《乘法公式》整式的乘除与因式分解PPT优秀课件

合集下载

《因式分解》整式的乘除与因式分解PPT课件

《因式分解》整式的乘除与因式分解PPT课件
…… 把你发现的规律用含n的等式表示出来. 2. 对于任意的自然数n,(n+7)2- (n-5)2能被24 整除吗? 为什么?
15.4.2 公式法(2) 思考:
你能将多项式a2+2ab+b2 与a2-2ab+b2分解因 式吗?这两个多项式有什么特点?
(a+b)2=a2+2ab+b2,
a2+2ab+b2=(a+b)2
练习
1.下列多项式能否用平方差公式来分 解因式?为什么?
(1) x2+y2 ;
(2) x2-y2;
(3) -x2+y2;
(4) -x2-y2.
2.分解因式: (1)a2-215 b2; (3) x2y-4y ;
(2)9a2-4b2; (4列各式: 32-12=8=8×1; 52-32=16=8×2; 72-52=24=8×3;
例6 分解因式:
将a+b看作一个
(1) 3ax2+6axy+3ay2;
整体,设a+b=m, 则原式化为完全
分析:应先找出


公因式,再提公因式进行分解.
例 2 分解因式 2a(b c) 3(b c)
分析:(b+c)是这两个式子的公因式,
可以直接提出.
解:2a(b c) 3(b c)
(b c)(2a 3) .
因式分解:
(1)24x3y-18x2y ;
(2)7ma+14ma2 ;
(3)-16x4+32x3-56x2 ; (4)- 7ab-14abx+49aby ; (5)2a(y-z)-3b(y-z) ; (6)p(a2+b2)-q(a2+b2).

人教版八年级上册数学《乘法公式》整式的乘除与因式分解精品PPT教学课件

人教版八年级上册数学《乘法公式》整式的乘除与因式分解精品PPT教学课件

9
• 算一算:
• (x+y )( x-y)+(2x+y )( 2x-y) 5x2-2y2
• x(x-3)-(x+7)(x-7)
-3x+49
填一填:
aa
• (_2 3_2 3+__)(__-__)= - 9
• (a+2b+2c)(a+2b-2c)写成平方差公
式形式:_(_a_+_2_b_)_2_-(_2_c_)_2___
平方差公式中字母 a、b可代表一个数、一 个单项式或多项式。
2020/11/23
12
拓展探究
2020/11/23
13
再谢 谢见!!
2020/11/23
14
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
整式的乘除与因式分解
乘法公式
──平方差公式
2020/11/23
1
你能用简单方法计算下列问题吗?
(1)、1002×998 =(1000+2)(1000-2) =10002+2×1000-2×1000-22 = 10002-22 =999996
(2)、 200004×199996
2020/11/23
2
观察下列多项式,并进行计算,你 能发现什么规律?
• (x+1)(x-1) =x2-x+x-1 =x2-1 • (m+2)(m-2) =m2-2m+2m-22 =m2-22 =m2-4
• (2x+1)(2x-1) =(2x) 2-2x+2x-1 =(2x) 2-1 =4x 2-1

《因式分解》整式的乘除与因式分解PPT 图文

《因式分解》整式的乘除与因式分解PPT  图文

请把下列多项式写成整式乘积的形式.
(1) x 2 x x(x1)
( 2 ) x 2 1 (x1)(x1)
把一个多项式化成几个整式积的形式, 这种变形叫做把这个多项式因式分解(或 分解因式).
想一想:因式分解与整式乘法有何关系?
因式分解
x2-y2
(x+y)(x-y)
整式乘法
因式分解与整式乘法是互逆过程.
练习
1.下列多项式能否用平方差公式来分 解因式?为什么?
(1) x2+y2 ;
(2) x2-y2;
(3) -x2+y2;
(4) -x2-y2.
2.分解因式: (1)a2-215 b2; (3) x2y-4y ;
(2)9a2-4b2; (4) -a4 +16.
思维延伸
1. 观察下列各式: 32-12=8=8×1; 52-32=16=8×2; 72-52=24=8×3;
两个数的平方差,等于这两个数的和与 这两个数的差的积.
例3 分解因式:
(1) 4x2 – 9 ; (2) (x+p)2 – (x+q)2.
分析:在(1)中,4x2 = (2x)2,9=32,4x2-9 = (2x )2 –3 2,即可用平方差公式分解因式.
在(2)中,把(x+p)和 (x+q)各看成一个整体,设 x+p=m,x+q=n,则原式化为m2-n2.
整式乘法
(6) m2-4=(m+2)(m-2) ; 因式分解
(7) 2πR+ 2πr= 2π(R+r). 因式分解
怎样分解因式: m am bm.c
公因式:多项式中各项都有的因式, 叫做这个多项式的公因式;

《整式的乘法》整式的乘除与因式分解PPT课件二

《整式的乘法》整式的乘除与因式分解PPT课件二
整式的乘除与因式分解
整式的乘法
一、复习
单项式乘以单项式的法则有几点? ① 各单项式的系数相乘; ② 相同字母的幂按同底数的幂相乘; ③ 单独字母连同它的指数照抄。 一、口算:
(1)5x2y2.(-3x2y) 原式=5×(-3)(x2x2)(y2y)
=-15x4y3
原式=x4.4x6y4
(2) (x2)2 .(-2x3y2)2
× 2. 1 a(a2 a 2) 1 a3 1 a2 1 ( )
2
22
× 3.(-2x)•(ax+b-3)=-2ax2-2bx-6x( )
二.填空
1.单项式与多项式相乘,就是用单项式去乘
多项式的每___一___项__,再把所得的积__相___加___
2.4(a-b+1)=___4__a__-__4__b__+__4____ 3.3x(2x-y2)=___6__x__2_-__3__x__y__2___
=(-xn-1y2)•(x2y2m) =-xn+1y2m+2
即使道路坎坷不平,车轮也要前进;即使江河波涛汹涌,船只也航行。 要使整个人生都过得舒适愉快,这是不可能的,因为人类必须具备一种能够应付逆境的态度。——卢梭 当我微笑着说我很好的时候,你应该对我说,安好就好。 熟读唐诗三百首,不会作诗也会吟。——孙洙 要想人前显贵,必得人后受罪。 许多人缺少的不是美,而是自信的气质。 尽可能的开心地活每一天,就好比今天是你生命的最后一天。 自己打败自己是最可悲的失败,自己战胜自己是最可贵的胜利。
=4x10y4
(3)(1.2×103) ·(5×102)
原式=(1.2×5)×103×102 =6×105
解(21::)原2计式4算112

《乘法公式》整式的乘除与因式分解5PPT课件 图文

《乘法公式》整式的乘除与因式分解5PPT课件 图文

(2) 992 .
解: (1) 1022 = (100 +2) 2 = 1002 +2Χ100Χ2 + 22 = 10 000 +400 +4 = 10 404 .
(2) 992 = (100 -1)2
= 1002 -2Χ100Χ1+12
= 10 000 - 200 + 1
= 9 801.
1、完全平方公式的内容是什么?
(1)(p+1)2=(p+1)(p+1)=_______; (2)(m+2)2=_______; (3)(p-1)2=(p-1)(p-1)=________; (4)(m-2)2=________; (5)(a+b)2=________; (6)(a-b)2=________.
(1)(p+1)2=(p+1)(p+1)=p2+p+p+1=p2+2p+1 (2)(m+2)2=(m+2)(m+2)=m2+2m+m•2+2×2=m2+4m+4 (3)(p-1)2=(p-1)(p-1)=p2+p•(-1)+(-1)•p+(-1)×(-1)
有一句话说:“人的一生会遇到两个人,一个惊艳了时光,一个温柔了岁月。” 惊艳了时光的那个人,是青春回忆里最绚烂、最耀眼的存在,不后悔跟他经历过的快乐与感动,哪怕后来的大风大浪都是他给的,但还是想对他说,有生之年,欣喜相逢。 你给过我太多的快乐和感动,太多的收获和意外,也有太多的心酸和坎坷。可总归你来过我的生命,也带给我许多的美好和小幸福。我不知道是怎样的缘分让我们相遇,可我都不想去追究了,因为我相信每一种遇见,都有意义,每一个爱过的人,都有记忆。无论怎样,都是幸运的,因为你带给了我一些特殊的感受,以至于每次回味起来,都觉得人生是精彩的。 我始终还记得那年夏天你为了在我路过的城市见我冒着大雨开车几百公里,只为在车站短短的停留……我也记得在街头只因我看了一眼那各式的冰糖葫芦,你穿越熙攘的人群排队为我拿回最后一个糖葫芦欣喜的样子,不是爱吃甜食的我那晚一口气吃掉了那个糖葫芦,而你看着我憋得满嘴和通红的脸只是宠溺的笑笑……我还记得因为我随口一说自己都没在意的东西而你却把它买回来了,就在有次离别的车站,当我不告而别你知道后发疯的电话、视频和在机场着急的身影,手里还提着我自己也不知道什么时候说过的东西时我就知道你就是那个惊艳了时光也温柔了我曾经岁月的人。 “路漫漫其修远兮,吾将上下而求索”人生的路坎坎坷坷,舍与得在一念之间,我也曾满怀期待所有的相遇与分别是事出有因或者可以久别重逢。可怎奈,当再次面临抉择时才知道有的相遇只是漫漫人生路上的一个劫,一份缘的未尽而已…… 谢谢你来过,谢谢你给过我那么多,也谢谢你给我那些惊艳的时光!很知足过去有你陪伴的时光,很怀念那些和你一起走过的日子。未来我不知道该怎么取舍,我也不知道以后又会怎样?可无论是什么我都不会后悔认识你了,无论你带给我的是恩赐还是劫难我都不后悔了,至少我感受过你的温柔,拥有过你的怀抱,也和你十指相扣的走过了一段路。所以,以后无论怎样你都是我不经意间想起和思念的人。 谢谢你来过!不管你是否真的快乐?不管岁月是否善待你我,也不管能否一直有你带给我的小确幸,还是谢谢你!谢谢你带给我的幸运,谢谢你曾为了我付出了全部的时间与爱,也谢谢你给我的岁月平淡和温情有于…… 没有太多的修饰,只是很庆幸曾经你也是我的“那个他”。谢谢你来过,谢谢你让我觉得我不会孤单,谢谢你用漫漫柔情,温暖了我的生命。你给的美好,我会悉数珍藏,用力保护的。

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件
1
-1
1
-2
1×(-2)+1×(-1)=-3
(2)
1
-2
1
5
1×5+1×(-2)=3
解:(1) x2-3x+2=(x-1)(x-2); (2) x2+3x-10=(x-2)(x+5).
随堂练习
x(x+2)(x+3)
1.(2019·淄博)分解因式:x3+5x2+6x=___________.
分析:x3+5x2+6x
(1)当多项式的各项有公因式时,应先提取公因式;当
多项式的各项没有公因式时(或提取公因式后),若
符合平方差公式或完全平方公式,就利用公式法分解
因式;
(2)当不能直接提取公因式或用公式法分解因式时,可
根据多项式的特点,把其变形为能提取公因式或能用
公式法的形式,再分解因式;
(3)当乘积中的每一个因式都不能再分解时,因式分解
一般地,如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另外一个因式
的乘积的形式,这种分解因式的方法叫做提公因式法.
提公因式法一般步骤:
(1)确定公因式:先确定系数,再确定字母和字母的指
数;
(2)提公因式并确定另外一个因式:用多项式除以公因
式,所得的商就是提公因式后剩下的另一个因式;
1
2
=x(x2+5x+6)
1
3
=x(x+2)(x+3).
1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=__________.
2(x-1)(x-2)

《整式的乘法》整式的乘除与因式分解PPT优秀课件

《整式的乘法》整式的乘除与因式分解PPT优秀课件

解 (1)3a(5a-2b) =3a ·5a+3a =15a-6ab
·(-2b)
(2) (x-3y)· (-6x) =x · (-6x)+(-3y) · (-6x) =-6x+18xy
单项式与多项式相乘时可先确定积的符号
例:计算

(1)2a· (3a-5b)
( 2 ) (-2b)(-4a+b)
3
-4 x
(2)( 2 a b2 3
-
2ab ) ·
1 · 2 ab
1 ab 2
2 = a b2 3
+
1 (-2ab) · ab 2
1 a2 3 b - a 2 b2 = 3
单项式与多项式相乘的结 果是一个多项式,其项数与因 式中的项数相同
巩固练习: 1.计算:(1)3a(5a-2b) (2)(x-3y)· (-6x)
ቤተ መጻሕፍቲ ባይዱ

单项式与多项式相乘,就 是用单项式去乘多项式的每一 项,再把所得的积相加.
例5 计算: 2 (1) (-4 x )·(3 x + 1), (2)(
解: (1)(-4 x )( 3 x
2 2
2 3a
b2 -2ab)· 1 ab
2
+
1)
=(-4 x )·( 3 x )+(-4 x )·1 =-12 x

解(1)2a ·(3a-5b) =2a·3a-2a·5b =6a-10ab ( 2 ) (-2b)(-4a+b) =2a·4a-2b·b =8a-2b
练习:
1、化简 x(x-1)+2x(x+1)-3x(2x-5) 2、计算: 2 a a a (1)(2 - 4 ) ·(-9 ) ( 2 )-xy(-x-y+1)

人教部编版八年级上册数学《乘法公式》整式的乘除与因式分解PPT课件2

人教部编版八年级上册数学《乘法公式》整式的乘除与因式分解PPT课件2

练习
下面各式的计算对不对?如 果不对,应当怎样改正?
(x+2)(x-2) = x2-2 ;
(2) (-3a-2) (3a-2) = 9a2 4.
2.运用平方差公式计算.
(1)(a+3b) (a-3b); (2) (3+2a) (-3 + 2a) ; (3) 51×49;
(4) (3x+4)(3x-4) – (2x+3)(3x2).
你能根据图15.2-1中的 面积说明平方差公式吗?
例1 运用平方差公式
计算: (3x+2) (3x-2); (b+2a)(2a-b);
(-x+2y) (-x-2y).
例2 计算:
(1) 102×98;
(2) (y+2) (y-2) – (y-1) (y+5 解:(1)102×98、 =(100+2)(100-2)= 100222 =10 000 – 4 = 9 996.
2019 POWERPOINT
2018/12/17
SUCCESS
2019 THANK YOU
2018/12/17
SUCCESS
(a+b) (a-b)
B(a+b)2=a2+2ab+b2 C(a-b)2=a2-2ab+b2
b b
D(a+2b)(a-b)=a2+ab-2b2
图1
综合拓展 1.计算 20042-2003×2005;
2.请你利用平方差公式求出 (2+1)(22+1)(24+1)…(264+ 1) 的值.
P156 第1题
思维延伸
1、若a2-b2=50,a+b=- 5

《整式的乘法》整式的乘法与因式分解PPT课件(第3课时整式的除法)

《整式的乘法》整式的乘法与因式分解PPT课件(第3课时整式的除法)

2.下列算式中,不正确的是( D
A.(-12a5b)÷(-3ab)=4a4
B.9xmyn-1÷3xm-2yn-3=3x2y2
C. 4a2b3÷2ab=2ab2
D.x(x-y)2÷(y-x)=x(x-y)
)
3.计算:
(1)(103)÷(52) =
(2)66÷ (33) =2a3
(3)(-12s4t6) ÷(2s2t3)2 = -3
例2 已知:=4,=9,
求Hale Waihona Puke (1) -;(2) -.4
解:(1)-=÷=4÷9= 9 .
(2)-2=÷=()3÷()2
64
=43÷92= 81 .
例3
如果2-1 ÷ 2 =xm+1,求的值.
解:∵ 2-1 ÷ 2
∴2
(4)(a-b)5÷(a-b)3
3、计算:
(1)(-a)5÷a3
(3)(a8)2·a4÷a10
(2)x8÷x2÷x3
(4)(a-b)2m÷(a-b)m
由单项式与单项式的
乘法法则计算.
探究:
(1)计算:4a2x3·3ab2= 12a3b2x3 ;
(2)计算:12a3b2x3
观察:
÷
3ab2=
4a2x3
.
由乘除法互为逆运
算可得结果.
12a b x (3ab )
3 2
解:原式= 12 3
3
2
·
(a 3 a) ·(b 2 b 2 ) · 3
(系数÷系数) (同底数幂相除)×单独的幂
=4a2x3 .
你能总结单项式与单项式相除的法则吗?
单项式除以单项式法则
一般地,单项式相除,把系数与同底数幂

《整式的乘法》整式的乘除与因式分解3-八年级上册数学人教版PPT课件

《整式的乘法》整式的乘除与因式分解3-八年级上册数学人教版PPT课件

(2)7ax • (2a2bx2 ) = [7 ×(-2) ] • a • a2 •b • x • x2
14a3bx3
例3 计算
(1)(-2a2)3 ·(-3a3)2
23 a23 • 32 a32
8 9a6 • a6
72a12
例2 计算
(1)4a3 • 7a4
(2)7ax • (2a2bx2 )
45 (4)(2a)2 (a2 )3
(12 x3 ) (24a4b5 )
( 3 a2bx5 y) 2
(4a8 )
如果a·a可以看做是边长为a的 正方形的面积, 那么你会说 明3a·2b, 3a·5a·b的几何意义 吗?
你有什么收获?
(1) (-a2b)(-2ab2c)3ab3 (2) (m2)3(-2mn) (n2)m (3)[-6x2(x-y)2 ] [ 1 x(y-x)3z2]
变式1:
注意:这里实质是 同底数幂的乘法的应用
· 5__a_4 1.2_a__3=(__5_×____)(___·____)=___6_a7
变式2:
· 55a4 (-1.2a3b2)=[__×(-1.2)] ●(a4a3 )_=_-6a7b2
从以上这些式子中你能发现进行单项式与单项式相乘的运算规律吗?
整式的乘除与因式分解
整式的乘法
1 同底数幂的乘法运算性质是什么?
am • an=am+n(m、n为正整数 ) 同底数幂相乘, 底数不变, 指数相加.
2 积的乘方运算性质是什么?
(ab)n=an bn ( n为正整数) 积的乘方等于各因数乘方的积.
3 幂的乘方运算性质是什么?
(am)n=amn (m、n为正整数) 幂的乘方, 底数不变, 指数相乘.

《整式的乘法》整式的乘除与因式分解PPT课件三

《整式的乘法》整式的乘除与因式分解PPT课件三

细心填一填:
(1) ( 2x2y ) (3xy2 ) 6x3 y3
(2) ( px4 ) (2xq )2 12x8,
则p 3,q 2
提高题:计算:
(1)3x2 • 4x (2)(2ab)3 •3ab2 (3)( 1 ax2)( 2 bx3)(15ay)
45 (4)(2a)2 (a 2 )3
1、系数相乘
2、同底数的幂相乘
3、只在一个单项式里含有的字母,
连同它的指数作为积的一个因式。
单项式乘以单项式法则:
单项式相乘,把它们的
系数相乘、字母部分 的同底数幂分别相乘,
对于只在一个单项里 含有的字母,连同它的 指数作为积的一个因式。
这里的结果可以表达的更简单些吗?试一试?
3 x3 5
2b
整式的乘除与因式分解
整式的乘法
1 同底数幂的乘法运算性质是什么?
am • an=am+n(m、n为正整数 ) 同底数幂相乘,底数不变,指数相加.
2 积的乘方运算性质是什么?
(ab)n=an bn ( n为正整数) 积的乘方等于各因数乘方的积.
3 幂的乘方运算性质是什么?
(am)n=amn (m、n为正整数) 幂的乘方,底数不变,指数相乘.
同底数幂的乘法,底数不 变,指数相加
(1)4a2 •2a4 = 8a8 ( × ) 系数相乘
(2)6a3 •5a2=11a5 ( × )
求系数
(3)(-7a)•(-3a3) =-21a4
(
×)
的积, 应注意
(4)3a2b •4a3=12a5 ( )
×
符号
只在一个单项式里含有的字母,要连同 它的指数写在积里,防止遗漏.
有两幅画,规格如下图所示:(单位 米)

《整式的乘法》整式的乘法与因式分解PPT优秀教学课件

《整式的乘法》整式的乘法与因式分解PPT优秀教学课件

归纳
多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除 以这个单项式,再把所得的商相加.
转化
多项式除以单项式
单项式除以单项式
示例: (28x3y14x2y27x)7x 28x3y7x14x2y27x7x7x 4x2y2xy21
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
单项式相除,把系数与同底数幂分别相除作为商 的因式,对于只在被除式里含有的字母,则连同它的 指数作为商的一个因式.
被除式的系数 除式的系数
底数不变, 保留作为商 指数相减. 的一个因式.
商式系数·同底的幂·被除式里单独有的幂 示例:6x4y6z8x2y2(68)·(x4x2)·(y6y2)·z3x2y4z
14.1.4 整式的乘法
学习目标
1.掌握单项式除以单项式、多项式除以单项式的法则,理解除法运算的

算理;

2.能熟练运用单项式除以单项式、多项式除以单项式的法则计算,并能

解决一些实际问题;

3.经历探索整式除法运算法则的过程,进一步体会类比方法的作用,发

展运算能力;
4.让学生主动参与到探索过程中,发展有条理的思考及表达能力.
(ambm)m
如何计算?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
除法是乘法的逆运算
(ambm)m( ab)
( ab)·mambm
ammbmmab
单项式除以单项式
(ambm)mammbmmab
讨论 尝试归纳多项式除以单项式的运算法则.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业

《乘法公式》整式的乘除与因式分解PPT课件2

《乘法公式》整式的乘除与因式分解PPT课件2

2 x -2
;
2 9a
(2) (-3a-2) (3a-2) =
-4 .
2.运用平方差公式计算.
(1) (1)(a+3b) (a-3b); (2) (3+2a) (-3 + 2a) ; (3) 51×49;
(4) (3x+4)(3x-4) – (2x+3)(3x-2).
思维延伸
2 2 1、若a -b =50,a+b=-5
则a-b=_____
2 4 2 2、若M(3x-y )=y -9x
则整式M是_____
创新应用
如图1,在边长为a的正方形中挖掉一个边
长为b的正方形(a>b),把余下的部分剪成一
个矩形(如图2).通过计算两个图形(阴影部
分)的面积,验证了一个等式,这个等式是( )
a a
A a2-b2 =
(a+b) (a-b)
B(a+b)2=a2+2ab+b2 C(a-b)2=a2-2ab+b2
b b
D(a+2b)(a-b)=a2+ab-2b2
图1
综合拓展 1.计算
2 2004 -2003×2005;
2.请你利用平方差公式求出 (2+1)(22+1)(24+1)…(264+1)
的值.
P156 第1题
1、不要做刺猬,能不与人结仇就不与人结仇,谁也不跟谁一辈子,有些事情没必要记在心上。 2、相遇总是猝不及防,而离别多是蓄谋已久,总有一些人会慢慢淡出你的生活,你要学会接受而不是怀念。 3、其实每个人都很清楚自己想要什么,但并不是谁都有勇气表达出来。渐渐才知道,心口如一,是一种何等的强大! 4、有些路看起来很近,可是走下去却很远的,缺少耐心的人永远走不到头。人生,一半是现实,一半是梦想。 5、没什么好抱怨的,今天的每一步,都是在为之前的每一次选择买单。每做一件事,都要想一想,日后打脸的时候疼不疼。 6、过去的事情就让它过去,一定要放下。学会狠心,学会独立,学会微笑,学会丢弃不值得的感情。 7、成功不是让周围的人都羡慕你,称赞你,而是让周围的人都需要你,离不开你。 8、生活本来很不易,不必事事渴求别人的理解和认同,静静的过自己的生活。心若不动,风又奈何。你若不伤,岁月无恙。 9、与其等着别人来爱你,不如自己努力爱自己,对自己好点,因为一辈子不长,对身边的人好点,因为下辈子不一定能够遇见。 10、你迷茫的原因往往只有一个,那就是在本该拼命去努力的年纪,想得太多,做得太少。 11、有一些人的出现,就是来给我们开眼的。所以,你一定要禁得起假话,受得住敷衍,忍得住欺骗,忘得了承诺,放得下一切。 12、不要像个落难者,告诉别人你的不幸。逢人只说三分话,不可全抛一片心。 13、人生的路,靠的是自己一步步去走,真正能保护你的,是你自己的选择。而真正能伤害你的,也是一样,自己的选择。 14、不要那么敏感,也不要那么心软,太敏感和太心软的人,肯定过得不快乐,别人随便的一句话,你都要胡思乱想一整天。 15、不要轻易去依赖一个人,它会成为你的习惯,当分别来临,你失去的不是某个人,而是你精神的支柱;无论何时何地,都要学会独立行走 ,它会让你走得更坦然些。 16、在不违背原则的情况下,对别人要宽容,能帮就帮,千万不要把人逼绝了,给人留条后路,懂得从内心欣赏别人,虽然这很多时候很难 。 17、做不了决定的时候,让时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾! 18、不要太高估自己在集体中的力量,因为当你选择离开时,就会发现即使没有你,太阳照常升起。 19、时间不仅让你看透别人,也让你认清自己。很多时候,就是在跌跌拌拌中,我们学会了生活。 20、命运要你成长的时候,总会安排一些让你不顺心的人或事刺激你。 21、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 22、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。 23、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。 24、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给 时间来定夺。 25、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。 26、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡 慕那些总能撞大运的人,你必须很努力,才能遇上好运气。 27、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的 生命才真正开始。 28、每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。 29、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要 在路上,就没有到不了的地方。 30、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。 31、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 32、过自己喜欢的生活,成为自己喜欢的样子,其实很简单,就是把无数个“今天”过好,这就意味着不辜负不蹉跎时光,以饱满的热情迎 接每一件事,让生命的每一天都有滋有味。

《乘法公式》整式的乘除与因式分解 优秀PPT课件

《乘法公式》整式的乘除与因式分解  优秀PPT课件

谢 谢!
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]

《乘法公式》整式的乘除与因式分解PPT优秀课件217页PPT

《乘法公式》整式的乘除与因式分解PPT优秀课件217页PPT
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
《乘法公式》整式的乘除与因式分解 PPT优秀课件2
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

《乘法公式》整式的乘除与因式分解PPT课件2

《乘法公式》整式的乘除与因式分解PPT课件2
整式的乘除与因式分解
乘法公式
—平方差公式
计算下列多项式的积, 你能发现什么规律?
2 x -1 2 m-
(1)(x+1)(x-1)=________;
4 (2)(m+2)1)=_______.
2 4x -1
一般地,我们有
(a+b)(a-b) =
2 2 a -b .
则a-b=_____
2 4 2 2、若M(3x-y )=y -9x
则整式M是_____
创新应用
如图1,在边长为a的正方形中挖掉一个边
长为b的正方形(a>b),把余下的部分剪成一
个矩形(如图2).通过计算两个图形(阴影部
分)的面积,验证了一个等式,这个等式是( )
a a
A a2-b2 =
(a+b) (a-b)
(1) 102×98;
(2) (y+2) (y-2) – (y-1) (y+5) . 解:(1)102×98、 2 2 =(100+2)(100-2)= 100 -2 =10 000 – 4 = 9 996.
练习
1.下面各式的计算对不对? 如果不对,应当怎样改正?
(1)(x+2)(x-2) =
2 x -2
即两个数的和与这两个 数的差的积,等于这两个 数的平方差. 这个公式叫做(乘法 的)平方差公式.
你能根据图15.2-1中的 面积说明平方差公式吗 ?
例1 运用平方差公式
计算: (1)(3x+2) (3x-2); (2) (b+2a)(2a-b);
(3) (-x+2y) (-x-2y).
例2 计算:
B(a+b)2=a2+2ab+b2 C(a-b)2=a2-2ab+b2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谢 谢!
1、抓紧学习,抓住中心,宁精勿杂,宁专勿多。——周恩 来 2、与雄心壮志相伴而来的,应老老实实循环渐进的学习方 法。——华罗庚 3、惟有学习,不断地学习,才能使人聪明,惟有努力,不 断地努力,才会出现才能。——华罗庚 4、发愤早为好,苟晚休嫌迟。最忌不努力,一生都无知。 ——华罗庚 5、自学,不怕起点低,就怕不到底。——华罗庚 6、聪明出于勤奋,天才在于积累。——华罗庚 7、应当随时学习,学习一切;应该集中全力,以求知道得 更多,知道一切。——高尔基 8、学习永远不晚。——高尔基
• (x+1)(x-1) =x2-x+x-1 =x2-1 • (m+2)(m-2) =m2-2m+2m-22 =m2-22 =m2-4 • (2x+1)(2x-1) =(2x) 2-2x+2x-1 =(2x) 2-1 =4x 2-1
2 2 (a+b)(a-b)=a -b
两个数的和与这两 个数的差的积等于这两 个数的平方差。
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
励志学习的名言警句 1、在强者的眼中,没有最好,只有更好。 2、成功是努力的结晶,只有努力才会有成功。 3、只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 4、拥有梦想只是一种智力,实现梦想才是一种能力。 5、生命之灯因热情而点燃,生命之舟因拼搏而前行。 6、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 7、没有天生的信心,只有不断培养的信心。 8、成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。 9、自己打败自己的远远多于比别人打败的。 10、当一个小小的心念变成行为时,便能成了习惯,从而形成性格,而性格就决定你一生的成败。 11、忍耐力较诸脑力,尤胜一筹。 12、高峰只对攀登它而不是仰望它的人来说才有真正意义。 13、你可以这样理解impossible(不可能)——I'm possible(我是可能的)。 14、自己打败自己是最可悲的失败,自己战胜自己是最可贵的胜利。 15、你可以选择这样的三心二意:信心恒心决心;创意乐意。 16、成功与不成功之间有时距离很短——只要后者再向前几步。 17、呈概率分布,关键是你能不能坚持到成功开始呈现的那一刻。 18、书是易事,思索是难事,但两者缺一,便全无用处 19、动是成功的阶梯,行动越多,登得越高。 20、天比昨天好,就是希望。 21、力的人影响别人,没能力的人,受人影响。 22、做的事情总找得出时间和机会; 23、要自卑,你不比别人笨。不要自满,别人不比你笨。 24、面对机遇,不犹豫;面对抉择,不彷徨;面对决战,不惧怕! 25、个人先从自己的内心开始奋斗,他就是个有价值的人。 26、超越自己,向自己挑战,向弱项挑战,向懒惰挑战,向陋习挑战。 27、不必每分钟都学习,但求学习中每分钟都有收获。 28、取时间就是争取成功,提高效率就是提高分数。 29、紧张而有序,效率是关键。 30、永远不要以粗心为借口原谅自己。
试一试:
• • • • ( a+b)(-b+a) 2-4b2 9a (3a+2b)(3a-2b) (a5-b2)(a5+b2) a10-b4 (a+b)(a-b)(a2+b2) a4-b4
a2-b2
• 算一算: 2-2y2 5x • (x+y )( x-y)+(2x+y )( 2x-y) -3x+49 • x(x-3)-(x+7)(x-7) 填一填: a a • (__+__ )(__-__)= -9 23 23 • (a+2b+2c)(a+2b-2c)写成平方差公 2-(2c)2 (a+2b) 式形式:_______________
整式的乘除与因式分解
乘法公式
──平方差公式
你能用简单方法计算下列问题吗?
(1)、1002×998 =(1000+2)(1000-2) =10002+2×1000-2×1000-22 = 10002-22 =999996 (2)、 200004×199996
观察下列多项式,并进行计算,你 能发现什么规律?
• 200004×199996 =(200000+4)(200000-4) = 2000002 - 42 = 40000000000 - 16 = 39999999984
(a+b)(a-b)=a2-b2 两个数的和与这两个数的差的积等于 这两个数的平方差。
平方差公式中字母 a、b可代式计算对不对?若不对应怎样改正?
(1)(x+2)(x-2)= x2-2 x2-4 (2)(-3a-2)(3a-2)= 9a2-4 4-9a2
快乐学习2:
计算
• 102×98 =(100+2)(100-2) =1002-22 =9996
• (y+2 )( y-2)-(y-1)(y+5) = y2-22-(y2+5y-y-5) = y2-4-y2-4y+5 = -4y+1
从边长为a的大正方形底板上挖去一个边 长为b的小正方形(如图甲),然后将其 裁成两个矩形(如图乙),通过计算阴 影的面积可以验证公式 (a+b)(a-b)=a2-b2
a a
a-b a-b
b a-b
a
b
b
快乐学习1:
运用平方差公式计算
• ( 3x+2 )( 3x-2) =(3x)2-22 =9x2-4 • (b+2a)(2a-b) =(2a)2-b2 =4a2-b2 • ( -x+2y )(-x-2y) =(-x)2-(2y)2 =x2-4y2
相关文档
最新文档