(整理)三极管应用电路和基本放大电路.

合集下载

第4章 三极管及放大电路基础1

第4章 三极管及放大电路基础1

与 的关系
IC IC ICBO I E ICBO IC I B ICBO
(1 ) IC I B ICBO
I CBO IC IB 1 1
IE
N
P
N
I'C ICBO IC
IC I B (1 ) ICBO
共射直流电流放大倍数: IC I B 1.7 42.5 0.04 共射交流电流放大倍数: IC I B 2.5 1.7 40 0.06 0.04 说明: 例:UCE=6V时: 曲线的疏密反映了 的大小; IC(mA ) 160mA 电流放大倍数与工作点的位置有关; I 5 140mA CM 120mA 交、直流的电流放大倍数差别不大, 4 100mA 今后不再区别;
3 80mA
___
4. 集电极最大电流ICM 当值下降到正常值的三分之二时的 集电极电流即为ICM。
IC
2.5 2 1.7
1 0 2 4 6 8
IB 40mA
IB=60mA 20mA IB=0 10 UCE(V)
六、主要参数
5. 集-射极反向击穿电压U(BR)CEO 手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。 6. 集电极最大允许功耗PCM 集电极电流IC 流过三极管, 所发出的焦耳热为: PC =ICUCE 导致结温 上升,PC 有限制, PCPCM 7. 频率参数

扩散 I C 复合 I B
IC
C
N
IB
P N
EC
或者 IC≈IB
I E IC I B (1 ) I B
EB
E
IE
二、电流放大原理

三极管的应用电路

三极管的应用电路

三极管的应用电路
三极管是一种常见的电子元件,其应用电路非常广泛。

以下是三极管的几个典型应用电路:
1. 放大电路:三极管可以作为放大器使用,将弱的信号放大为较大的信号。

常见的放大电路包括共射极放大电路、共集电极放大电路和共基极放大电路。

2. 开关电路:三极管也可以作为开关使用,将小电流控制大电流的开关行为。

常见的开关电路包括三极管开关电路和三极管触发电路。

3. 振荡电路:利用三极管的正反馈特性,可以构建振荡电路,产生正弦波或其他形式的波形信号。

4. 整流电路:三极管可以作为整流器使用,将交流信号转换为直流信号。

常见的整流电路包括半波整流电路和全波整流电路。

5. 电压稳压器:通过调整三极管的工作点,可以构建稳压电路,稳定输出电压。

6. 温度测量电路:三极管的基结电压会随温度的变化而变化,因此可以利用三极管构成的温度传感器测量温度。

7. 频率控制电路:由于三极管具有非线性特性,可以用于频率控制电路,例如频率合成电路、频率调制电路等。

总之,三极管的应用电路非常广泛,几乎涵盖了电子技术的各个领域。

三极管及其应用电路---笔记整理(DOC)

三极管及其应用电路---笔记整理(DOC)

三极管及其应用电路一、简述半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。

它最主要的功能是电流放大和开关作用。

三极管顾名思义具有三个电极。

二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。

其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。

由于不同的组合方式,形成了一种是NPN 型的三极管,另一种是PNP型的三极管。

二、三极管的识别三极管的电路符号有两种:有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。

实际上箭头所指的方向是电流的方向。

基区:较薄,掺杂浓度低;发射区:掺杂浓度较高,多子载流子多;集电区:面积较大。

图2 NPN和PNP三极管的等效模型三、三极管工作原理分析(详情参见华为模电资料)讲三极管的原理我们从二极管的原理入手讲起。

我们知道二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。

二极管的结构及原理都很简单,内部一个PN结具有单向导电性,如示意图B。

很明显图示二极管处于反偏状态,PN结截止。

我们要特别注意这里的截止状态,实际上PN结截止时,总是会有很小的漏电流存在,也就是说PN结总是存在着反向关不断的现象,PN结的单向导电性并不是百分之百。

因为P区除了因“掺杂”而产生的多数载流子“空穴”之外,还总是会有极少数的本征载流子“电子”出现。

N区也是一样,除了多数载流子电子之外,也会有极少数的载流子空穴存在。

由于PN结内部存在有一个因多数载流子相互扩散而产生的内电场,而内电场的作用方向总是阻碍多数载流子的正向通过,所以,多数载流子正向通过PN结时就需要克服内电场的作用,需要约0.7伏的外加电压,这是PN结正向导通的门电压。

而反偏时,内电场在电源作用下会被加强也就是PN结加厚,少数载流子反向通过PN结时,内电场作用方向和少数载流子通过PN结的方向一致,也就是说此时的内电场对于少数载流子的反向通过不仅不会有阻碍作用,甚至还会有帮助作用。

三极管常用应用电路及分析

三极管常用应用电路及分析

三极管常用应用电路及分析三极管是一种常见的电子器件,具有放大和开关功能。

在电子领域中,三极管有着广泛的应用,例如放大电路、开关电路和振荡电路等。

下面我将详细介绍三极管的常用应用电路及其分析。

首先,我们来介绍三极管的放大电路应用。

放大电路可以放大输入信号的幅值,并输出一个放大后的信号。

三极管可以作为放大器的关键部件,用于放大音频信号和射频信号等。

常见的三极管放大电路有共射放大电路、共基放大电路和共集放大电路。

共射放大电路是最常见的三极管放大电路之一。

在共射放大电路中,三极管的发射极作为输入端,基极作为控制端,集电极作为输出端。

输入信号被施加在发射极上,通过基极到地的电阻进行偏置。

当输入信号引发了一定的输入电流时,三极管将放大这个电流,并通过负载电阻输出放大后的信号。

共射放大电路具有较大的增益、较低的输出阻抗和较高的输入阻抗,可用于音频放大和功率放大等应用。

共基放大电路是另一种常见的三极管放大电路。

在共基放大电路中,三极管的基极作为输入端,发射极作为控制端,集电极作为输出端。

输入信号直接施加在基极上,通过发射极到地的电阻进行偏置。

当输入信号引发了一定的输入电流时,三极管将放大这个电流,并从集电极输出放大后的信号。

共基放大电路具有较低的输入阻抗、较大的电流放大倍数和较小的输出阻抗,常用于射频放大等应用。

共集放大电路是三极管放大电路的另一个常见形式。

在共集放大电路中,三极管的集电极作为输入端,基极作为控制端,发射极作为输出端。

输入信号通过集电极到地的电阻进行偏置,并施加在集电极上。

当输入信号引发了一定的电流时,三极管将放大这个电流,并通过基极到地的电阻将放大后的信号输出。

共集放大电路具有较大的输入阻抗、较大的输出电流和较小的输出阻抗,可用于阻抗匹配和信号隔离等应用。

接下来,我们来介绍三极管的开关电路应用。

开关电路可以将输入信号转换为输出信号,常用于数字电路和计算机器件等。

三极管开关电路可以实现高频开关功能,用于模拟开关电路和数字电路的设计中。

(完整版)三极管及放大电路原理

(完整版)三极管及放大电路原理

测判三极管的口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。

”下面让我们逐句进行解释吧。

一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。

根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。

测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。

图2绘出了万用电表欧姆挡的等效电路。

由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。

假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。

测试的第一步是判断哪个管脚是基极。

这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。

在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。

二、PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。

将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。

三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。

(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。

根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c 极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

三极管功放电路

三极管功放电路

三极管功放电路三极管功放电路是一种常见的电子电路,它通过驱动三极管的放大作用,将输入信号增大到足够的功率,以驱动负载,实现音频放大的功能。

下面将从三极管的基本原理、电路结构、工作原理和应用等方面进行介绍。

一、三极管的基本原理三极管是一种半导体器件,由三个不同掺杂的半导体材料构成,分别为发射区(Emitter)、基极区(Base)和集电区(Collector)。

根据掺杂浓度的不同,可以将三极管分为NPN型和PNP型两种。

二、电路结构三极管功放电路一般由功率放大级和驱动级组成。

驱动级负责将输入信号转换为适合驱动功率放大级的信号,而功率放大级则负责将信号放大到足够的功率,驱动负载。

三、工作原理在三极管功放电路中,输入信号经过驱动级放大后,进入功率放大级。

在功率放大级中,输入信号会进一步放大,同时通过三极管的放大作用,驱动负载工作。

四、应用三极管功放电路广泛应用于音频放大领域。

例如,在音响系统中,三极管功放电路可以将音频信号放大到足够的功率,以驱动扬声器发出高质量的声音。

此外,三极管功放电路还可以用于无线电通信、电视机、汽车音响等领域。

总结:三极管功放电路是一种常见的电子电路,通过驱动三极管的放大作用,将输入信号放大到足够的功率,以驱动负载工作。

它具有结构简单、工作稳定、成本低廉等优点,因此在音频放大领域得到广泛应用。

三极管功放电路的设计和应用需要考虑输入输出阻抗匹配、功率放大、保护等问题,以确保电路的稳定性和可靠性。

这篇文章主要介绍了三极管功放电路的基本原理、电路结构、工作原理和应用等方面的内容。

通过本文的阅读,读者可以对三极管功放电路有一个初步的了解,并进一步探索其更深层次的原理和应用。

三极管放大电路的分析计算

三极管放大电路的分析计算

三极管放大电路的分析和计算公式在众多的三极管应用电路中,放大电路(或放大器)是其主要用途之一,利用三极管的电流放大作用可以构成各种放大电路,下面对共射基本放大电路(固定偏置放大电路)和工作点稳定的放大电路(分压式偏置放大电路),进行电路分析。

一、共发射极基本放大电路(固定偏置放大电路)1.电路组成2.直流通路直流通路是放大电路u i =0,仅在V CC 作用下直流电流所流过的路径。

画直流通路的原则:(1)输入信号u i 短路。

(2)电容视为开路。

(3)电感视为短路。

3.静态工作点的计算所谓静态工作点就是为了保证放大电路不失真的点。

估算静态工作点就是根据放大电路的直流通路,求I BQ 、I CQ 、I EQ 、和U CEQ 这四个量。

(根据下图,可得出下面两个公式)由以上三个公式,可得出静态工作点的值。

4.交流通路交流通路是放大电路在V CC =0,仅u i =0作用下交流电流所流过的路径。

画交流通路的原则:(1)由于耦合电容容量大,所有耦合电容视为通路。

(2)电源电压对地短路。

5.其主要性能指标的估算估算放大电路的主要性能指标就是根据放大电路的交流通路求,求A U 、R i 、R o 这些主要参数。

beb i r R R //=beLu r R A '-=βLC L R R R //='ber —三极管的输入电阻,是三极管b 、e 之间存在一个等效电阻。

co R R =二、分压式偏置放大电路(工作点稳定的)1.电路组成2.直流通路三、静态工作点估算静态工作点就是根据放大电路的直流通路,求IBQ 、ICQ、IEQ、和UCEQ这四个量。

(根据图,可得出下面的公式)四、交流通路交流通路是放大电路在V CC =0,仅u i 作用下交流电流所流过的路径。

画交流通路的原则:(1)由于耦合电容容量大,所有耦合电容视为通路。

(2)电源电压对地短路。

5.其主要性能指标的估算估算放大电路的主要性能指标就是根据放大电路的交流通路求,求A U 、R i 、R o这些主要参数。

三极管及放大电路基础

三极管及放大电路基础

IC(mA ) 4
3
2
1 36
截止区
100A 80A
IB= 60A 40A 20A 0 9 12 VCE(V)
IC RC
IB B C
VCE
RB
VBE EB
E IE
EC
(1-13)
特点:VBE<死区电压, IB≤0≈0, IC ≤ICEO≈ 0,VCE ≈EC
这时三极管C 、 E端相当于: 一个断开的开关。
过大,温升过高会烧坏三极管。所以要求:
PC =IC VCE≤PCM 6.集-射极反向击穿电压V(BR)CEO ——基极开路时,集电极与发射极之间允许的最大反向 电压。
(1-22)
由三个极限参数可画出三极管的安全工作区
IC ICM
ICVCE=PCM
安全工作区
O
V(BR)CEO
VCE
(1-23)
八、晶体管参数与温度的关系
IC RC
IB B
C VCE
RB
VBE EB
E IE
EC
如何判断是否截止?
若:VBE ≤0(死区电压)
或 VC>VE >VB 三极管可靠截止
IC
VCE
C RC
E
EC
(1-14)
(3) 放大区:IC=IB区域 , 发射结e正偏,集电结c反偏 特点: IC=IB , 且 IC = IB , VCE=EC-IC RC
(1-29)
三极管在电路中的应用
1、放大电路 对三极管放大电路的分析,包括静态分 析和动态分析两部分。 也就是直流方面的分析和交流方面的分 析 直流方面的分析主要是判断三极管是否 有合适的直流工作条件 交流方面的分析主要是判断放大电路是 否能够正常的放大信号。

第二章 三极管及放大电路基础

第二章  三极管及放大电路基础

第二章三极管及放大电路基础教学重点1.了解三极管的外形特征、伏安特性和主要参数。

2.在实践中能正确使用三极管。

3.理解放大的概念、放大电路主要性能指标、放大电路的基本构成和基本分析方法。

4.掌握共发射极放大电路的组成、工作原理,并能估算电路的静态工作点、放大倍数、输入和输出电阻等性能指标。

5.能搭建分压式放大电路,并调整静态工作点。

教学难点1.三极管的工作原理。

2.放大、动态和静态以及等效电路等概念的建立。

3.电路能否放大的判断。

学时分配2.1三极管2.1.1三极管的结构与符号 通过实物认识常见的三极管三极管有三个电极,分别从三极管内部引出,其结构示意如图所示。

按两个PN 结组合方式的不同,三极管可分为PNP 型、NPN 型两类,其结构示意、电路符号和文字符号如图所示。

PNP 型 NPN 型有箭头的电极是发射极,箭头方向表示发射结正向偏置时的电流方向,由此可以判断管子是PNP 型还是NPN 型。

基区 发射区e基极 ceVTe基极 cecVT《电子技术基础与技能》配套多媒体CAI 课件 电子教案三极管都可以用锗或硅两种材料制作,所以三极管又可分为锗三极管和硅三极管。

2.1.2三极管中的电流分配和放大作用动画:三极管电流放大作用的示意做一做:三极管中电流的分配和放大作用观察分析实验参考数据:1)三极管各极电流分配关系:I E = I B + I C ,I E ≈ I C ≫I B2)基极电流和集电极电流之比基本为常量,该常量称为共发射极直流放大系数β,定义为:BCI I =β 3)基极电流有微小的变化量Δi B ,集电极电流就会产生较大的变化量Δi C ,且电流变化量之比也基本为常量,该常量称为共发射交流放大系数β,定义为:BCΔi i ∆=β1.三极管的电流放大作用,实质上是用较小的基极电流信号控制较大的集电极电流信号,实现“以小控大”的作用。

2.三极管电流放大作用的实现需要外部提供直流偏置,即必须保证三极管发射结加正向电压(正偏),集电结加反向电压(反偏)。

电子技术课件第二章三极管及基本放大电路

电子技术课件第二章三极管及基本放大电路
10
2.三极管的主要参数
(1)直流参数 反映三极管在直流状态下的特性。
直流电流放大系数hFE 用于表征管子IC与IB的分配比例。
漏电电流。ICBO大的三极管工作的稳定性较差。
集—基反向饱和电流ICBO 它是指三极管发射极开路时,流过集电结的反向
ICBO测量电路
ICEO测量电路
加上一定电压时的集电极电流。ICEO是ICBO的(1+β)倍,所以它受温度影响不可忽视。
性。 A——PNP锗材料,B——NPN锗材料, C——PNP硅材料,D——NPN硅材料。
三极管型号的读识 3 A G 54 A
规格号
第三部分是用拼音字母表示管子的类型。
X——低频小功率管,G ——高频小功率管, D——低频大功率管,A ——高频大功率管。
三极管 NP锗材料 高频小功率 序号
第四部分用数字表示器件的序号。 第五部分用拼音字母表示规格号。
饱和区 当VCE小于VBE时,三极管的发
四、三极管器件手册的使用
三极管的类型非常多,从晶体管手册可以查找到三极管的型号,主要用途、主 要参数和器件外形等,这些技术资料是正确使用三极管的依据。
1.三极管型号
国产三极管的型号由五部分组成。
第一部分是数字“3”,表示三极管。 第二部分是用拼音字母表示管子的材料和极
一、放大电路静态工作点不稳定的原因
(1)温度影响 (2)电源电压波动 (3)元件参数改变
二、分压式偏置放大电路 1.电路组成
Rb1是上偏置电阻,Rb2是下偏置电阻。电源电压经Rb1、Rb2串联分压后为三极 管提供基极电压VBQ。Re起到稳定静态电流的作用,Ce是Re的交流信号旁路电容。
分压式偏置放大电路
放大电路的电压和电流波形

三极管的三种基本放大电路

三极管的三种基本放大电路

二、性能指标分析
IBQ = (VCC – UBEQ) / [RB + (1 + β ) RE] ICQ = β I BQ UCEQ = VCC – ICQRE



rbe β ib RB + RE RL uo

R'L = RE // RL
第3章 放大电路基础
一、电路组成与静态工作点
IBQ C1 + RB +VCC C2 RL
Ri
R’i
例3.2.1 β =100, RS= 1kΩ, RB1= 62kΩ, RB2= 20kΩ, RC= 3kΩ Ω Ω Ω Ω RE = 1.5kΩ, RL= 5.6kΩ, VCC = 15V。求:“Q ”, Au, Ri, Ro Ω Ω 。 [解] 1)求“Q” 解 ) +VCC 20 × 15 RB1 RC C2 U BQ = ≈ 3.7 ( V ) C1 + 20 + 62 + + RL 3 .7 − 0 .7 uo I RS = 2 (mA ) + CQ = I EQ = + RB2 RE us 1 .5 CE − − I BQ ≈ 2 / 100 = 0.02 (mA) = 20 µA U = 15 − 2( 3 + 1.5) = 6 ( V ) 2)求 Au、Ri、Ro 、 Aus CEQ )

RE = RL = Rs = 1 kΩ, VCC = 12V。求:“Q ”、Au、Ri、 Ω 。 、 Ro [解] 1)求“Q” +VCC 解 ) IBQ RB C1 IBQ = (VCC – UBE) / [RB + (1+ β ) RE]
β =120, RB = 300 kΩ, r’bb= 200 Ω, UBEQ = 0.7V Ω

三极管及放大电路解析

三极管及放大电路解析
基极开路时的击穿电压U(BR) CEO。
6. 集电极最大允许耗散功耗PCM PCM取决于三极管允许的温升,消耗功率过大,温升过高会烧坏三极管。 PC PCM =IC UCE
硅管允许结温约为150C,锗管约为7090C。
由三个极限参数可画出三极管的安全工作区 IC
ICM
ICUCE=PCM
安全工作区 O
ICE 与 IBE 之比称为共发射极电流放大倍数
C IC
ICBO
N
ICE IB
P
EC
B
ICEICICBO IC
RB
IBE
N
IBE IBICBO IB
EB
E IE
IC IB ( 1)IC BO IB ICEO
若IB =0, 则 IC ICE0
集-射极穿透电流, 温度ICEO
忽 IC略 E , O IC 有 IB (常用公式)
(3)通频带 衡量放大电路对不同频率信号的适应能力。
由于电容、电感及放大管PN结的电容效应,使放大电路在信号频率较低和较高时电压放大倍数数值下降, 并产生相移。
下限频率
fbwfHfL
(4)最大不失真输出电压Uom:交流有效值。 (5)最大输出功率Pom和效率η:功率放大电路的主要指标参数
上限频率
二、基本共射极放大电路 1、基本放大电路组成及各元件作用
问题:
将两个电源合二为
1. 两种电源

2. 信号源与放大电路不“共地”
共地,且要使信号驮载在静 态之上
-+ UBEQ
有交流损失
有直流分量
静态时(ui=0),
UBEQURb1
动态时,VCC和uI同时作用于晶体管的输入回 路。
(2)阻容耦合放大电路

第4章三极管及放大电路基础

第4章三极管及放大电路基础
综上所述,三极管的放大作用,主要是依 靠它的发射极电流能够通过基区传输,然后到 达集电极而实现的。
实现这一传输过程的两个条件是:
(1)内部条件:发射区杂质浓度远大于基区 杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结反 向偏置。从电位上来看对于NPN型三极管,
UC>UB>UE
4.1.3 BJT的特性曲线
iB/uA
vvio与iBv/iu相vABE位相反6i0B;
iC
vCE
Q`
|-vo|

iC/mA
可以测量出放40大电路的电Q压放大倍数;
可以确定最大不失真输出幅度。
20 IBQ
Q``
iC/mA 交流负载线
Q`
60uA
Q
40uA
ICQ
Q`` 20uA
t
vBE/V
t
共vB射E/V极放大电路
end
4.2 共射极放大电路
电路组成 简化电路及习惯画法 简单工作原理 放大电路的静态和动态 直流通路和交流通路
4.2 共射极放大电路
1. 电路组成
输入回路(基极回路) 输出回路(集电极回路)
3.2 共 射极放
2. 简化电路及习惯画法
大电路
共射极基本放大电路
习惯画法
注意: 判断一个电路能否正常放大一般从以下 几点考虑(1)保证三极管处于放大状态,因 此直流电源及其极性要接正确。直流电源要保 证发射结正偏、集电结反偏。 (2)输入信号Ui能够加在三极管的B、E之间 (RB不能为0),输出信号U0能够从C、E两点 取出(RC不能为0)。 (3)耦合电容作用是通交流阻直流。它的极 性及位置要接正确
4.2 共 射极放
4. 放大电路的静态和动态

第3章 半导体三极管及其基本放大电路

第3章 半导体三极管及其基本放大电路
上一页 下一页


3.2 三极管基本应用电路及其分析 方法


3.2.3图解分析法
1.用图解法确定静态工作点 在分析静态值时,只需研究直流通路,图3-19用图解法分析 电路的步骤如下: 1)作直流负载线

U CE U CC I C RC


上式确定的直线就是直流负载线。 2)确定静态工作点 利用 I BQ (UCC U BEQ ) I RB ,求得IBQ的近似值。在输出特 性曲线上,确定IB=IBQ的一条曲线。该曲线与直线MN的交 点Q就是静态工作点。 上一页 下一页


3.1.5温度对三极管的特性与参数的影响
1.温度对UBE的影响 三极管的输入特性曲线与二极管的正向特性曲线相似,温度 升高,曲线左移,如图3-9所示。 2.温度对ICBO的影响 三极管输出特性曲线随温度升高将向上移动,如图3 -10所 示。 3.温度对β的影响 温度升高,输出特性各条曲线之间的间隔增大,从而β值增 大,如图3-10所示。


上一页
下一页
3.1 双极型半导体三极管


3.1.6三极管的判别及其手册的查阅方法
1.三极管型号的意义 三极管的型号一般由五大部分组成如3AX31A、3DG12B、 3CG14G等。 2.三极管手册的查阅方法 1)三极管手册的基本内容 (1)三极管的型号。 (2)电参数符号说明。 (3)主要用途。 (4)主要参数。 2)三极管手册的查阅方法 (1)已知三极管的型号查阅其性能参数和使用范围。 (2)根据使用要求选择三极管。


3.1.4三极管的主要参数
3.极限参数 1)集电极最大允许电流ICM 2)反向击穿电压U(BR)CEO 3)集电极最大允许功耗PCM 根据给定的PCM值可以作出一条PCM曲线如图3-8所示,由 PCM、ICM和U(BR)CEO包围的区域为三1 双极型半导体三极管

三级管常用应用电路及分析

三级管常用应用电路及分析

三级管常用应用电路及分析三极管是一种广泛应用于电子和通信领域的半导体器件。

它具有放大、开关、稳压等多种功能,在各种电路和设备中都有广泛的应用。

本文将介绍三极管的常用应用电路及分析。

1. 放大电路放大电路是三极管最常见的应用之一。

放大电路可以将一个微弱的信号放大到足以驱动扬声器或其他负载的强信号。

三极管的放大电路通常有两种类型:共射放大电路和共基放大电路。

共射放大电路是最常见的放大电路类型,它的工作原理是当输入信号加到基极时,三极管会将电流从集电极转移到接地。

因此,集电极电流就相当于输入信号放大的信号,并将其输出到负载(扬声器、电阻、电容等)上。

共射放大电路具有放大系数高、功率大、输出阻抗低等优点,因此在音频功放、遥控器等电子产品中应用广泛。

共基放大电路是另一种常见的放大电路类型,它的工作原理是当输入信号加到基极时,三极管将信号放大并将其输出到射极。

由于负载与输出引脚之间没有直接的电流路径,因此输出电压大于输入电压。

共基放大电路具有输入电阻低、输出电阻高等特点,因此在调制放大器、高频放大器等领域得到广泛应用。

2. 开关电路另一种常见的三极管应用是开关电路。

开关电路可以将小电流信号转换为大电流信号,以控制高功率负载的开关状态,如电机、灯光、加热器、风扇等。

三极管开关电路主要由两种类型:共射开关电路和共集开关电路。

共射开关电路的工作原理是三极管的基极输入信号控制电流流过三极管的集电极和负载。

这种电路可以使三极管在开启状态下靠近通道电阻,有效地控制电流流动。

共射开关电路常用于低功率应用,如开关电源和继电器。

共集开关电路的工作原理是三极管的集电极输入信号控制电子流经过三极管的射极和负载。

这种电路可以使三极管在关闭状态下透过通道电阻,有效地控制电流流动。

共集开关电路通常用于高功率应用,如电机驱动、加热器、电子气体放电管控制等。

3. 器件保护电路三极管的应用还可以用于保护电路。

在有些电路中,输入电压或不良电流能够损坏先前的电路或其它元件。

二极管、三极管及整流与放大电路

二极管、三极管及整流与放大电路

复习与自我检测(五)二极管、三极管及整流与放大电路一、学习要点1.半导体的基本知识(1)半导体的特性导电性能介于导体和绝缘体之间的物质称为半导体。

半导体能得到广泛应用,是由于它的导电能力会随温度、光照或所掺杂质的不同而显著变化。

(2)PN结的单向导电性当在PN结两端加上正向电压时,因外加电场的方向与内电场的方向相反,削弱了内电场,打破了PN结中的动态平衡状态,使载流子的扩散运动大于漂移运动,形成较大的扩散电流,PN结导通。

当在PN结两端加上反向电压时,因外加电场的方向与内电场的方向相同,增强了内电场,也打破了PN结中的动态平衡,使少数载流子的漂移运动大于多数载流子的扩散运动,形成较小的反向电流,可以认为PN结截止。

2.半导体二极管二极管的正向电流是多数载流子的扩散电流,其值较大(毫安级),但正向电压只有零点几伏,说明二极管的正向电阻较小。

当正向电压大于死区电压后,电流增加较快。

二极管正向导通时,其正向压降变化不大,硅管约为0.6-0.7V;锗管约为0.2-0.3V。

反向电流是少数载流子的漂移电流,其值随温度的上升增长得很快,并且只要外加反向电压在一定范围内,反向电流基本上维持不变,和反向电压的数值无关(反向电阻高)。

当反向电压增大到击穿电压时,反向电流突然增大,管子被击穿而损坏。

二极管的参数反映了它的电性能,是合理选择与正确使用的依据。

对正向而言,有最大整流电流I OM,使用时不得超过。

对反向而言,有最高反向工作电压U RM和反向饱和电流I R3.稳压管是工作于反向可逆击穿状态下的二极管。

稳压管的反向击穿特性曲线很陡,它的特点是在一定的电流范围内的电压稳定不变。

4.单相桥式整流电路整流电路的任务是把交流电变换成直流电,完成这一任务主要靠二极管的单向导电作用,所以通常二极管是构成各种整流电路的核心元件。

5.滤波电路滤波原理利用储能元件滤掉单向脉动电压中的交流分量,即保留直流分量,使负载电压脉动减小。

三极管放大电路

三极管放大电路

三极管放大电路一/共基极(Common-Base Configuration)的基本放大电路,如图1所示,图 1主要应用在高频放大或振荡电路,其低输入阻抗及高输出阻抗的特性也可作阻抗匹配用。

电路特性归纳如下:输入端(EB之间)为正向偏压,因此输入阻抗低(约20~200 );输出端(CB之间)为反向偏压,因此输出阻抗高(约100k~1M )。

电流增益:虽然A I小于1,但是R L / R i很大,因此电压增益相当高。

功率增益,由于A I小于1,所以功率增益不大。

二/共发射极放大电路与特性图2共发射极放大组态的简化电路,共射极(Common-Emitter的放大电路,如图2所示。

图 2因具有电流与电压放大增益,所以广泛应用在放大器电路。

其电路特性归纳如下:输入与输出阻抗中等(Ri约1k~5k ;RO约50k)。

电流增益:电压增益:负号表示输出信号与输入信号反相(相位差180°)。

功率增益:功率增益在三种接法中最大。

三/共集电极(Common-Collector)接法的放大电路,如图3所示,图 3高输入阻抗及低输出阻抗的特性可作阻抗匹配用,以改善电压信号的负载效应。

其电路特性归纳如下:输入阻抗高(Ri约20 k );输出阻抗低(RO约20 )。

电流增益:电压增益:电压增益等于1,表示射极的输出信号追随着基极的输入信号,所以共集极放大器又称为射极随耦器(emitter follower)。

功率增益Ap = AI × Av≈β,功率增益低。

图4自给偏压方式此电路不稳定,又称为基极偏压电路最简单的偏压电路,容易受β值的变动影响,温度每升高10°C时,逆向饱和电流ICO增加一倍,温度每升高1°C时,基射电压VBE减少2.5mV ,β随温度升高而增加(影响最大)图5射极加上电流反馈电阻改善特性自给偏压方式但还是不太稳定图6此为标准低频信号放大原理图电路路,见图6,其R1(下拉电阻)及R2为三极管偏压电阻(这种偏压叫做分压式偏置)为三极管基极提供必要偏置电流,R3为负载电阻,R4为电流反馈电阻(改善特性),C3为旁路电容,C1及C3为三极管输入及输出隔直流电容(直流电受到阻碍),信号放大值则为R3/R4倍数.设计上注意: 三极管Ft值需高于信号放大值与工作频率相乘积,选择适当三极管集电极偏压、以避免大信号上下顶部失真,注意C1及C3的容量大小对低频信号(尤其是脉波)有影响.在R4并联一个C2,放大倍数就会变大。

介绍10种三极管开关驱动电路图 NPN和PNP三极管原理及电路设计

介绍10种三极管开关驱动电路图 NPN和PNP三极管原理及电路设计

介绍10种三极管开关驱动电路图NPN和PNP三极管原理及电路设计一、基本概念与原理三极管最主要的功能是(电流)放大((模拟)电路)和开关作用((数字电路)),常用的三极管有:S9014、S8550等型号。

三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。

其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。

由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。

三极管最基本的作用是放大作用,它可以把微弱的电(信号)变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把(电源)的能量转换成信号的能量罢了。

三极管有一个重要参数就是电流放大系数β。

当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是基极电流β倍的电流,即集电极电流。

集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。

二、三极管放大(电路设计)与应用在电路设计当中,应用最多的当属三极管,它常常把微弱小信号经过放大来驱动蜂鸣器、(LED)、继电器等需要较大电流的器件。

三、三极管(开关电路)设计与应用(晶体管)作为开关使用时,要用PNP型来控制接Vcc的引线(作为下管),用NPN型的晶体管来控制接地的引线(作为上管);(P/N-MOS管也是同样道理)下面详细介绍10种三极管开关(驱动电路)图(1)NPN/PNP三极管反相器电路:Vin无输入电位,Q1截止;Vin高电平时Q1导通,Q2基极得高电位,Q2截止。

(2)两只NPN三极管反相器电路:Vin无输入电位Q1截止,Q2导通;Vin接入高电平Q1导通,促使Q2基极电位下级,Q2截止。

(3)PNP三极管开关电路:当输入端悬空时Q1截止。

VIN输入端接入低电平时,Q1导通,继电器吸合。

(4)PNP三极管开关电路:当Vin无输入电位时Q1截止;Vin 接入高电平Q1导通,继电器吸合。

三极管及基本放大电路教案说课讲解

三极管及基本放大电路教案说课讲解

三极管及基本放大电路教案2.分类:(1)按内部基本结构不同:NPN 型和PNP 型。

PNP 型和NPN 型三极管表示符号的区别是发射极的箭头方向不同, 这个箭头方向表示发射结加正向偏置时的电流方向。

(2)按功率分:小功率管、中功率和大功率管。

(3)按工作频率分:低频管和高频管。

(4)按管芯所用半导体材料分:锗管和硅管。

目前国内生产硅管多为NPN 型(3D 系列);目前国内生产锗管多为PNP 型(3A 系列)。

(5)按结构工艺分:合金管和平面管。

(6)按用途分:放大管和开关管。

二、三极管的电流放大作用——发射结正向偏置,集电结反向偏置1.三极管各电极上的电流分配实验电路【原理】载流子的特殊运动(NPN):发射区向基区扩散电子;电子在基区的扩散和复合;集电区收集电子【电流放大作用】(1)B C I I β=且B C I I >>;(2)B C E I I I +=注意:(1)三极管的电流放大作用,实质上是用较小的基极电流信号控制集电极的大电流信号,是“以小控大”的作用。

(2)要使三极管起放大作用,必须保证发射结加正向偏置电压,集电结加反向偏置电压。

2、三极管的基本连接方式1).共发射极电路(CE ):把三极管的发射极作为公共端子。

2).共基极电路(CB ):把三极管的基极作为公共端子。

3).共集电极电路(CC ):把三极管的集电极作为公共端子。

三、三极管的特性曲线——硅NPN 型三极管1.输入特性曲线输入特性:在V U CE 1 且为某定值时,加在三极管基极与发射极之间的电压BE V 和它产生的基极电流B I 之间的关系。

与二极管的正向伏安特性曲线相似。

当BE V 大于导通电压时,三极管才出现明显的基极电流。

导通电压:硅管0.7 V ,锗管0.3 V 。

2. 输出特性曲线:B I 为某定值,C I 与CE U 之间的关系,一簇几乎与横轴平行的直线。

3、三极管的三个区① 截止区:B I = 0以下的区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三极管应用电路和基本放大电路
2G 郭标2005-11-29 三极管应用电路和基本放大电路 (1)
一、三极管三种基本组态 (2)
二、应用电路 (3)
A、偏置使用 (3)
B、放大电路应用 (5)
三、射频FET小信号放大器设计 (7)
1、基本概念: (7)
2、基于S-参数和圆图的分析方法 (8)
四、集成中小功率放大器 (9)
附1:容易发生自激的电路形式 (11)
附2 电路分析实例 (11)
一、三极管三种基本组态
共发 共集 共基 特点:共发-对电压电流都有放大,适合制做放大器 共集-电压跟随器
共基-电流继随器 直流工作点选取
交流小信号混和PI 型等效模型
e
二、应用电路
A 、偏置使用 1、有源滤波电路:
R1
R2
特点:直流全通,交流对地呈高容性。

使用时可在b 和e 对地接大电容,增强滤波。

2、有源负载电路:
Vcc
特点:直流负载很小,交流负载大,提高放大器的Rc
3、恒流源电路
独立电流源 镜像电流源
特点:较大的偏置电压变化,有较小的电流变化
4、电平控制与告警电路
特点:利用导通截至特性,控制电平可调整
5、电流补偿偏置电路
特点:补偿偏置三极管能够补偿放大管因长期工作时,gm变低导致的Ic变低而改变工作点。

特点:适用于设计低噪声、高增益、高稳定性、较低频的放大电路。

选择特定的材料可以做到高频。

1、共发放大的形式:
☆发射级接电阻的:
电压放大倍数接近为Rc/Re
☆接有源负载的:
共发有源负载的作用:直流负载很小,交流负载大
以此提高Rc,增大电压放大倍数
电压和电流同时放大的形式只有共发。

2、cb和cc的放大器一般只作为辅助。

电流接续和电压接续或隔离作用。

3、级联考虑:
差分放大一般在组合放大的第一级,目的不在提供增益,而是良好的输入性能,如共模抑制比,温度漂移等;(互补型)共集电路(前置隔离级)做为最后一级,可兼容不同负载。

而中间级一般是为了取得较高的增益,所以采用(有源偏置的)共发放大器。

放大电路中采用恒流偏置电路提高稳定性。

互补型共集电路
互补型共集电路特点:作为隔离级,提高动态范围
特点:差模放大,共模抑制
共模抑制比:差模电压增益/共模电压增益 该电路常用辅助电路:恒流源偏置,有源负载 为集成运放中常用的中间级设计
三、射频FET 小信号放大器设计
1、基本概念:
驻波:()11a
in a
VSWR +Γ=-Γ
噪声系数:
out out in
in N S N S NF //=, (112)
13121+-+-+=G G N G N N N f f f f
功率增益:最大稳定增益、实际增益(反射系数修正)、增益平坦度
稳定性:
K =1|
|2||||||122112
222112>--∆S S S S + (1)
121122211<-=∆S S S S (2)
动态范围:
M
f kT N P m f )(0min ∆=
其中:m f
∆-系统的通频带;M -系统允许的信号噪声比,或信号识别系数;T0- 环境温度。

2、基于S -参数和圆图的分析方法 A 、
同一平面下的三种圆
B 、
输出匹配设计
输入稳定圆
可用增益
等噪声圆
点P
点P
点P1
点Q
匹配路径
四、集成中小功率放大器应用形式:
指标举例:
滤波电容和偏置电感、电阻的选取:
使用注意事项:
1、级联使用中充分考虑指标对系统的影响;
2、
3、选用适当的供电方式(预留2V,电流源供电或者电压源供电),注意工作电
流的选取;
4、防止自激-附:容易发生自激的电路形式;
5、
6、电路保护措施:散热、隔离、防电击、防功率冲击等;
7、长期可靠性和稳定性。

等等
附1:容易发生自激的电路形式
使用时请注意保护和隔离
附2 电路分析实例
1、
2、。

相关文档
最新文档