二次函数单元复习课件

合集下载

中考数学专题《二次函数》复习课件(共18张PPT)

中考数学专题《二次函数》复习课件(共18张PPT)
(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5

二次函数复习课件PPT

二次函数复习课件PPT

个单位,再向 平移
个单位可
得到抛物线 y=3(x+2)2 -3.
16、将函数y=-3(x-1)2-1的图象 (1) 沿y轴翻折后得到的函数解析式_____. (2) 沿X轴翻折后得到的函数解析式_____. (3) 沿原点旋转180°后得到的函数解析式
_____. (4) 沿顶点旋转180°后得到的函数解析式
解: y ax2 bx c
a x2 b x c 提取二次项系数
a x2
a a
b x b 2 b 2 a 2a 2a
c a
配方:加上再减去一 次项系数绝对值一 半的平方
a
x
b 2a
2
4ac b2 4a2
整理:前三项化为平方形 式,后两项合并同类项
a x
y的 最值
增减性
在对称 在对称 轴左侧 轴右侧
y=ax2
a>0 向上 y轴
(0,0)
最小值 是0
y随x的增 y随x的增 大而减小 大而增大
a<0 向下
y轴
(0,0)
最大值 y随x的增 是0 大而增大
y随x的增 大而减小
y=ax2+c
a>0 向上 a<0 向下
y轴 y轴
(0,c)
最小值 是C
y随x的增 y随x的增 大而减小 大而增大
4a
➢当a>0时,抛物线的开口向上,顶点 是抛物线上的最低点;
➢当a<0时,抛物线的开口向下,顶点 是抛物线上的最高点.
二次函数关系式的常见形式:
一般式:y=ax2+bx+c 顶点式:y=a(x+m)2+k
交点式:y=a(x-x1)(x-x2)
确定二次函数的解析式时,应该根据 条件的特点,恰当地选用一种函数表达式.

(用)第22章二次函数复习课件

(用)第22章二次函数复习课件

8、总结提高:求二次函数 y=ax2+bx+c 的解析 式时 (1)关键是求出待定系数____________ a,b,c 的值.
(2)设解析式的三种形式:
2+bx+c (a≠0) y = ax ①一般式:________________________,当已知抛物线
上三个点时,用一般式比较简便;
(4)b2-4ac的符号: a、b同号 a、b异号 b=0
由抛物线与x轴的交点个数确定
与x轴有两个交点 与x轴有一个交点 与x轴无交点 b2-4ac>0 b2-4ac=0 b2-4ac<0
巩固练习1: 2 上 ,对称轴是 Y轴 (1)抛物线y =3x 2的开口向 , (0,0) 顶点坐标是 ,图象过第 一、二 象限 ; (2)已知y = - nx 2 (n>0) , 则图象 (不可能 )
B.6.18< X <6.19 D.6.19< X <6.20
3、已知二次函数 y a( x 1)2 c 的图象如图所示,则函数 y ax c
的图象只可能是( D )
1
y
0
x
y
y
y
y
0
x
0
x
0
x
0
x
( A)
( B)
(C )
(D)
(16)小明从右边的二次函数y=ax2+bx+c的图 象观察得出下面的五条信息:① a< 0;② c=0; ③ 函数的最小值为-3; ④当x<0时,y>0; ⑤当0 <x1<x2<2时,y1 > y2 你认为其中正确的个数有 y ( ) A.2 B. 3 C.4 D. 5
答:定价为70元/个,利润最高为9000元.
练一练:已知y=ax2+bx+c的图象如图所示,

二次函数复习-完整版PPT课件

二次函数复习-完整版PPT课件
学练优九年级数学上(RJ) 教学课件
第二十二章 二次函数
复习课
知识网络
专题复习
课堂小结
课后训练
知识网络
二次函数的概念
定义 一般形式
y=a2bc
a,b,c是常数,a≠0
自变量的取值范围 全体实数
图象
一条抛物线
一般式

次 解析式形式 顶点式


交点式
y=a2bca≠0 y=a-h2 y=a-1-2
y=a2bc
1,2);
y
C’
C
Q
B
OA x
图2
丙1,15

0,1
4,1
1m

2.5m

1m
4m
解:如图建立平面直角坐标系,可设抛物a线的b 解1析1式.5,为y=a2b1
点(1,15)、(4,1)在抛物线上,得 16a 4b 1 1,
解得:a , 所1 ,b以抛2 物线解析式为
63
y1x22x1(1≤ x≤ 4) , 63
当=25时,y=1625所以丁同学的身高为1625米


二次函数的概念 及图象特征
用数形结合 的方法去研 究和运用
建立二次函数模型, 将实际问题数学化, 运用二次函数知识 解决实际问题
课后训练
=-2-523 ,下列说法正确的是( )
A
A开口向下,顶点坐标5,3 B开口向上,顶点坐标5,3
C开口向下,顶点坐标-5,3 D开口向上,顶点坐标-5,3
>0, b<0,c>0时,下列图象有可能是抛物线y=a2bc的是 ( A)
a ≠ 0 性 质 六点、一轴、一方及增减性与最值

人教版九年级数学上册第22章二次函数章末复习课件 (共68张ppt)

人教版九年级数学上册第22章二次函数章末复习课件 (共68张ppt)

(4)当图像与x轴 有两个交点时, b2-4ac>0;当图像与x轴只有一个 交点时, b2-4ac=0; 当图像与x轴没有交点时, b2-4ac<0. (5)图像过点(1, a+b+c)和点(-1, a-b+c), 再根据图像上的点的位置可 确定式子a+b+c和a-b+c的符号.
例1 已知二次函数y=ax2+bx+c的图像如图22-Z-1所示, 那么下
二次函数 的图像和
性质
开口方向
a>0, 图像开口向上 a<0, 图像开口向下
对称轴
a, b同号, 对称轴在y轴左侧 a, b异号, 对称轴在y轴右侧
烦烦烦鬼鬼鬼鬼 鬼鬼鬼鬼跟鬼鬼 鬼鬼鬼g鬼鬼
二次函数 的图像和
性质
a>0 增减性
a<0
最值
二次函数 的解析式
y=ax²+bx+c(a≠0)(一般式) y=a(x-h)²&#(a≠0)(交点式)
【要点指导】研究二次函数的图像的平移、轴对称变换过程, 实 际 就是确定变换后所得图像的二次函数解析式, 研究变换后的图 像和性质 的过程, 关键是找到变换后图像上的特殊点(如抛物线的 顶点), 从而得出 函数解析式, 最后利用二次函数的性质解答.
例4 如图22-Z-3, 在平面直角坐标系 xOy中, 将抛物线y=2x2沿y轴 向上平移1个单 位长度, 再沿x轴向右平移2个单位长度, 平移 后所 得抛物线的顶点记作A, 直线x=3与平移 后的抛物线相交于点B, 与 直线OA相交于点C. (1)求平移后的抛物线的函数解析式; (2)求点C的坐标及△ABC的面积.
例2 已知二次函数的图像以A(-1, 4)为顶点, 且过点B(2, -5). (1)求该函数的解析式; (2)求该函数图像与坐标轴的交点坐标.

二次函数复习(共36张PPT)

二次函数复习(共36张PPT)

y=ax2+bx+c的图 方程ax2+bx+c=0
象和x轴交点
的根
b2-4ac
有两个交点
方程有两个不相等的 b2-4ac>0
实数根
只有一个交点
方程有两个相等的 b2-4ac=0
实数根
没有交点
方程没有实数根 b2-4ac<0
函数的图象
y
.
. ox
y
o
x
y
o
x
根据下列表格中二次函数y=ax2+bx+c的自变量与函数 值的对应值,判断方程ax2+bx+c =0
(4)函数的自变量x的取值范围:任意实数
当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范
围.
二次函数的一般形式:
• 函数y=ax2+bx+c
– 其中a、b、c是常数 – 切记:a≠0 – 右边一个x的二次多项式(不能是分式或根式)
二次函数的特殊形式:
当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
向上
直线X=-h
(-h,k)
a < 0 向下
图象的平移规律:
对于抛物线y=a(x+h)2+k的平移有以下规律: (1)、平移不改变 a 的值; (2)、h决定图象沿x轴方向左右平移,左+右— (3)、k决定图象沿y轴方向上下平移,上+下—
知识运用
(坐1标)是抛物线,图(y0象=,0过)x32 第2的开口向一象、,限对上二称;轴是
二次函数 开 口 方 向 对 称 轴 顶 点 坐 标
y = ax 2
a > 0 向上 直线X=0 a < 0 向下 (或y轴)

初中数学《二次函数》复习课名师教学PPT课件

初中数学《二次函数》复习课名师教学PPT课件

3.某商场试销一种成本为每件60元的服装,规定试销期 间销售单价不低于成本单价,且获利不得高于45%,经 试销发现,销售量y(件)与销售单价x(元)符合一次 函数y=kx+b,且x=65时,y=55;x=75时,y=45;
(1)求一次函数的解析式;
(2)若该商场获得利润为W元,试写出利润W与销售单 价x之间的关系;销售单价定为多少时,商场可获得最 大利润,最大利润是多少元?
(3)若该商场所获得利润不低于500元,试确定销售单 价x的范围.
二次函数在几何问题中的应用
1.为了节省材料,某水产养殖户利用水库的岸堤(岸堤 足够长)为一边,用总长为80m的围网在水库中围成了 如图所示的①②③三块矩形区域,而且这三块矩形区 域的面积相等.设BC的长度为xm,矩形区域ABCD的 面积为ym2.
A.图象关于直线x=1对称 B.函数y=ax2+bx+c(a≠0)的 最小值是-4 C.抛物线y=ax2+bx+c(a≠0)与x轴 的两个交点的横坐标分别是-1,3 D.当x<1时,y随x的增大而增大
2.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的 取值范围是(B)
A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
1 x
2.已知函数y=(m2+m)x2+mx+4为二次函数,则m的取值
范围是( C)
A.m≠0 B.m≠-1 C.m≠0,且m≠-1 D.m=-1
3.矩形的周长为24cm,其中一边为xcm(其中x>0), 面积为ycm2,则这样的矩形中y与x的关系可以写成 ( B)
A.y=x2 C. y=12-x2
B.y=(12-x)x D.y=2(12-x)

初三数学复习《二次函数》(专题复习)PPT课件

初三数学复习《二次函数》(专题复习)PPT课件

面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上

第1章 二次函数 浙教版九年级数学上册复习课件(共17张PPT)

第1章 二次函数 浙教版九年级数学上册复习课件(共17张PPT)

(1)已知二次函数y=ax2+bx+c的部分图象如图所示, 图象经过(1,0),从中你能得到哪些结论?
(2)m满足什么条件时方程ax2+bx+c=m,①有两个不 相等的实数根?②有两个相等的实数根?③没有实 数根?
y
4
-1
o
1
x
图1
• 若把图1的函数图象绕着顶点旋转180度,则能得
到函数的表达式是
4ac 4a
b2
直线x b 2a
向上
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b 2a
向下
增减性
在对称轴的左侧,y随着x的 增大而减小 在对称轴的右侧, y随着x的 增大而增大.
在对称轴的左侧,y随着x的 增大而增大. 在对称轴的右侧, y随着x的 增大而减小.
最值
得到y=2 x2 -4x-1则a= ,b= ,c=
.
3与.如分图别,经两过条点抛(物-2线,0)y,1(2,012)x且2 平1行、于y2y轴的12两x 2条1
平行线围成的阴影部分的面积为( ) A.8 B.6 C.10 D.4
抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方 程ax2+bx+c=0的根的情况说明:
1、二次函数的定义
如果函数 y k 1 xk2k2 kx 1 是关于x的二次函
数,则k=
?
一般地, 如果y=ax2+bx+c(a,b,c 是常数,a≠0), 那么,y叫做x的二次函数。
2、二次函数的图像和性质(画两幅图)
抛物线 顶点坐标 对称轴 开口方向

第十六讲义章二次函数单元复习课件

第十六讲义章二次函数单元复习课件

(3)根据图像说明,x为何值时,y<0?
解:由图像可知,顶点坐标是(-2,-1),(2)x=0或x=-4
设函数关系式为:ya(x2)21
过点(0,0)
(3)-4<x<0
所以,0=4a-1
即a= 1
故函数4 解析式是 y 1(x2)2 1
4
学以致用
1.(连云港) 丁丁推铅球的出手高度为1 .6 m ,在如图
图象
思维பைடு நூலகம்展
2.如下表,a,b,c满足表格中的条件,那么抛物线
yax2bxc的解析式是( )
A.yx23x4 B.yx23x5
√ C.yx24x4 D.yx24x5
提示:仔细观察表中的数据,你能从中看出什么?
思维拓展
3. 二次函数图像如图所示: (1)求它的解析式
(2)根据图像说明,x为何值时,y=0?
当x= -1 时,y有最 大 值,此值是 -1 。

4、请写出一个二次函数解析式,使其图像的对称轴为x=1, 并且开口向下。
y2x24x1?
基础演练
1. 如图,抛物线 y=ax2+bx+c,请判断下列 各式的符号:
①a 0; ②b 0; ③c 0; ④b2 - 4ac 0;
y
C
O A Bx
小结:a 决定开口方向,c决定与y轴交点位置,b2 - 4ac 决定与x轴交点个数,a,b结合决定对称轴;
变变式式12::若若抛抛物物线线yyaxx2243xx3a的2图1的象图如象图如,图则,
则△aA=BC的面积. 是

思维拓展
1.下列各图中可能是函数 y ax2 c
与 y a (a0,c0 )的图象的是( )

第1讲二次函数的图象和性质复习课件(共39张PPT)

第1讲二次函数的图象和性质复习课件(共39张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.

中考数学考前冲刺——《二次函数》复习课件(19张PPT)

中考数学考前冲刺——《二次函数》复习课件(19张PPT)

顶点为(1,5)或(1,-5)
所以其解析式为:
(1) y=(x-1)2+5
(2) y=(x-1)2-5
(3) y=-(x-1)2+5
(4) y=-(x-1)2-5
展开成一般式即可.
课后作业
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
4、a,b,c符号的确定
二次函数y=ax2+bx+c(a≠0)的几个特例:
1)、当x=1 时,y= a+b+c >0
y
2)、当x=-1时, y= a-b+c =0 x -2 -1 o 1 2
3)、当x=2时,y= 4a+2b+c >0
练习 左加右减,上加下减
⑴二次函数y=2x2的图象向下 平移 3 个单位可得
到y=2x2-3的图象; 二次函数y=2x2的图象向右 平移3 个单位可得到
y=2(x-3)2的图象。 ⑵二次函数y=2x2的图象先向左 平移1 个单位, 再向 上 平移 2 个单位可得到函数y=2(x+1)2+2的
图象。
引申:y=2(x+3)2-4
y=2(x+1)2+2
6、二次函数与一元二次方程的关系
判别式: b2-4ac
b2-4ac>0
二次函数 y=ax2+bx+c
(a≠0)
与x轴有两个不 同的交点 (x1,0) (x2,0)
b2-4ac=0 与交x点轴有( 唯b 一,0)个
2a
图象
y
O
x y Ox
一元二次方程 ax2+bx+c=0
(a≠0)的根

二次函数复习课课件

二次函数复习课课件

对称变换
总结词
对称变换是指二次函数的图像关 于某条直线进行对称。
详细描述
对称变换包括关于x轴、y轴或原点 对称。在对称变换过程中,二次函 数的开口方向、顶点和对称轴等性 质可能发生变化。
举例
将二次函数$f(x) = x^2 - 2x$的图 像关于x轴对称,得到新的函数$f(x) = (-x)^2 - 2(-x) = x^2 + 2x$。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。 当$a > 0$时,抛物线开口向上; 当$a < 0$时,抛物线开口向下。 抛物线的对称轴是直线$x = frac{b}{2a}$,顶点位于该对称轴 上,坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
详细描述
顶点式是二次函数的一种特殊形式,它通过完全平方的形式简化了函数表达式 ,使得函数图像的顶点和对称轴更加直观。顶点式在解决与二次函数顶点相关 的问题时非常有用。
交点式
总结词
二次函数的交点式为y=a(x-x1)(x-x2),其中x1、x2为函数与x轴的交点。
详细描述
交点式是二次函数的一种特殊形式,它通过将函数表示为两个一次因式的乘积, 突出了函数与x轴的交点。交点式在解决与二次函数与x轴交点相关的问题时非常 有用。
03
二次函数的图像变换
平移变换
总结词
平移变换是指二次函数的图像在 平面坐标系中沿x轴或y轴方向移
动。
详细描述
平移变换包括向左或向右移动图 像,以及向上或向下移动图像。 在平移过程中,二次函数的开口 方向、顶点和对称轴等性质保持

二次函数全章复习课件

二次函数全章复习课件

当 x = 3 时,设计费最多,为 9 000 元.
2.练习,巩固所学二次函数内容
问题5 某商场销售一批名牌衬衫,平均每天可售出 20 件, 进价是每件 80 元,售价是每件 120 元,为了扩大销售, 增加盈利, 减少库存, 商场决定采取适当的降价措施, 经调查发现,如果每件衬衫降低 1 元, 商场平均每天可 多售出 2 件,但每件最低价不得低于 108 元. (1)若每件衬衫降低 x 元(x 取整数),商场平均 每天盈利 y 元, 试写出 y 与 x 之间的函数关系式,并写 出自变量 x 的取值范围.
y x x 1
2
(2)图象的顶点为(-1,-8),且过点(0,-6);
2 y =2 (x + 1 ) -8
2.练习,巩固所学二次函数内容
(3)图象经过(3,0),(2,-3)两点,并且以 x = 1 为对称轴;
y x 2x 3
2
(4)图象经过一次函数 y = -x + 3 图象与坐标轴的 两个交点,并且经过点(1,1). 1 2 5 y x x3 2 2
1.复习知识,回顾方法
(3)二次函数的性质 ① 若 a>0,当______,y 随 x 的增大而增大; 当______,y 随 x 的增大而减小; 若 a<0,当______,y 随 x 的增大而增大; 当______,y 随 x 的增大而减小. ② 二次函数的最值 若 a>0,当______时,y 有最____值,是____; 若 a<0,当______时,y 有最____值,是____; ③ 二次函数的平移. ④ 二次函数中的系数 a,b,c 的作用.
难点突破之思维激活
1.已知抛物线y=ax2+bx+c的对称轴为x=2, 且经过点(3,0),则a+b+c的值为 。 2.已知抛物线y=ax2+bx+c经过点A(-2,7),

二次函数复习课精选教学PPT课件

二次函数复习课精选教学PPT课件
感谢父母给了我生命和无私的爱; 感谢老师给了我知识和看世界的眼睛;
感谢朋友给了我友谊和支持; 感谢完美给了我信任和展示自己能力的机会;
感谢邻家的小女孩给我以纯真无邪的笑脸; 感谢周围所有的人给了我与他人交流勾通时的快乐; 感谢生活所给予我的一切,虽然并不全都是美满和幸福;
感谢天空,给我提供了一个施展的舞台 感谢大地,给我无穷的支持与力量; 感谢太阳,给我提供光和热;
想一想
什么叫做二次函数?你能举例说明吗?
一般地,形如y=ax2+bx+c(a、b、c是常数,且a≠0)的 函数叫做x的二次函数。
注意:
1、x是自变量,y是用x的二次整式表示的. y是x的二次函数。 2、 a≠0,但b、c可以为0。 3、通过恒等变形,可以化为y=ax2+bx+c这种形式的函数,
它也可为y=a(x-h)2+k 或y=a(x-x1)(x-x2)的形式。
2a
4a
当a>0时y有最大值
当x b 时,最大值为 4ac b2
2a
4a
二次函数y=ax2+bx+c的其它性质
⑴a的符号决定开口方向:a>0开口向上,a<0开口向下
⑵ a、b的符号决定对称轴位置: a、b同号对称轴偏在y轴左侧 a、b异号对称轴偏在y轴右侧
⑶c决定y轴的交点的位置:当x=0时,y=c;即(0,c) 当c>0时 交y轴正半轴, c<0交y轴负半轴.
x=0

y =a(x-h)2 a>0向上
x =h
a<0向下
(0,0) (0,k) (h,0)
当a>0时在对 称轴的左侧y 随x的增大而 减小在对称轴
的右侧y随x的 增大而增大
当x=0时y最大(小)值是0 当x=0时y最大(小)值是k 当x =h时y最大(小)值是0

人教版九年级上册数学第22章二次函数复习课件(36张)

人教版九年级上册数学第22章二次函数复习课件(36张)
[注意] (1)等号右边必须是整式;(2)自变量的 最高次数是2;(3)当b=0,c=0时,y=ax2是特 殊的二次函数.
注意:
开口方向与 a 的关系; 抛物线与 y 轴的交点与 c 的关系;
对称轴与 a,b 的关系; 抛物线与 x 轴交点数目与 b2-4ac 的符号关系。
抛物线 y=ax2 的图象 :
若抛物线 y=-7(x+4)2-1平移得到 y=-7x2,则可 能( B ) A.先向左平移4个单位,再向下平移1个单位 B.先向右平移4个单位,再向上平移1个单位 C.先向左平移1个单位,再向下平移4个单位 D.先向右平移1个单位,再向下平移4个单位
已知关于x的二次函数,当x=-1时,函数值为10,当x=1
∴当x=87时,W有最大值,此时W=-(87-
90)2+900=891.
一家电脑公司推出一款新型电脑,投放市场以来3个月的利 润情况如图所示,该图可以近似看作为抛物线的一部分,请结 合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式; (2)该公司在经营此款电脑过程中,第 几月的利润最大?最大利润是多少? (3)若照此经营下去,请你结合所学的 知识,对公司在此款电脑的经营状况 (是否亏损?何时亏损?)作预测分析.
中考热点
1. 二次函数的定义、图象、图象的 平移、性质、图象与系数的关系。
2. 二次函数解析式求法。 3. 二次函数图象与一元二次方程的 根的关系。
本章易错点
1. 二次函数的情势及结构特点。 2. 忽略自变量的取值范围,误认为二次 函数的最值点就是顶点。 3. 二次函数与一元二次方程的关系。 4. 点的坐标与距离的区分和联系。
顶点式y=a(x-h)2+k的情势,得到: 对称轴是直线x=h,最值为y=k,顶 点坐标为(h,k);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线 y 0.1(x k)2 2.5
y
①求k的值
②求铅球的落点与丁丁
的距离
③一个1.5m的小朋友跑到
离原点6米的地方(如图),
O
x
Байду номын сангаас
他会受到伤害吗?
参考答案
①求k的值
y y 0.1(x 3)2 2.5
解:由图像可知,抛物
线过点(0,1.6)
即当x=0时,y=1.6
1.6=-0.1k2+2.5
开口方向
图 像
顶点
与 对称轴
性 增减性
质 最值
与一元二次方程的关系
应用
热身练习
1、函数 y (m1)xm21 3x 1,当 m= -1 时,它是二次函数
y1 y2
3、抛物线 y 2(x 1)2 1的对称轴是 X=-1,顶点坐标是(-1,-1)
当x= -1 时,y有最 大 值,此值是 -1 。
K=±3
O
又因为对称轴是在y轴的
Bx
右侧,
即x=k>0 所以,k=3
③当x=6时, y=-0.1(6-3)2+2.5
②-0.1(x-3)2+2.5=0
=1.6 >1.5
解之得,x 1
=8,x
2
=-2
所以,OB=8
所以,这个小朋友不会受到伤害。
故铅球的落点与丁丁的距离
是8米。
学以致用 x
2.(安徽)用总长为32m的篱笆墙围成一个扇形的花园.
图象
思维拓展
2.如下表,a,b,c满足表格中的条件,那么抛物线
y ax2 bx c的解析式是( )
A.y x2 3x 4 B.y x2 3x 5
√ C.y x2 4x 4 D.y x2 4x 5
提示:仔细观察表中的数据,你能从中看出什么?
思维拓展
3. 二次函数图像如图所示: (1)求它的解析式 (2)根据图像说明,x为何值时,y=0?

4、请写出一个二次函数解析式,使其图像的对称轴为x=1, 并且开口向下。
y 2x2 4x 1 ?
基础演练
1. 如图,抛物线 y=ax2+bx+c,请判断下列 各式的符号:
①a 0; ②c 0; ③b2 - 4ac 0; ④ b 0;
y
C
O A Bx
小结:a 决定开口方向,c决定与y轴交点位置,b2 - 4ac 决定与x轴交点个数,a,b结合决定对称轴;
变变式式12::若若抛抛物物线线yyaxx22 43xx3a的2 图1的象图如象图如,图则,
则△aA=BC的面积. 是

思维拓展
1.下列各图中可能是函数 y ax2 c
与 y a(a 0, c 0 )的图象的是( )
x
A
B
C
√D
小结:双图象的问题,寻找自相矛盾的地方。即由一个图象得 出字母的取值范围,再去检验这个字母的符号是否适合另一个
二次函数复习课
复习目标
①了解二次函数的定义; ②会用描点法画出二次函数的图象,能从图 象上认识二次函数的性质; ③会根据公式确定图象的顶点、开口方向、 对称轴和增减性,并解决简单的实际问题。 ④通过对实际问题情境的分析确定二次函数 的表达式,并体会二次函数的意义。
实二 际次 生函 活数
知识结构
概念:y = ax2 +bx + c(a 0)
①了解二次函数的定义; ②会用描点法画出二次函数的图象,能从图 象上认识二次函数的性质; ③会根据公式确定图象的顶点、开口方向、 对称轴和增减性,并解决简单的实际问题。 ④通过对实际问题情境的分析确定二次函数 的表达式,并体会二次函数的意义。
实二 际次 生函 活数
知识结构
概念:y = ax2 +bx + c(a 0)
变变式式12::若若抛抛物物线线yyaxx22 43xx3a的2 图1的象图如象图如,图则,
则△aA=BC的面积. 是

思维拓展
1.下列各图中可能是函数 y ax2 c
与 y a(a 0, c 0 )的图象的是( )
x
A
B
C
√D
小结:双图象的问题,寻找自相矛盾的地方。即由一个图象得 出字母的取值范围,再去检验这个字母的符号是否适合另一个
开口方向
图 像
顶点
与 对称轴
性 增减性
质 最值
与一元二次方程的关系
应用
热身练习
1、函数 y (m1)xm21 3x 1,当 m= -1 时,它是二次函数
y1 y2
3、抛物线 y 2(x 1)2 1的对称轴是 X=-1,顶点坐标是(-1,-1)
当x= -1 时,y有最 大 值,此值是 -1 。
(3)根据图像说明,x为何值时,y<0?
解:由图像可知,顶点坐标是(-2,-1),(2)x=0或x=-4
设函数关系式为:y a(x 2)2 1
过点(0,0)
(3)-4<x<0
所以,0=4a-1
即a= 1
故函数4解析式是 y 1 (x 2)2 1
4
学以致用
1.(连云港) 丁丁推铅球的出手高度为1.6 m,在如图 所示的直角坐标系中,铅球的运行路线近似为抛物
⑴若扇形的半径设为x(m),试用x表示弧长 32-2x ; 你能写出扇形花园的面积y(㎡)与半径x (m)之间 的函数关系式和自变量x的取值范围吗?
(2)当扇形花园半径为多少时,花园面积最大?最
大面积是多少?
(3)如果同样用32m的篱笆围成一个面积最大的矩形
花园,这个花园的面积是多少?对比上面的结论,

4、请写出一个二次函数解析式,使其图像的对称轴为x=1, 并且开口向下。
y 2x2 4x 1 ?
基础演练
1. 如图,抛物线 y=ax2+bx+c,请判断下列 各式的符号:
①a 0; ②b 0; ③c 0; ④b2 - 4ac 0;
y
C
O A Bx
小结:a 决定开口方向,c决定与y轴交点位置,b2 - 4ac 决定与x轴交点个数,a,b结合决定对称轴;
图象
思维拓展
2.如下表,a,b,c满足表格中的条件,那么抛物线
y ax2 bx c的解析式是( )
A.y x2 3x 4 B.y x2 3x 5
√ C.y x2 4x 4 D.y x2 4x 5
提示:仔细观察表中的数据,你能从中看出什么?
思维拓展
3. 二次函数图像如图所示: (1)求它的解析式 (2)根据图像说明,x为何值时,y=0?
(3)根据图像说明,x为何值时,y<0?
解:由图像可知,顶点坐标是(-2,-1),(2)x=0或x=-4
设函数关系式为:y a(x 2)2 1
过点(0,0)
(3)-4<x<0
所以,0=4a-1
即a= 1
故函数4解析式是 y 1 (x 2)2 1
4
回顾反思
课堂回顾 总结方法 反思提高
复习目标
相关文档
最新文档