一元二 次方程的一般 形式,正确认 识各项及其各项的系数; 2.灵活应用一元二次方程概念解决 有关问题。
要设计一座2m高的人体雕像,修雕像的 上部(腰以上)与下部(腰以下)的高度 比,等于下部与全部的高度比,雕像的下 部应设计为多高?
雕像上部的高度AC和下部的高度BC有怎样的关系? A
1 部比赛共 x x 1 场. 2
列方程
1 xx 1 28 2
1 2 1 x x 28 2 2
整理,得 化简,得
x x 56
2
③
由方程③可以得出参赛队数.
问题3:新七(1)班成立,各新同学初次同班,为 表友谊,全班同学互送贺卡,全班共送贺卡1560 张,求七(1)班现有多少名学生?
解:设七(1)班有m名学生,则:
m(m-1)=1560
整理,得:m2-m=1560
化简,得:m2-m-1560=0 ④
由方程④可以得出参赛队数.
方程① ② ③ ④有什么特点?
x2+2x-4=0 ①
x2-75x+350=0 ②
x2-x=56 ③
m2-m-1560=0 ④
(1)这些方程的两边都是整式, (2)方程中只含有一个未知数,未知数的最高次数是2. 像这样的等号两边都是整式,只含有一个未知数(一元), 并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
3 2 x 2a 0 2
中
练习:
1、已知x=1是关于x的一元二次方程 2x²+kx-1=0的一个根,求k的值.
2、已知x=0是关于x的一元二次方程 (a-1)x²+x+a²-1=0的一个根,求a的 值.
一元二次方程(PPT课件)
x2 5 . x1 1, 所以:
解法3:利用配方法。将方程左边配方,有:
x 2 6 x 9 9 5 0 ,即 x 32 4
x2 5 . x 3 2 即 x1 1, 所以:
想一想
例题中的三种解法各具有哪些特点?本题 中使用哪种方法比较简洁?
返回目录
(1) x 2 4 x 12 0 ;(2) 3x 2 4 x 1 0;
(3) x 2 2 x 2 0 ;(4) x 2 4 x 2 0 .
再 见!
返回目录
§3.3
一元二次方程
安溪华侨职校数学组
目 录
知 识 讲 授 典 型 例 题
课 堂 练 习
课 外 作 业
1、一元二次方程:
含有一个未知数,并且未知数的最高次数是2的整 式方程叫做一元二次方程。其一般形式为:
ax2 bx c 0
a 0 .
2、解一元二次方程的基本方法:
公式法、配方法和因式分解法
_______ ⑷方程 x 2 2 x 8 0中, ,此方程
_______实数根;
课堂练习
2、解下列各方程:
(1) x 2 3x 10 0 ; (2) 2 x 2 3x 9 0; (3)பைடு நூலகம்3x 2 4 x 4 0 .
返回目录
课外作业
用适当的方法解下列各方程:
3、一元二次方程的求根公式:
一元二次方程的解也叫一元二次方程的根。求根公 式为:
b b 2 4ac x . 2a
4、一元二次方程解得讨论:
2 b 4ac ,则: 判别式为
(1) 当 0 时,一元二次方程有两个不相等的实 数解; (2) 当 0 时,一元二次方程有两个相等的实数解; (3) 当 0 时,一元二次方程没有实数解。
一元二次方程课件
配方法
通过将一元二次方程转化为完全平方的形式来求解。
公式法
利用求根公式x = (-b ± √(b^2 - 4ac)) / 2a求解。
图像法
通过观察一元二次方程的图像来求解。
利用配方法解一元二次方程
1
步骤一
将一元二次方程展开。
2
步骤二
通过加减同项式转化为完全平方。
3
步骤三
应用二次平方公式求解。
利用公式法解一元二次方程
一元二次方程在数学竞赛中的应用
一元二次方程是数学竞赛中常见的考点,通过掌握解法和技巧,可以更好地应对竞赛题目。
利用解一元二次方程的方法求 解其他方程
解一元二次方程的方法可以应用于解其他类型的方程,如三次方程、指数方 程等。
一元二次方程的解法总结
一元二次方程的解法可以分类为配方法和公式法,根据方程的性质和判别式的值来选择解法。
解一元二次方程的常见错误及 避免方法
常见错误包括计算错误、应用错误的解法、无效的代数操作等。避免方法包 括检查计算过程、理解方程的性质等。
凹凸性
当a > 0时,抛物线开口朝上;当 a < 0时,抛物线开口朝下。
解一元二次方程在实际生活中的应用
物理学
用于求解自由落体、抛体运动等问题。
经济学
用于建立成本、收益或利润方程来研究最佳决策。
工程学
用于计算曲线的最高或最低点,以便优化设计。
一元二次方程的根与系数的关系
两实根
当判别式Δ > 0时,方程有两个 不相等的实根。
找出一元二次方程的零点
方程y = ax^2 + bx + c的零点就是使y = 0的x值,即方程的实根。
求一元二次方程的最大值或最 小值
通过将一元二次方程转化为完全平方的形式来求解。
公式法
利用求根公式x = (-b ± √(b^2 - 4ac)) / 2a求解。
图像法
通过观察一元二次方程的图像来求解。
利用配方法解一元二次方程
1
步骤一
将一元二次方程展开。
2
步骤二
通过加减同项式转化为完全平方。
3
步骤三
应用二次平方公式求解。
利用公式法解一元二次方程
一元二次方程在数学竞赛中的应用
一元二次方程是数学竞赛中常见的考点,通过掌握解法和技巧,可以更好地应对竞赛题目。
利用解一元二次方程的方法求 解其他方程
解一元二次方程的方法可以应用于解其他类型的方程,如三次方程、指数方 程等。
一元二次方程的解法总结
一元二次方程的解法可以分类为配方法和公式法,根据方程的性质和判别式的值来选择解法。
解一元二次方程的常见错误及 避免方法
常见错误包括计算错误、应用错误的解法、无效的代数操作等。避免方法包 括检查计算过程、理解方程的性质等。
凹凸性
当a > 0时,抛物线开口朝上;当 a < 0时,抛物线开口朝下。
解一元二次方程在实际生活中的应用
物理学
用于求解自由落体、抛体运动等问题。
经济学
用于建立成本、收益或利润方程来研究最佳决策。
工程学
用于计算曲线的最高或最低点,以便优化设计。
一元二次方程的根与系数的关系
两实根
当判别式Δ > 0时,方程有两个 不相等的实根。
找出一元二次方程的零点
方程y = ax^2 + bx + c的零点就是使y = 0的x值,即方程的实根。
求一元二次方程的最大值或最 小值
24.1 一元二次方程课件(共20张PPT)
同学们再见!
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义
①
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义
①
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.
一元二次方程精品PPT课件
第二课时
• 1.一元二次方程根的概念; • 2.根据题意判定一个数是否是一元二次
方程的根及其利用它们解决一些具体题 目.
一元二次方程的根.
• 为了与以前所学的一元一次方程等只有 一个解的区别,我们称:一元二次方程 的解叫做一元二次方程的根.
直接开平方法
• 形如的方程 (x a)2 b(b 0) 可以用直接开
一元二次方程的一般形式.
• 任何一个关于x的一元二次方程, 经过整理, 都能化成如下形式 ax2 bx c 0(a 0) 这种 形式叫做一元二次方程的一般形式.
• 一个一元二次方程经过整理化成 ax2 bx c 0后(a, 0) 其中ax2是二次项,a是二次项系数;bx是一 次项,b是一次项系数;c是常数项.
就能判断b方2 程4a根c 的情况;
一元二次方程的根的判别式
• 一元二次方程 ax2 bx c 0(a 0) 的根的判
别式△= b2 4ac • 当△>0时,方程有两个不相等的实数根; • 当△=0时,方程有两个相等的实数根, • 当△<0时,方程没有实数根.
韦达定理(根与系数关系)
• (1)我们将一元二次方程化成一般式ax2+bx+c=0之 后,设它的两个根是和,则和与方程的系数a,b,c 之间有如下关系:
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
一元二次方程(第一课时)课件
一元二次方程(第一课 时)ppt课件
本PPT课件将介绍一元二次方程的基本概念和解题方法,以及优化题的应用。 通过丰富的内容和精彩的图像,使学生能够轻松理解和掌握这个重要的数学 知识点。
引言
本节课将要介绍一元二次方程的定义和例子,并确定本堂课的学习目标。
一元二次方程的概念和公式
一元二次方程的定义
什么是一元二次方程?通过 实例来解释。
二次方程的标准形式和 一般形式
标准形式和一般形式的区别 是什么?如何转换?
解一元二次方程的公式
学习如何利用公式解一元二 次方程。
解一元二次方程的四种方法
1
直接公式法
使用直接公式解一元二次方程的骤和技巧。
2
完全平方公式法
通过完全平方公式解一元二次方程。
3
公式法
利用一元二次方程的公式进行求解。
4
图像法
推荐一些有关一元二次方程的优秀书籍和教材。
在线资源
分享一些相关的在线资源,供学生进一步学习。
二次函数及其图像分 析
学习如何分析二次函数图像以 解决优化问题。
求最值的思想和方法
通过思考和运用数学方法,找 到优化问题的最值。
小结
本堂课的主要内容回顾
总结本课所学的重点知识和技巧。
下节课预告
预告下节课将学习的内容和目标。
学习到的知识点总结
总结一元二次方程的基本概念和解题方法。
参考资料
书籍和教材
通过分析二次函数图像来解一元二次方程。
解题方法和技巧
1 变形思路
如何巧妙变形一元二次方程,找到解题的突破口。
2 整理形式
整理一元二次方程的形式,使解题更加简单明了。
3 注意二次方程的根性质
本PPT课件将介绍一元二次方程的基本概念和解题方法,以及优化题的应用。 通过丰富的内容和精彩的图像,使学生能够轻松理解和掌握这个重要的数学 知识点。
引言
本节课将要介绍一元二次方程的定义和例子,并确定本堂课的学习目标。
一元二次方程的概念和公式
一元二次方程的定义
什么是一元二次方程?通过 实例来解释。
二次方程的标准形式和 一般形式
标准形式和一般形式的区别 是什么?如何转换?
解一元二次方程的公式
学习如何利用公式解一元二 次方程。
解一元二次方程的四种方法
1
直接公式法
使用直接公式解一元二次方程的骤和技巧。
2
完全平方公式法
通过完全平方公式解一元二次方程。
3
公式法
利用一元二次方程的公式进行求解。
4
图像法
推荐一些有关一元二次方程的优秀书籍和教材。
在线资源
分享一些相关的在线资源,供学生进一步学习。
二次函数及其图像分 析
学习如何分析二次函数图像以 解决优化问题。
求最值的思想和方法
通过思考和运用数学方法,找 到优化问题的最值。
小结
本堂课的主要内容回顾
总结本课所学的重点知识和技巧。
下节课预告
预告下节课将学习的内容和目标。
学习到的知识点总结
总结一元二次方程的基本概念和解题方法。
参考资料
书籍和教材
通过分析二次函数图像来解一元二次方程。
解题方法和技巧
1 变形思路
如何巧妙变形一元二次方程,找到解题的突破口。
2 整理形式
整理一元二次方程的形式,使解题更加简单明了。
3 注意二次方程的根性质
《一元二次方程》一元二次方程PPT课件
3.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?
对一元二次方程: ax2 + bx +c = 0(a≠0). b2 - 4ac > 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac < 0 时,方程无实数根.
学习目标 1.探索一元二次方程的根与系数的关系. 2.不解方程利用一元二次方程的根与系数的关系解决问题.
新知探究
跟踪训练 把下列方程化成一元二次方程的一般形式,并写出它们的二次项系
数、一次项系数和常数项.
(1) x 2 2 4;
x2 4x 0 1 -4 0
(2)2 x 3 x 4 x2 10 ;
x2 2x 14 0 1 2 -14
(3)x2 x 1 1. 32
2x2 3x 9 0 2 -3 -9
新知探究 知识点3
x2-(x1+x2)x+x1x2=0.
对接中考
关于 x 的一元二次方程 x2-(a2-2a)x+a-1=0 的两个实数根互为相反数,
则 a 的值为( B )
A.2
B.0
C.1
D.2或0
已知x1,x2是一元二次方程 x2−2x=0 的两个实数根,下列结论错误的是 (D )
方程两个根的和、积与系数分别有如下关系: x1+x2=-p,x1x2=q.
新知探究
一般的一元二次方程 ax2+bx+c=0 中,二次项系数 a 未必是1,它的两个 根的和、积与系数又有怎样的关系呢?
新知探究
由求根公式知
x1 b
b2 4ac 2a
x2 b
b2 4ac 2a
x1 x2 b
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) x2 5x15√0 (2)
(3) (x3)2 7√源自(4)2 x2 5
3
x22y30
(5) 3x25x0√
(6) 4x2 0 √
(7) 2 x x 3 2 x 2 1 (8) x x 5
(9)
1 x3 1 0
2
(10)2xy-7=0
大家学习辛苦了,还是要坚持
继续保持安静
一元二次方程的一般形式
一般形式: a x2b xc0 (a0 )
二次项 a x 2
二次项系数
a
一次项
bx
常数项 c
想一想
一次项系数
b
为什么要限制 a≠0?
一元二次方程的一般形式
ax²+bx+c=0( a≠0)
把下列方程化为一元二次方程的形式,并写出它的二次 项系数、一次项系数和常数项:
3x2-5x+1=0 3
x2+x-8=0
一元二次方程趣味版
21.1
二次方程
初三(4)班
By Charles
学习目标
1 理解一元二次方程的概念。 2 了解一元二次方程的一般形式。 3 理解一元二次方程的解的概念。
一元二次方程的概念
等号两边都是整式 ,只含有一个未知 数(一元),并且未知数的最高次数 是2 (二次)的方程,叫做一元二次 方程。
一元二次方程应满足:
1 是整式方程 2 只含有一个未知数
3 未知数的最高次数是2
重
说说一元二次方程与一元一次方程的相同 与不同之处.
相同之处:(1)两边都是整式;(2) 只含有一个未 知数;
不同之处: 一元一次方程未知数的最高次数是1次,以上方程 未知数的最高次数是2次.
判断下列方程是一元二次方程吗?
1
-7x2+4=0 -7
-5
1
1
-8
0
4
3 什么是一元二次方程的解(根)
使一元二次方程左、右两边相等的 未知数的值叫做一元二次方程的解 ,也叫做一元二次方程的根。
一元二次方程可以无解,但是有解 就一定有两个。
下面哪些数是方程x2+x-6=0的根?
-4 -3 2 3
(3) (x3)2 7√源自(4)2 x2 5
3
x22y30
(5) 3x25x0√
(6) 4x2 0 √
(7) 2 x x 3 2 x 2 1 (8) x x 5
(9)
1 x3 1 0
2
(10)2xy-7=0
大家学习辛苦了,还是要坚持
继续保持安静
一元二次方程的一般形式
一般形式: a x2b xc0 (a0 )
二次项 a x 2
二次项系数
a
一次项
bx
常数项 c
想一想
一次项系数
b
为什么要限制 a≠0?
一元二次方程的一般形式
ax²+bx+c=0( a≠0)
把下列方程化为一元二次方程的形式,并写出它的二次 项系数、一次项系数和常数项:
3x2-5x+1=0 3
x2+x-8=0
一元二次方程趣味版
21.1
二次方程
初三(4)班
By Charles
学习目标
1 理解一元二次方程的概念。 2 了解一元二次方程的一般形式。 3 理解一元二次方程的解的概念。
一元二次方程的概念
等号两边都是整式 ,只含有一个未知 数(一元),并且未知数的最高次数 是2 (二次)的方程,叫做一元二次 方程。
一元二次方程应满足:
1 是整式方程 2 只含有一个未知数
3 未知数的最高次数是2
重
说说一元二次方程与一元一次方程的相同 与不同之处.
相同之处:(1)两边都是整式;(2) 只含有一个未 知数;
不同之处: 一元一次方程未知数的最高次数是1次,以上方程 未知数的最高次数是2次.
判断下列方程是一元二次方程吗?
1
-7x2+4=0 -7
-5
1
1
-8
0
4
3 什么是一元二次方程的解(根)
使一元二次方程左、右两边相等的 未知数的值叫做一元二次方程的解 ,也叫做一元二次方程的根。
一元二次方程可以无解,但是有解 就一定有两个。
下面哪些数是方程x2+x-6=0的根?
-4 -3 2 3