七年级数学下册-第七章《生活中的轴对称》知识点总结-北师大版
北师大版《数学》(七年级下册)知识点总结
北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。
北师大版七年级数学下册《生活中的轴对称》知识点汇总
北师大版七年级数学下册《生活中的轴对称》知识点汇总北师大版七年级数学下册《生活中的轴对称》知识点汇总一、轴对称1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称:如果两个平面图形沿一条直线对折后,能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴。
3、性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等。
二、等腰三角形1、等腰三角形:有两条边相等的三角形叫做等腰三角形。
2、等腰三角形的性质:(1)等腰三角形的两个底角相等,简写成“等边对等角”(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”)(3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。
3、等腰三角形的判定:(1)有两条边相等的三角形是等腰三角形。
(2)如果一个三角形有两个角相等,那么它们所对的边也相等三、线段的垂直平分线(简称中垂线):定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
作法:作已知线段的垂直平分线。
已知:线段AB求作:AB的垂直平分线。
作法:(1)分别以A、B为圆心,大于AB/2的长为半径作弧两弧相交于点和D;(2)作直线D.则直线D就是线段AB的垂直平分线。
四、角平分线的性质:1、角是轴对称图形,角平分线所在的直线是它的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
3、作已知角的角平分线。
已知:如图,∠AB,求作:射线P,使∠AP=∠BP(即P平分∠AB)。
作法:(1)在A和B分别截取,N使=N(2)分别以、N为圆心,大于的长为半径作弧,两弧交∠AB内于P;(3)作射线P。
射线P就是∠AB的角平分线。
北师大版初中数学各册章节知识点总结 (超强总结)
新版北师大版初中数学知识点汇总目录七年级上册知识点汇总ﻩ错误!未定义书签。
第一章丰富的图形世界错误!未定义书签。
第二章有理数及其运算ﻩ错误!未定义书签。
第三章字母表示数ﻩ错误!未定义书签。
第四章平面图形及位置关系ﻩ错误!未定义书签。
第五章一元一次方程ﻩ错误!未定义书签。
第六章生活中的数据错误!未定义书签。
七年级下册知识点总结ﻩ错误!未定义书签。
第一章整式的运算错误!未定义书签。
第二章平行线与相交线ﻩ错误!未定义书签。
第三章生活中的数据错误!未定义书签。
第四章概率ﻩ错误!未定义书签。
第五章三角形错误!未定义书签。
第六章变量之间的关系ﻩ错误!未定义书签。
第七章生活中的轴对称ﻩ错误!未定义书签。
八年级上册知识点汇总ﻩ错误!未定义书签。
第一章勾股定理错误!未定义书签。
第二章实数ﻩ错误!未定义书签。
第三章图形的平移与旋转错误!未定义书签。
第四章四平边形性质探索错误!未定义书签。
第五章位置的确定ﻩ错误!未定义书签。
第六章一次函数错误!未定义书签。
第七章二元一次方程组错误!未定义书签。
第八章数据的代表ﻩ错误!未定义书签。
八年级下册知识点汇总ﻩ错误!未定义书签。
第一章一元一次不等式和一元一次不等式组错误!未定义书签。
第二章分解因式错误!未定义书签。
第四章相似图形错误!未定义书签。
第五章数据的收集与处理ﻩ错误!未定义书签。
第六章证明(一)错误!未定义书签。
九年级上册知识点汇总ﻩ错误!未定义书签。
第一章证明(二)ﻩ错误!未定义书签。
第二章一元二次方程ﻩ错误!未定义书签。
第三章证明(三)错误!未定义书签。
第四章视图与投影错误!未定义书签。
第五章反比例函数错误!未定义书签。
第六章频率与概率ﻩ错误!未定义书签。
九年级下册知识点汇总错误!未定义书签。
第一章直角三角形边的关系错误!未定义书签。
第二章二次函数ﻩ错误!未定义书签。
第三章圆错误!未定义书签。
第四章统计与概率错误!未定义书签。
七年级上册知识点汇总(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)第一章丰富的图形世界¤1。
北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]
北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]研究目标】1.增进对身边轴对称图形的认识和欣赏,提高对数学的兴趣。
2.了解轴对称的概念,探索轴对称图形的基本性质和应用。
3.探究线段垂直平分线、角平分线和等腰三角形的性质及判定方法。
4.能够按照要求画出一些轴对称图形。
要点梳理】要点一、轴对称1.轴对称图形和轴对称1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
要点诠释:成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上。
3)轴对称图形与轴对称的区别和联系要点诠释:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的。
联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。
2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一。
同时也给出了引辅助线的方法,即遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。
三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。
(完整版)北师大版七年级下册数学各章知识点总结(最新整理)
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘 整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法: 整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a≠0);2、负整数指数幂:1(0)ppa aa -=≠p 是正整数。
七、整式的乘除法: 1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
北师大版数学七年级下册第七章生活中的轴对称探索轴对称的性质教案附教学反思
第八章生活中的轴对称第三节探索轴对称的性质(一)教学设计●教学目标知识与技能目标1.学生通过自己动手,探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
2.能用轴对称性质解决实际问题。
3.通过本节课学习,逐步培养学生的观察能力与分析能力过程与方法目标通过实际生活中轴对称图片的展示、学生经历自己动手探索轴对称性质、并学会用性质解决实际问题的过程,逐步培养学生探索问题、分析问题、解决问题的能力。
情感与态度目标1.通过本节课学习,学生能充分感受到数学源于实践并服务于实践,充分体现了理论与实践的辩证关系。
2.轴对称是生活中大量存在的一种图形,通过研究它的性质,让学生充分感受到数学的有用性和实用性。
3.学生以轴对称图形的美,感受到数学学科的美,从而更加积极主动地学习数学知识。
4.学会与人合作,并能与他人交流思维的过程和结果。
●教学重点探索轴对称性质。
●教学难点概括和归纳轴对称的性质是本节的难点。
由于学生受到年龄、思维能力以及所学知识的限制,不能很好地将观察到的现象归纳和概括,为了突破这一难点,教学中采取学生自己动手折纸、探索轴对称性质,以此激发学生的学习兴趣。
再通过教师的提问,引导学生逐步归纳出观察到的结论。
●教具准备多媒体、普通纸片、钢笔、铅笔、量角器、刻度尺、小镜子●教学过程设计教学活动教师活动学生活动活动说明一、创设情境1.请同学们列举我们教室里哪些物体是成轴对称的?2.用图形计算器(或电脑、手工剪纸)展示生活中的轴对称图形。
学生进行观察、列举:如黑板、日光灯管、电视柜、窗户等。
学生观看、欣赏通过这一教学活动学生能充分感受到数学来源于实践,生活中处处有数学,从而激发学生的求知欲,更加积极主动地投入到学习中去。
3.用图形计算器(或电脑、手工剪纸)展示成轴对称的两个图形。
二、探索轴对称的性质实验一:1.请同学们将一张纸片按以下步骤做一做:(1)将纸片折叠一次,并在折痕上任取两点A、B;(2)继续折叠,学生观看、欣赏学生按(1)、(2)、(3)步骤完成。
北师大版数学七年级下册知识点总结
第一章:整式的运算单项式式多项式同底数幂的乘法a m﹒a n=a m+n a m+n = a m﹒a n幂的乘方(a m)n =a mn积的乘方(ab)n=a n b n a n b n =(ab)n同底数幂的除法a m÷a n=a m-n(a≠0)零指数幂a0=1(a≠0)负指数幂1(0)ppaa a-=≠整式的加减单项式与单项式相乘单项式与多项式相乘m(a+b+c)=ma+mb+mc。
整式的乘法多项式与多项式相乘(m+n)(a+b)=ma+mb+na+nb平方差公式(a+b)(a-b)=a2-b2 a2-b2=(a+b)(a-b) 完全平方公式222222()2,()2,a b a ab b a b a ab b+=++-=-+单项式除以单项式整式的除法多项式除以单项式第二章平行线与相交线余角:两个角的和是直角余角补角补角:两个角的和是平角角两线相交对顶角:对顶角相等同位角F三线八角内错角Z同旁内角U平行线的判定:同位角相等,两直线平行内错角相等,两直线平行平行线同旁内角互补,两直线平行平行线的性质 : 两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
尺规作图熟练掌握以下作图语言:(1)作射线××;(2)在射线上截取××=××;(3)在射线××上依次截取××=××=××;(4)以点×为圆心,××为半径画弧,交××于点×;(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;(6)过点×和点×画直线××(或画射线××);(7)在∠×××的外部(或内部)画∠×××=∠×××;第三章变量之间的关系自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象第四章 三角形三角形三边关系:三角形 三角形任意两边之和大于第三边,任意两边之差小于第三边三角形内角和定理:三角形的三个内角的和等于1800角平分线三条重要线段 中线高线三角形全等图形的概念:能够重合的两个三角形是全等三角形,用符号“≌”全等三角形 全等三角形的性质: 全等三角形的对应边、对应角相等全等三角形的判定1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。
(北师大版)七年级数学下第七章知识点总结
第七章生活中的轴对称一、轴对称1.轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫对称轴。
2.对于两个图形,如果一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
二、角平分线的性质1.角是轴对称图形,角平分线所在的直线是它的对称轴。
2.角的平分线上的点到这个角的两边的距离相等。
三、线段的垂直平分线1、线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线(中垂线)2.线段垂直平分线上的点到这条线段两个端点的距离相等。
四、等腰三角形1.两条边相等的三角形叫等腰三角形2.等腰三角形是轴对称图形3.等腰三角形顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”)它们所在的直线都是等腰三角形的对称轴。
4.等腰三角形的两个底角相等。
五、等边三角形1、三边都相等的三角形是等边三角形,又称正三角形。
2、等边三角形有三条对称轴,三角形的高、角平线和中线所在的直线都是它的对称轴。
3、等边三角形的三边都相等,三个内角都是60如果一个三角形有两条边相等,那么这两条边所对的角也相等。
如果一个三角形有两个角相等,那么它们所对的边也相等。
六、轴对称的性质1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。
2、关于某条直线对称的两个图形是全等图形。
3、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。
4、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。
七、镜面对称1、当物体正对镜面摆放时,镜面会改变它的左右方向。
2、当垂直于镜面摆放时,镜面会改变它的上下方向。
3、如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样。
北师大七年级下册数学知识点总结(生活中的轴对称)
第五章生活中的轴对称知识点总结:一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两部分互相重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段;三、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质定理:角平分线上的点到这个角的两边的距离相等。
3、判定定理:到角两边距离相等的点在该角的角平分线上。
四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
3、判定定理:到线段两端点距离相等的点在该线段的垂直平分线上。
五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。
5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。
6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。
7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。
8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。
北师大七年级数学下册知识点总结
北师大版七年级数学下册知识点总结第一章 整式的运算一、整式1、单项式:表示数与字母的积的代数式。
另外规定单独的一个数或字母也是单项式。
单项式中的数字因数叫做单项式的系数。
注意系数包括前面的符号,系数是1时通常省略,π是系数,72xyz -的系数是72- 单项式的次数是指所有字母的指数的和。
2、多项式:几个单项式的和叫做多项式。
(几次几项式)每一个单项式叫做多项式的项,注意项包括前面的符号。
多项式的次数:多项式中次数最高的项的次数。
项的次数是几就叫做几次项,其中不含字母的项叫做常数项。
3、整式;单项式与多项式统称为整式。
(最明显的特征:分母中不含字母)4、排列多项式:①按某一个字母降幂排列:某一个字母的指数由大到小排列; ②按某一个字母升幂排列:某一个字母的指数由小到大排列。
二、整式的加减:①先去括号; (注意括号前有数字因数)②再合并同类项。
(系数相加,字母与字母指数不变)三、幂的运算性质1、同底数幂相乘:底数不变,指数相加。
m n m n a a a +=•2、幂的乘方:底数不变,指数相乘。
nm m n a a =)(3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。
n n n b a ab =)( 4、零指数幂:任何一个不等于0的数的0次幂等于1。
10=a (0≠a ) 注意00没有意义。
5、负整数指数幂: p p a a 1=- (p 正整数,0≠a )6、同底数幂相除:底数不变,指数相减。
m n m n a a a -=÷注意:以上公式的正反两方面的应用。
常见的错误:632a a a =•,532)(a a =,33)(ab ab =,326a a a =÷,4222a a a =+四、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。
五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。
七年级数学下册第七章《生活中的轴对称》知识点总结北师大版
七年级数学下册第七章《生活中的轴对称》知识点总结北师大版第一篇:七年级数学下册第七章《生活中的轴对称》知识点总结北师大版一、轴对称1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称:对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。
3、性质:(1)对应点所连的线段被对称轴垂直平分。
(2)对应线段相等,对应角相等。
二、角平分线的性质:角平分线上的点到这个角的两边的距离相等。
三、线段的垂直平分线(简称中垂线):定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
四、等腰三角形1、等腰三角形:有两条边相等的三角形叫做等腰三角形。
2、等腰三角形的性质:(1)等腰三角形的两个底角相等(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),(3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。
(1)有两条边相等的三角形是等腰三角形。
(2)如果一个三角形有两个角相等,那么它们所对的边也相等五、等边三角形:1、等边三角形:三边都相等的三角形叫做等边三角形。
2、等边三角形的性质:(1)具有等腰三角形的所有性质。
(2)等边三角形的各个角都相等,并且每个角都等于60°。
3、等边三角形的判定(1)三边都相等的三角形是等边三角形。
(2):三个角都相等的三角形是等边三角形(3):有一个角是60°的等腰三角形是等边三角形。
第二篇:七年级数学下册_第五章《三角形》知识点总结_北师大版数学:第五章《三角形》知识点总结(北师大版七年级下)一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
北师大版七年级数学下全部知识点归纳
北师大版七年级数学下册全部知识点归纳第一章:整式的运算 单项式: 。
整 式 多项式: 。
同底数幂的乘法:幂的乘方:积的乘方:幂的运算 同底数幂的除法: 零指数幂: 负指数幂: 整式的加减单项式与单项式相乘整式运算单项式与多项式相乘: 整式的乘法 多项式与多项式相乘:平方差公式: 完全平方公式:单项式除以单项式整式的除法 多项式除以单项式:完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+ (3)2214[()()]ab a b a b =+-- 第二章 平行线与相交线平行线: 。
对顶角的性质:垂线的性质:性质1:过一点有 。
性质2:连接直线外一点 。
平行线的性质:1、平行公里:过 性质2:平行于 平行。
整 式 的 运算余角:余角和补角 补角:邻补角:两线相交 对顶角:同位角三线八角 内错角同旁内角平行线的判定:平行线平行线的性质:尺规作图:第三章 变量之间的关系自变量变量的概念 因变量变量之间的关系 表格法关系式法变量的表达方法 图象法第四章 三角形三角形概念: 称为三角形。
三角形按内角的大小可分为三类:直角三角形的性质: ;直角三角形的两直角边为a 、b ,斜边为c ,斜边上的高为h,则h= 。
任意三角形都有三条角平分线,并且它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条中线,它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条高线,它们所在的直线相交于一点。
这个点叫三角形的平行线与相交线三角形都有三条高线:区 别相 同中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角三条角平分线交于三角形内部高 线 垂直于对边(或其延长线)锐角三角形:三条高线交于直角三角形:三条高线交于钝角三角形:三条高线交于三角形三边关系:三角形 三角形内角和定理:角平分线三条重要线段 中线高线三角形 全等图形的概念: 全等三角形的性质:SSSSAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形第五章 生活中的轴对称: 轴对称图形于轴对称: 轴对称图形轴对称区别是一个图形自身的对称特性 是两个图形之间的对称关系 对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。
北师大版七年级数学下册知识点总结
北师大版七年级数学下册知识点总结一、整式的乘除。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n(m、n 为正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方。
- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m、n为正整数)。
- 例如:(3^2)^3 = 3^2×3=3^6。
3. 积的乘方。
- 法则:积的乘方等于乘方的积。
即(ab)^n=a^n b^n(n为正整数)。
- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。
4. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减。
即a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。
- 例如:5^5÷5^3 = 5^5 - 3=5^2。
5. 零指数幂。
- 规定:a^0 = 1(a≠0)。
6. 负整数指数幂。
- 规定:a^-p=(1)/(a^p)(a≠0,p为正整数)。
- 例如:2^-3=(1)/(2^3)=(1)/(8)。
7. 整式的乘法。
- 单项式乘以单项式:系数相乘,同底数幂相乘。
例如:3x^2·2x^3=(3×2)(x^2+3) = 6x^5。
- 单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(x + 3)=2x^2+6x。
- 多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x+6。
8. 整式的除法。
- 单项式除以单项式:系数相除,同底数幂相除。
例如:6x^5÷2x^3=(6÷2)(x^5 - 3)=3x^2。
- 多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加。
(完整版)北师大版七年级下册数学各章知识点总结
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
北师大版七年级数学下册知识点总结
第一章 整式运算知识点(一)概念应用1、单项式和多项式统称为整式。
单项式有三种:单独的字母(a,-w 等);单独的数字(125,73-,3.25,-14562等); 数字与字母乘积的一般形式(-2s, a 32-,πx 5等)。
2、 单项式的系数是指数字部分,如abc π23-的系数是π23- (注意系数部分应包含π,因为π是常数);单项式的次数是它所有字母的指数和(记住不包括数字和π的指数),如53256y x π次数是8。
3、多项式:几个单项式的和叫做多项式。
4、多项式的特殊形式:2b a +等。
5、 一个多项式次数最高的项的次数叫做这个多项式的次数。
如12312-+y y x 是3次3项式。
6、单独的一个非零数的次数是0。
知识点(二)公式应用1 、n m n m a a a +=⋅ (m,n 都是正整数)如523b b b -=⋅-。
拓展运用n m n m a a a ⋅=+ 如已知m a =2, n a =8,求n m a +。
解:n m n m a a a ⋅=+=2×8=16. 2 、mn n m a a =)( (m,n 都是正整数) 如12436243622)()(2a a a a a =-=-⨯⨯拓展应用m n n m m n a a a )()(==。
若2=n a ,则42)(222===n n a a 。
3、n n n b a ab =)((n 是正整数) 拓展运用n n n ab b a )(=。
4、n m n m a a a -=÷(a 不为0,m,n 都为正整数,且m 大于n)。
拓展应用n m n m a a a ÷=- 如若9=m a ,3=n a ,则339=÷=÷=-n m n m a a a 。
5、)0(10≠=a a ;0(1≠=-a a a p p ,是正整数)。
如81)2(1)2(33-=-=-- 6、平方差公式22))((b a b a b a -=-+ a 为相同项,b 为相反项。
七年级数学第七章:生活中的轴对称 第一节、第二节北师大版知识精讲
七年级数学第七章:生活中的轴对称第一节、第二节北师大版【本讲教育信息】一. 教学内容:第七章:生活中的轴对称第一节:轴对称现象第二节:简单的轴对称图形[教学要求]1、认识轴对称,能够识别简单的轴对称图形和对称轴。
2、观察生活中的轴对称现象,探索轴对称现象的共同特征,从而进一步发展空间观念,平分线、线段垂直平分线的有关性质,掌握等腰三角形的轴对称性及其相关性质。
[重点及难点]1、重点是了解生活中的轴对称图形,能够判定一个图形是否为轴对称图形,并能确定其对称轴,难点是体会轴对称在现实生活中的广泛运用和它的丰富文化价值。
2、重点是点到直线距离、垂直平分线、等腰三角形与等边三角形的概念与性质。
难点是垂直平分线的性质和等腰三角形的性质及其应用。
[知识要点]1、如果一个图形沿一条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
关于轴对称的概念中包括两层意思:(1)两个图形(2)沿某直线对折能够互相重合。
2、轴对称和轴对称图形的区别与联系区别:(1)轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形。
(2)轴对称是对两个图形说的,轴对称图形是对一个图形说的。
联系:(1)它们的定义中,都有沿某直线折叠,图形重合。
(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分分别看作两个图形,那么这两个图形成轴对称。
3、角是轴对称图形(1)角是轴对称图形如图(1),设OC是∠AOB的角平分线,若沿着OC将∠AOB对折,则∠AOC与∠BOC 能够完全重合,因此,角是轴对称图形,而角平分线所在直线就是它的对称轴,也只有这一条对称轴。
(2)点到直线的距离如图(2),设A为直线l外一点,过点A作l的垂线,垂足为B,则线段AB的长叫做点A到直线l的距离,而当A在直线l上时,我们认为A到直线l的距离为0。
(3)角平分线性质角平分线上的任意一点到角两边的距离相等。
七年级下册三角形,平行线,轴对称,整式知识点总结及习题
第七章生活中的轴对称(知识点总结)一,基本概念1.轴对称图形,对称轴如果一个图形沿着某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
轴对称图形不一定只有一条对称轴,但至少有一条。
2.轴对称对于两个图形,如果沿一条直线对折后,它们能完全的重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称。
3.轴对称和对称轴图形中的对称轴是直线,而不是线段和射线。
4.轴对称的性质:1)对应点所连的线段被对称轴垂直平分;2)对应线段相等,4.角平分的性质:角平分线上的点到这个角的两边的距离相等。
5.垂直平分线:垂直并且平分一条线段的直线叫做这条线段的垂直平分线。
6.垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
7.等腰三角形:有两边相等的三角形叫做等腰三角形。
8.等腰三角形性质:1)等腰三角是轴对称图形;2)等腰三角形顶角的平分线、底边上的中线,底边上的高重合(三线合一),它们所在的直线都是等腰三角形的对称轴。
3)等腰三角形的两个底角相等。
(注意:等腰三角形的性质常用于说明两线段相等或两角相等)9.等腰三角形的判定方法:1)有两个角相等的三角形是等腰三角形(等角对等边);2) 有两条边相等的三角形是等腰三角形(等边对等角)。
10.等边三角形:三边都相等的三角形是等边三角形,也叫正三角形。
11.等边三角形的性质:1)等边三角形的三个内角均为600; 2)等边三角形的三边相等。
12.镜子成像的特点:1) 物体与镜子平行时:左右互换是关键,物与像成轴对称,简单可以看反面。
;2)物体与镜面垂直时:像的方向与物体的方向上下颠倒。
第五章三角形(知识点总结)1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
用“△”表示三角形,以A、B、C为顶点的三角形记作“△ABC”。
2三角形的三边关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边。
七下数学北师大版知识点归纳
七下数学北师大版知识点归纳嘿,亲爱的小伙伴们!咱们一起来瞧瞧七年级下册北师大版数学那些超重要的知识点呀!先说说整式的运算。
整式就像咱们生活中的各种小物件,有加减乘除各种“玩法”。
比如同底数幂相乘,那就是底数不变,指数相加,这就好比把相同的水果一个一个往上堆,数量增加了,但种类不变哟!而整式的乘法呢,就像是给房间布置家具,要合理搭配,不能乱套。
再讲讲平行线与相交线。
这就好比在马路上行走,平行线就像永远不会碰面的两条道路,一直延伸下去,没有交集;相交线呢,则是在某个点相遇,然后又各自奔向不同的方向。
同位角、内错角、同旁内角,这些角的关系可要弄清楚,不然就像在迷宫里迷路啦!还有三角形。
三角形可是个稳固的“小团体”,就像咱们的好朋友小组,相互支持,不离不弃。
三角形的内角和是 180 度,这可是个铁打的定律,谁也改变不了。
三角形的三边关系也很重要,两边之和大于第三边,两边之差小于第三边,不然这个“小团体”可就散架咯!然后是变量之间的关系。
这就像是观察天气的变化,有时晴有时雨,我们要找出其中的规律。
用图像、表格、关系式来表示变量之间的关系,就像是给天气变化拍照片、做记录、写总结。
生活中的轴对称也很有趣哟!轴对称图形就像照镜子,镜子里和镜子外是完全对称的。
对称轴就是那面神奇的“镜子”,把图形分成完全一样的两半。
概率初步就像是猜谜语,你不知道结果会是什么,但可以通过一些方法来推测。
可能性的大小,就看机会有多少,是大是小,全靠咱们的聪明才智去判断。
怎么样,小伙伴们,这些知识点是不是很有意思?数学就像一个神秘的宝藏,等着我们去挖掘。
只要我们用心去学,去探索,就一定能在数学的世界里畅游,发现更多的精彩!所以呀,别害怕数学,别觉得它难,只要我们一步一个脚印,踏踏实实地学,这些知识点都会被我们轻松拿下!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、轴对称
1、轴对称图形:
如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称:
对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。
3、性质:
(1)对应点所连的线段被对称轴垂直平分。
(2)对应线段相等,对应角相等。
二、角平分线的性质:
角平分线上的点到这个角的两边的距离相等。
三、线段的垂直平分线(简称中垂线):
定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
四、等腰三角形
1、等腰三角形:有两条边相等的三角形叫做等腰三角形。
2、等腰三角形的性质:
(1)等腰三角形的两个底角相等
(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),
(3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。
(1)有两条边相等的三角形是等腰三角形。
(2)如果一个三角形有两个角相等,那么它们所对的边也相等
五、等边三角形:
1、等边三角形:三边都相等的三角形叫做等边三角形。
2、等边三角形的性质:
(1)具有等腰三角形的所有性质。
(2)等边三角形的各个角都相等,并且每个角都等于60°。
3、等边三角形的判定(1)三边都相等的三角形是等边三角形。
(2):三个角都相等的三角形是等边三角形
(3):有一个角是60°的等腰三角形是等边三角形。