《化工设备机械基础》习题解答 3
化工机械基础(第二版)第三篇部分习题解答..
化工机械基础(第二版)第三篇部分习题解答..第三篇 习题1、已知DN2000的内压薄壁圆筒,壁厚δn=22mm ,壁厚附加量为C=2mm ,承受的最大气体压力P=2MPa ,焊接接头系数φ=0.85,试求筒体的最大应力。
解:已知D i =2000mm ,δn =22mm ,C=2mm ,P=2MPa ,φ=0.85,δe =22-2=20mm 。
则101 所以筒体的最大应力为118.82Mpa 。
提示:此题亦可以根据最大许可承压计算公式得出,此时[P w ]=2MPa2. 某化工厂反应釜,内径为1600mm 。
工作温度为5℃~105℃,工作压力为1.6MPa ,釜体材料用0Crl8Ni9。
采用双面对接焊缝,局部无损探伤,凸形封头上装有安全阀,试计算釜体壁厚。
解:已知Di=1600mm 。
查附表6,0Crl8Ni9在105℃时的,其许用应力[σ]105=137MPa 。
查表10-9,采用双面对接焊缝,局部无损探伤,故取φ=0.85。
介质对不锈钢腐蚀极微,取C2=0。
因装安全阀,取设计压力P=1.1×1.6=1.76MPa 。
根据式(10-12)估计δn=8-25mm 。
查表10-10,取C1=0.8mm 。
则 δn ’=δd+C 1=12.18+0.8=12.98mm ,圆整后取δn=13mm [][]()()MPa D P e e i w t 82.1182085.022*******=⨯⨯+⨯=+==φδδσσ()()MPa D P e e i 82.1182085.022*******=⨯⨯+⨯=+=φδδσmm C p D p ct i c d 18.12076.185.01372160076.1][22=+-⨯⨯⨯=+-=φσδ3. 材料为20的无缝钢管,规格为φ57×3.5,求在室温和400℃时,各能耐多大的压力,按不考虑壁厚附加量和C=1.5mm 两种情况计算。
化工设备机械基础课后习题答案(较完整版)__第二版__赵军张红忱段正红主编__来自西大
MZ 0
[(T1 t1) 500 (T2 t2 ) sin 301500)] NBY 2000 0 NBY 4.125KN
MY 0
(T2 t2 ) sin 301500 NBZ 2000 0
NBZ 3.897KN
Z 0
N AZ NBZ (T2 t2 ) cos 30 0
14.8
螺栓应至少为16个
解 选取C为研究对象 1、如图所示,由平衡方程得
∑Fx=0 FAC Cos30o-FBCCos30o=0 ∑Fy=0 FAC Sin30o-F+FBCSin30o =0 解得 FAC =FBC=F
2、许用应力为 杆AC的承载极限:
F1
σ AC
AAC
160 106
(3)作剪力图和弯矩图
Me M1
ql 2 2
0
FAy ql
ql 2 M1 2
(2)列剪力方程和弯矩方程
(3)作剪力图和弯矩图
FS (x)=ql qx (0< x< l)
M
(x)
M1
qx2 2
+FAy x
(0 x< l)
(2)列剪力方程和弯矩方程
FA
FB
3ql 2
0
FBl
3ql 2
3l 4
解b 使用截面法,沿截面1-1将杆分 成两段,取出右段并画出受力图(b)
用FN1表示左段对右段的作用, 由平衡方程∑Fx=0,得FN1 =F(拉)
同理,可以计算横截面2-2上的轴 力FN2,由截面2-2右段图(c)的平 衡方程Fx=0 ∑,得FN2= F(压)
同理,可以计算横截面3-3上的轴力 FN3,由截面3-3左段图(d)的平衡 方程∑Fx=0,得FN3=F(拉)
化工设备机械基础习题和答案
《化工设备机械基础》习题解答《化工设备机械基础》习题解答第一篇:化工设备材料第一章化工设备材料及其选择一.名词解释A 组:1. 蠕变:在高温时,在一定的应力下,应变随时间而增加的现象。
或者金属在高温和应力的作用下逐渐产生塑性变形的现象。
2. 延伸率:试件受拉力拉断后,总伸长的长度与原始长度之比的百分率。
3. 弹性模数(E) :材料在弹性范围内,应力和应变成正比,即σ=Eε,比例系数E 为弹性模数04. 硬度:金属材料表面上不大的体积内抵抗其他更硬物体压入表面发生变形或破裂的能力。
5. 冲击功与冲击韧性:冲击功是冲击负荷使试样破断所做的功。
冲击韧性是材料在外加动载荷突然袭击时的一种及时和迅速塑性变形的能力。
6. 泊桑比(口):拉伸试验中试件单位横向收缩与单位纵向伸长之比。
对于钢材,二o. 3 07. 耐腐蚀性:金属和合金对周围介质侵蚀(发生化学和电化学作用引起的破坏)的抵抗能力。
8. 抗氧化性:金属和合金抵抗被氧化的能力。
9. 屈服点:金属材料发生屈服现象的应力,即开始出现塑性变形的应力。
它代表材料抵抗产生塑性变形的能力。
10. 抗拉强度:金属材料在受力过程中,从开始加载到发生断裂所能达到的最大应力值。
B 组:1. 镇静钢: 镇静钢在用冶炼时用强脱氧剂Si,Al等完全脱氧脱氧,是脱氧完全的钢。
把FeO 中的氧还原出来,生成Si02 和A1203 0钢镀膜上大下小,浇注后钢液从底部向上,向中心顺序地凝固。
钢键上部形成集中缩孔,内部紧密坚实。
2. 沸腾钢:沸腾钢在冶炼时用弱脱氧剂Mn 脱氧,是脱氧不完全的钢。
其链模上小下大,浇注后钢液在键模中发生自脱氧反应,放出大量CO 气体,造成沸腾现象。
沸腾钢徒中没有缩孔,凝固收缩后气体分散为很多形状不同的气泡,布满全键之中,因而内部结构疏松。
3. 半镇静钢:介于镇静钢和沸腾钢之间,链模也是上小下大,钢链内部结构下半部像沸腾钢,上半部像镇静钢。
4. 低碳钢:含碳量低于0.25% 的碳素钢。
化工设备机械基础习题及答案
化工设备机械基础习题及答案1. 机械基础习题1.1 简答题1.请简要描述机械的定义和作用。
2.什么是机械运动及其分类?3.机械工作过程中,为什么需要进行润滑?4.机械设备中常见的噪音是如何产生的?如何进行噪音控制?5.请简要介绍机械底盘的作用和构造。
6.什么是机械传动?请列举常见的机械传动方式。
7.请解释机械冷却的原理及常见的冷却方式。
1.2 计算题1.一个轴承的额定载荷为10 kN,轴承使用寿命为5000小时。
若该轴承在运行时的实际载荷为6 kN,求该轴承的计算寿命。
2.一台风机的输出功率为25 kW,风机的效率为80%,求该风机的输入功率。
3.一台离心压缩机的进气压力为0.1 MPa,进气温度为20℃,压缩比为4,求压缩机的排气温度。
4.一台柴油发动机的缸数为6,每缸的工作容积为400 mL,该发动机的压缩比为15,求该发动机的总工作容积。
5.一台减速器的输入转速为1500 rpm,输出转速为300 rpm,求减速器的传动比。
2. 机械基础答案2.1 简答题答案1.机械是一种能够将输入的能量转化为某种有用的效果或工作的装置。
它在工业生产中起到了非常重要的作用,用于完成各种生产工序,提高生产效率。
2.机械运动是指物体在空间中相对位置的变化。
根据轨迹的形状和运动规律的不同,机械运动可以分为直线运动、旋转运动、往复运动等几种类型。
3.在机械工作过程中,由于各零部件之间的摩擦、磨损,以及高速运动时的振动等因素,需要进行润滑来减少摩擦、降低磨损、降低噪音和冷却零部件。
4.机械设备中的噪音主要来自于机械零部件的振动和运动产生的声音。
噪音可以通过加装吸音材料、减少噪音源和隔音等措施来进行控制。
5.机械底盘是机械设备的一个重要组成部分,它起到了支撑、固定和保护机械设备的作用。
机械底盘一般由底座、支撑脚、固定螺栓等部件组成。
6.机械传动是指将动力源的动力通过传动装置传递到被驱动装置的过程。
常见的机械传动方式包括齿轮传动、链条传动、带传动等。
化工设备机械基础作业问题详解
《化工设备机械基础》习题解答二、填空题1、钢板卷制的筒体和成型封头的公称直径是指它们的( )径。
2、无缝钢管做筒体时,其公称直径是指它们的( 外)径。
第三章 压薄壁容器的应力分析一、名词解释A 组:⒈薄壁容器:容器的壁厚与其最大截面圆的径之比小于0.1的容器。
⒉回转壳体:壳体的中间面是直线或平面曲线绕其同平面的固定轴线旋转360°而成的壳体。
⒊经线:若通过回转轴作一纵截面与壳体曲面相交所得的交线。
⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。
⒌第一曲率半径:中间面上任一点M 处经线的曲率半径。
⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。
⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。
⒏边缘应力:压圆筒壁上的弯曲应力及连接边缘区的变形与应力。
⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。
二、判断题(对者画√,错着画╳)A 组:1. 下列直立薄壁容器,受均匀气体压力作用,哪些能用薄膜理论求解壁应力?哪些不能?(1) 横截面为正六角形的柱壳。
(×)(2) 横截面为圆的轴对称柱壳。
(√)(3) 横截面为椭圆的柱壳。
(×)(4) 横截面为圆的椭球壳。
(√)(5) 横截面为半圆的柱壳。
(×)(6) 横截面为圆的锥形壳。
(√)2. 在承受压的圆筒形容器上开椭圆孔,应使椭圆的长轴与筒体轴线平行。
(×)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径R R 21=,则该点的两向应力σσθ=m。
(√)4. 因为压薄壁圆筒的两向应力与壁厚成反比,当材质与介质压力一定时,则壁厚大的容器,壁的应力总是小于壁厚小的容器。
(×)5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。
(√)B 组:1. 卧式圆筒形容器,其介质压力,只充满液体,因为圆筒液体静载荷不是沿轴线对称分布的,所以不能用薄膜理论应力公式求解。
《化工设备机械基础》习题解答第三章习题解答
精品行业资料,仅供参考,需要可下载并修改后使用!《化工设备机械基础》习题解答第三章 内压薄壁容器的应力分析一、名词解释 A 组:⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于0.1的容器。
⒉回转壳体:壳体的中间面是直线或平面曲线绕其同平面内的固定轴线旋转360°而成的壳体。
⒊经线:若通过回转轴作一纵截面与壳体曲面相交所得的交线。
⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。
⒌第一曲率半径:中间面上任一点M 处经线的曲率半径。
⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。
⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。
⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。
⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。
二、判断题(对者画√,错着画╳) A 组:1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?(1) 横截面为正六角形的柱壳。
(×) (2) 横截面为圆的轴对称柱壳。
(√) (3) 横截面为椭圆的柱壳。
(×) (4) 横截面为圆的椭球壳。
(√) (5) 横截面为半圆的柱壳。
(×) (6) 横截面为圆的锥形壳。
(√)2. 在承受内压的圆筒形容器上开椭圆孔,应使椭圆的长轴与筒体轴线平行。
(×)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径R R =,则该点的两向应力σσθ=m。
(√) 4. 因为内压薄壁圆筒的两向应力与壁厚成反比,当材质与介质压力一定时,则壁厚大的容器,壁内的应力总是小于壁厚小的容器。
(×)5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。
(√) B 组:1. 卧式圆筒形容器,其内介质压力,只充满液体,因为圆筒内液体静载荷不是沿轴线对称分布的,所以不能用薄膜理论应力公式求解。
化工设备机械基础作业答案
《化工设备机械基础》习题解答二、填空题1、钢板卷制的筒体和成型封头的公称直径是指它们的(内)径。
2、无缝钢管做筒体时,其公称直径是指它们的(外)径。
3、查手册找出下列无封钢管的公称直径DN是多少毫米4、压力容器法兰标准中公称压力PN有哪些等级5、管法兰标准中公称压力PN有哪些等级第三章内压薄壁容器的应力分析一、名词解释A组:⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于的容器。
⒉回转壳体:壳体的中间面是直线或平面曲线绕其同平面内的固定轴线旋转360°而成的壳体。
⒊经线:若通过回转轴作一纵截面与壳体曲面相交所得的交线。
⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。
⒌第一曲率半径:中间面上任一点M处经线的曲率半径。
⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。
⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。
⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。
⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。
二、判断题(对者画√,错着画╳)A组:1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力哪些不能(1) 横截面为正六角形的柱壳。
(×)(2) 横截面为圆的轴对称柱壳。
(√)(3) 横截面为椭圆的柱壳。
(×)(4) 横截面为圆的椭球壳。
(√)(5) 横截面为半圆的柱壳。
(×)(6) 横截面为圆的锥形壳。
(√)2. 在承受内压的圆筒形容器上开椭圆孔,应使椭圆的长轴与筒体轴线平行。
(×)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径R R 21=,则该点的两向应力σσθ=m 。
(√)4. 因为内压薄壁圆筒的两向应力与壁厚成反比,当材质与介质压力一定时,则壁厚大的容器,壁内的应力总是小于壁厚小的容器。
化工设备机械基础习题答案
P
3Pa
2Pa
Pa
习题解答 第1章
.37.
2019/6/22
1-15(f)
(1)求支座反力:
RA
RB
MB 0 RA 4a P3a 2P a 0
RA
5 4
P
RB
7 4
P
习题解答 第1章
.38.
2019/6/22
(2)分段列Fs(x)、M(x)。
AC段:
Px2
Pa
5Pa 4
7Pa 4
RB
7P 4
习题解答 第1章
.40.
2019/6/22
1-15(g)
Fs x ql x
x
M x ql2 q l x l x
2
ql
1 q x l 2 ql2
2
ql 2
ql2 2
习题解答 第1章
.41.
Fs Fs
Fs
Fs
习题解答 第1章
.26.
1-15(a)
2019/6/22
Fs x ql qx
M x qlx qx x
x
2
Fs
max
2ql
ql
M max
3 2
ql 2
2ql
3ql2 2
习题解答 第1章
.27.
2019/6/22
1-15(b)
2019/6/22
整体受力图:
NAx A
B
C
F D
NAy
NAx A NAy
RB
NCx C
《化工设备机械基础》第三章习题解答
第三章 内压薄壁容器的应力分析一、 名词解释 A 组:⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于0.1的容器。
⒉回转壳体:壳体的中间面是直线或平面曲线绕其同平面内的固定轴线旋转360°而成的壳体。
⒊经线:若通过回转轴作一纵截面与壳体曲面相交所得的交线。
⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。
⒌第一曲率半径:中间面上任一点M 处经线的曲率半径。
⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。
⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。
⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。
⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。
二、 判断题(对者画√,错着画╳) A 组:1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?(1) 横截面为正六角形的柱壳。
(×) (2) 横截面为圆的轴对称柱壳。
(√) (3) 横截面为椭圆的柱壳。
(×) (4) 横截面为圆的椭球壳。
(√) (5) 横截面为半圆的柱壳。
(×) (6) 横截面为圆的锥形壳。
(√)2. 在承受内压的圆筒形容器上开椭圆孔,应使椭圆的长轴与筒体轴线平行。
(×)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径R R 21=,则该点的两向应力σσθ=m 。
(√)4. 因为内压薄壁圆筒的两向应力与壁厚成反比,当材质与介质压力一定时,则壁厚大的容器,壁内的应力总是小于壁厚小的容器。
(×)5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。
(√) B 组:1. 卧式圆筒形容器,其内介质压力,只充满液体,因为圆筒内液体静载荷不是沿轴线对称分布的,所以不能用薄膜理论应力公式求解。
《化工设备机械基础》课后习题解答.
和m
。
【解】P=2.5Mpa D=816mm S=16mm
1. 00196. 0816
16
<==D S属薄壁容器MPa S PD m 875. 311648165. 24=⨯⨯==σ MPa S PD m 75. 631628165. 22=⨯⨯==σ
2.有一平均直径为10020 mm的球形容器,其工作压力为0.6Mpa,厚度为20 mm,试求该球形容器壁内的工作压力
⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。二、判断题(对者画√,错着画╳)A组:
1.下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?
(1)横截面为正六角形的柱壳。(×)(2)横截面为圆的轴对称柱壳。(√)(3)横截面为椭圆的柱壳。(×)(4)横截面为圆的椭球壳。(√)(5)横截面为半圆的柱壳。(×)(6)横截面为圆的锥形壳。(√)
5.冲击功与冲击韧性:冲击功是冲击负荷使试样破断所做的功。冲击韧性是材料在外加动载荷突然袭击时的一种及
时和迅速塑性变形的能力。
6.泊桑比(μ):拉伸试验中试件单位横向收缩与单位纵向伸长之比。对于钢材,μ=0.3。7.耐腐蚀性:金属和合金对周围介质侵蚀(发生化学和电化学作用引起的破坏)的抵抗能力。8.抗氧化性:金属和合金抵抗被氧化的能力。
t
F p p K 1
0=
(g/m2
·h)
K:腐蚀速度,g/cm2
·h;p 0:腐蚀前试件的重量,g;p 1:腐蚀后试件的重量,g;F:试件与腐蚀介质接触的面积,m 2
;
t:腐蚀作用的时间,h;
(2)根据金属的腐蚀深度评定金属的腐蚀速度。根据重量变化表示腐蚀速度时,没有考虑金属的相对密
(能源化工行业)化工设备机械基础习题解答
(能源化工行业)化工设备机械基础习题解答《化工设备机械基础》习题解答第壹篇:化工设备材料第壹章化工设备材料及其选择名词解释A组:1.蠕变:在高温时,在壹定的应力下,应变随时间而增加的现象。
或者金属在高温和应力的作用下逐渐产生塑性变形的现象。
2.延伸率:试件受拉力拉断后,总伸长的长度和原始长度之比的百分率。
3.弹性模数(E):材料在弹性范围内,应力和应变成正比,即σ=Eε,比例系数E为弹性模数。
4.硬度:金属材料表面上不大的体积内抵抗其他更硬物体压入表面发生变形或破裂的能力。
5.冲击功和冲击韧性:冲击功是冲击负荷使试样破断所做的功。
冲击韧性是材料在外加动载荷突然袭击时的壹种及时和迅速塑性变形的能力。
6.泊桑比(μ):拉伸试验中试件单位横向收缩和单位纵向伸长之比。
对于钢材,μ=0.3。
7.耐腐蚀性:金属和合金对周围介质侵蚀(发生化学和电化学作用引起的破坏)的抵抗能力。
8.抗氧化性:金属和合金抵抗被氧化的能力。
9.屈服点:金属材料发生屈服现象的应力,即开始出现塑性变形的应力。
它代表材料抵抗产生塑性变形的能力。
10.抗拉强度:金属材料在受力过程中,从开始加载到发生断裂所能达到的最大应力值。
B组:1.镇静钢:镇静钢在用冶炼时用强脱氧剂Si,Al等完全脱氧脱氧,是脱氧完全的钢。
把FeO 中的氧仍原出来,生成SiO2和Al2O3。
钢锭膜上大下小,浇注后钢液从底部向上,向中心顺序地凝固。
钢锭上部形成集中缩孔,内部紧密坚实。
2.沸腾钢:沸腾钢在冶炼时用弱脱氧剂Mn脱氧,是脱氧不完全的钢。
其锭模上小下大,浇注后钢液在锭模中发生自脱氧反应,放出大量CO气体,造成沸腾现象。
沸腾钢锭中没有缩孔,凝固收缩后气体分散为很多形状不同的气泡,布满全锭之中,因而内部结构疏松。
3.半镇静钢:介于镇静钢和沸腾钢之间,锭模也是上小下大,钢锭内部结构下半部像沸腾钢,上半部像镇静钢。
4.低碳钢:含碳量低于0.25%的碳素钢。
5.低合金钢:壹般合金元素总含量小于5%的合金钢。
化工设备机械基础作业答案
《化工设备机械基础》习题解答二、填空题1、钢板卷制的筒体和成型封头的公称直径是指它们的( 内)径。
2、无缝钢管做筒体时,其公称直径是指它们的( 外)径。
第三章 内压薄壁容器的应力分析一、名词解释A 组:⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于0.1的容器。
⒉回转壳体:壳体的中间面是直线或平面曲线绕其同平面内的固定轴线旋转360°而成的壳体。
⒊经线:若通过回转轴作一纵截面与壳体曲面相交所得的交线。
⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。
⒌第一曲率半径:中间面上任一点M 处经线的曲率半径。
⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。
⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。
⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。
⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。
二、判断题(对者画√,错着画╳)A 组:1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?(1) 横截面为正六角形的柱壳。
(×)(2) 横截面为圆的轴对称柱壳。
(√)(3) 横截面为椭圆的柱壳。
(×)(4) 横截面为圆的椭球壳。
(√)(5) 横截面为半圆的柱壳。
(×)(6) 横截面为圆的锥形壳。
(√)2. 在承受内压的圆筒形容器上开椭圆孔,应使椭圆的长轴与筒体轴线平行。
(×)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径R R 21=,则该点的两向应力σσθ=m。
(√)4. 因为内压薄壁圆筒的两向应力与壁厚成反比,当材质与介质压力一定时,则壁厚大的容器,壁内的应力总是小于壁厚小的容器。
(×)5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。
化工设备机械基础课后答案
化⼯设备机械基础课后答案《化⼯设备机械基础》习题解答第⼀章化⼯设备材料及其选择⼀. 名词解释A组:1.蠕变:在⾼温时,在⼀定的应⼒下,应变随时间⽽增加的现象。
或者⾦属在⾼温和应⼒的作⽤下逐渐产⽣塑性变形的现象。
2.延伸率:试件受拉⼒拉断后,总伸长的长度与原始长度之⽐的百分率。
3.弹性模数(E):材料在弹性范围内,应⼒和应变成正⽐,即ζ=Eε,⽐例系数E为弹性模数。
4.硬度:⾦属材料表⾯上不⼤的体积内抵抗其他更硬物体压⼊表⾯发⽣变形或破裂的能⼒。
5.冲击功与冲击韧性:冲击功是冲击负荷使试样破断所做的功。
冲击韧性是材料在外加动载荷突然袭击时的⼀种及时和迅速塑性变形的能⼒。
6.泊桑⽐(µ):拉伸试验中试件单位横向收缩与单位纵向伸长之⽐。
对于钢材,µ=0.3 。
7.耐腐蚀性:⾦属和合⾦对周围介质侵蚀(发⽣化学和电化学作⽤引起的破坏)的抵抗能⼒。
8.抗氧化性:⾦属和合⾦抵抗被氧化的能⼒。
9.屈服点:⾦属材料发⽣屈服现象的应⼒,即开始出现塑性变形的应⼒。
它代表材料抵抗产⽣塑性变形的能⼒。
10.抗拉强度:⾦属材料在受⼒过程中,从开始加载到发⽣断裂所能达到的最⼤应⼒值。
B组:1.镇静钢:镇静钢在⽤冶炼时⽤强脱氧剂 Si, Al等完全脱氧脱氧,是脱氧完全的钢。
把FeO中的氧还原出来,⽣成SiO2和Al2O3。
钢锭膜上⼤下⼩,浇注后钢液从底部向上,向中⼼顺序地凝固。
钢锭上部形成集中缩孔,内部紧密坚实。
2.沸腾钢:沸腾钢在冶炼时⽤弱脱氧剂Mn脱氧,是脱氧不完全的钢。
其锭模上⼩下⼤,浇注后钢液在锭模中发⽣⾃脱氧反应,放出⼤量CO ⽓体,造成沸腾现象。
沸腾钢锭中没有缩孔,凝固收缩后⽓体分散为很多形状不同的⽓泡,布满全锭之中,因⽽内部结构疏松。
3.半镇静钢:介于镇静钢和沸腾钢之间,锭模也是上⼩下⼤,钢锭内部结构下半部像沸腾钢,上半部像镇静钢。
4.低碳钢:含碳量低于0.25%的碳素钢。
5.低合⾦钢:⼀般合⾦元素总含量⼩于5%的合⾦钢。
(完整版)化工设备机械基础习题及答案
1. 化工厂安装塔设备时,分段起吊塔体如图所示。
设起吊重量G=10KN,求钢绳AB、BC及BD的受力大小。
设BC、BD与水平夹角为60℃。
2. 桅杆式起重机由桅杆D、起重杆AB和钢丝BC用铰链A连接而组成。
P=20KN,试求BC绳的拉力与铰链A的反力(AB杆重不计)。
3. 起吊设备时为避免碰到栏杆,施一水平力P,设备重G=30KN,求水平力P及绳子拉力T。
4. 悬臂式壁架支承设备重P(KN),壁架自重不计,求固定端的反力。
5. 化工厂的塔设备,塔旁悬挂一侧塔。
设沿塔高受风压q(N/m),塔高H(m),侧塔与主塔中心相距为e(m),主塔重P1(KN),侧塔重P2(KN)。
试求地面基础处的支座反力。
6. 梯子由AB与AC两部分在A处用铰链联结而成,下部用水平软绳连接如图放在光滑面上。
在AC上作用有一垂直力P。
如不计梯子自重,当P=600N,α=75℃,h=3m,a=2m时,求绳的拉力的大小。
.7 试用截面法求各杆件所标出的横截面上的内力和应力。
杆的横截面面积A为250mm2,P=10KN。
8. 一根直径d=3mm,长L=3m的圆截面杆,承受轴向拉力P=30KN,其伸长为ΔL=2.2mm。
试求此杆横截面上的应力与此材料的弹性模量E。
参考答案9. 一根钢杆,其弹性模量E=2.1×105MPa,比例极限σp=210MPa;在轴向拉力P作用下,纵向线应变ε=0.001。
求此时杆横截面上的正应力。
如果加大拉力P,使杆件的纵向线应变增加到ε=0.01,问此时杆横截面上的正应力能否由虎克定律确定,为什么?10. 两块Q235-A钢板用E4301焊条对焊起来作为拉杆,b=60mm,δ=10mm。
已知钢板的许用应力[σ]=160MPa,对接焊缝许用应力[σ]=128MPa,拉力P=60KN。
试校核其强度。
11. 已知反应釜端盖上受气体内压力及垫圈上压紧力的合力为400KN,其法兰联接选用Q235-A钢制M24的螺栓,螺栓的许用应力[σ]=54MPa,由螺纹标准查出M24螺栓的根径d=20.7mm,试计算需要多少个螺栓(螺栓是沿圆周均匀分布,螺栓数应取4的倍数)。
《化工设备机械基础》习题解答.
15.2 (16002.672
(=⨯+⨯=
+=e
e i T T S S D P σ
应力校核
MPa 8. 15685. 02059. 0 9. 0=⨯⨯=φσs
φσσS T 9. 0 < ∴水压试验强度足够
4、有一圆筒形乙烯罐,内径D i =1600mm,壁厚S n =16mm,计算压力为p c =2.5MPa,工作温度为-3.5℃,材质为
MP b a S Pa m 5. 10130
22
10153 (2 (max =⨯⨯⨯===σσ
θ
在x=a,y=0点(边缘处)
MP b a S Pa 5. 10130
22
10153 (2 (max -=⨯⨯⨯-=-
=σθ
③
时5. 2=b a,在x=0,y=b处(顶点处)
MP b a S Pa m 88. 12630
16MnR,采用双面焊对接接头,局部无损探伤,厚度附加量C=3mm,试校核贮罐强度。【解】(1)确定参数:D i =1600mm; S n =16mm; t w =-3.5℃; p c =2.5MPa.
υ=0.85(双面焊对接接头,局部探伤)
16MnR:常温下的许用应力[σ] = 170 MPa
设计温度下的许用应力[σ]t = 170 MPa常温度下的屈服点σs = 345 MPa
2
2
2
4
=⎥
⎦
⎤⎢⎣⎡-----
=
θσ
: 0, (==y a x C点
MPa S Pa
m
25. 252021010
12=⨯⨯=
=
σ
MPa S Pa 5. 5020
10101-=⨯-=-=σ
化工设备机械基础习题答案
化工设备机械基础习题答案【篇一:化工设备机械基础作业答案】txt>二、填空题1、钢板卷制的筒体和成型封头的公称直径是指它们的(内)径。
2、无缝钢管做筒体时,其公称直径是指它们的(外)径。
第三章内压薄壁容器的应力分析一、名词解释a组:⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于0.1的容器。
⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。
⒌第一曲率半径:中间面上任一点m处经线的曲率半径。
⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。
⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。
⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。
⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。
二、判断题(对者画√,错着画╳)a组:1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?(2)横截面为圆的轴对称柱壳。
(√)(4)横截面为圆的椭球壳。
(√)(6)横截面为圆的锥形壳。
(√)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径r?r,则该点的两向应力?m???。
(√)5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。
(√)b组:1. 卧式圆筒形容器,其内介质压力,只充满液体,因为圆筒内液体静载荷不是沿轴线对称分布的,所以不能用薄膜理论应力公式求解。
(√)2. 由于圆锥形容器锥顶部分应力最小,所以开空宜在锥顶部分。
(√)123. 凡薄壁壳体,只要其几何形状和所受载荷对称于旋转轴,则壳体上任何一点用薄膜理论应力4. 椭球壳的长,短轴之比a/b越小,其形状越接近球壳,其应力分布也就越趋于均匀。
(√)5. 因为从受力分析角度来说,半球形封头最好,所以不论在任何情况下,都必须首先考虑采用第四章内压薄壁圆筒与封头的强度设计二、填空题a组:1. 有一容器,其最高气体工作压力为1.6mpa,无液体静压作用,工作温度≤150℃且装有安全阀,试确定该容器的设计压力p=(1.76)mpa;计算压力pc=( 1.76 )mpa;水压试验压力pt=(2.2)mpa.2. 有一带夹套的反应釜,釜内为真空,夹套内的工作压力为0.5mpa,工作温度200℃,试确定:(1)釜体的计算压力(外压)pc=( -0.6 )mpa;釜体水压试验压力pt=( 0.75 )mpa.(2)夹套的计算压力(内压)pc=( 0.5 )mpa;夹套的水压试验压力pt=( 0.625 )mpa.0.5mpa,工作温度≤100℃,试确定该容器的设计压力p=( 0.5 )mpa;计算压力pc=( 0.617 )mpa;水压试验压力pt=(0.625)mpa.4. 标准碟形封头之球面部分内径ri=( 0.9 )di;过渡圆弧部分之半径r=( 0.17 )di.5. 承受均匀压力的圆平板,若周边固定,则最大应力是(径向)弯曲应力,且最大应力在圆平板的(边缘 )处;若周边简支,最大应力是( 径向 )和( 切向)弯曲应力,且最大应力在圆平板的( 中心)处.6. 凹面受压的椭圆形封头,其有效厚度se不论理论计算值怎样小,当k≤1时,其值应小于封头内直径的( 0.15)%;k1时,se应不小于封头内直径的( 0.3)%.7. 对于碳钢和低合金钢制的容器,考虑其刚性需要,其最小壁厚smin=( 3)mm;对于高合金钢制容器,其最小壁厚smin=(2 )mm.8. 对碳钢,16mnr,15mnnbr和正火的15mnvr钢板制容器,液压试验时,液体温度不得低于( 5) ℃,其他低合金钢制容器(不包括低温容器),液压试验时,液体温度不得低于( 15) ℃.容器已经”失效”. ( √ )3. 安全系数是一个不断发展变化的数据,按照科学技术发展的总趋势,安全系数将逐渐变小.( √ )力状态,在建立强度条件时,必须借助于强度理论将其转换成相当于单向拉伸应力状态的相当应力. ( √ )四、工程应用题a组:1、有一dn2000mm的内压薄壁圆筒,壁厚sn=22mm,承受的最大气体工作压力pw=2mpa,容器上【解】(1)确定参数:pw =2mpa; pc=1.1pw =2.2mpa(装有安全阀);di= dn=2000mm( 钢板卷制); sn =22mm; se = sn -c=20mm (2)最大工作应力:?t?p(d?s)2.2?(2000?20)??111.1mpa 2se2?20se = sn -c=20mm.(2)最大工作压力:球形容器.[p]w4[?]t?se4?147?1.0?20???1.17mpa di?se10000?203、某化工厂反应釜,内径为1600mm,工作温度为5℃~105℃,工作压力为1.6mpa,釜体材料选用0cr18ni9ti。
《化工设备机械基础》习题解答
1 《化工设备机械基础》习题解答第一篇: 化工设备材料第一章化工设备材料及其选择一. 名词解释A组 1.蠕变在高温时在一定的应力下应变随时间而增加的现象。
或者金属在高温和应力的作用下逐渐产生塑性变形的现象。
2.延伸率试件受拉力拉断后总伸长的长度与原始长度之比的百分率。
3.弹性模数E材料在弹性范围内应力和应变成正比即σEε比例系数E为弹性模数。
4.硬度金属材料表面上不大的体积内抵抗其他更硬物体压入表面发生变形或破裂的能力。
5.冲击功与冲击韧性冲击功是冲击负荷使试样破断所做的功。
冲击韧性是材料在外加动载荷突然袭击时的一种及时和迅速塑性变形的能力。
6.泊桑比μ拉伸试验中试件单位横向收缩与单位纵向伸长之比。
对于钢材μ0.3 。
7.耐腐蚀性金属和合金对周围介质侵蚀发生化学和电化学作用引起的破坏的抵抗能力。
8.抗氧化性金属和合金抵抗被氧化的能力。
9.屈服点金属材料发生屈服现象的应力即开始出现塑性变形的应力。
它代表材料抵抗产生塑性变形的能力。
10.抗拉强度金属材料在受力过程中从开始加载到发生断裂所能达到的最大应力值。
B组 1.镇静钢镇静钢在用冶炼时用强脱氧剂Si Al等完全脱氧脱氧是脱氧完全的钢。
把FeO中的氧还原出来生成SiO2和Al2O3。
钢锭膜上大下小浇注后钢液从底部向上向中心顺序地凝固。
钢锭上部形成集中缩孔内部紧密坚实。
2.沸腾钢沸腾钢在冶炼时用弱脱氧剂Mn脱氧是脱氧不完全的钢。
其锭模上小下大浇注后钢液在锭模中发生自脱氧反应放出大量CO 气体造成沸腾现象。
沸腾钢锭中没有缩孔凝固收缩后气体分散为很多形状不同的气泡布满全锭之中因而内部结构疏松。
3.半镇静钢介于镇静钢和沸腾钢之间锭模也是上小下大钢锭内部结构下半部像沸腾钢上半部像镇静钢。
4.低碳钢含碳量低于0.25的碳素钢。
5.低合金钢一般合金元素总含量小于5的合金钢。
6.碳素钢这种钢的合金元素含量低而且这些合金元素不是为了改善钢材性能人为加入的。
7.铸铁含碳量大于2的铁碳合金。
《化工设备机械基础》习题解答.
1010
==b
a
标准椭圆形封头
b b
b y x A R R
2
22
1
, :
, 0=
=
==点(
MP S
Pa m
5. 5020
10101=⨯=
=
=θσσ
MPa sb
P B b a x a
m
3. 43 (2 2
2
2
4
=--
=
σ
点:
MPa b a x a a sb
P b
a
x a
7. 27 (2 (2 22244
二.指出下列钢材的种类、含碳量及合金元素含量A组
B组:
第二章
容器设计的基本知识
一.、指出下列压力容器温度与压力分级范围
第三章内压薄壁容器的应力分析
和MP S
m
638
44=⨯=
=
σ
S
P R
R
m =
+
2
1
θ
MP S
PD
634==
σ
θ
2.圆锥壳上之A点和B点,已知:p=0.5Mpa,D=1010mm,S=10mm,a=30o。
cr
e cr 2. 1625]
[ (
(295. 12215517. 10
【解】(1)确定参数:D i =10m; S n =22mm; υ=1.0; C=2mm; [σ]t =147MPa.
S e = Sn -C=20mm.
(2)最大工作压力:球形容器.
a e
i e t
w MP S D S P 17. 120
1000020
0. 11474][4][=+⨯⨯⨯=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《化工设备机械基础》习题解答
第三篇: 典型化工设备的机械设计
第七章管壳式换热器的机械设计
一、思考题
1.衡量换热器好坏的标准大致有哪些?
答:传热效率高,流体阻力小,强度足够,结构可靠,节省材料;成本低;制造、安装、检修方便。
2.列管式换热器主要有哪几种?各有何优缺点?
3.列管式换热器机械设计包括哪些内容?
答:①壳体直径的决定和壳体壁厚的计算;
②换热器封头选择,压力容器法兰选择;
③管板尺寸确定;
④管子拉脱力的计算;
⑤折流板的选择与计算;
⑥温差应力计算。
此外还应考虑接管、接管法兰选择及开孔补强等。
4.我国常用于列管式换热器的无缝钢管规格有哪些?通常规定换热管的长度有哪些?
答:我国管壳式换热器常用无缝钢管规格(外径×壁厚),如下表2所示。
换热管长度规定为:1500mm, 2000mm, 2500mm, 3000mm, 4500mm, 5000mm, 6000mm, 7500mm, 9000mm, 12000mm。
换热器的换热管长度与公称直径之比,一般在4~25之间,常用的为6~10。
立式换热器,其比值多为4~6。
表 2 换热管规格(mm)
5.换热管在管板上有哪几种固定方式?各适用范围如何?
答:固定方式有三种:胀接、焊接、胀焊结合。
胀接:一般用在换热管为碳素钢,管板为碳素钢或低合金钢,设计压力不超过
4.0MPa,设计温度在350℃以下,且无特殊要求的场合。
焊接:一般用在温度压强都较高的情况下,并且对管板孔加工要求不高时。
胀焊结合:适用于高温高压下,连接接头在反复的热冲击、热变形、热腐蚀及介质压力作用,工作环境极其苛刻,容易发生破坏,无法克服焊接的“间隙腐蚀”
和“应力腐蚀”的情况下。
6.换热管胀接于管板上时应注意什么?胀接长度如何确定?
答:采用胀接时,管板硬度应比管端硬度高,以保证胀接质量。
这样可避免在胀接时管板产生塑性变形,影响胀接的紧密性。
如达不到这个要求时,可将管端进行退火处理,
降低硬度后再进行胀接。
另外,对于管板及换热器材料的线膨胀系数和操作温度与室
温的温差△t,必须符合表3的规定。
1212
△α=∣α1-α2∣,1/℃。
△t等于操作温度减去室温(20℃)。
7.换热管与管板的焊接连接法有何优缺点?焊接接头的形式有哪些?
答:焊接连接比胀接连接有更大的优越性:在高温高压条件下,焊接连接能保持连接的紧密性;管板孔加工要求低,可节省孔的加工工时;焊接工艺比胀接工艺简单;在压力
不太高时可使用较薄的管板。
焊接连接的缺点是:由于在焊接接头处产生的热应力可能造成应力腐蚀和破裂;同时
管子与管板间存在间隙,这些间隙内的流体不流动,很容易造成“间隙腐蚀”。
焊接接头的形式有:①管板孔上不开坡口;
②管板孔端开60º坡口;
③管子头部不突出管板;
④孔四周开沟槽。
8.换热管采用胀焊结合方法固定于管板上有何优点?主要方法有哪些?
答:胀焊结合方法的优点:由于焊接连接产生应力腐蚀及间隙腐蚀,尤其在高温高压下,连接接头在反复的热冲击、热变形、热腐蚀及介质压力作用下,工作环境极其苛刻,
容易发生破坏,无论采用胀接或焊接均难以满足要求。
而胀焊结合法能提高连接处的
抗疲劳性能,消除应力腐蚀和间隙腐蚀,提高使用寿命。
主要方法有:先强度焊后贴胀、先强度焊后强度胀、先强度胀后密封焊等多种。
9.管子在管板上排列的标准形式有哪些?各适用于什么场合?
答:排列的标准形式有:①正三角形和转角正三角形排列,适用于壳程介质污垢少,且不
需要进行机械清洗的场合。
②正方形和转角正方形排列,一般可用于管束可抽出清洗管间的
场合。
10.《钢制管壳式换热器设计规定》中换热器管板设计方法的基本思想是什么?
答:其基本思想是:将管束当作弹性支承,而管板则作为放置于这一弹性基础上的圆平板,然后根据载荷大小、管束的刚度及周边支撑情况来确定管板的弯曲应力。
由于它比较
全面地考虑了管束的支承和温差的影响,因而计算比较精确。
但计算公式较多,计算
过程也较繁杂。
但应用计算机进行设计计算,是一种有效的设计方法。
11.换热管分程原因是什么?一般有几种分程方法?应满足什么条件?其相应两侧的管箱隔板形式如何?
答:分程原因:当换热器所需的换热面积较大,而管子做得太长时,就得增大壳体直径,排列较多的管子。
此时为了增加管程流速,提高传热效果,须将管束分程,使流体依
次流过各程管子。
分程方法:为了把换热器做成多管程,可在流道室(管箱)中安装与管子中心线相平
行的分程隔板。
管程数一般有1,2,4,6,8,10,12等七种。
满足条件:①各程换热管数应大致相等;②相邻程间平均壁温差一般不应超过28℃;
③各程间的密封长度应最短;④分程隔板的形式应简单。
管箱隔板形式有:单层和双层两种。
12.折流板的作用如何?常用有哪些形式?如何定位?
答:在对流传热的换热器中,为了提高壳程内流体的流速和加强湍流强度,以提高传热效率,在壳程内装置折流板。
折流板还起支撑换热管的作用。
常用形式有:弓形、圆盘-圆环形和带扇形切口三种。
折流板的固定是通过拉杆和定距管来实现的。
拉杆是一根两端皆有螺纹的长杆,一端
拧入管板,折流板就穿在拉杆上,各板之间则以套在拉杆上的定距管来保持板间距离。
最后一块折流板可用螺母拧在拉杆上予以紧固。
13.固定管板式换热器中温差应力是如何产生的?有哪些补偿温差应力的措施?
答:当操作时,壳体和管子温度都升高,若管壁温度高于壳壁温度,则管子自由伸长量比壳体自由伸长量大,但由于管子与壳体是刚性连接,所以管子和壳体的实际伸长量必
须相等,因此就出现壳体被拉伸,产生拉应力;管子被压缩,产生压应力。
此拉、压
应力就是温差应力,也称热应力。
补偿温差应力的措施有:解决壳体与管束膨胀的不一致性;或是消除壳体与管子间刚
性约束,使壳体和管子都自由膨胀和收缩。
①减少壳体与管束间的温度差;
②装设侥性构件;
③使壳体和管束自由热膨胀;
④双套管温度补偿。
14.何谓管子拉脱力?如何定义?产生原因是什么?
答:换热器在操作中,承受流体压力和管壳壁的温度应力的联合作用,这两个力在管子与管板的连接接头处产生了一个拉脱力,使管子与管板有脱离的倾向。
拉脱力的定义:管子每平方米胀接周边上所受到的力,单位为帕。
15.壳程接管挡板的作用是什么?主要有哪些结构形式?
答:在换热器进口处设置挡板(常称为导流筒),它可使加热蒸汽或流体导致靠近管板处才进入管束间,更充分的利用换热面积,目前常用这种结构来提高换热器的换热能力。
三、试验算固定管板式换热器的拉脱力
解:在操作压力下,每平方米胀接周边产生的力p q :
l
d pf
q p π=
其中:224866.0 d a f π
-= 2225432866.0⨯-⨯=π
)(3962mm =
)(168.014.330253960.1a p MP q =⨯⨯⨯=∴
在温差应力作用下,管子每平方米胀接周边所产生的力t q :
l d d d l d a q i t t
t t 4)
(422
-⋅=⋅=σσ
其中:
)(36.50810084562)2025(1)100200(1021.0108.11)(41)(1)(22662
2a n
i s t s t s t t MP S D n d d t t E A A t t E =
⨯⨯⨯-+
-⨯⨯⨯⨯=-+-=+-=-中ππαασ
)(777.330254)
2025(36.5022a t MP q =⨯⨯-⨯=∴
又p q 与t q 作用方向相同,则:
)(945.3777.3168.0a t p MP q q q =+=+= ][q q < ,故管子拉脱力在许用范围内。