0.均值不等式的常见题型

合集下载

(完整版)均值不等式常考题型

(完整版)均值不等式常考题型

均值不等式及其应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式练习题目总结

均值不等式练习题目总结

均值不等式练习题目总结
本文总结了一些常见的均值不等式练题目。

均值不等式是数学中常用的工具,用于比较一组数的大小关系。

在解题过程中,我们可以使用不等式的性质和特点来帮助求解。

一、算术平均值和几何平均值
1. 题目:已知两个正数a和b,证明:(a + b) / 2 ≥ √(ab)
解析:这是算术平均值和几何平均值不等式的基本形式,根据不等式的性质,我们可以将等式两边平方,然后进行变形和推导,最终得到证明结果。

2. 题目:已知n个正数a1, a2, ..., an,证明:(a1 + a2 + ... + an) / n ≥ √(a1 * a2 * ... * an)
解析:这是n个正数的算术平均值和几何平均值不等式,我们可以使用数学归纳法来证明。

先证明n=2的情况,然后假设n=k成立,再推导n=k+1的情况,最终得到证明结果。

二、均值不等式的应用
1. 题目:已知正数a,b,证明:(a + b)² / 4 ≥ ab
解析:这是均值不等式的应用题,我们可以使用算术平均值和几何平均值不等式来证明。

根据不等式的性质和变形,我们可以将等式转化为相等的形式进行比较,最终得到证明结果。

2. 题目:已知正数a,b,证明:(a + b)³ / 8 ≥ a²b
解析:这是均值不等式的应用题,同样使用算术平均值和几何平均值不等式来证明。

根据不等式的性质和变形,我们可以将等式转化为相等的形式进行比较,最终得到证明结果。

以上题目只是一部分均值不等式的练题目,通过练以上题目,可以加深对均值不等式的理解和运用能力,为解决更复杂的数学问题奠定基础。

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析)一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式常见题型版

均值不等式常见题型版

均值不等式一、根本知识梳理1. 算术平均值:如果a﹑ b∈ R ,那么叫做这两个正数的算术平均值 .+2. 几何平均值:如果a﹑ b∈ R+,那么叫做这两个正数的几何平均值3. 重要不等式:如果a﹑ b∈ R,那么 a2 +b2≥( 当且仅当 a=b 时,取“ =〞 ) 均值定理:如果a﹑ b∈ R ,那么 a b ≥( 当且仅当 a=b 时,取“ =〞)+2均值定理可表达为:4.变式变形:1 ab a2 b2;22a2b; 23 ba ab 0 ;a ba 2b;4 25 2 a2 b2 .5.利用均值不等式求最值,“和定,积最大;积定,和最小〞,即两个正数的和为定值,那么可求其积的最大值;积为定值,那么可求其和的最小值。

注意三个条件:“一正,二定,三相等〞即:〔 1〕各项或各因式非负;〔 2〕和或积为定值;〔3〕各项或各因式都能取得相等的值。

6. 假设屡次用均值不等式求最值,必须保持每次取“=〞号的一致性。

有时为了到达利用均值不等式的条件,需要经过配凑﹑裂项﹑转化﹑别离常数等变形手段,创设一个应用均值不等式的情景。

二、常见题型:1、分式函数求最值,如果y f ( x) 可表示为 y mg(x)A B的形式,且g (x) 在定g(x)义域内恒正或恒负, A 0, m 0, 那么可运用均值不等式来求最值。

例:求函数y ax 2 x 1 (x1 0)的最小值。

x 1 且 aax 2 x 1 1 ax xax (1 a) a解: yx 1 axx 1 1xa(x 1)a1 2a 2a 1 2a 1 x 1a当a( x 1) 即 x=0 时等号成立,ymin 1x 112、题在给出和为定值,求和的最值时,一般情况都要对所求式子进行变形,用条件进行代换,变形之后再利用均值不等式进行求最值。

例: a 0, b0,且19 1 ,求 a b 的最小值。

a b解法一: a b 1 9 b 9a 10 2 9 16a b思路二:由191 变形可得 (a 1)(b 9) 9,a 1,b 9, 然后将 a b 变形。

均值不等式的应用(习题+答案)

均值不等式的应用(习题+答案)

均值不等式的应用(习题+答案)均值不等式应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则abba ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x+≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+abb a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式(基本不等式+知识点+例题+习题)pdf版

均值不等式(基本不等式+知识点+例题+习题)pdf版

t
t
t
答案:[2, )
例 2 求函数 y x2 3 的最小值. x2 1
解析:令 x2 1 t,t 1,则 x2 t2 1 ,带入原式化简得 y t 2 2 2 , t
当 t 2 即 t 2 时等号成立. t
答案: 2 2
例 3 已知 x 1,求 f (x) x2 x 1 的最小值. 2x 1
2
2
2 | 10
[不等式] 练习答案:
1
2
38
对勾函数:
形如 f (x) ax b (ab 0) 的函数. x
利用对勾函数性质可解决均值不等式等号不成立时的情况.
性质
a 0,b 0
y
a 0,b 0 y
图像
2 ab
Obxab a NhomakorabeaO
x
-2 ab
定义域
值域 奇偶性 渐近线
{x | x 0}
2
题型四:分离换元法求最值(二次比一次或一次比二次时用)
例 1 求函数 y x2 3 (x 1) 的值域. x 1 2
解析:令 x 1 t,t 3 ,则 x t 1,带入原式得到 y (t 1)2 3 t 4 2 ,
2
t
t
t 4 2 2 t 4 2 2 ,当 t 4 即 t 2 时等号成立.
解析:构造对勾函数 y 3x 12 ,由函数性质可知 x (3, ) 时函数单调递减, x

y
3x
12 x
y(3)
13

答案: (, 13]
练习 1 练习 2
已知 x 0 ,求函数 y x 4 的最小值. x4
已知 x 3,求函数 y 2x 3 的值域. 2x

均值不等式的题型和方法

均值不等式的题型和方法

均值不等式的题型和方法
- 题型一:配凑定和。

通过因式分解、纳入根号内、升幂等于段等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,配凑定和,求积的最大值。

- 题型二:配凑定积。

通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件。

- 题型三:配凑常数降幂。

- 题型四:配凑常数升幂。

- 题型五:约分配凑。

通过“1”变换或添项进行配凑,使分母能约去或分子能降次。

- 题型六:引入参数配凑。

某些复杂的问题难以观察出匹配的系数,但利用“等”和“定”的条件,建立方程组,解得待定系数,可开辟解题捷径。

- 题型七:引入对偶式配凑。

根据已知不等式的结构,给不等式的一端匹配一个与之对偶的式子,然后一起参与运算,创造运用均值不等式的条件。

- 题型八:确立主元配凑。

在解答多元问题时,如果不分主次来研究,问题很难解决;如果根据具体条件和解题需要,确立主元,减少变元个数,恰当配凑,可创造性地使用均值不等式。

高中数学公式完全总结归纳(均值不等式)及常见题型

高中数学公式完全总结归纳(均值不等式)及常见题型

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b ab a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

均值不等式题型汇总

均值不等式题型汇总

均值不等式题型汇总一.均值不等式:(一正,二定,三相等, 积定和最小,和定积最大) 1.原始形式:(1)若R b a ∈,,则ab b a 222≥+(2) 若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. 二维形式:(1)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3. 三维形式:(1)若*,,R c b a ∈,则33abc c b a ≥++(当且仅当c b a ==时取“=”)(2)若*,,R c b a ∈,则33⎪⎭⎫ ⎝⎛++≤c b a abc (当且仅当c b a ==时取“=”) 方法一:凑项 1. 求函数1x 16x 4)x (f 22++=的最小值。

解:原函数化为41x 16)1x (4)x (f 22-+++= 因为1x 16)1x (422+++161x 16)1x (4222=+⋅+≥ 所以12416)x (f =-≥。

当且仅当1x 16)1x (422+=+即x=1,x=-1时,12)x (f min =。

2. 设x<-1,求函数51x 4)1x (y ++++=的最值。

解:因为1x -<,即01x <+,所以0)1x (>+-,则])1(4)1([14)1(+-++--=+++x x x x 4)1(4)]1([2-=+-⋅+--≤x x 。

当且仅当)1x (4)1x (+-=+-,即3x -=时,y 有最大值,且154y max =+-=,y 无最小值。

3. 已知54x <,求函数14245y x x =-+-的最大值。

解:5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

均值不等式题型汇总

均值不等式题型汇总

均值不等式题型汇总均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。

类型一:证明题1. 设*,,1,a b R a b ∈+=求证:1125()()4a b a b ++≥2. 设,,(0,),a b c ∈+∞求证:2222222()a b b c a c a b c +++++≥++3. 设,,(0,),a b c ∈+∞求证:222b c a a b c a b c++≥++4. 设,,(0,),a b c ∈+∞求证:222a b c ab bc ac ++≥++5. 已知实数,,x y z 满足:2221x y z ++=,求xy yz +得最大值。

6. 已知正实数,,a b c ,且1abc =求证:1818189a b c +++++≥7. (2010辽宁)已知,,a b c 均为正实数,证明:2222111()63a b c a b c+++++≥,并确定,,a b c 为何值时,等号成立。

类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。

使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。

1. 设11,(0,)1x y x y∈+∞+=且,求x y +的最小值。

2. 设,(0,)1x y x y ∈+∞+=且,求112x y +的最小值。

3. 已知,a b 为正实数,且1a b +=求1ab ab+的最小值。

4. 求函数11(01)1y x x x=+<<-的最小值。

变式:求函数291(0)122y x x x =+<<-的最小值。

5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。

6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。

7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。

均值不等式

均值不等式

均值不等式题型汇总一.均值不等式:(一正,二定,三相等, 积定和最小,和定积最大)1.重要不等式:(1)若R b a ∈,,则ab b a 222≥+(2) 若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”) 2. 基本不等式:(1)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 方法一:凑项或凑系数1. (Ⅰ)若x >0,求 ( ) + 的最小值.(Ⅱ)已知0<x < ,求f (x )=x (1-3x )的最大值.2. (1)已知x >1,求f (x )=x + 的最小值;(2)已知0<x < ,求y =2x -5x 2的最大值.变式训练:1. 求函数1x 16x 4)x (f 22++=的最小值。

2.设x<-1,求函数51x 4)1x (y ++++=的最值。

3. 当时,求(82)y x x =-的最大值。

4. 设230<<x ,求函数)23(4x x y -=的最大值。

方法二:整体代换求条件最值1. 已知0,0x y >>,且191x y+=,求x y +的最小值。

2. 已知x >0,y >0,且x +8y -xy =0.(1)当x ,y 分别为何值时,xy 取得最小值?(2)当x ,y 分别为何值时,x +y 取得最小值?变式训练1. 若+∈R y x ,且12=+y x ,求yx 11+的最小值2..若实数满足2=+b a ,则b a 33+的最小值.2. 若44log log 2x y +=,求11x y+的最小值.并求x,y 的值4..若21x y +=,则24x y +的最小值是.5.. 若a>0,b>0,且3b a ab ++=,求ab 的最小值。

方法三: 分离1. 求2710(1)1x x y x x ++=>-+的值域。

2021-2022学年高一上学期数学人教A版(2019)必修第一册 均值不等式—常见题型归纳讲义

2021-2022学年高一上学期数学人教A版(2019)必修第一册 均值不等式—常见题型归纳讲义

均值不等式常规题型题型一、利用不等式求函数值域例:求下列函数的值域(1))0(1>+=x x x y (2))0(1<+=x xx y题型二:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型三:利用不等式求最值 (二)(凑系数) 1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。

2、若02<<x ,求y x x =-()63的最大值;变式:若40<<x ,求)28(x x y -=的最大值;2、求函数)2521(2512<<-+-=x x x y 的最大值; (提示:平方,利用基本不等式)变式:求函数)41143(41134<<-+-=x x x y 的最大值;题型四:巧用“1”的代换求最值问题1、已知12,0,=+>b a b a ,求t a b=+11的最小值; 法一:法二:变式1:已知22,0,=+>b a b a ,求t a b =+11的最小值;变式2:已知28,0,1x y x y>+=,求xy 的最小值;变式3:已知0,>y x ,且119x y+=,求x y +的最小值。

变式4:设0,0>>b a ,且12=+b a ,则ba a a ++21( )针对训练:变式5:已知实数,211111,0,0=+++>>b a b a 则b a 2+的最小值为_______针对训练:变式6:若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为________;针对训练:已知正数x ,y 满足x +2y -xy =0,则x +2y 的最小值为( )A.8B.4C.2D.0变式7:已知0,>y x ,822=++xy y x ,求y x 2+最小值;针对练习:已知0,>b a ,满足3++=b a ab ,求ab 范围;变式8:已知0,>y x ,122=++xy y x ,求xy 最大值;针对练习:设实数y x ,为实数,若,5422=++xy y x 则y x +2的最大值是_______题型五:分离换元法求最值(了解)1、求函数)1(11072-≠+++=x x x x y 的值域;变式1:求函数)1(182>-+=x x x y 的值域;变式2: 已知)320(2231<<+-=x x x y ,求y 的最小值题型六:恒成立问题若对∀x ≥1,不等式x +1x +1-1≥a 恒成立,则实数a 的取值范围是________.针对训练1. 正数b a ,满足,191=+ba 若不等式m x xb a -++-≥+1842对任意实数x 恒成立,则实数m 的取值范围是____ 2.3. ,0>∃x 使的01≤-+a x x,则实数a 的取值范围是________拓展:一、单选题 1.若log 2x y =-,则x y +的最小值是( )A 332B .3233C .332D .223二、填空题2.若0x y >>,则()412x y x y +-的最小值是________. 3.已知a ,b R ∈,且22a b +=,则22a b +的最小值是________.4.函数()241y x x =+-(1x >)的最小值________ 三、解答题5.已知,a b ∈R ,且02b a >>,求1(2)a a b b +-的最小值.。

均值不等式练习题

均值不等式练习题

均值不等式练习题1. 练习题一已知非零实数a、b满足ab<0,证明(a+b)/2 > √ab.解:我们将证明这个不等式是基于均值不等式的。

首先,根据均值不等式,我们知道对于任意两个正数x和y,有(x + y)/2 ≥ √xy.因此,我们可以推导出(a + b)/2 > √ab.首先,根据已知条件ab < 0,我们可以得出a和b有不同的符号。

假设a>0,b<0,那么我们可以得到√ab = √(a*(-b)) = √(a * -1 * (-b)) = √(a * 1 * b) = √(ab) < 0.另一方面,由于a>0,b<0,所以(a + b)/2 = (a + b)/2 > a/2 + b/2 > √ab + √ab = 2√ab > √ab.综上所述,我们证明了(a + b)/2 > √ab.2. 练习题二已知非零实数a、b、c满足abc = 1,证明a/b + b/c + c/a ≥ a + b + c.解:我们将证明这个不等式是基于均值不等式的。

首先,根据均值不等式,我们知道对于任意三个正数x、y、z,有(x/y + y/z + z/x)/3 ≥ (x + y + z)/(x + y + z),即(x/y + y/z + z/x) ≥ (x + y + z).因此,我们可以推导出(a/b + b/c + c/a)/3 ≥ (a + b + c)/(a + b + c),即(a/b + b/c + c/a) ≥ (a + b + c).首先,根据已知条件abc = 1,我们可以得到a、b、c有不同的符号。

假设a>0,b<0,c>0,那么我们可以得到b/c < 0,c/a > 0,那么a/b +b/c + c/a = a/b + (b/c) + (c/a) > a/√(bc) + (-1) + √(bc)/a = (a^2 - bc)/a√(bc) = (a^2 - 1)/a√(bc) = (a - 1/a)/√(bc).另一方面,由于abc = 1,我们知道√(bc) = 1/√a,所以(a - 1/a)/√(bc)= (a - 1/a)√a = (a^2 - 1)/a ≥ a + b + c.综上所述,我们证明了(a/b + b/c + c/a) ≥ (a + b + c).3. 练习题三已知非零实数a、b满足a+b = 2,证明a^2b^2(a^2+b^2) ≤ 2.解:我们将通过变量替换的方法来证明这个不等式。

均值不等式应用题

均值不等式应用题

均值不等式应用题在数学中,均值不等式是一种常用的数学工具,常用于证明数学不等式或者解决数学问题。

均值不等式有很多种形式,其中最常见的包括算术平均数和几何平均数的关系、柯西-施瓦茨不等式、夹逼准则等。

本文将通过几个具体的应用题目,来展示均值不等式在解决实际数学问题中的重要性和有效性。

应用题一:设实数a、b、c均大于1,且满足abc=1,求证:a+b+c≥3。

解析:由已知条件abc=1,可得a=1/bc。

则要证明a+b+c≥3,即证明1/bc+b+c≥3。

根据均值不等式,对1/bc,b,c进行取平均数得到:(1/bc+b+c)/3 ≥ (1/bc * b * c)^(1/3) = 1即1/bc+b+c≥3,得证。

应用题二:已知三角形ABC的三边长分别为a、b、c,求证:a^2+ b^2 + c^2 ≥ ab + bc + ac。

解析:要证明a^2 + b^2 + c^2 ≥ ab + bc + ac,即证明(a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0。

根据均值不等式,对(a-b)^2,(b-c)^2,(c-a)^2进行取平均数得到:((a-b)^2 + (b-c)^2 + (c-a)^2)/3 ≥ ((a-b)(b-c)(c-a))^(2/3)化简得(a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0,得证。

应用题三:已知实数x、y、z均为正数,且满足x^2 + y^2 + z^2 = 1,求证:xy + yz + zx ≤ 1/3。

解析:要证明xy + yz + zx ≤ 1/3,即证明3(xy + yz + zx) ≤ 1。

根据均值不等式,对xy,yz,zx进行取算术平均数得到:(xy + yz + zx)/3 ≤ ((x^2 + y^2 + z^2)/3)^(1/2) = (1/3)^(1/2)即xy + yz + zx ≤ 1/3,得证。

通过以上三个具体的应用题目,我们可以看到均值不等式在解决实际数学问题中的广泛应用和重要性。

均值不等式常考题型

均值不等式常考题型

均值不等式及其应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) (注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x 解:(1)y =3x 2+12x 2 ≥23x 2·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x =2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x =-2∴值域为(-∞,-2]∪[2,+∞)(解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式常见题型整理

均值不等式常见题型整理

均值没有等式之阳早格格创做一、基原知识梳理1.算术仄衡值:如果a ﹑b ∈R +,那么喊干那二个正数的算术仄衡值.2.几许仄衡值:如果a ﹑b ∈R +,那么喊干那二个正数的几许仄衡值3.要害没有等式:如果a ﹑b ∈R ,那么a 2+b 2≥(当且仅当a=b 时,与“=”) 均值定理:如果a ﹑b ∈R +,那么2a b≥(当且仅当a=b 时,与“=”)均值定理可道述为: 4.变式变形:5.利用均值没有等式供最值,“战定,积最大;积定,战最小”,即二个正数的战为定值,则可供其积的最大值;积为定值,则可供其战的最小值.注意三个条件:“一正,二定,三相等”即:(1)各项或者各果式非背;(2)战或者积为定值; (3)各项或者各果式皆能博得相等的值.6.若多次用均值没有等式供最值,必须脆持屡屡与“=”号的普遍性.偶尔为了达到利用均值没有等式的条件,需要通过配凑﹑裂项﹑转移﹑分散常数等变形脚法,创建一个应用均值没有等式的情景.二、罕睹题型:1、分式函数供最值,如果)(x f y =可表示为B x g Ax mg y ++=)()(的形式,且)(x g 正在定义域内恒正或者恒背,,0,0>>m A 则可使用均值没有等式去供最值.例:供函数)01(112>->+++=a x x x ax y 且的最小值. 解:1)1(11112++-+=++-+=+++=x aa ax x x ax ax x x ax y 当1)1(+=+x ax a 即x=0时等号创造,1min =∴y2、题正在给出战为定值,供战的最值时,普遍情况皆要对于所供式子举止变形,用已知条件举止代换,变形之后再利用均值没有等式举止供最值. 例:已知191,0,0=+>>b a b a 且,供b a +的最小值.解法一:169210991=+≥+++=+b aa b b a思路二:由191=+b a 变形可得,9,1,9)9)(1(>>∴=--b a b a 而后将b a +变形.解法二:16109210)9)(1(210)9()1(=+=+--≥+-+-=+b a b a b a不妨考证:二种解法的等号创造的条件均为12,4==b a .此类题型可扩展为:设321a a a 、、均为正数,且m a a a =++321,供321111a a a S ++=的最小值.m m 9)2223(1=+++≥,等号创造的条件是321a a a ==.3、题中所供的式子中戴有根式,而且没有克没有及曲交用均值没有等式去供解,则可采与顺背思维去供解,对于没有等式顺背变换,原类题型普遍情况皆给出去x 的与值范畴,根据与值范畴去举止顺背变换. 例:供函数]3,21[,37∈-=x x x y 的最小值.思路:由于所给函数的形式为无理式,曲交供解较艰易,从所给区间]3,21[∈x 进脚,可得一个没有等式)3)(21(≤--x x (当且仅当21<x 或者3=x 时与等号),展启此式计划即可.解:,0)3)(21(≤--x x 即,372,037222-≤∴≤+-x x x x ,372,0x x x -≤∴> 得2min =y4、没有等式的变形正在说明历程中或者供最值时,有广大应用,如:当0>ab 时,ab b a 222≥+共时除以ab得2≥+b aa b 或者b a ab -≥-11.例:已知a,b,c 均为,供证:cb a ac c b b a ++≥++222.说明:c b a ,, 均为正数,ac a c c b c b b a b a -≥-≥-≥∴2,2,2222,总之,均值没有等式是下中数教的要害真质之一,它是供多项式的最值以及函数的值域的时常使用要领.正在应用均值没有等式时,没有管何如变形,均需谦脚“一正二定三相等”的条件. 【坚韧训练】1、若,0,0>>b a 供函数bax xy +=2最值. 问案:ab ab y ab ab y 2,2max min =-=2、供函数)0(132<++=x x x xy 的值域. 问案:[-3,0]3、已知正数y x ,谦脚,12=+y x 供yx 11+的最小值.问案:223+4、已知z y x ,,为正数,且2=++z y x ,供2111++=y x S 的最小值.问案:295、若)0](,1[>∈a b a x ,供xbx ab y -+=)1(的最小值.问案:a6、设c b a ,,为整数,供证:2222cb a b ac a c b c b a ++≥+++++.三、利用没有等式解题的典型例题剖析:题型一:利用均值没有等式供最值(值域) 例1、(1)已知0>x ,供x x x f 312)(+=的最小值(2)已知3<x ,供x x x f +-=34)(的最大值 变式1: 1、若R x ∈,供x x x f +-=34)(的值域2、函数()022>-=x x x y 的最大值为 变式2:1、已知0,0>>y x 且191=+y x ,供y x +的最小值2、R x ∈,供1sin 51sin )(22+++=x x x f 的最小值3、当b a x ,,10<<为仄常数时,供x b x a y -+=122的最小值变式3:1、函数)1,0(1)3(log ≠>-+=a a x y a 的图象恒过定面,若面A 正在曲线01=++ny mx 上,其中0>mn ,则n m 21+的最小值为2、供2)3(222++=x x y 的最小值为3、已知x x x f x sin 12009sin 1)(,20-+=<<π的最小值为变式4:1、已知y x ,皆是正真数,且053=+-+xy y x(1)供xy 的最小值 (2)供y x +的最小值题型二:利用均值没有等式说明没有等式 例2、已知R c b a ∈,,,供证:(1)ca bc ab c b a ++≥++222(2)()c b a a c c b b a ++≥+++++2222222(3)()c b a abc a c c b b a c b a ++≥++≥++222222444 变式5:1、已知,,,+∈R c b a 且,,,c b a 没有齐相等,供证:c b a c abb ac a bc ++>++2、已知R c b a ∈,,,且1=++c b a ,供证:31222≥++c b a3、已知1,0,0=+>>b a b a ,供证:91111≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+b a。

完整版均值不等式练习题.docx

完整版均值不等式练习题.docx

均值不等式一、 知识点:二、习题讲解:例1:(1)求y =x +1x (x >0)的最小值(2)求y =x +1x (x ≥2)的最小值(3)已知2>x ,求21-+=x x y 的最小值变式训练:1. 已知0>x ,求xx y 42--=的最大值2.当1->x 时,求()11++=x x x f 的最小值3.已知45<x ,求函数54124-+-=x x y 的最大值4.已知R c b a ∈、、,求证:ac bc ab c b a ++≥++2225.423(0)y x x x =-->的最大值是2-6. 12,33y x x x =+>-7.12sin ,(0,)sin y x x xπ=+∈例2:(1)已知210<<x ,求()x x y 2121-=的最大值(2)已知:a 、b 都是正数,且1a b +=,1a a α=+,1b bβ=+,求αβ+的最小值变式训练: 1.已知310<<x ,求函数()x x y 31-=的最大值 2.当时,求(82)y x x =-的最大值。

3.设230<<x ,求函数)23(4x x y -=的最大值。

4.已知01x <<,求函数y =.;5.203x <<,求函数y =6.若21x y +=,则24xy+的最小值是______7.已知,x y R +∈,且满足134x y+=,则xy 的最大值为 ________。

例3:求函数()11332->+++=x x x x y 的最小值变式训练:1.231,(0)x x y x x ++=>2.设⎪⎭⎫⎝⎛∈2,0πx ,则函数x x y 2sin 1sin 22+=的最小值为3. 已知25≥x ,则()42542-+-=x x x x f 的最小值4. 2y =的最小值是5.求2710(1)1x x y x x ++=>-+的值域。

均值不等式常见题型及解析

均值不等式常见题型及解析

均值不等式常见题型及解析一、直接应用均值不等式均值不等式的基本形式是对于正实数a、b,有\(\frac{a + b}{2}\geq\sqrt{ab}\),当且仅当a = b时等号成立。

比如说,已知\(a>0\),\(b>0\),\(a + b = 1\),求\(ab\)的最大值。

这时候就可以直接用均值不等式啦。

由\(\frac{a + b}{2}\geq\sqrt{ab}\),把\(a + b = 1\)代入,得到\(\frac{1}{2}\geq\sqrt{ab}\),那么\(ab\leq\frac{1}{4}\),当且仅当\(a=b=\frac{1}{2}\)的时候取到最大值。

这种直接应用的题型呢,关键就是要识别出是两个正实数的和与积的关系,然后套公式就好啦。

就像看到一道题,告诉你两个正数的和是定值,那你就赶紧想均值不等式求积的最值;要是告诉你积是定值,就想求它们和的最值。

这就像一个小窍门,一看到这种形式,心里就“叮”一下,知道该怎么做啦。

二、凑项应用均值不等式有些题呢,不会直接给你能用均值不等式的形式,需要咱们自己去凑项。

比如说,求\(y = x+\frac{1}{x - 1}(x>1)\)的最小值。

这时候直接用均值不等式可不行,因为\(x\)和\(\frac{1}{x - 1}\)的和不是直接能用均值不等式的形式。

那我们就凑项呀,把式子变成\(y=(x - 1)+\frac{1}{x - 1}+1\)。

因为\(x>1\),所以\(x - 1>0\),\(\frac{1}{x - 1}>0\)。

根据均值不等式\(\frac{(x - 1)+\frac{1}{x - 1}}{2}\geq\sqrt{(x - 1)\times\frac{1}{x - 1}}\),也就是\((x - 1)+\frac{1}{x - 1}\geq2\),那么\(y=(x - 1)+\frac{1}{x - 1}+1\geq2 + 1=3\),当且仅当\(x - 1=\frac{1}{x - 1}\),也就是\(x = 2\)的时候取到最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均值不等式的常见题型 一基本习题
2、已知正数a,b 满足ab=4,那么2a+3b 的最小值为() A10B12C43D46
3、已知a >0,b >0,a+b=1则
b
a 11+的取值范围是() A(2,+∞)B[2,+∞)C(4,+∞)D[4,+∞) 4、设x,y 为正数,(x+y)(
+x 1y
4)的最小值为() A 6B 9C 12D 15 5、设+∈R b a ,,则下列不等式中不成立的是() A 4)11)((≥++b a b a B ab ab
b a 22
2≥+C 21≥+ab ab D ab b a ab ≤+2 6、设0,0>>b a ,则下列不等式中成立的是() A 221≥++ab
b a B 4)11)((≥++b a b a C b a ab b a +≥+22D ab b a ab >+2 8、已知下列不等式:①)(233+∈>+R x x x ;②),(322355+∈+≥+R b a b a b a b a ;③)1(222--≥+b a b a .其中正确的个数是()
A0个B1个C2个D3个
9、已知1,01a b ><<则log log a b b a +的取值范围是()
A (2,)+∞
B [2,)+∞
C (,2)-∞-
D (,2]-∞-
二有关范围问题
1、若正数b a ,满足3++=b a ab ,则ab 的取值范围是.
以及b a +的取值范围.
2、已知x >0,y >0且x+2y+xy=30,求xy 的最大值.
3、已知0,0x y >>且211x y
+=,若222x y m m +>+恒成立,则实数m 的取值范围是——————————。

4、问是否存在正整数k ,使不等式
11a b b c k a c -+-≥-恒成立?如果存在,求出所有k 值;如果不存在,试说明理由。

5、较难:设0a b c >>>,则221121025()
a ac c a
b a a b ++-+-的最小值是() A .2B .4C .
.5
6、已知:a>0,b>0,且4a+b=30,求b a 11+的最小值 三典型例题分析
1、若+∈R b a ,且1=+b a ,求证:22
121≤+++b a 2、是否存在常数c ,使得不等式
y
x y y x x c y x y y x x +++≤≤+++2222对任意正数y x ,恒成立,试证明你的结论.
注:考虑y x =的特殊情况. 3、已知z y x ,,是互不相等的正数且1=++z y x ,求证:8
1)11)(11)(11(>---z y x 4、若a>b>0,求)
(162b a b a -+的最小值 5、已知:x>0,y>0,且x+4y=1,求xy 的最大值
6、已知x>0,y>0,且14
3=+y x ,求xy 的最大值 四求函数的值域或者最值
1、已知310<<x ,求函数)31(x x y -=的最大值。

相关文档
最新文档