二次函数单元复习课件
合集下载
中考数学专题《二次函数》复习课件(共18张PPT)
(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
二次函数复习课件PPT
个单位,再向 平移
个单位可
得到抛物线 y=3(x+2)2 -3.
16、将函数y=-3(x-1)2-1的图象 (1) 沿y轴翻折后得到的函数解析式_____. (2) 沿X轴翻折后得到的函数解析式_____. (3) 沿原点旋转180°后得到的函数解析式
_____. (4) 沿顶点旋转180°后得到的函数解析式
解: y ax2 bx c
a x2 b x c 提取二次项系数
a x2
a a
b x b 2 b 2 a 2a 2a
c a
配方:加上再减去一 次项系数绝对值一 半的平方
a
x
b 2a
2
4ac b2 4a2
整理:前三项化为平方形 式,后两项合并同类项
a x
y的 最值
增减性
在对称 在对称 轴左侧 轴右侧
y=ax2
a>0 向上 y轴
(0,0)
最小值 是0
y随x的增 y随x的增 大而减小 大而增大
a<0 向下
y轴
(0,0)
最大值 y随x的增 是0 大而增大
y随x的增 大而减小
y=ax2+c
a>0 向上 a<0 向下
y轴 y轴
(0,c)
最小值 是C
y随x的增 y随x的增 大而减小 大而增大
4a
➢当a>0时,抛物线的开口向上,顶点 是抛物线上的最低点;
➢当a<0时,抛物线的开口向下,顶点 是抛物线上的最高点.
二次函数关系式的常见形式:
一般式:y=ax2+bx+c 顶点式:y=a(x+m)2+k
交点式:y=a(x-x1)(x-x2)
确定二次函数的解析式时,应该根据 条件的特点,恰当地选用一种函数表达式.
(用)第22章二次函数复习课件
8、总结提高:求二次函数 y=ax2+bx+c 的解析 式时 (1)关键是求出待定系数____________ a,b,c 的值.
(2)设解析式的三种形式:
2+bx+c (a≠0) y = ax ①一般式:________________________,当已知抛物线
上三个点时,用一般式比较简便;
(4)b2-4ac的符号: a、b同号 a、b异号 b=0
由抛物线与x轴的交点个数确定
与x轴有两个交点 与x轴有一个交点 与x轴无交点 b2-4ac>0 b2-4ac=0 b2-4ac<0
巩固练习1: 2 上 ,对称轴是 Y轴 (1)抛物线y =3x 2的开口向 , (0,0) 顶点坐标是 ,图象过第 一、二 象限 ; (2)已知y = - nx 2 (n>0) , 则图象 (不可能 )
B.6.18< X <6.19 D.6.19< X <6.20
3、已知二次函数 y a( x 1)2 c 的图象如图所示,则函数 y ax c
的图象只可能是( D )
1
y
0
x
y
y
y
y
0
x
0
x
0
x
0
x
( A)
( B)
(C )
(D)
(16)小明从右边的二次函数y=ax2+bx+c的图 象观察得出下面的五条信息:① a< 0;② c=0; ③ 函数的最小值为-3; ④当x<0时,y>0; ⑤当0 <x1<x2<2时,y1 > y2 你认为其中正确的个数有 y ( ) A.2 B. 3 C.4 D. 5
答:定价为70元/个,利润最高为9000元.
练一练:已知y=ax2+bx+c的图象如图所示,
二次函数复习-完整版PPT课件
学练优九年级数学上(RJ) 教学课件
第二十二章 二次函数
复习课
知识网络
专题复习
课堂小结
课后训练
知识网络
二次函数的概念
定义 一般形式
y=a2bc
a,b,c是常数,a≠0
自变量的取值范围 全体实数
图象
一条抛物线
一般式
二
次 解析式形式 顶点式
函
数
交点式
y=a2bca≠0 y=a-h2 y=a-1-2
y=a2bc
1,2);
y
C’
C
Q
B
OA x
图2
丙1,15
丁
0,1
4,1
1m
甲
2.5m
乙
1m
4m
解:如图建立平面直角坐标系,可设抛物a线的b 解1析1式.5,为y=a2b1
点(1,15)、(4,1)在抛物线上,得 16a 4b 1 1,
解得:a , 所1 ,b以抛2 物线解析式为
63
y1x22x1(1≤ x≤ 4) , 63
当=25时,y=1625所以丁同学的身高为1625米
应
用
二次函数的概念 及图象特征
用数形结合 的方法去研 究和运用
建立二次函数模型, 将实际问题数学化, 运用二次函数知识 解决实际问题
课后训练
=-2-523 ,下列说法正确的是( )
A
A开口向下,顶点坐标5,3 B开口向上,顶点坐标5,3
C开口向下,顶点坐标-5,3 D开口向上,顶点坐标-5,3
>0, b<0,c>0时,下列图象有可能是抛物线y=a2bc的是 ( A)
a ≠ 0 性 质 六点、一轴、一方及增减性与最值
第二十二章 二次函数
复习课
知识网络
专题复习
课堂小结
课后训练
知识网络
二次函数的概念
定义 一般形式
y=a2bc
a,b,c是常数,a≠0
自变量的取值范围 全体实数
图象
一条抛物线
一般式
二
次 解析式形式 顶点式
函
数
交点式
y=a2bca≠0 y=a-h2 y=a-1-2
y=a2bc
1,2);
y
C’
C
Q
B
OA x
图2
丙1,15
丁
0,1
4,1
1m
甲
2.5m
乙
1m
4m
解:如图建立平面直角坐标系,可设抛物a线的b 解1析1式.5,为y=a2b1
点(1,15)、(4,1)在抛物线上,得 16a 4b 1 1,
解得:a , 所1 ,b以抛2 物线解析式为
63
y1x22x1(1≤ x≤ 4) , 63
当=25时,y=1625所以丁同学的身高为1625米
应
用
二次函数的概念 及图象特征
用数形结合 的方法去研 究和运用
建立二次函数模型, 将实际问题数学化, 运用二次函数知识 解决实际问题
课后训练
=-2-523 ,下列说法正确的是( )
A
A开口向下,顶点坐标5,3 B开口向上,顶点坐标5,3
C开口向下,顶点坐标-5,3 D开口向上,顶点坐标-5,3
>0, b<0,c>0时,下列图象有可能是抛物线y=a2bc的是 ( A)
a ≠ 0 性 质 六点、一轴、一方及增减性与最值
人教版九年级数学上册第22章二次函数章末复习课件 (共68张ppt)
(4)当图像与x轴 有两个交点时, b2-4ac>0;当图像与x轴只有一个 交点时, b2-4ac=0; 当图像与x轴没有交点时, b2-4ac<0. (5)图像过点(1, a+b+c)和点(-1, a-b+c), 再根据图像上的点的位置可 确定式子a+b+c和a-b+c的符号.
例1 已知二次函数y=ax2+bx+c的图像如图22-Z-1所示, 那么下
二次函数 的图像和
性质
开口方向
a>0, 图像开口向上 a<0, 图像开口向下
对称轴
a, b同号, 对称轴在y轴左侧 a, b异号, 对称轴在y轴右侧
烦烦烦鬼鬼鬼鬼 鬼鬼鬼鬼跟鬼鬼 鬼鬼鬼g鬼鬼
二次函数 的图像和
性质
a>0 增减性
a<0
最值
二次函数 的解析式
y=ax²+bx+c(a≠0)(一般式) y=a(x-h)²(a≠0)(交点式)
【要点指导】研究二次函数的图像的平移、轴对称变换过程, 实 际 就是确定变换后所得图像的二次函数解析式, 研究变换后的图 像和性质 的过程, 关键是找到变换后图像上的特殊点(如抛物线的 顶点), 从而得出 函数解析式, 最后利用二次函数的性质解答.
例4 如图22-Z-3, 在平面直角坐标系 xOy中, 将抛物线y=2x2沿y轴 向上平移1个单 位长度, 再沿x轴向右平移2个单位长度, 平移 后所 得抛物线的顶点记作A, 直线x=3与平移 后的抛物线相交于点B, 与 直线OA相交于点C. (1)求平移后的抛物线的函数解析式; (2)求点C的坐标及△ABC的面积.
例2 已知二次函数的图像以A(-1, 4)为顶点, 且过点B(2, -5). (1)求该函数的解析式; (2)求该函数图像与坐标轴的交点坐标.
二次函数复习(共36张PPT)
y=ax2+bx+c的图 方程ax2+bx+c=0
象和x轴交点
的根
b2-4ac
有两个交点
方程有两个不相等的 b2-4ac>0
实数根
只有一个交点
方程有两个相等的 b2-4ac=0
实数根
没有交点
方程没有实数根 b2-4ac<0
函数的图象
y
.
. ox
y
o
x
y
o
x
根据下列表格中二次函数y=ax2+bx+c的自变量与函数 值的对应值,判断方程ax2+bx+c =0
(4)函数的自变量x的取值范围:任意实数
当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范
围.
二次函数的一般形式:
• 函数y=ax2+bx+c
– 其中a、b、c是常数 – 切记:a≠0 – 右边一个x的二次多项式(不能是分式或根式)
二次函数的特殊形式:
当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
向上
直线X=-h
(-h,k)
a < 0 向下
图象的平移规律:
对于抛物线y=a(x+h)2+k的平移有以下规律: (1)、平移不改变 a 的值; (2)、h决定图象沿x轴方向左右平移,左+右— (3)、k决定图象沿y轴方向上下平移,上+下—
知识运用
(坐1标)是抛物线,图(y0象=,0过)x32 第2的开口向一象、,限对上二称;轴是
二次函数 开 口 方 向 对 称 轴 顶 点 坐 标
y = ax 2
a > 0 向上 直线X=0 a < 0 向下 (或y轴)
初中数学《二次函数》复习课名师教学PPT课件
3.某商场试销一种成本为每件60元的服装,规定试销期 间销售单价不低于成本单价,且获利不得高于45%,经 试销发现,销售量y(件)与销售单价x(元)符合一次 函数y=kx+b,且x=65时,y=55;x=75时,y=45;
(1)求一次函数的解析式;
(2)若该商场获得利润为W元,试写出利润W与销售单 价x之间的关系;销售单价定为多少时,商场可获得最 大利润,最大利润是多少元?
(3)若该商场所获得利润不低于500元,试确定销售单 价x的范围.
二次函数在几何问题中的应用
1.为了节省材料,某水产养殖户利用水库的岸堤(岸堤 足够长)为一边,用总长为80m的围网在水库中围成了 如图所示的①②③三块矩形区域,而且这三块矩形区 域的面积相等.设BC的长度为xm,矩形区域ABCD的 面积为ym2.
A.图象关于直线x=1对称 B.函数y=ax2+bx+c(a≠0)的 最小值是-4 C.抛物线y=ax2+bx+c(a≠0)与x轴 的两个交点的横坐标分别是-1,3 D.当x<1时,y随x的增大而增大
2.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的 取值范围是(B)
A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
1 x
2.已知函数y=(m2+m)x2+mx+4为二次函数,则m的取值
范围是( C)
A.m≠0 B.m≠-1 C.m≠0,且m≠-1 D.m=-1
3.矩形的周长为24cm,其中一边为xcm(其中x>0), 面积为ycm2,则这样的矩形中y与x的关系可以写成 ( B)
A.y=x2 C. y=12-x2
B.y=(12-x)x D.y=2(12-x)
初三数学复习《二次函数》(专题复习)PPT课件
面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
第1章 二次函数 浙教版九年级数学上册复习课件(共17张PPT)
(1)已知二次函数y=ax2+bx+c的部分图象如图所示, 图象经过(1,0),从中你能得到哪些结论?
(2)m满足什么条件时方程ax2+bx+c=m,①有两个不 相等的实数根?②有两个相等的实数根?③没有实 数根?
y
4
-1
o
1
x
图1
• 若把图1的函数图象绕着顶点旋转180度,则能得
到函数的表达式是
4ac 4a
b2
直线x b 2a
向上
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b 2a
向下
增减性
在对称轴的左侧,y随着x的 增大而减小 在对称轴的右侧, y随着x的 增大而增大.
在对称轴的左侧,y随着x的 增大而增大. 在对称轴的右侧, y随着x的 增大而减小.
最值
得到y=2 x2 -4x-1则a= ,b= ,c=
.
3与.如分图别,经两过条点抛(物-2线,0)y,1(2,012)x且2 平1行、于y2y轴的12两x 2条1
平行线围成的阴影部分的面积为( ) A.8 B.6 C.10 D.4
抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方 程ax2+bx+c=0的根的情况说明:
1、二次函数的定义
如果函数 y k 1 xk2k2 kx 1 是关于x的二次函
数,则k=
?
一般地, 如果y=ax2+bx+c(a,b,c 是常数,a≠0), 那么,y叫做x的二次函数。
2、二次函数的图像和性质(画两幅图)
抛物线 顶点坐标 对称轴 开口方向
第十六讲义章二次函数单元复习课件
(3)根据图像说明,x为何值时,y<0?
解:由图像可知,顶点坐标是(-2,-1),(2)x=0或x=-4
设函数关系式为:ya(x2)21
过点(0,0)
(3)-4<x<0
所以,0=4a-1
即a= 1
故函数4 解析式是 y 1(x2)2 1
4
学以致用
1.(连云港) 丁丁推铅球的出手高度为1 .6 m ,在如图
图象
思维பைடு நூலகம்展
2.如下表,a,b,c满足表格中的条件,那么抛物线
yax2bxc的解析式是( )
A.yx23x4 B.yx23x5
√ C.yx24x4 D.yx24x5
提示:仔细观察表中的数据,你能从中看出什么?
思维拓展
3. 二次函数图像如图所示: (1)求它的解析式
(2)根据图像说明,x为何值时,y=0?
当x= -1 时,y有最 大 值,此值是 -1 。
,
4、请写出一个二次函数解析式,使其图像的对称轴为x=1, 并且开口向下。
y2x24x1?
基础演练
1. 如图,抛物线 y=ax2+bx+c,请判断下列 各式的符号:
①a 0; ②b 0; ③c 0; ④b2 - 4ac 0;
y
C
O A Bx
小结:a 决定开口方向,c决定与y轴交点位置,b2 - 4ac 决定与x轴交点个数,a,b结合决定对称轴;
变变式式12::若若抛抛物物线线yyaxx2243xx3a的2图1的象图如象图如,图则,
则△aA=BC的面积. 是
。
思维拓展
1.下列各图中可能是函数 y ax2 c
与 y a (a0,c0 )的图象的是( )
第1讲二次函数的图象和性质复习课件(共39张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.
中考数学考前冲刺——《二次函数》复习课件(19张PPT)
顶点为(1,5)或(1,-5)
所以其解析式为:
(1) y=(x-1)2+5
(2) y=(x-1)2-5
(3) y=-(x-1)2+5
(4) y=-(x-1)2-5
展开成一般式即可.
课后作业
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
4、a,b,c符号的确定
二次函数y=ax2+bx+c(a≠0)的几个特例:
1)、当x=1 时,y= a+b+c >0
y
2)、当x=-1时, y= a-b+c =0 x -2 -1 o 1 2
3)、当x=2时,y= 4a+2b+c >0
练习 左加右减,上加下减
⑴二次函数y=2x2的图象向下 平移 3 个单位可得
到y=2x2-3的图象; 二次函数y=2x2的图象向右 平移3 个单位可得到
y=2(x-3)2的图象。 ⑵二次函数y=2x2的图象先向左 平移1 个单位, 再向 上 平移 2 个单位可得到函数y=2(x+1)2+2的
图象。
引申:y=2(x+3)2-4
y=2(x+1)2+2
6、二次函数与一元二次方程的关系
判别式: b2-4ac
b2-4ac>0
二次函数 y=ax2+bx+c
(a≠0)
与x轴有两个不 同的交点 (x1,0) (x2,0)
b2-4ac=0 与交x点轴有( 唯b 一,0)个
2a
图象
y
O
x y Ox
一元二次方程 ax2+bx+c=0
(a≠0)的根
二次函数复习课课件
对称变换
总结词
对称变换是指二次函数的图像关 于某条直线进行对称。
详细描述
对称变换包括关于x轴、y轴或原点 对称。在对称变换过程中,二次函 数的开口方向、顶点和对称轴等性 质可能发生变化。
举例
将二次函数$f(x) = x^2 - 2x$的图 像关于x轴对称,得到新的函数$f(x) = (-x)^2 - 2(-x) = x^2 + 2x$。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。 当$a > 0$时,抛物线开口向上; 当$a < 0$时,抛物线开口向下。 抛物线的对称轴是直线$x = frac{b}{2a}$,顶点位于该对称轴 上,坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
详细描述
顶点式是二次函数的一种特殊形式,它通过完全平方的形式简化了函数表达式 ,使得函数图像的顶点和对称轴更加直观。顶点式在解决与二次函数顶点相关 的问题时非常有用。
交点式
总结词
二次函数的交点式为y=a(x-x1)(x-x2),其中x1、x2为函数与x轴的交点。
详细描述
交点式是二次函数的一种特殊形式,它通过将函数表示为两个一次因式的乘积, 突出了函数与x轴的交点。交点式在解决与二次函数与x轴交点相关的问题时非常 有用。
03
二次函数的图像变换
平移变换
总结词
平移变换是指二次函数的图像在 平面坐标系中沿x轴或y轴方向移
动。
详细描述
平移变换包括向左或向右移动图 像,以及向上或向下移动图像。 在平移过程中,二次函数的开口 方向、顶点和对称轴等性质保持
二次函数全章复习课件
当 x = 3 时,设计费最多,为 9 000 元.
2.练习,巩固所学二次函数内容
问题5 某商场销售一批名牌衬衫,平均每天可售出 20 件, 进价是每件 80 元,售价是每件 120 元,为了扩大销售, 增加盈利, 减少库存, 商场决定采取适当的降价措施, 经调查发现,如果每件衬衫降低 1 元, 商场平均每天可 多售出 2 件,但每件最低价不得低于 108 元. (1)若每件衬衫降低 x 元(x 取整数),商场平均 每天盈利 y 元, 试写出 y 与 x 之间的函数关系式,并写 出自变量 x 的取值范围.
y x x 1
2
(2)图象的顶点为(-1,-8),且过点(0,-6);
2 y =2 (x + 1 ) -8
2.练习,巩固所学二次函数内容
(3)图象经过(3,0),(2,-3)两点,并且以 x = 1 为对称轴;
y x 2x 3
2
(4)图象经过一次函数 y = -x + 3 图象与坐标轴的 两个交点,并且经过点(1,1). 1 2 5 y x x3 2 2
1.复习知识,回顾方法
(3)二次函数的性质 ① 若 a>0,当______,y 随 x 的增大而增大; 当______,y 随 x 的增大而减小; 若 a<0,当______,y 随 x 的增大而增大; 当______,y 随 x 的增大而减小. ② 二次函数的最值 若 a>0,当______时,y 有最____值,是____; 若 a<0,当______时,y 有最____值,是____; ③ 二次函数的平移. ④ 二次函数中的系数 a,b,c 的作用.
难点突破之思维激活
1.已知抛物线y=ax2+bx+c的对称轴为x=2, 且经过点(3,0),则a+b+c的值为 。 2.已知抛物线y=ax2+bx+c经过点A(-2,7),
二次函数复习课精选教学PPT课件
感谢父母给了我生命和无私的爱; 感谢老师给了我知识和看世界的眼睛;
感谢朋友给了我友谊和支持; 感谢完美给了我信任和展示自己能力的机会;
感谢邻家的小女孩给我以纯真无邪的笑脸; 感谢周围所有的人给了我与他人交流勾通时的快乐; 感谢生活所给予我的一切,虽然并不全都是美满和幸福;
感谢天空,给我提供了一个施展的舞台 感谢大地,给我无穷的支持与力量; 感谢太阳,给我提供光和热;
想一想
什么叫做二次函数?你能举例说明吗?
一般地,形如y=ax2+bx+c(a、b、c是常数,且a≠0)的 函数叫做x的二次函数。
注意:
1、x是自变量,y是用x的二次整式表示的. y是x的二次函数。 2、 a≠0,但b、c可以为0。 3、通过恒等变形,可以化为y=ax2+bx+c这种形式的函数,
它也可为y=a(x-h)2+k 或y=a(x-x1)(x-x2)的形式。
2a
4a
当a>0时y有最大值
当x b 时,最大值为 4ac b2
2a
4a
二次函数y=ax2+bx+c的其它性质
⑴a的符号决定开口方向:a>0开口向上,a<0开口向下
⑵ a、b的符号决定对称轴位置: a、b同号对称轴偏在y轴左侧 a、b异号对称轴偏在y轴右侧
⑶c决定y轴的交点的位置:当x=0时,y=c;即(0,c) 当c>0时 交y轴正半轴, c<0交y轴负半轴.
x=0
式
y =a(x-h)2 a>0向上
x =h
a<0向下
(0,0) (0,k) (h,0)
当a>0时在对 称轴的左侧y 随x的增大而 减小在对称轴
的右侧y随x的 增大而增大
当x=0时y最大(小)值是0 当x=0时y最大(小)值是k 当x =h时y最大(小)值是0
感谢朋友给了我友谊和支持; 感谢完美给了我信任和展示自己能力的机会;
感谢邻家的小女孩给我以纯真无邪的笑脸; 感谢周围所有的人给了我与他人交流勾通时的快乐; 感谢生活所给予我的一切,虽然并不全都是美满和幸福;
感谢天空,给我提供了一个施展的舞台 感谢大地,给我无穷的支持与力量; 感谢太阳,给我提供光和热;
想一想
什么叫做二次函数?你能举例说明吗?
一般地,形如y=ax2+bx+c(a、b、c是常数,且a≠0)的 函数叫做x的二次函数。
注意:
1、x是自变量,y是用x的二次整式表示的. y是x的二次函数。 2、 a≠0,但b、c可以为0。 3、通过恒等变形,可以化为y=ax2+bx+c这种形式的函数,
它也可为y=a(x-h)2+k 或y=a(x-x1)(x-x2)的形式。
2a
4a
当a>0时y有最大值
当x b 时,最大值为 4ac b2
2a
4a
二次函数y=ax2+bx+c的其它性质
⑴a的符号决定开口方向:a>0开口向上,a<0开口向下
⑵ a、b的符号决定对称轴位置: a、b同号对称轴偏在y轴左侧 a、b异号对称轴偏在y轴右侧
⑶c决定y轴的交点的位置:当x=0时,y=c;即(0,c) 当c>0时 交y轴正半轴, c<0交y轴负半轴.
x=0
式
y =a(x-h)2 a>0向上
x =h
a<0向下
(0,0) (0,k) (h,0)
当a>0时在对 称轴的左侧y 随x的增大而 减小在对称轴
的右侧y随x的 增大而增大
当x=0时y最大(小)值是0 当x=0时y最大(小)值是k 当x =h时y最大(小)值是0
人教版九年级上册数学第22章二次函数复习课件(36张)
[注意] (1)等号右边必须是整式;(2)自变量的 最高次数是2;(3)当b=0,c=0时,y=ax2是特 殊的二次函数.
注意:
开口方向与 a 的关系; 抛物线与 y 轴的交点与 c 的关系;
对称轴与 a,b 的关系; 抛物线与 x 轴交点数目与 b2-4ac 的符号关系。
抛物线 y=ax2 的图象 :
若抛物线 y=-7(x+4)2-1平移得到 y=-7x2,则可 能( B ) A.先向左平移4个单位,再向下平移1个单位 B.先向右平移4个单位,再向上平移1个单位 C.先向左平移1个单位,再向下平移4个单位 D.先向右平移1个单位,再向下平移4个单位
已知关于x的二次函数,当x=-1时,函数值为10,当x=1
∴当x=87时,W有最大值,此时W=-(87-
90)2+900=891.
一家电脑公司推出一款新型电脑,投放市场以来3个月的利 润情况如图所示,该图可以近似看作为抛物线的一部分,请结 合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式; (2)该公司在经营此款电脑过程中,第 几月的利润最大?最大利润是多少? (3)若照此经营下去,请你结合所学的 知识,对公司在此款电脑的经营状况 (是否亏损?何时亏损?)作预测分析.
中考热点
1. 二次函数的定义、图象、图象的 平移、性质、图象与系数的关系。
2. 二次函数解析式求法。 3. 二次函数图象与一元二次方程的 根的关系。
本章易错点
1. 二次函数的情势及结构特点。 2. 忽略自变量的取值范围,误认为二次 函数的最值点就是顶点。 3. 二次函数与一元二次方程的关系。 4. 点的坐标与距离的区分和联系。
顶点式y=a(x-h)2+k的情势,得到: 对称轴是直线x=h,最值为y=k,顶 点坐标为(h,k);
注意:
开口方向与 a 的关系; 抛物线与 y 轴的交点与 c 的关系;
对称轴与 a,b 的关系; 抛物线与 x 轴交点数目与 b2-4ac 的符号关系。
抛物线 y=ax2 的图象 :
若抛物线 y=-7(x+4)2-1平移得到 y=-7x2,则可 能( B ) A.先向左平移4个单位,再向下平移1个单位 B.先向右平移4个单位,再向上平移1个单位 C.先向左平移1个单位,再向下平移4个单位 D.先向右平移1个单位,再向下平移4个单位
已知关于x的二次函数,当x=-1时,函数值为10,当x=1
∴当x=87时,W有最大值,此时W=-(87-
90)2+900=891.
一家电脑公司推出一款新型电脑,投放市场以来3个月的利 润情况如图所示,该图可以近似看作为抛物线的一部分,请结 合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式; (2)该公司在经营此款电脑过程中,第 几月的利润最大?最大利润是多少? (3)若照此经营下去,请你结合所学的 知识,对公司在此款电脑的经营状况 (是否亏损?何时亏损?)作预测分析.
中考热点
1. 二次函数的定义、图象、图象的 平移、性质、图象与系数的关系。
2. 二次函数解析式求法。 3. 二次函数图象与一元二次方程的 根的关系。
本章易错点
1. 二次函数的情势及结构特点。 2. 忽略自变量的取值范围,误认为二次 函数的最值点就是顶点。 3. 二次函数与一元二次方程的关系。 4. 点的坐标与距离的区分和联系。
顶点式y=a(x-h)2+k的情势,得到: 对称轴是直线x=h,最值为y=k,顶 点坐标为(h,k);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线 y 0.1(x k)2 2.5
y
①求k的值
②求铅球的落点与丁丁
的距离
③一个1.5m的小朋友跑到
离原点6米的地方(如图),
O
x
Байду номын сангаас
他会受到伤害吗?
参考答案
①求k的值
y y 0.1(x 3)2 2.5
解:由图像可知,抛物
线过点(0,1.6)
即当x=0时,y=1.6
1.6=-0.1k2+2.5
开口方向
图 像
顶点
与 对称轴
性 增减性
质 最值
与一元二次方程的关系
应用
热身练习
1、函数 y (m1)xm21 3x 1,当 m= -1 时,它是二次函数
y1 y2
3、抛物线 y 2(x 1)2 1的对称轴是 X=-1,顶点坐标是(-1,-1)
当x= -1 时,y有最 大 值,此值是 -1 。
K=±3
O
又因为对称轴是在y轴的
Bx
右侧,
即x=k>0 所以,k=3
③当x=6时, y=-0.1(6-3)2+2.5
②-0.1(x-3)2+2.5=0
=1.6 >1.5
解之得,x 1
=8,x
2
=-2
所以,OB=8
所以,这个小朋友不会受到伤害。
故铅球的落点与丁丁的距离
是8米。
学以致用 x
2.(安徽)用总长为32m的篱笆墙围成一个扇形的花园.
图象
思维拓展
2.如下表,a,b,c满足表格中的条件,那么抛物线
y ax2 bx c的解析式是( )
A.y x2 3x 4 B.y x2 3x 5
√ C.y x2 4x 4 D.y x2 4x 5
提示:仔细观察表中的数据,你能从中看出什么?
思维拓展
3. 二次函数图像如图所示: (1)求它的解析式 (2)根据图像说明,x为何值时,y=0?
,
4、请写出一个二次函数解析式,使其图像的对称轴为x=1, 并且开口向下。
y 2x2 4x 1 ?
基础演练
1. 如图,抛物线 y=ax2+bx+c,请判断下列 各式的符号:
①a 0; ②c 0; ③b2 - 4ac 0; ④ b 0;
y
C
O A Bx
小结:a 决定开口方向,c决定与y轴交点位置,b2 - 4ac 决定与x轴交点个数,a,b结合决定对称轴;
变变式式12::若若抛抛物物线线yyaxx22 43xx3a的2 图1的象图如象图如,图则,
则△aA=BC的面积. 是
。
思维拓展
1.下列各图中可能是函数 y ax2 c
与 y a(a 0, c 0 )的图象的是( )
x
A
B
C
√D
小结:双图象的问题,寻找自相矛盾的地方。即由一个图象得 出字母的取值范围,再去检验这个字母的符号是否适合另一个
二次函数复习课
复习目标
①了解二次函数的定义; ②会用描点法画出二次函数的图象,能从图 象上认识二次函数的性质; ③会根据公式确定图象的顶点、开口方向、 对称轴和增减性,并解决简单的实际问题。 ④通过对实际问题情境的分析确定二次函数 的表达式,并体会二次函数的意义。
实二 际次 生函 活数
知识结构
概念:y = ax2 +bx + c(a 0)
①了解二次函数的定义; ②会用描点法画出二次函数的图象,能从图 象上认识二次函数的性质; ③会根据公式确定图象的顶点、开口方向、 对称轴和增减性,并解决简单的实际问题。 ④通过对实际问题情境的分析确定二次函数 的表达式,并体会二次函数的意义。
实二 际次 生函 活数
知识结构
概念:y = ax2 +bx + c(a 0)
变变式式12::若若抛抛物物线线yyaxx22 43xx3a的2 图1的象图如象图如,图则,
则△aA=BC的面积. 是
。
思维拓展
1.下列各图中可能是函数 y ax2 c
与 y a(a 0, c 0 )的图象的是( )
x
A
B
C
√D
小结:双图象的问题,寻找自相矛盾的地方。即由一个图象得 出字母的取值范围,再去检验这个字母的符号是否适合另一个
开口方向
图 像
顶点
与 对称轴
性 增减性
质 最值
与一元二次方程的关系
应用
热身练习
1、函数 y (m1)xm21 3x 1,当 m= -1 时,它是二次函数
y1 y2
3、抛物线 y 2(x 1)2 1的对称轴是 X=-1,顶点坐标是(-1,-1)
当x= -1 时,y有最 大 值,此值是 -1 。
(3)根据图像说明,x为何值时,y<0?
解:由图像可知,顶点坐标是(-2,-1),(2)x=0或x=-4
设函数关系式为:y a(x 2)2 1
过点(0,0)
(3)-4<x<0
所以,0=4a-1
即a= 1
故函数4解析式是 y 1 (x 2)2 1
4
学以致用
1.(连云港) 丁丁推铅球的出手高度为1.6 m,在如图 所示的直角坐标系中,铅球的运行路线近似为抛物
⑴若扇形的半径设为x(m),试用x表示弧长 32-2x ; 你能写出扇形花园的面积y(㎡)与半径x (m)之间 的函数关系式和自变量x的取值范围吗?
(2)当扇形花园半径为多少时,花园面积最大?最
大面积是多少?
(3)如果同样用32m的篱笆围成一个面积最大的矩形
花园,这个花园的面积是多少?对比上面的结论,
,
4、请写出一个二次函数解析式,使其图像的对称轴为x=1, 并且开口向下。
y 2x2 4x 1 ?
基础演练
1. 如图,抛物线 y=ax2+bx+c,请判断下列 各式的符号:
①a 0; ②b 0; ③c 0; ④b2 - 4ac 0;
y
C
O A Bx
小结:a 决定开口方向,c决定与y轴交点位置,b2 - 4ac 决定与x轴交点个数,a,b结合决定对称轴;
图象
思维拓展
2.如下表,a,b,c满足表格中的条件,那么抛物线
y ax2 bx c的解析式是( )
A.y x2 3x 4 B.y x2 3x 5
√ C.y x2 4x 4 D.y x2 4x 5
提示:仔细观察表中的数据,你能从中看出什么?
思维拓展
3. 二次函数图像如图所示: (1)求它的解析式 (2)根据图像说明,x为何值时,y=0?
(3)根据图像说明,x为何值时,y<0?
解:由图像可知,顶点坐标是(-2,-1),(2)x=0或x=-4
设函数关系式为:y a(x 2)2 1
过点(0,0)
(3)-4<x<0
所以,0=4a-1
即a= 1
故函数4解析式是 y 1 (x 2)2 1
4
回顾反思
课堂回顾 总结方法 反思提高
复习目标