人教版2020年七年级数学上册小专题练习十七《角-解答题专练》(含答案)
人教版数学七年级上册4.3.1《角》同步练习(有答案)
人教版数学七年级上册 4.3.1《角》同步练习(有答案)《角》同步练习一、选择题1.下列关于角的说法正确的是( )A .两条射线组成的图形叫角B .角的大小与这个角的两边长短无关C .延长一个角的两边D .角的两边是射线,所以角不可以度量2.关于平角、周角的说法正确的是( )A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就成一个平角D .两个锐角的和不一定小于平角3.在钝角∠AOB 内部引出两条射线OC 、OD ,则图中共有角( )A .3个B .4个C .5个D .6个4.如图所示,下列表示β∠的方法中,正确的是( )A .C ∠B .D ∠C .ADB ∠D .BAC ∠5.下列各角中,是钝角的是( )A .41平角B .32平角C .31平角D .41周角 6.如图下列表示角的方法,错误的是( ).A .1∠与AOB ∠表示同一个角B .AOC ∠也可用O ∠来表示C .图中AOB ∠、AOC ∠、BOC ∠D .β∠表示的是BOC ∠5.用度、分、秒表示52.73°为____度____分____秒.6.15°48′36″=_____________°.7.在图中,用三个大写字母表示1 ∠为________;2 ∠为________;3 ∠为________;4 ∠为________.8.在AOB ∠内部过顶点O 引3条射线,则共有___________个角,如果引出99条射线,则共有_____________个角.9.计算90°-57°34′44″的结果为_______________.10.如图,AOB ∠是直角,2:1:,38=∠∠︒=∠COB COD AOC ,则____=∠DOB 度.11.在图中,A 、B 、C 三点分别代表邮局,医院、 学校中的某一处,邮局和医院分别在学校的北偏 西方向,邮局又在医院的北偏东方向,那么图中A 点应该是___________,B 点是_________,C 点是_________.三、解答题1.钟表2时15分时,你知道时针与分针的夹角是多少度吗?2.用剪刀沿直线剪掉长方形的一个角,数一数,还剩多少个角?3.如图,从一点O 出发引射线OA 、OB 、OC 、OD 、OE ,请你数一数图中有多少个角.4.计算:(1)77°52′+32°43′-21°17′;(2)37°15′×3;(3)175°52′÷3.(4)23°45′+24°16′(5)53°25′28″×5(6)15°20′÷65.如图,在AOB∠内部,从顶点O引出3条射线OC、OD、OE,则图形中共有几个角?如果从O点引出几条射线,有多少个角?你能找出规律吗?6.如图,已知OE是AOC∠的平分线.∠的角平分线,OD是BOC(1)若︒,AOC,求DOE∠20110BOC==∠︒∠的度数;(2)若︒∠的度数.AOB,求DOE∠90=7.如图,指出OA表示什么方向的一条射线?并画出表示下列方向的射线:(1)南偏东60°(2)北偏西40°(3)南北方向8.时钟的时针从2点半到2点54分共转了多大角度?9.已知线段a、b、∠α用尺规画一个△ABC,使αBCaAB,,.b=B=∠=∠10.小明在宾馆大厅内看到反映世界几个大城市当前时刻的时钟如下(如图),请你分别写出每个钟面上时针和分针的夹角.11.一天24小时,时钟的分针与时针共组成多少次平角?多少次周角?12.如图,若放置一枝铅笔,使笔尖朝AB方向并重合于AB,以A为旋转中心,按逆时针方向旋转∠A的大小,与AF重合;再以F为中心,按逆时针方向旋转F的大小,与EF重合……这样连续都按逆时针方向旋转过去,最后与AB重合,这时笔尖的方向仍是朝向AB,你知道铅笔一共转过了多少度吗?这个实验能说明六边形内角和的度数吗?13.你知道下图中有多少三角形吗?参考答案一、选择题1.B 2.C 3.D 4.C 5.B 6.B 7.C 8.B 9.C 10.D11.D二、填空题1.1°,60′,60″2.153.954.4,45,05.52,43,486.15.817.∠BDE ;∠DBE ;∠ABC ;∠ACB8.10 50509.32°25′16″10.26°11.邮局,医院,学校三、解答题1.22.5°2.3个或4个或5个3.10个4.(1)89°18′;(2)112°45′;(3)58°38′(4)48°1′ (5)267°7′20″ (6)2°33′20″5.共有10个角;从O 点出发引出几条射线,能组)1(-n 个基本角,则共有角的个数为:)1(21123)2()1(-=++++-+-n n n n 个角. 6.(1)先求︒=∠=∠︒=∠1021,55BOC COD COE 故︒=︒-︒=∠451055DOE (2)有BOC COD AOC COE ∠=∠∠=∠21,21 则︒=∠=∠-∠=∠4521)(21AOB BOC AOC DOE 7.北偏东60°(图略)8.12°9.略10.从左至右依次为:150°、120°、30°,120°、90°、60°11.22次,22次12.720°,六边形内角和为720°13.78个《角的度量》典型例题例1 如图,你知道以A为顶点的角有哪些吗?除了以A为顶点的角外,图中还有哪些角?你会将它们表示出来吗?例2(1)下图中能用一个大写字母表示的角是___________.(2)以A为顶点的角有_____________个,它们是________________.例3 (1)把25.72°分别用度、分、秒表示.(2)把45°12′30″化成度.例4 计算:(1)53°39′+36°40′;(2)92°3′-48°34′;(3)53°25′28″×5;(4)15°20′÷6.例5 当时钟表面3时25分时,你知道时针与分针所夹角的度数是多少?参考答案例1解:以A为顶点的角有∠∠∠、、、,其他的角有∠、、DACEAC∠DAEBACBAD∠BAEα∠β、2、1C、B.∠∠∠∠、∠、说明:(1)在数以A为顶点的角的个数时,先选定一边为始边(如AB),确定以始边为一边的角的个数,再依次把后面的边看作起始边,数出角的个数,相加即可得角的总数.本题中以AB为始边的角有3个(如图1),以AD为始边的角有两个(如图2),以AE为始边的角有1个(如图3),在数角时注意要向同一个方向数,以免重复,这与线段的数法类似;(2)目前我们所说的角一般都是指小于平角的角.所以以D为顶点的平角和以E为顶点的平角不包括在内.(3)角的表示方法共有四种,可根据需求灵活选定;①用三个大写字母表示角,此时表示角的顶点的字母应写在中间(如∠BAD);②用一个大写字母表示角,适用于以某一点为顶点的角只有一个(如∠B或∠C);③用希腊字母α、γβ、等表示角,此时要在所表示的角的顶点处加上连接两边的弧线,以明确所表示的是图中的哪个角(如∠α或∠β);④用数字表示角(如∠1或∠2).图1 图2 图3例2 分析:第(1)题中,能用一个大写字母表示的这个角必须是独立的一个角,所以只能是C∠、;第(2)题中,以A为顶点的角,必须含A,而且AB∠为公共端点,这样的角有6个,以AC为一边的角:CAB∠、,∠、CAE∠CAD以AE为边且不重复的角:EAB∠、,以AD为边且不重复的角:DABEAD∠∠.答案:(1)C∠、;B∠(2)6个DAB EAB EAD CAB CAD CAE ∠∠∠∠∠∠、、、、、.说明:要正确写出答案,首先要弄清角的定义是什么,其次是熟悉表示角的方法,特别对于(2),还要仔细、认真地找出所有的角.例3 分析:第(1)题中25.72°含有两部分25°和0.72°,只要把0.72°化成分、秒即可,第(2)题中,45°21′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.解:(1)0.72°=0.72×61′=43.2′0.2′=0.2×60″=12″所以25.72°=25°43′12″(2)5.0)601(3003'='⨯='' 21.0)601(5.125.12≈⨯=' 所以45°12′30″=45.21°说明:①是由高级单位向低级单位化:②是由低级单位向高级单位化.它们都必须是逐级进行的,“越级”化单位容易出错而且还要熟记他们之间的换算关系.例4 解:(1)53°39′+36°40′=89°+79=90°19′;(2)92°3′-48°34′=91°63′-48°34′=43°29′;(3)53°25′28″×5=265°+125′+140″=267°7′20″;(4)15°20′÷6=2°+(3×60′+20′)÷6=2°33′20″.说明:角度的运算规律为:(1)加减法时将同一单位进行加减,加法够60进1,减法不够减要借1为60;(2)乘法时将数与度、分、秒分别相乘,然后从小到大逢60进1;(3)除法时用度先除,把余数化为分,再加上原来的分,用这个数除以除数,把余数化成秒,再加上原来的秒,再用这个数除以除数,如果除不尽就按题意要求,进行四舍五入;(4)度、分、秒之间的互化有:由低级单位向高级单位转化,使用的公式是'⎪⎭⎫ ⎝⎛=''︒⎪⎭⎫ ⎝⎛='6011,6011.例如30°42′,可化为30.7°;另一种是由高级单位向低级单位转化,使用的公式是1°=60′,11 / 111′=60″,例如2.45°可化为2°27′,在度、分、秒的互化过程中要逐级进行,不要“跳级”,以免出错.例5 解:法一:从3时整开始,分针转过了6°×25=150°,时针转过了0.5°×25= 5.12,因为3点整时两针夹角为90°,所以3时25分时两针夹角为150°-90°-12.5°= 5.47.法二:3时25分时,分针在钟面“5”字上,时针从“3”字转过了0.5°×25= 5.12.又“3”、“5”两字之间夹角为60°,所以3时25分时两针夹角为60°-12.5°= 5.47.法三:设所求夹角度数为x °,将分针视作在追赶并超过时针,它们的速度分别是 6/min 和0.5°/min ,则由题意,得方程x +=⨯-9025)5.06(,5.47=x .说明:(1)此题是角的度量的实际应用,它能加深我们对角的意义的理解.解题的关键是明确钟面上分针1分钟转过的角度是6°,时针1分钟转过的角度是分针转过角度的121,即0.5°;(2)解题时要注意分针在运动时,时针也在运动,而不能认为时针静止;(3)这类题型可视作时针和分针在作相对运动,可以参照环形线路上的行程问题列方程(组)求解,也可以以钟面上“格”作单位,即分针和时针每分钟走1格和121格.。
(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)
(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.1︒等于()A.10'B.12'C.60'D.100' 2.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V"字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角a的度数为()A.25B.35C.45D.553.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离4.下列角中,能用1∠,ACB∠三种方法表示同一个角的是()∠,CA.B.C.D .5.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'6.如图,下列说法中错误的是( ).A .OA 方向是北偏东20︒B .OB 方向是北偏西15︒C .OC 方向是南偏西30︒D .OD 方向是东南方向二、填空题7.如图所示,120AOD ∠=︒,50AOB ∠=︒,OC 平分BOD ∠,那么BOC ∠=__________.8.计算:45396541︒'︒'+=________.(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)9.计算:(1)1003441'︒-︒=_________;(2)23252455''︒+︒=_________;(3)1366435428''''︒-︒=_________.10.如图,写出图中以A 为顶点的角______.三、解答题11.读句画图如图,点,,A B C 是同一平面内三个点,借助直尺、刻度尺、量角器完成(以答题卡上印刷的图形为准):(1)画图:①画射线AB ;①画直线BC ;①连接AC 并延长到点D ,使得CD CA =.(2)测量:ABC ∠约为_________°(精确到1︒).12.【观察思考】如图,五边形ABCDE 内部有若干个点,用这些点以及五边形ABCDE 的顶点ABCDE 把原五边形分割成一些三角形(互相不重叠).【规律总结】(1)填写下表:(2)【问题解决】原五边形能否被分割成2022个三角形?若能,求此时五边形ABCDE 内部有多少个点;若不能,请说明理由.(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)1.C【分析】根据1°=60′即可得到答案.【详解】解:1°=60′,故选:C.【点睛】本题考查了度、分、秒之间的换算,能正确进行度、分、秒之间的换算是解此题的关键,注意:1°=60′.2.B【分析】根据图形和各个角度的大小得出即可.【详解】解:根据图形可以估计①α约等于35°,故选:B.【点睛】本题考查了估算角的度数的大小的应用,主要考查学生观察图形的能力.3.D【分析】直接利用角的定义以及正多边形的定义、两点之间距离定义分别分析得出答案.【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.【点睛】此题主要考查了角的定义以及正多边形的定义、两点之间距离定义,正确掌握相关定义是解题关键.4.C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“①”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.5.B【分析】根据余角的定义可得①2的余角即①EAC ,然后利用角的运算列式计算求解,注意1°=60′.【详解】解:由题意可得:①2+①EAC =90°①①2的余角是①EAC①①EAC =601602740'3220'︒-∠=︒-︒=︒故选:B .【点睛】本题考查余角的概念及角的和差运算,掌握概念及角度制的运算是解题关键. 6.A【分析】由方位角的含义逐一判断各选项即可得出答案.【详解】解:OA 方向是北偏东70︒,故A 错误;OB 方向是北偏西15︒,故B 正确;OC 方向是南偏西30︒,故C 正确;OD 方向是东南方向,故D 正确;故选:A .【点睛】本题考查的是方位角,掌握方位角的含义是解题的关键.7.35°【分析】由已知可求BOD ∠的大小,根据角平分线的概念可求BOC ∠的大小.【详解】①120AOD ︒∠=,50AOB ︒∠=,①70BOD AOD AOB ︒∠=∠-∠=,①OC 平分BOD ∠, ①1352BOC BOD ︒∠=∠=, 故答案为:35︒.【点睛】本题主要考查了角的认识,角平分线的概念,熟练掌握角的相关概念是解题的关键. 8.111°20´.【分析】两个度数相交,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】45°39´+65°41´=111°20´,故答案为111°20´.【点睛】本题考查度角分的换算,学生们要知道角度之间的运算是60进制.(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)9. 6519'︒ 4820'︒ 921132'''︒【分析】(1)根据角的各单位之间的是60进位,可以把100︒写成9060'︒,然后再用度减度,分减分,进行计算即可;(2)按照度加度,分加分计算即可;(3)根据角的各单位之间的是60进位,可以把1366'︒写成13565'60''︒,然后再用度减度,分减分,秒减秒进行计算即可【详解】(1)1003441'9960'3441'6519'︒-︒=︒-︒=︒;(2)2325'2455'4780'4820'︒+︒=︒=︒;(3)1366'4354'28''︒-︒=13565'60''4354'28''︒-︒9211'32''=︒.故答案为:①6519'︒,①4820'︒,①921132'''︒.【点睛】本题考查的度、分、秒的计算,掌握度、分、秒的换算方法是解题关键.10.①DAC ①DAB ①CAB【分析】根据角的表示方法即可求解.【详解】写出图中以A 为顶点的角①DAC 、①DAB 、①CAB.故答案为①DAC ,①DAB ,①CAB.【点睛】此题考查的是角的表示方法,角可用三个大写字母表示,顶点字母写在中间,每边上的点写在两旁;也可以用一个大写字母表示,在角的顶点处有多个角时,不可以用一个字母表示这个角.11.(1)①见解析;①见解析;①见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示: ①射线AB 即为所求;①直线BC 即为所求;①线段CD=CA 即为所求(2)ABC ∠约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量.12.(1)11,2n+3;(2)不能,理由见解析.(1)根据图形特点找出五边形ABCDE内点的个数与分割成的三角形的个数的关系,【分析】总结规律即可;(2)根据规律列出方程,解方程得到答案.(1)有1个点时,内部分割成5个三角形;有2个点时,内部分割成5+2=7个三角形;有3个点时,内部分割成5+2×2=9个三角形;有4个点时,内部分割成5+2×3=11个三角形;…以此类推,有n个点时,内部分割成5+2×(n−1)=(2n+3)个三角形;故答案为11,2n+3;(2)令2n+3=2022,即2n=2019,显然这个方程没有整数解,①原五边形不能被分割成2022个三角形.【点睛】本题考查图形类规律探索,熟练掌握不完全归纳的方法及求一元一次方程整数解的方法是解题关键.。
人教版七年级上册数学 角度的计算专题解析及训练(word版,有答案)
专题6 角一、单选题1.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练习)如图所示,从点O出发的5条射线,可以组成的角的个数是().A. 4B. 6C. 8D. 10【答案】D2.北京时间上午8:30时,时钟上时针和分针之间的夹角(小于平角)是()A. 85°B. 75°C. 70°D. 60°【答案】B【解析】在钟面上,被12小时划分为12大格,每1大格对应的度数是30度,上午8:30的时候,时针指向8时和9时的中间位置,分针指向6时,两针之间刚好间隔2.5格,∴8:30时,时针和分针之间的夹角为:30° 2.5=75°.3.如图,下列说法错误的是()A. OA的方向是北偏东40°B. OB的方向是北偏西75°C. OC的方向是西南方向D. OD的方向是南偏东40°【答案】A【解析】A选项中,由图可知“OA的方向是北偏东50°”,所以本选项说法错误;B选项中,由图可知:“OB的方向是北偏西75°”是正确的;C选项中,由图可知;“OC的方向是西南方向”是正确的;D选项中,由图可知:“OD的方向是南偏东40°”是正确的;故选A.4.下列说法正确的是()A. A在B的南偏东30°的方向上,则B也在A的南偏东30°的方向上;B. A在B的南偏东30°的方向上,则B在A的南偏东60°的方向上;C. A在B的南偏东30°的方向上,则B在A的北偏西30°的方向上;D. A在B的南偏东30°的方向上,则B在A的北偏西60°的方向上【答案】C5.(北师大版数学七年级上册第四章基本平面图形4.3角同步测试题)一个角是70°18′,则这个角等于()A. 70.18° B. 70.3° C. 70.018° D. 70.03°【答案】B【解析】70°18′=70°+18′ 60=70°+0.3°=70.3°.故选B.6.如图,射线OC,OD分别在∠AOB的内部、外部,下列结论错误的是()A. ∠AOB<∠AODB. ∠BOC<∠AOBC. ∠COD>∠AODD. ∠AOB>∠AOC【答案】C【解析】观察图形可知:A.∠AOB<∠AOD正确;B.∠BOC<∠AOB正确;C.∠COD>∠AOD错误;D.∠AOB>∠AOC正确.故选C.7.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练)下列语句中,正确的是().A. 比直角大的角钝角; B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角【答案】C8.(新人教版数学七年级上册第四章几何图形初步4.3.1《角》课时练习)已知α 、β都是钝角,甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,其中只有一个同学计算结果是正确的,则得到正确结果的同学是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,那么这四个同学计算α+β的结果依次为168°、288°、360°、528°,又因为两个钝角的和应大于180°且小于360°,所以只有乙同学的计算正确,故选B.9.(山东省东昌府区梁水镇中心中学2016-2017学年七年级下学期期中考试数学试题)如图,如果∠AOC=∠BOD,则∠AOB与∠DOC的大小关系是()A. ∠AOB>∠DOCB. ∠AOB<∠DOCC. ∠AOB=∠DOCD. 无法比较【答案】C【解析】∵∠AOC=∠BOD,∴∠AOC-∠BOC=∠BOD-∠BOC,∴∠AOB=∠DOC.故选C.10.如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式为( )。
新人教版七年级数学上册专题训练:角的计算(含答案)
新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。
1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。
解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。
又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。
2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。
1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。
2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。
解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。
所以 $\angle DAC=4\times18°=72°$。
因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。
2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。
(完整版)七年级数学《角》练习题及答案
七年级数学《角》练习题及答案一、选择题1.下列说法正确的是( )A.两点之间直线最短B .用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C .把一个角分成两个角的射线叫角的平分线D .直线l 经过点A ,那么点A 在直线l 上呢2. 下列4个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )3.下列关于平角、周角的说法正确的是( ).A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就形成一个平角D .两个锐角的和不一定小于平角4、右图中,小于平角的角有( )A.5个B.6个C.7个D.8个5. 如图所示,射线OA 表示的方向,射线OB 表示的方向,则∠AOB=( )A.155 °B.205 °C.85°D.105°6、一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC=( )A .60°B .15° C.45° D.70°二、填空题:7. 角也可以看作由 旋转面形成的图形。
8. 2周角= 1平角=9. 1°的_____ 是1′10. 1周角= 平角= 直角= ;南东75︒40︒O A 4题图 5题图 6题图11. 换算:42°27′= °,68°45′36″= °;12.2点15分,钟表的时针与分针所成的锐角是度;13.钟面上从4点到5点,时针与分针重合时,此时4点________分14.计算:(1)53°18′36″-16°51′(2)(43°13′28″÷2-10°5′18″)×315.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.16.(如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB17、(如图,已知:∠AOE=100°,∠BOF=80°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数。
2020年七年级数学上册角同步练习含解析新版新人教版
角一. 选择题1.钟表在1点30分时,它的时针和分针所成的角度是()A.135° B.125° C.145° D.115°【答案】A【分析】根据钟表上的指针确定出所求角度数即可,时针每分钟走0.5°,钟面每小格的角度为6°.【详解】根据题意得:钟表在1点30分时,它的时针和分针所成的角度是135°,故选:A.2. 12点15分,钟表上时针与分针所成的夹角的度数为A.B.C.D.【答案】C【分析】时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12小时15分,求出时针与分针的夹角即可.【详解】12点15分时,时钟的时针与分针的夹角是6°×15−0.25×30°=82.5度.故选:C.【名师点睛】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每分钟转动6°,时针每小时转动30°,并且利用起点时间时针和分针的位置关系建立角的图形.3.已知,,则与的大小关系是A.B.C.D.无法确定【答案】A【解析】分析:一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解.详解:∵∠α=21′,∠β=0.35°=21′,∴∠α=∠β.故选:A.4.如图,下列说法中不正确的是()A.∠1与∠AOB是同一个角B.∠AOC也可以用∠O表示C.∠β=∠BOC D.图中有三个角【答案】B【分析】根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示进行分析即可.【详解】A、∠1与∠AOB是同一个角,说法正确;B、∠AOC也可用∠O来表示,说法错误;C、∠β与∠BOC是同一个角,说法正确;D、图中共有三个角:∠AOB,∠AOC,∠BOC,说法正确;故选:B.5.如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是 ( )A.4个B.8个C.9个D.10个【答案】D【分析】先以OA为角的一边,最大角为∠AOB,依次得到以OD、OC、OE、OB为另一边的五个角;然后利用同样的方法得到其他角,最后计算所有角的和即可求解.【详解】点O出发的五条射线,可以组成的小于平角的角有:∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE.故答案选D.6.钟表4点30分时,时针与分针所成的角的度数为( )A.45°B.30°C.60°D.75°【答案】A【分析】钟表上按小时算分12个格,每个格对应的是30度,分针走一圈时针走一格,30分钟走半格,4点30分时针和分针的夹角是45度。
人教版七年级上册数学 角度的计算专题解析及训练(word版,有答案)
专题6 角一、单选题1.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练习)如图所示,从点O出发的5条射线,可以组成的角的个数是().A. 4B. 6C. 8D. 10【答案】D2.北京时间上午8:30时,时钟上时针和分针之间的夹角(小于平角)是()A. 85°B. 75°C. 70°D. 60°【答案】B【解析】在钟面上,被12小时划分为12大格,每1大格对应的度数是30度,上午8:30的时候,时针指向8时和9时的中间位置,分针指向6时,两针之间刚好间隔2.5格,∴8:30时,时针和分针之间的夹角为:30° 2.5=75°.3.如图,下列说法错误的是()A. OA的方向是北偏东40°B. OB的方向是北偏西75°C. OC的方向是西南方向D. OD的方向是南偏东40°【答案】A【解析】A选项中,由图可知“OA的方向是北偏东50°”,所以本选项说法错误;B选项中,由图可知:“OB的方向是北偏西75°”是正确的;C选项中,由图可知;“OC的方向是西南方向”是正确的;D选项中,由图可知:“OD的方向是南偏东40°”是正确的;故选A.4.下列说法正确的是()A. A在B的南偏东30°的方向上,则B也在A的南偏东30°的方向上;B. A在B的南偏东30°的方向上,则B在A的南偏东60°的方向上;C. A在B的南偏东30°的方向上,则B在A的北偏西30°的方向上;D. A在B的南偏东30°的方向上,则B在A的北偏西60°的方向上【答案】C5.(北师大版数学七年级上册第四章基本平面图形4.3角同步测试题)一个角是70°18′,则这个角等于()A. 70.18° B. 70.3° C. 70.018° D. 70.03°【答案】B【解析】70°18′=70°+18′ 60=70°+0.3°=70.3°.故选B.6.如图,射线OC,OD分别在∠AOB的内部、外部,下列结论错误的是()A. ∠AOB<∠AODB. ∠BOC<∠AOBC. ∠COD>∠AODD. ∠AOB>∠AOC【答案】C【解析】观察图形可知:A.∠AOB<∠AOD正确;B.∠BOC<∠AOB正确;C.∠COD>∠AOD错误;D.∠AOB>∠AOC正确.故选C.7.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练)下列语句中,正确的是().A. 比直角大的角钝角; B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角【答案】C8.(新人教版数学七年级上册第四章几何图形初步4.3.1《角》课时练习)已知α 、β都是钝角,甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,其中只有一个同学计算结果是正确的,则得到正确结果的同学是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,那么这四个同学计算α+β的结果依次为168°、288°、360°、528°,又因为两个钝角的和应大于180°且小于360°,所以只有乙同学的计算正确,故选B.9.(山东省东昌府区梁水镇中心中学2016-2017学年七年级下学期期中考试数学试题)如图,如果∠AOC=∠BOD,则∠AOB与∠DOC的大小关系是()A. ∠AOB>∠DOCB. ∠AOB<∠DOCC. ∠AOB=∠DOCD. 无法比较【答案】C【解析】∵∠AOC=∠BOD,∴∠AOC-∠BOC=∠BOD-∠BOC,∴∠AOB=∠DOC.故选C.10.如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式为( )。
人教版数学初一上《角》测试题(含答案及解析)
人教版数学初一上《角》测试题(含答案及解析)时间:60分钟总分:100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.一副三角板按如图所示的方法摆放,且∠1的度数是∠2的3倍,则∠2的度数为()A. 20∘B. 22.5∘C. 25∘D. 67.5∘2.如图所示,能用∠AOB,∠O,∠1三种要领表示联合个角的图形是()A. B.C. D.3.下列说法正确的是()A. 平角是一条直线B. 角的边越长,角越大C. 大于直角的角叫做钝角D. 两个锐角的和不一定是钝角4.下列说法中正确的个数有()①议决一点有且只有一条直线;②相连两点的线段叫做两点之间的隔断;③射线比直线短;④ABC三点在联合直线上且AB=BC,则B是线段AC的中点;⑤在联合平面内,两条直线的位置干系有两种:平行与相交;⑥在8:30时,时钟上时针和分针的夹角是75∘.A. 1个B. 2个C. 3个D. 4个5.下图中能用一个字母表示的角()A. 三个B. 四个C. 五个D. 没有6.甲、乙两人都从A地出发,分别沿北偏东30∘、60∘的偏向抵达C地,且BC⊥AB,则B地在C地的()A. 北偏东30∘的偏向上B. 北偏西30∘的偏向上C. 南偏东30∘的偏向上D. 南偏西30∘的偏向上第 1 页7.钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为()A. 60∘B. 70∘C. 80∘D. 85∘8.下列四个图形中,能同时用∠1,∠ABC,∠B三种要领表示联合个角的图形是()A. B.C. D.9.在8点30分时,时针上的时针与分针之间的夹角为()A. 85度B. 75度C. 70度D. 60度10.在时刻9:30时,时钟上的时针与分针间的夹角是()A. 75∘B. 90∘C. 105∘D. 120∘二、填空题(本大题共10小题,共30.0分)11.如图,∠1=∠2,则∠1+∠3=______度.12.如图,锐角的个数共有______个.13.如图,A岛在B岛的北偏东30∘偏向,C岛在B岛的北偏东80∘偏向,A岛在C岛北偏西40∘偏向,从A岛看B,C两岛的视角∠BAC是______ 度.14.如图,∠AOB=90∘,以O为极点的锐角共有______个.15.如图所示,能用一个字母表示的角有______个,以A为极点的角有______个,图中所有角有______个.16.如图,用字母A、B、C表示∠α、∠β.则∠α=______,∠β=______.17.把一个周角7平分,每一份是______ 度______ 分(准确到1分).18.如图,把一根小棒OC一端钉在点O,旋转小木棒,使它落在不同的位置上形成不同的角,此中∠AOC为______,∠AOD为______,∠AOE为______,木棒转到OB时形成的角为______.(回答钝角、锐角、直角、平角)19.当时针指向2:30时,时针与分针的夹角是______ 度.20.已知一个锐角为(5x−35)∘,则x的取值范畴是______.三、谋略题(本大题共4小题,共24.0分)21.钟面上的角的标题.(1)3点45分,时针与分针的夹角是几多?(2)在9点与10点之间,什么时候时针与分针成100∘的角?22.如图所示,直线AB上有一点O,恣意画射线OC,已知OD,OE分别是∠AOC,∠BOC的中分线,求∠DOE的度数.23.如图所示,OM是∠AOC的中分线,ON是∠BOC的中分线,(1)要是∠AOC=28∘,∠MON=35∘,求出∠AOB的度数;(2)要是∠MON=n∘,求出∠AOB的度数;(3)要是∠MON的巨细改变,∠AOB的巨细是否随之改变?它们之间有怎样的巨细干系?请写出来.24.如图,直线AB、CD相交于点O,∠EOD=∠AOC,OF中分∠AOE,若∠AOC=28∘,求∠EOF的度数.第 3 页四、解答题(本大题共2小题,共16.0分)25. 请将图中的角用不同要领表示出来,并填写下表:∠ABE∠1∠2∠326. 图中,以B 为极点的角有几个?把它们表示出来.以D 为极点的角有几个?把它们表示出来.答案和剖析【答案】 1. B 2. D 3. D 4. C5. A6. C7. C8. B 9. B 10. C11. 180 12. 5 13. 70 14. 515. 0;4;1516. ∠CAB 或∠BAC 表示∠α;∠CBA 或∠ABC 17. 51;2618. 锐角;直角;钝角;平角 19. 10520. 7<x <2521. 解:(1)如图,∵由3点到3点45分,分针转了270∘,时针转了270∘×112,∴时针与分针的夹角是:180∘−270∘×112=157.5∘;(2)设分针转的度数为x ,则时针转的度数为x 12, 得①90∘+x −x12=100∘, 解得,x =12011∘,12011∘÷6∘=2011(分);②90∘+x12−(x −180∘)=100∘,第 5 页解得,x =204011∘,204011∘÷6∘=34011(分);∴9点过2011或34011分钟时,时针与分针成100∘的角.22. 解:∵OD ,OE 分别是∠AOC ,∠BOC 的中分线,∴∠AOD =∠COD =12∠AOC ,∠BOE =∠COE =12∠BOC ,∵∠AOC +∠BOC =180∘,即2∠COD +2∠COE =180∘,∴∠DOE =∠DOC +∠COE =90∘.23. 解:(1)∵OM 是∠AOC 的中分线,∠AOC =28∘, ∴∠COM =12∠AOC =14∘,∵∠MON =35∘,∴∠CON =∠MON −∠COM =35∘−14∘=21∘, ∵ON 是∠BOC 的中分线,∴∠BOC =2∠CON =2×21∘=42∘,∴∠AOB =∠AOC +∠BOC =28∘+42∘=70∘;(2)∵OM 是∠AOC 的中分线,ON 是∠BOC 的中分线, ∴∠COM =12∠AOC ,∠CON =12∠BOC ,∴∠MON =∠COM +∠CON =12∠AOC +12∠BOC =12(∠AOC +∠BOC)=12∠AOB , ∵∠MON =n ∘,∴∠AOB =2∠MON =2n ∘;(3)根据(2)的推导,∠AOB 随∠MON 巨细的改变而改变,∠AOB =2∠MON . 24. 解:∵∠AOC =28∘, ∴∠BOD =∠AOC =28∘,∴∠AOE =180∘−56∘=124∘, 又∵OF 中分∠AOE , ∴∠EOF =62∘. 故答案为62∘.25. 解:由图可知,∠ABE =∠α,∠1=∠ABC ,∠2=∠ACB ,∠3=∠ACF . 故答案为∠α,∠ABC ,∠ACB ,∠ACF .26. 解:以B 为极点的角有3个,分别是:∠ABD 、∠ABC 、∠DBC ,以D 为极点的角有6个,分别是∠ADE 、∠EDC 、∠ADB 、∠BDC.∠ADC ,∠BDE 【剖析】1. 【剖析】本题主要考察了余角、补角和角的概念,能根据图形求出∠1+∠2=90∘是解此题的要害.求出∠1+∠2=90∘,根据∠1的度数是∠2的3倍得出4∠2=90∘,即可求出答案. 【解答】解:根据图形得出:∠1+∠2=180∘−90∘=90∘, ∵∠1的度数是∠2的3倍, ∴∠2+3∠2=90∘, 即4∠2=90∘,∴∠2=22.5∘.故选B.2. 解:A、以O为极点的角不止一个,不能用∠O表示,故A选项错误;B、以O为极点的角不止一个,不能用∠O表示,故B选项错误;C、以O为极点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种要领表示联合个角,故D选项正确.故选:D.根据角的四种表示要领和具体要求回答即可.本题考察了角的表示要领的应用,掌握角的表示要领是解题的要害.3. 解:A、平角是两条射线组成的一条直线,故此选项错误;B、角的边越长,与角的巨细无关,故此选项错误;C、大于直角且小于180∘的角叫做钝角,故此选项错误;D、两个锐角的和不一定是钝角,正确.故选:D.直接利用角的定义以及钝角的定义分别剖析得出答案.此题主要考察了角的定义以及钝角的定义,正确把握定义是解题要害.4. 解:①议决两点有且只有一条直线,故本小题错误;②应为相连两点的线段的长度叫做两点的隔断,故本小题错误;③射线与直线不能比较长短,故本小题错误;④因为A、B、C三点在联合直线上,且AB=BC,所以点B是线段AC的中点,故本小题正确;⑤在联合平面内,两条直线的位置干系有两种:平行,相交,故本小题正确;⑥在8:30时,时钟上时针和分针的夹角是75∘,正确.综上所述,正确的有④⑤⑥共3个.故选C.根据直线的性质,两点间隔断的概念,射线与直线的意义,线段中点的概念,联合平面内两条直线的位置干系,钟面角的谋略,对各小题逐一剖析鉴别后,利用消除法求解.本题考察了直线的性质,两点间隔断的定义,射线与直线的意义,线段中点的定义,两条直线的位置干系,钟面角,是基础题,熟记性质与概念是解题的要害.5. 解:∵只有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,∴图中能用一个字母表示的角有三个:∠A、∠B、∠C.故选:A.只有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,不然分不清这个字母结局表示哪个角,据此鉴别出图中能用一个字母表示的角有几个即可.此题主要考察了角的表示要领,要熟练掌握,解答此题的要害是要明确:角可以用一个大写字母表示,也可以用三个大写字母表示.此中极点字母要写在中间,唯有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,不然分不清这个字母结局表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.6. 解:∵∠1=30∘,BC⊥AB,∴∠2=30∘,∴∠3=∠2=30∘,∴B地在C地的南偏东30∘的偏向上,故选C.此题考察了学生对偏向角的理解及直角三角形的鉴定等知识点的掌握环境.7. 解:10×30+40×0.5−6×40=320−240=80(∘),故选:C.可画出草图,利用钟表表盘的特性解答.本题考察钟表时针与分针的夹角.在钟表标题中,常利用时针与分针转动的度数干系:)∘,而且利用开始时间时针和分针的位置干系建立分针每钟转动6∘,时针每分钟转动(12角的图形.8. 解:A、由于B为极点的角有四个,不可用∠B表示,故本选项错误;B、由于B为极点的锐角有一个,可用∠ABC,∠B,∠1三种要领表示联合个角,故本选项正确;C、由于B为极点的锐角有三个,不可用∠B表示,故本选项错误;D、由于B为极点的有二个,不可用∠B表示,故本选项错误.故选:B.根据角的表示要领对四个选项逐个举行剖析即可.本题考察了角的概念,要熟悉角的三种表示要领所适用的条件.9. 解:8点30分,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30∘,∴8点30分分针与时针的夹角是2.5×30∘=75∘.故选:B.根据钟表上12个数字,每相邻两个数字之间的夹角为30∘谋略得到答案.本题考察了钟面角,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30∘.−6×30∘=105∘,10. 解:9:30时,时钟上的时针与分针间的夹角9×30∘+30∘×12故选:C.根据时针旋转的速度乘以时针旋转的时间,可得时针的旋转角,根据分针旋转的速度成分针旋转的时间,即是分针旋转的角度;再根据时针的角减去分针旋转的角即是时针与分针的夹角,可得答案.本题考察了钟面角,利用了时针的旋转角减去分针的旋转的角即是时针与分针的夹角.11. 解:∵∠2与∠3是邻补角,∴∠2+∠3=180∘,又∵∠1=∠2,∴∠1+∠3=180∘.充分运用邻补角的数量干系及等量代换解题.本题利用了两个补角的和为180∘和等量代换.12. 解:以OA为一边的角∠AOB=20∘,∠AOC=20∘+30∘=50∘,∠AOD=20∘+30∘+ 50∘=100∘(钝角舍去),以OB为一边的角∠BOC=30∘,∠BOD=50∘+30∘=80∘,以OC为一边的角∠COD=50∘.共有∠AOB,∠AOC,∠BOC,∠BOD,∠COD.故答案为5个.分别以OA、OB、OC为一边,数出所有角,相加即可.此题考察了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数.13. 解:∵A岛在B岛的北偏东30∘偏向,即∠DBA=30∘,∵C岛在B岛的北偏东80∘偏向,即∠DBC=80∘;第 7 页∵A岛在C岛北偏西40,即∠ACE=40∘,∴∠ACB=180∘−∠DBC−∠ACE=180∘−80∘−40∘=60∘;在△ABC中,∠ABC=∠DBC−∠DBA=80∘−30∘=50∘,∠ACB=60∘,∴∠BAC=180∘−∠ABC−∠ACB=180∘−50∘−60∘=70∘.利用方位角的概念连合图形解答.解答此类题需要从运动的角度,正确画出方位角,再连合三角形的内角和定理与平行线的性质解答.14. 解:以OA为一边的角,∠AOD,∠AOC;以OD为一边的角,∠DOC,∠DOB;以OC为一边的角,∠COB.共5个角.故答案是:5.明确角的概念,依次数出以OA、OD、OC为一边的角的个数即可.此题考察了角的概念,首先要明白图中所示的角,再依次数出图中的角,要注意不要漏数,也不要多数.15. 解:能用一个字母表示的角有0个,以A为极点的角有4个,图中所有角有15个,故答案为:0,4,15.根据角的概念逐个得出即可.本题考察了角的概念,能数出相符的所有角是解此题的要害.16. 解:由图可知,∠α=∠CAB或∠BAC;∠β=∠CBA或∠ABC.故答案为∠CAB或∠BAC,∠CBA或∠ABC.根据角的定义找到图中角,用三个字母表示角时,将表示极点的字母置于三个字母中间.此题考察了角的多种表示要领,当极点处只有一个角时,此角可用多种要领表示,如有多个角,则不能只用一个字母表示,以免混淆.17. 解:由题意,得360∘÷7=51∘26′,故答案为:51,26.根据度分秒的除法,可得答案.本题考察了度分秒的换算,利用度分秒的除法是解题要害.18. 解:根据角的定义,∠AOC为锐角,∠AOD为直角,∠AOE为钝角,木棒转到OB时形成的角为平角.利用角的概念求解.互相垂直时,夹角是直角,即90∘;大于90∘小于180∘是钝角,小于90∘大于0∘是锐角,即是180度叫平角.由一点放射出两条射线,要是两条射线的夹角为90度叫直角,大于90度小于180度的叫钝角,在0度到90度之间的叫锐角,即是180度叫平角.19. 解:2:30时,时针与分针相距3.5份,2:30时,时针与分针的夹角是30∘×3.5=105∘,故答案为:105.根据钟面均匀分成12份,可得每份是30∘,根据时针与分针相距的份数乘以每份的度数,可得答案.本题考察了钟面角,利用了时针与分针相距的份数乘以每份的度数.20. 解:由题意可知:0<5x−35<90解得:7<x<25故答案为:7<x<25根据锐角的概念即可求出x的范畴.本题考察角的概念,解题的要害是根据锐角的定义列出不等式,本题属于基础题型.第 9 页21. (1)由图知,由3点到3点45分,分针转了270∘,时针转了270∘×112,180∘减去时针转的度数,即为夹角;(2)设分针转的度数为x ,则时针转的度数为x12,可根据干系式,①90∘+x −x12=100∘,②90∘+x12−(x −180∘)=100∘,求得x 值,根据分针走1分,其转动6∘,可得到时间; 本题考察了钟表分针所转过的角度谋略.在钟表标题中,常利用时针与分针转动的度数干系:分针每转动1∘时针转动(112)∘,而且利用开始时间时针和分针的位置干系建立角的图形.22. 由OD ,OE 分别为角中分线,利用角中分线定义得到两对角相等,而这四个角之和为一个平角,等量代换即可求出∠DOE 的度数.此题考察了角中分线定义,熟练掌握角中分线定义是解本题的要害.23. (1)根据角中分线的定义求出∠COM 的度数,再求出∠CON 的度数,然后根据角中分线的定义求出∠BOC 的度数,与∠AOC 相加即可得解; (2)根据角中分线的定义,用∠NOC 表示出∠BOC ,用∠COM 表示出∠AOC ,然后即可得解; (3)根据(2)的推导得解.本题考察了角中分线的定义以及角的谋略,熟记角中分线的定义是解题的要害.24. 先根据∠EOD =∠AOC =28∘,连合平角定义,求出∠EOA 的度数,再由角中分线的性质求出∠EOF 的度数即可.本题主要考察角中分线的概念,需要熟练掌握.25. 图中角的表示有多种,一个大写英文字母;三个大写英文字母;一个阿拉伯数字;一个希腊字母,择其适合者填表. 此题考察了角的表示要领,根据图形特点将每个角用合适的要领表示表现了一个别的数学基本功,必须重视这方面的训练.26. 先找到图中角的极点,再找到角的双方,从而找到角,以各极点为切入点,不要漏数也不要多数.此题考察了角的定义,也考察了角的表示,除用三个大写字母表示外,也可用数字或希腊字母来表示,但需在靠近极点处加上弧线.。
七年级数学《角》练习题及答案
14.计算:1 / 3七年级数学《角》练习题及答案、选择题1 .下列说法正确的是( )A. 两点之间直线最短B .用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C .把一个角分成两个角的射线叫角的平分线D .直线l 经过点A ,那么点A 在直线l 上呢2.下列4个图形中,能用/ 1,Z AOB ,/ O 三种方法表示同一角的图形是()3. 下列关于平角、周角的说法正确的是( A .平角是一条直线 B C .反向延长射线 0A 就形成一个平角 4、 右图中,小于平角的角有( )B. 6个C. 7个D. 8个5. 如图所示,射线 / AOB=()A.155 °B.205C.85 °D.1057. 角也可以看作由 ______________________ 旋转面形成的图形。
8. 2周角= 1 平角= _________10. 1周角= _____ 平角= ____ 直角= ___________12.2点15分,钟表的时针与分针所成的锐角是 ________________ 度;13.钟面上从4点到5点,时针与分针重合时,此时 4点 _________ 分B /X"一、4题图 | 、/ D A .60 ° B .15 二、填空题: 北I ”A6、西个人5^题图4点出发东向北偏东 向走到-B 点,再从B 东出发向南 15 °方向走到 C 点,那么 乙ABC=(南 )C.45 °D.70 °6题图5 60 ° 方 偏西)..周角是一条射线D .两个锐角的和不一定小于平角A.5个 0A 表示的方向,射线 0B 表示的方向,则11.换算:42° 27' ,68° 45' 36〃 = __________(1)53° 18' 36〃一16° 51'(2) (43°13' 28〃十2 - 10°5' 18〃)X316 .(如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求/ACB16. 解:如图,15.如图,货轮O在航行过程中,发现灯塔东40°南偏西10°西北(即北偏西45° 仿照表示灯塔方位的方法画出表示客轮B,A在它南偏东60。
人教版数学七年级上学期:《角》课时练习(含答案)
4.3角4.3.1角能力提升1.下列说法中正确的是()A.两条射线组成的图形叫做角B.角是一条线段绕它的一个端点旋转而成的图形C.有公共端点的两条线段组成的图形叫做角D.角是一条射线绕着它的端点旋转而成的图形2.如图,O是直线AB上一点,图中小于180°的角的个数为()A.7B.9C.8D.103.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°(第2题图)(第3题图)4.若∠1=75°24',∠2=75.3°,∠3=75.12°,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对5.由2点15分到2点30分,钟表的分针转过的角度是()A.30°B.45°C.60°D.90°6.(1)32.6°=°';(2)10.145°=°'″;(3)50°25'12″=°.7.小明说:我每天下午3:00准时做“阳光体育”活动.则下午3:00这一时刻,时钟上分针与时针所夹的角等于.8.指出图中所示的小于平角的角,并把它们表示出来.★9.如图,从点O引出的5条射线OA,OB,OC,OD,OE组成的图形中共有几个角?创新应用★10.观察下图,回答下列问题.(1)在∠AOB内部任意画1条射线OC,则图①中有个不同的角;(2)在∠AOB内部任意画2条射线OC,OD,则图②中有个不同的角;(3)在∠AOB内部任意画3条射线OC,OD,OE,则图③中有个不同的角;(4)在∠AOB内部任意画10条射线OC,OD,…,则共形成个不同的角.参考答案能力提升1.D2.B3.B时钟上每一大格是30°,2点30分时时针与分针之间是3.5个格,所以夹角为3.5×30°=105°.4.D因为∠1=75°24'=75.4°,所以∠1,∠2和∠3都不相等.5.D6.(1)3236(2)10842(3)50.427.90°8.解:满足条件的角有6个,它们是∠A,∠D,∠ABE,∠ABF,∠DCE,∠DCF.9.解:图形中有∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共10个角.创新应用10.(1)3(2)6(3)10(4)66(1)2+1=3;(2)3+2+1=6;(3)4+3+2+1=10;(4)11+10+9+…+3+2+1=66.第2课时线段的性质能力提升1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在()A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是()A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为()A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC-BDB.CD=BCC.CD=AB-BDD.CD=AD-BC5.下面给出的4条线段中,最长的是()A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC=. 8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM 的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?参考答案能力提升1.D注意本题中的条件是在直线PQ上找一点C,所以C可以在P,Q之间,也可以在点Q的右侧.2.D A,B,C三点位置不确定,可能共线,也可能不共线.3.B如图,AD=AB=3.3cm,AC=AB=2.2cm,所以CD=AD-AC=3.3-2.2=1.1(cm).4.B5.A6.-7或5点B可能在点A的左侧,也有可能在点A的右侧.若点B在点A的左侧,则点B表示的数比点A表示的数小6,此时点B表示的数为-7;若点B在点A的右侧,则点B表示的数比点A表示的数大6,此时点B表示的数为5.7.8 cm或6 cm分两种情况:①点C在线段AB内,②点C在线段AB的延长线上.8.解:连接AC,BD,交点P即为购物中心的位置.理由:根据公理“两点之间,线段最短”,要使购物中心到A,B,C,D的距离和最小,购物中心既要在AC上,又要在BD上.9.解:(1)因为M为AC的中点,所以MC=AM.又因为AM=6cm,所以AC=2×6=12(cm).因为AB=20cm,所以BC=AB-AC=20-12=8(cm).又因为N为BC的中点,所以NC=BC=4(cm).(2)因为M为AC的中点,所以MC=AM.因为N为BC的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN)=2MN=2×6=12(cm).10.解:如图所示,是该正方体的侧面展开图.食物在B处时的最短路线为线段AB,食物在C处时的最短路线为线段AC.11.解:(1)当点C在线段AB上时,如图①,图①因为M是AC的中点,所以AM=AC.又因为AC=AB-BC,AB=12cm,BC=6cm,所以AM=(AB-BC)=×(12-6)=3(cm).(2)当点C在线段AB的延长线上时,如图②,图②因为M是AC的中点,所以AM=AC.又因为AC=AB+BC,AB=12cm,BC=6cm,所以AM=AC=(AB+BC)=×(12+6)=9(cm).故AM的长度为3cm或9cm.创新应用12.解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.。
新人教版七年级数学上册专题训练:角的计算(含答案)
七年级数学上册专题训练:角的计算(含答案)类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图所示,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DA C=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图所示,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB 的度数.解:因为∠EOD=28°46′,OD 平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′. 又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1所示,当∠AOB 与∠BOC 互补时,求∠COD 的度数;(2)如图2所示,当∠AOB 与∠BOC 互余时,求∠COD 的度数.解:(1)因为∠AOB 与∠BOC 互补,所以∠AOB+∠BOC =180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=70°. (2)因为∠AOB 与∠BOC 互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.5.一个角的余角比它的补角的23还少40°,求这个角的度数. 解:设这个角的度数为x °,根据题意,得90-x =23(180-x)-40. 解得x =30.所以这个角的度数是30°.6.如图所示,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °.因为OB 平分∠AOC,所以∠AOB=3x °.所以2x +3x +3x +20=180.解得x =20.所以∠BOC=3×20°=60°.7.如图所示,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °.因为∠AOB=12∠BOC, 所以∠BOC=2x °.所以3x +3x +2x +x =360.解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小. 解:因为∠AOB=75°,∠AOC =23∠AOB, 所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°;如图2,∠BOD =75°-25°=50°.9.已知:如图所示,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线,所以∠AOC=12∠AOB. 因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°.(3)90°+α2 或90°-α2.专题训练 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3;解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12); 解:原式=2x 2-12+3x -4x +4x 2-2 =6x 2-x -52.(6)3(x2-x2y-2x2y2)-2(-x2+2x2y-3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(7)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(8)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=-2a2+b2.(9)-3(2x2-xy)+4(x2+xy-6);解:原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24.(10)(钦州期中)2a2-[-5ab+(ab-a2)]-2ab. 解:原式=2a2+5ab-ab+a2-2ab=3a2+2ab.。
七年级数学《角》练习题及答案
七年级数学《角》练习题及答案一、选择题1.下列说法正确的就是( )A、两点之间直线最短B、用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C、把一个角分成两个角的射线叫角的平分线D、直线l经过点A,那么点A在直线l上呢2、下列4个图形中,能用∠1,∠AOB,∠O三种方法表示同一角的图形就是()3.下列关于平角、周角的说法正确的就是( ).A.平角就是一条直线B.周角就是一条射线C.反向延长射线OA,就形成一个平角D.两个锐角的与不一定小于平角4、右图中,小于平角的角有()A、5个B、6个C、7个D、8个5、如图所示,射线OA表示的方向,射线OB表示的方向,则∠AOB=( )A、155 °B、205 °C、85°D、105°6、一个人从A点出发向北偏东60°方向走到B点,再从B偏西15方向走到C点,那么∠ABC=( )A 、60°B 、15° C、45° D、70°二、填空题:7、角也可以瞧作由旋转面形成的图形。
8、 2周角= 1平角=9、1°的_____ 就是1′10、1周角= 平角= 直角= ;11、换算:42°27′= °,68°45′36″= °;12、2点15分,钟表的时针与分针所成的锐角就是度;13.钟面上从4点到5点,时针与分针重合时,此时4点________分14.计算:北东75︒40︒OA4题图5题图6题图(1)53°18′36″-16°51′(2)(43°13′28″÷2-10°5′18″)×315.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C与海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C与海岛D方向的射线.16.(如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB17、(如图,已知:∠AOE=100°,∠BOF=80°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数。
人教版七年级上册数学角练习题及答案
4.3.1角一、单选题1、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A、35°B、45°C、55°D、65°2、如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A、90°<α<180°B、0°<α<90°C、α=90°D、α随折痕GF位置的变化而变化3、如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=1:2,则∠BOD等于()A、30°B、36°C、45°D、72°4、下列说法中正确的是()A、两点之间线段最短B、若两个角的顶点重合,那么这两个角是对顶角C、一条射线把一个角分成两个角,那么这条射线是角的平分线D、过直线外一点有两条直线平行于已知直线5、两条平行线被第三条直线所截,则下列说法错误的是()A、一对邻补角的平分线互相垂直B、一对同位角的平分线互相平行C、一对内错角的平分线互相平行D、一对同旁内角的平分线互相平行6、如图,AB∥CD,CE⊥BD,则图中与∠1 互余的角有()A、1 个B、2 个C、3 个D、4 个7、如图,已知AB∥CD,直线EF 分别交AB,CD 于点E、F,EG 平分∠AEF,若∠2=40°,则∠1 的度数是()A、70°B、65°C、60°D、50°8、如图,已知l ∥l ,AC、BC、AD 为三条角平分线,则图中与∠1 互为余角的角有()1 2A、1 个B、2 个C、3 个D、4 个9、如图所示,用量角器度量几个角的度数,下列结论中正确的是()A、∠BOC=60°B、∠COA是∠EOD的余角AOC BODC、∠=∠D、∠AOD与∠COE互补二、填空题10、如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为________.11、如图,AB、CD相交于O,OE⊥AB,若∠EOD=65°,则∠AOC=________.12、如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MFE=________度.13、如图,已知直线AE∥BC,AD平分∠BAE,交BC于点C,∠BCD=140°,则∠B的度数为________三、解答题14、已知:OA⊥OC,∠AOB:∠AOC=2:3,画出图形,并求∠BOC的度数.15、如图,AB∥CD,点G、E、F分别在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度数.16、如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.17、如图,在四边形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分线分别与AD,BC相交于E,F两点,FG⊥BE于点G,∠1与∠2之间有怎样的数量关系?为什么?四、综合题18、如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.19、综合题(1)已知n正整数,且,求的值;(2)如图,AB、CD交于点O,∠AOE=90°,若∠AOC︰∠COE=5︰4,求∠AOD的度数.20、仅用无刻度的直尺作出符合下列要求的图形.(1)如图甲,在射线OP、OQ上已截取OA=OB,OE=OF.试过点O作射线OM,使得OM将∠POQ平分;(2)如图乙,在射线OP、OQ、OR上已截取OA=OB=OC,OE=OF=OG(其中OP、OR在同一根直线上).试过点O作射线OM、ON,使得OM⊥ON.答案解析部分一、单选题1、【答案】A【考点】角平分线的定义,对顶角、邻补角,垂线【解析】【解答】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°﹣55°=35°,∵射线OM 平分∠AOC,∴∠AOM=∠COM=35°,故选A.【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.2、【答案】C【考点】角的计算【解析】【解答】解:∵∠CFG=∠EFG 且FH 平分∠BFE.∠GFH=∠EFG+∠EFH∴∠GFH=∠EFG+∠EFH= ∠EFC+ ∠EFB= (∠EFC+∠EFB)= ×180°=90°.故选C.【分析】根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH 平分∠BFE 即可求解.3、【答案】A【考点】角平分线的定义,对顶角、邻补角【解析】【解答】解:∵∠EOC:∠EOD=1:2,∴∠EOC=180°×=60°,∵OA 平分∠EOC,∴∠AOC= ∠EOC= ×60°=30°,∴∠BOD=∠AOC=30°.故选:A.【分析】根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.4、【答案】A【考点】线段的性质:两点之间线段最短,角平分线的定义,对顶角、邻补角,平行公理及推论【解析】【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确;B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.故选A.【分析】根据线段的性质,对顶角的定义,角平分线的定义,平行公理对各选项分析判断后利用排除法求解.5、【答案】D【考点】角平分线的定义,平行线的性质【解析】【解答】解:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误;故选:D.【分析】由两条平行线被第三条直线所截,内错角的平分线互相平行、同旁内角的平分线互相垂直、内错角的平分线互相平行、同位角的平分线互相平行,即可求得答案.6、【答案】C【考点】余角和补角,垂线,平行线的性质【解析】【解答】解:∵CE⊥BD,∴∠CBD=∠EBD=90°,∴∠ABC+∠1=90°,∠1+∠EBF=90°,即∠ABC、∠EBF与∠1互余;∵AB∥CD,∴∠1=∠D,∵∠C+∠D=90°,∴∠C+∠1=90°,即∠C与∠1互余;图中与∠1互余的角有3个,故选:C.【分析】由垂线的定义得出∠ABC+∠1=90°,∠1+∠EBF=90°,得出∠ABC、∠EBF与∠1互余;由平行线的性质和余角关系得出∠C+∠1=90°,得出∠C与∠1互余.7、【答案】A【考点】角平分线的定义,平行线的性质【解析】【解答】解:∵直线AB∥CD,∠2=40°,∴∠AEG=∠1,∠AEF=140°,∵EG平分∠AEF交CD于点G,∴∠AEG=∠GEF=70°,∴∠1=70°.故选:A.【分析】利用平行线的性质得出∠AEG=∠1,∠AEF=140°,再利用角平分线的性质得出∠AEG=∠GEF=70°,即可得出答案.8、【答案】D【考点】角平分线的定义,平行线的性质【解析】【解答】解:∵l∥l,且AC、BC、AD为三条角平分线,∴∠1+∠2=×180°=90°,12∴∠1与∠2互余,又∵∠2=∠3,∴∠1与∠3互余,∵∠CAD=∠1+∠4=×180°=90°,∴∠1与∠4互余,又∵∠4=∠5,∴∠1与∠5互余,故与∠1互余的角共有4个.故选:D.【分析】根据平行线的性质,以及角平分线的定义,可得∠1与∠2互余,∠1与∠3互余,∠1与∠4互余,∠1与∠5互余.9、【答案】D【考点】角的计算,余角和补角【解析】【解答】解:A.∠BOC=120°,故A错误;B.∠COA=60°,∠EOD=60,它们的大小相等,故B错误;C.∠AOC=60,∠BOD=30,它们的大小不相等,故C错误;D.∠AOD=150°,∠COE=30°,它们互补,故D正确。
2020角-七年级数学人教版(上册)(解析版)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列关于平角、周角的说法正确的是A.平角是一条直线B.周角是一条射线C.反向延长射线OA,就形成一个平角D.两个锐角的和不一定小于平角2.如图,必须用三个大写字母表示且小于180°的角共有A.10个B.15个C.20个D.25个3.如图,下列说法正确的是A.∠1就是∠ABCB.∠2就是∠ADBC.以B为顶点的角有三个,它们是∠1,∠2,∠ABCD.∠ADB也可表示为∠D4.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为A.45°B.55°C.135°D.145°5.时钟显示为8:30时,时针与分针所夹的角是A.90°B.120°C.75°D.84°6.∠1=45°24′,∠2=45.3°,∠3=45°18′,则A.∠1=∠2 B.∠2=∠3C.∠1=∠3 D.以上都不对二、填空题:请将答案填在题中横线上.7.如图,∠1还可以表示成__________或__________;∠β还可以表示成__________或__________.8.如图所示,能用一个字母表示的角有__________个,以A为顶点的角有__________个,图中所有角有__________个.9.如图,射线OA表示的方向是__________,射线OB表示的方向是__________.10.(1)56°25′12″=__________°;(2)90°–54°48′6″=__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.时钟从3时到3时20分,时针转过的角度是多少?分针呢?12.如图,写出全部符合条件的角.(1)能用一个大写字母表示的角;(2)能用一个数字表示的角,并将这些角用字母表示出来;(3)以D为顶点且小于平角的角;(4)以A为顶点且小于平角的角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版2020年七年级数学上册小专题练习十七
《角-解答题专练》
1.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD
是OB的反向延长线.
(1)射线OC的方向是;
(2)若射线OE平分∠COD,求∠AOE的度数.
2.如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.
(1)∠AOC=_______;
(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠______,这个余角的度数等于______.
3.如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC;OE平分∠BOC.
(1)图中∠BOD的邻补角为_________;∠AOE的邻补角为____________。
(2)如果∠COD=25°,那么∠COE= ;如果∠COD=60°,那么∠COE= ;
(3)试猜想∠COD与∠COE具有怎样的数量关系,并说明理由.
4.如图,将两块直角三角尺的直角顶点C叠放在一起.
(1)判断∠ACE与∠BCD的大小关系,并说明理由;
(2)若∠DCE=30°,求∠ACB的度数;
(3)猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.
5.①如图1,点A、C、B在同一直线上,CD平分∠ACB,∠ECF=90°.回答下列问题:
(1)写出图中所有的直角;
(2)写出图中与∠ACE相等的;
(3)写图中∠DCE所有的余角;
(4)写图中∠ACE所有的余角;
(5)写图中∠FCD的补角;
(6)写图中∠DCE的补角;
②如图2,已知点A、O、B在一条直线上,∠COD=90°,OE平分∠AOC,OF平分∠BOD,求
∠EOF的度数.
6.如图,已知∠AOM与∠MOB互为余角,且∠BOC=30°,OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度数;
(2)如果已知∠AOB=80°,其他条件不变,求∠MON的度数;
(3)如果已知∠BOC=60°,其他条件不变,求∠MON的度数;
(4)从(1)(2)(3)中你能看出什么规律?
7.如图,已知∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.
(1)求∠MON的大小.
(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?
8.已知如图,∠BOC和∠AOC的比是3:2,OD平分∠AOB,∠COD=10°,求∠AOB的度数.
9.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°.求∠COD的度数.
10.如图,∠AOB=90°,∠AOC为∠AOB外的一个锐角,且∠AOC=30°,射线OM平分∠BOC,ON
平分∠AOC.
(1)求∠MON的度数;
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;
(3)如果(1)中∠AOC=β(β为锐角),其他条件不变,求∠MON的度数;
(4)从(1),(2),(3)的结果中,你能看出什么规律?
(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法.请你模仿(1)
~(4)设计一道以线段为背景的计算题,并写出其中的规律.
参考答案
1.解:(1)北偏东70°;
(2)因为∠AOB=55°,∠AOC=∠AOB,所以∠BOC=110°.
又因为射线OD是OB的反向延长线,所以∠BOD=180°,∠COD=180°﹣110°=70°.
因为∠COD=70°,OE平分∠COD,所以∠COE=35°
又因为∠AOC=55°.所以∠AOE=∠AOC +∠COE =90°.
2.解:(1)42°30′;(2)如图,AOD或COE,47°30′;
3.解:(1)∠AOD;∠BOE;
(2)65°;30°;
(3)∠COD+∠COE=90°.
理由如下:因为OD平分∠AOC,OE平分∠BOC.
所以∠COD=∠AOC,∠COE=∠BOC.
所以∠COD+∠COE=∠AOC+∠BOC
=
=∠AOB
=×180°
=90°.
4.解:(1)∠ACE=∠BCD,理由如下:
∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACE=∠BCD;
(2)由余角的定义,得∠ACE=90°﹣∠DCE=90°﹣30°=60°,
由角的和差,得∠ACB=∠ACE+∠BCE=60°+90°=150°;
(3)∠ACB+∠DCE=180°,理由如下:由角的和差,得∠ACB=∠BCE+∠ACE,
∠ACB+∠DCE=∠BCE+(∠ACE+DCE)=∠BCE+∠ACE=180°.
5.解:①∵CD平分∠ACB,∠ECF=90°,∴∠ACD=∠BCD=90°,∴∠ACE=∠FCD,∠BCF=∠ECD,
(1)图中所有的直角有:∠ACD,∠BCD,∠ECF;
(2)与∠ACE相等的角有∠DCF;
(3)∠DCE所有的余角有∠ACE,∠DCF;
(4)∠ACE所有的余角有∠DCE,∠BCF;
(5)∠FCD的补角∠BCE;
(6)∠DCE的补角∠ACF.
故答案为:∠ACD,∠BCD,∠ECF;∠DCF;∠ACE,∠DCF;∠DCE,∠BCF;∠BCE;∠ACF.;
(2)∵∠COD=90°,∴∠AOC+∠BOD=90°,
∵OE平分∠AOC,OF平分∠BOD,∴∠COE+∠DOF=(∠AOC+∠BOD)==45°,∴∠EOF=∠COE+∠DOF+∠COD=135°.
6.解:
(1)因为OM平分∠AOC,
所以∠MOC=0.5∠AOC.
因为ON平分∠BOC,
所以∠NOC=0.5∠BOC,
所以∠MON=∠MOC-∠NOC=0.5∠AOC-0.5∠BOC=0.5∠AOB.
而∠AOB=∠AOM+∠MOB=90°,
所以∠MON=45°.
(2)当∠AOB=80°,其他条件不变时,
∠MON=0.5×80°=40°.
(3)当∠BOC=60°,其他条件不变时,
∠MON=45°.
(4)分析(1)(2)(3)的结果和(1)的解答过程可知:
∠MON的大小总等于∠AOB的一半,而与锐角∠BOC的大小无关.
7.解:
8.解:∵∠BOC和∠AOC的比是3:2,∴设∠BOC=3x,则∠AOC=2x,则∠AOB=5x,
∵OD平分∠AOB,∴∠AOD=x,则x﹣2x=10,解得:x=20,则∠AOB=100°.
9.【解答】解:∵OD平分∠AOB,∠AOB=114°,∴∠AOD=∠BOD==57°.
∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=.∴∠COD=∠AOD﹣∠AOC=57°﹣
38°=19°.
10.解:(1)因为∠AOB=90°,∠AOC=30°,所以∠BOC=120°.
因为OM平分∠BOC,所以∠COM=∠BOC=60°.
因为ON平分∠AOC,所以∠CON=∠AOC=×30°=15°,
所以∠MON=∠COM-∠CON=60°-15°=45°
(2)当∠AOB=α,其它条件不变时,仿(1)可得∠MON=α
(3)仿(1)可求得∠MON=∠COM-∠CON=45°
(4)从(1)(2)(3)的结果中,可以得出一般规律:∠MON的大小总等于∠AOB的一半,与锐角
∠AOC的大小无关
(5)问题可设计为:已知:线段AB=a,延长AB到点C,使BC=6,点M,N分别为AC,BC的中
点,求MN的长.
规律是:MN的长度总等于AB的长度的一半,而与BC的长度无关。