三维激光扫描仪
三维激光扫描仪原理
目标的反射特性,如表面粗糙度、颜色等,可能影响激光的反射 和接收,从而导致测量误差。
误差控制与校正
硬件优化
通过对硬件部件的优化和校准,可以降低由硬件 引起的误差。
环境稳定性
在扫描过程中保持环境条件的稳定,如温度、湿 度等,有助于减少环境因素对测量结果的影响。
数据处理算法
通过开发和应用先进的数据处理算法,可以对扫 描数据进行校正,以减小误差并提高测量精度。
THANKS FOR WATCHING
感谢您的观看
03
三维激光扫描仪工作流 程
扫描准备
确定扫描目标
01
根据项目需求,确定需要扫描的目标物体或场景,并对其进行
预处理,如清理表面污垢、移除遮挡物等。
设置扫描参数
02
根据目标物体的尺寸、材质和细节要求,设置合适的扫描参数,
如扫描范围、分辨率、点云密度等。
安置标定参照物
03
在扫描区域内安置标定参照物,用于后续的坐标系转换和设备
三维激光扫描仪原理
contents
目录
• 三维激光扫描仪概述 • 三维激光扫描仪系统组成 • 三维激光扫描仪工作流程 • 三维激光扫描仪精度与误差来源 • 三维激光扫描仪发展趋势与挑战
01
三维激光扫描仪概述
定义与特点
定义
三维激光扫描仪是一种通过激光 测距技术快速获取物体表面点云 数据的测量仪器。
坐标系转换与配准
将点云数据从设备坐标系转换到全 局坐标系,并进行多站数据的拼接 与配准,以获得完整的三维模型。
数据输出
将处理后的点云数据或三维模型导 出为通用的数据格式,如XYZ、OBJ、 STL等,以便于后续的分析和应用。
04
三维激光扫描仪参数设置指南
三维激光扫描仪参数设置指南1. 前言嘿,朋友们!今天咱们来聊聊三维激光扫描仪,听起来高大上对吧?别担心,我们会把这个复杂的东西说得简单易懂。
就像喝水一样,轻轻松松就能搞定!那么,准备好了吗?咱们开始吧!2. 了解三维激光扫描仪2.1 什么是三维激光扫描仪?三维激光扫描仪就像你手里的“魔法相机”,它能瞬间把现实世界的三维数据记录下来。
你只需把它摆好,轻轻一按,咔嚓,整个场景都在它的“脑海”里了。
这就像你拍照一样,不过这个相机可不简单,能捕捉到更详细的深度信息,帮你生成超精准的三维模型。
2.2 用途有哪些?说到用途,那可是多得数不清!不管是建筑设计、文化遗产保护,还是工业测量,三维激光扫描仪都能派上大用场。
想象一下,在一个古老的寺庙里,扫描一下就能完美记录下所有细节,真是太酷了吧!而且,未来再复原的时候就方便多了,简直就是时间旅行者的必备良品!3. 参数设置的基本要领3.1 扫描模式的选择好啦,进入正题,咱们得开始调整参数了。
首先,要选择合适的扫描模式。
这里有几个常见的选择:快速模式、高清模式和室内/室外模式。
快速模式适合赶时间的朋友,反正结果也不要求太精细;高清模式呢,就像你的高清电视,细节满满,适合那些喜欢“看得仔细”的人。
室内和室外模式各有千秋,别搞混了哦!在室内扫描时,光线和反射会影响结果,得小心翼翼。
而室外就更要考虑天气情况,风一吹,数据可就飞了!3.2 分辨率与扫描范围接下来,咱们得聊聊分辨率和扫描范围。
这两个参数就像是给你的激光扫描仪穿衣服,得根据需求来选择。
分辨率越高,数据越细致,但扫描速度可能就会慢一些。
而扫描范围就像你拉开窗帘,看得越远,越能看到大千世界。
要是你只想扫描个小房间,范围就没必要设得太大,省电又省时间。
不过,记得适度哦,别像拿着放大镜看蚂蚁,哈哈!4. 实际操作小技巧4.1 数据存储与管理嘿,朋友们,数据存储也很重要!扫描完成后,数据会像一堆小星星,得好好管理。
建议你用外接硬盘,确保数据不丢失。
三维激光扫描仪的优点
3D激光扫描仪具有更大的适应温度范围,可避免受到环境的影响,例如雨、灰尘、酷热或严寒。
2
监控工作进展
利用激光扫描仪,测量人员可以测量、管理并报告工作质量,提供三维数据计算体积、面积,工作进展一目了然。
3
数据点云精度更高
三维激光扫描系统可以密集地大量获取目标对象的数据点,相对于传统的单点测量,具有测量精度高,作业周期短的特点。
4
降低施工成本
利用3D激光扫描仪可以节省一定的人力物力,精准测量,避免返工,造成浪费。
5
缩短工期
利用3D激光扫描仪可以快速完成每个测量的扫描放线工作,且精度高,误差极小,避免返工,提高施工效率,节省工期。
6
质量保证
简化施工过程,将设计图与现实之间的偏差降到最低。在项目的每个阶段,数据点云可提供详细的施工信息,施工质量有保证。
激光三维扫描仪原理
激光三维扫描仪原理嘿,朋友们!今天咱来唠唠激光三维扫描仪原理这玩意儿。
你说这激光三维扫描仪啊,就像是一个超级厉害的“眼睛”!它能把物体的形状、大小、细节啥的,都给看得清清楚楚,明明白白。
想象一下啊,你面前有个复杂得像迷宫一样的物体。
咱普通眼睛看过去,可能也就是个大概轮廓。
但激光三维扫描仪可不一样,它就像个神奇的侦探,一束束激光就是它的线索,一点点地去探索这个物体的每一个角落和缝隙。
它的工作原理呢,其实也不难理解。
就是通过发射激光束,然后这些激光碰到物体后就会反射回来。
这就好比你朝墙上扔个球,球弹回来,你就知道墙在哪里啦!扫描仪呢,就根据激光反射回来的时间和角度等等信息,来计算出物体的各种数据。
你说神奇不神奇?就这么一束束小小的激光,就能把一个物体的所有信息都给“挖”出来。
这要是放在以前,那不得让人惊掉下巴呀!而且啊,这激光三维扫描仪用处可大了去了。
比如在工业领域,它能帮着检测产品质量,看看有没有瑕疵啥的。
要是产品有个小坑小洼的,它一下子就能发现,比人眼可厉害多了。
在文化领域呢,它能给文物来个全方位的扫描,把那些珍贵文物的样子原原本本地保存下来,这多有意义呀!再想想看,要是没有激光三维扫描仪,那我们很多工作得多难开展呀!就像没有导航的车,只能瞎转悠。
有了它,我们就像是有了一双超级慧眼,什么复杂的东西都能轻松搞定。
你说,这激光三维扫描仪是不是个了不起的发明?它就像给我们打开了一扇通往新世界的大门,让我们能看到更多、了解更多。
它让我们的生活变得更加丰富多彩,也让我们的科技不断向前迈进。
所以啊,咱可得好好感谢那些发明激光三维扫描仪的人,是他们让我们的世界变得更美好呀!。
激光3d扫描仪原理
激光3d扫描仪原理
激光3D扫描仪是一种利用激光测距原理进行三维物体表面信
息获取的设备。
其工作原理基于光电测量技术,通过测量物体表面上一系列点的三维坐标,最终构建出物体的三维模型。
具体操作过程如下:
1. 激光器发射一束激光束并照射到物体表面上的某个点上,光束被物体表面反射或散射后,一部分光束返回扫描仪。
2. 接收器接收到反射或散射回来的光束,并将其转化为电信号。
3. 通过测量光束的时间延迟或相位差,可以计算出激光束从发射到返回所需的时间,进而计算出该点与扫描仪之间的距离。
4. 通过控制激光束的扫描方式(例如旋转镜或移动激光头)以及接收器的接收方式(例如点接收或线接收),可以将激光束照射到物体表面的不同位置,从而获取到物体表面上多个点的三维坐标。
5. 计算机将得到的三维坐标数据进行处理,通过点云配准和重建算法,可以生成物体的三维模型。
利用激光3D扫描仪可以快速、准确地获取物体的三维形状和
表面细节。
它具有高精度、非接触性、快速扫描速度等优点,广泛应用于工业设计、逆向工程、文化遗产保护、医学等领域。
三维激光扫描仪都有哪些种类
顾名思义,扫描仪就是用来对物体进行扫描的工具,通过扫描我们可以得到物体的成像。
但是其他产品和工具一样,扫描仪的种类也是多样的,并且不同种类的扫描仪特点和优势也各不相同。
今天我们就一起来了解一下在扫描领域比较先进的三维激光扫描仪。
下面将从不同类型的三维激光扫描仪有哪些特点和优势给大家进行简单的介绍。
三维激光扫描仪按照扫描成像方式的不同,激光扫描仪可分为一维(单点)扫描仪、二维(线列)扫描仪和三维(面列)扫描仪。
而按照不同工作原理来分类,可分为脉冲测距法(亦称时间差测量法)和三角测量法。
1、脉冲测距法:激光扫描仪由激光发射体向物体在时间t1发送一束激光,由于物体表面可以反射激光,所以扫描仪的接收器会在时间t2接收到反射激光。
由光速c,时间t1,t2算出扫描仪与物体之间的距离d=(t2-t1)c/2。
脉冲测距式3D激光扫描仪,其测量精度受到扫描仪系统准确地量测时间的限制。
当用该方式测量近距离物体的时候,由于时间太短,就会产生很大误差。
所以该方法比较适合测量远距离物体,如地形扫描,但是不适合于近景扫描。
2、三角测距法:用一束激光以某一角度聚焦在被测物体表面,然后从另一角度对物体表面上的激光光斑进行成像,物体表面激光照射点的位置高度不同,所接受散射或反射光线的角度也不同,用CCD (图像传感器)光电探测器测出光斑像的位置,就可以计算出主光线的角度θ。
然后结合己知激光光源与CCD 之间的基线长度d,经由三角形几何关系推求扫描仪与物体之间的距L≈dtanθ。
手持激光扫描仪通过上述的三角形测距法建构出3D图形:通过手持式设备,对待测物发射出激光光点或线性激光。
以两个或两个以上的侦测器测量待测物的表面到手持激光产品的距离,通常还需要借助特定参考点-通常是具黏性、可反射的贴片-用来当作三维扫描仪在空间中定位及校准使用。
这些扫描仪获得的数据,会被导入电脑中,并由软件转换成3D模型。
3、三角测量法的特点:结构简单、测量距离大、抗干扰、测量点小(几十微米)、测量准确度高。
三维激光扫描仪原理
三维激光扫描仪原理
三维激光扫描仪原理
一、三维激光扫描仪的定义
三维激光扫描仪,也称三维激光雷达,是一种以光学技术为主,通过利用激光散射进行测量和图像处理技术,准确测量运动或静态物体的形状、尺寸及其他特性的设备。
二、三维激光扫描仪运行原理
1.激光脉冲发射:通过激光头发射准确、高脉冲能量的激光脉冲,强激光脉冲扩散洒射到目标物体上,对其表面形状反射回激光的多个点进行测量。
2.激光散射测量:激光脉冲扩散到目标物体表面之后,会有一定的反射量传回激光探测器,通过激光探测器和控制系统,可以获得目标物体距离传感器的距离,实现目标物体表面形状的量化测量。
3.数据采集:将激光探测器获取的数据传送到控制电路,经过精确的单元操作,将数据分析成表面形状的某种空间量化模型,实现对目标物体形状形式表示和记录的数据采集处理。
4.三维模型重建:将控制系统接收的数据进行处理,利用重建算法求解出三维模型,实现对目标物体的三维重建,最终得到该物体的中心坐标、尺寸及其他特性。
三、三维激光扫描仪的应用
1. 工业自动化:三维激光扫描仪往往用于检测工件的准确性和合格性,并帮助开发过程中的可视化和实验测试。
2. 无人机导航:由于三维激光扫描仪拥有高精度、宽范围和极低空间要求,因此可以用于无人机技术,帮助无人机在环境比较复杂的情况下以最优路径进行导航。
3. 在医学领域:激光扫描技术可以用来诊断机器中的结构变化,检测微小的细胞变化并执行仪器检测,诊断某些特定疾病以及重建软组织模型。
4. 其他应用:三维激光扫描技术还可以在船舶自动驾驶、飞行飞机的检验维修、地质勘查领域及重建历史文物方面得到广泛应用。
三维激光扫描仪原理
三维激光扫描仪原理
三维激光扫描仪是一种利用激光技术对物体进行三维扫描的设备,它能够快速、精确地获取物体表面的三维形状信息,被广泛应用于工业设计、文物保护、医学影像等领域。
其原理主要包括激光发射、光束聚焦、光斑定位、数据采集和数据处理等环节。
首先,激光扫描仪通过激光器发射一束单色、准直的激光光束,然后利用光学
系统对激光光束进行聚焦,使其成为一束细小的光斑。
这个过程需要确保激光的稳定性和光斑的清晰度,以保证后续扫描的准确性和精度。
接着,光斑被照射到待扫描物体的表面,光斑在物体表面投射出一个二维的图像,激光扫描仪通过控制光斑的移动和旋转,可以扫描整个物体表面,并且在扫描的同时记录下光斑的位置信息。
这个过程需要激光扫描仪具备高速、高精度的运动控制系统,以确保光斑的定位和扫描的连续性。
随后,激光扫描仪将记录下的光斑位置信息转化为数字信号,并通过高速数据
采集系统进行采集和存储。
在数据采集过程中,需要考虑信噪比、采样率、数据传输速度等因素,以保证采集到的数据具有足够的准确性和完整性。
最后,激光扫描仪利用数据处理软件对采集到的数据进行处理和重建,通过三
维重建算法将二维的光斑图像转化为物体表面的三维点云数据,然后根据点云数据生成三维模型。
在数据处理的过程中,需要考虑数据配准、滤波、拼接、曲面重建等算法,以获取高质量的三维模型数据。
综上所述,三维激光扫描仪通过激光发射、光束聚焦、光斑定位、数据采集和
数据处理等环节,实现了对物体表面的快速、精确扫描,为工业设计、文物保护、医学影像等领域的应用提供了重要的技术支持。
随着激光技术的不断发展和进步,相信三维激光扫描仪在未来会有更广阔的应用前景。
三维激光扫描仪原理
三维激光扫描仪原理
三维激光扫描仪是一种通过激光束扫描物体表面并测量其形状和纹理的设备。
其原理基于激光测距技术和点云处理技术。
激光测距技术是通过测量光束的发射和接收时间之差来计算物体表面上各点的距离。
激光扫描仪发射一束激光光束,并记录激光束从光源到物体表面再反射回来所需的时间。
根据光的传播速度和时间差,可以计算出物体表面上每个点到激光扫描仪的距离。
点云处理技术则是将测量得到的距离数据转化为三维空间中的一系列点的集合,称为点云。
这些点构成了物体表面的三维几何形状。
通过将多个激光测距点云进行融合和配准,可以获得完整的物体表面形状信息。
在扫描过程中,激光扫描仪通过旋转或移动来覆盖整个物体表面,以获取更多的点云数据。
在采集到足够的点云数据后,可以通过点云处理算法将点云进行处理和重建,生成完整的三维模型。
三维激光扫描仪的原理在工业、建筑、文化遗产保护等领域具有广泛的应用。
它可以快速、精确地获取物体的三维形状信息,为后续的设计、分析和制造提供重要数据支持。
同时,该技术也被用于虚拟现实、游戏开发和电影特效等领域,以实现真实感的三维模型生成和呈现。
三维激光扫描仪的使用教程及效果展示
三维激光扫描仪的使用教程及效果展示现如今,随着科技的不断进步与发展,我们生活的方方面面都得益于现代科技的蓬勃发展。
其中,三维激光扫描仪作为一种先进的测量工具,正在被广泛应用于各行业中。
本文将为您详细介绍三维激光扫描仪的使用教程,并通过实际案例展示其出色的效果。
一、三维激光扫描仪简介三维激光扫描仪是一种使用激光测距原理进行三维信息采集与处理的仪器。
它通过发射激光束来扫描物体表面,通过接收激光反射回来的信号来测量物体的位置与形状,从而实现对物体的全方位测量与重建。
相比传统的测量工具,三维激光扫描仪具有测量速度快、精度高、操作简便等优势,被广泛应用于建筑、工程、制造、文化遗产保护等领域。
二、三维激光扫描仪的使用教程1. 准备工作在使用三维激光扫描仪之前,首先需要进行一些准备工作。
确保仪器处于正常工作状态,检查扫描仪的设备连接,确保电源充足,以便正常进行扫描操作。
另外,还需选择合适的扫描场景与扫描模式,根据实际需求确定扫描范围与精度。
2. 扫描操作开始扫描之前,我们需要将三维激光扫描仪放置在固定位置,并确保其稳定。
接着,在扫描软件中设置扫描参数,例如分辨率、角度等。
然后,根据扫描仪的指示,将激光束对准目标物体进行扫描。
在扫描过程中,需保持稳定的手持,保持扫描过程的连贯性和准确性。
3. 数据处理与重建一旦扫描完成,我们可以将扫描的数据导入到计算机中进行进一步处理与重建。
主要的数据处理步骤包括点云配准、深度图像处理、三维模型生成等。
通过配准技术,可以将多次扫描的数据进行对齐,形成一个完整的三维模型。
根据实际需求,可以对三维模型进行编辑、修复、优化等操作,以得到更加精确的模型。
三、三维激光扫描仪的效果展示随着三维激光扫描仪的普及与应用,其出色的效果也逐渐展现出来。
下面将通过几个实际案例展示三维激光扫描仪的应用效果。
1. 建筑测量与设计三维激光扫描仪可以快速准确地获取建筑物的外部结构与内部空间信息,方便进行建筑测量与设计。
三维激光扫描仪工作原理
激光发射器通常采用固体激光器 或气体激光器,发出的激光束具 有高精度、高稳定性和高方向性。
激光发射器还具有调节激光束参 数的功能,如功率、波长和光束 质量等,以满足不同扫描需求。
反射镜和扫描器
反射镜和扫描器是实现激光束 二维扫描的关键部件。
反射镜通过快速旋转或摆动, 使激光束在水平面内进行连续 扫描,形成二维的扫描平面。
从点云数据中提取特征
边缘检测
提取点云数据中的边缘信 息,用于识别物体的轮廓 和表面细节。
表面重建
根据点云数据构建物体的 表面模型,还原物体的三 维形态。
特征提取
从点云数据中提取出物体 的几何特征和拓扑结构, 用于后续的分析和处理。
三维模型的建立与优化
三维建模
根据点云数据和提取的特征,建 立物体的三维模型。
数据转换与建模
将预处理后的点云数据转换为三维模型或场景,可以通过不 同的软件和算法实现,如表面重建、三维建模等。
04
三维激光扫描数据解析
点云数据的预处理
01
02
03Βιβλιοθήκη 去噪去除点云数据中的噪声点, 提高数据质量。
滤波
对点云数据进行平滑处理, 减少数据中的突变和跳变。
配准
将多个点云数据进行对齐 和拼接,以获得更完整的 三维模型。
模型优化
对三维模型进行优化处理,如简化 模型、优化模型结构等,以提高模 型的精度和可靠性。
模型应用
将三维模型应用于不同的领域,如 建筑、考古、文化遗产保护等,为 相关领域提供数字化和可视化的技 术支持。
05
三维激光扫描技术的优势与 局限性
优势分析
高精度测量
快速数据获取
三维激光扫描技术能够实现高精度的测量 ,其测量精度可达到毫米级别,能够满足 各种高精度测量的需求。
三维激光扫描仪有哪些分类【图解】
目前应用的三维激光扫描系统种类繁多,类型、工作领域不尽相同。
按照不同研究角度、工作原理可进行多种分类。
三维激光扫描系统从操作的空间位置可以划分为如下四类:(1)机载型激光扫描系统,这类系统在无人机或有人直升机上搭载,由激光扫描仪、成像装置、定位系统、飞行惯导系统、计算机及数据采集器、记录器、处理软件和电源构成,它可以在很短时间内取得大范围的三维地物数据。
(2)地面型激光扫描系统此种系统是一种利用激光脉冲对被测物体进行扫描,可以大面积、快速度、高精度、大密度的取得地物的三维形态及坐标的一种测量设备。
根据测量方式还可划分为两类一类是移动式激光扫描系统一类是固定式激光扫描系统。
所谓移动式激光扫描系统,是基于车载平台,由全球定位系统、惯性导航系统结合地面三维激光扫描系统组成。
固定式的激光扫系统,类似传统测量中的全站仪。
系统由激光扫描仪及控制系统、内置数码相机、后期处理软件等组成。
与全站仪不同之处在于固定式激光扫描仪采集的不是离散的单点三维坐标,而是一系列的“点云”数据。
其特点为扫描范围大、速度快、精度高、具有良好的野外操作性能.(3)手持型激光扫描仪此类设备多用于采集小型物体的三维数据,一般配以柔性机械臂使用。
优点是快速、简洁、精确。
适用于机械制造与开发、产品误差检测、影视动画制作与医学等众多领域。
(4)特殊场合应用的激光扫描仪,如洞穴中应用的激光扫描仪在特定非常危险或难以到达的环境中,如地下矿山隧道、溶洞洞穴、人工开凿的隧道等狭小、细长型空间范围内,三维激光扫描技术亦可以进行三维扫描。
三维激光扫描系统按照扫描仪的测距原理,又划分为如下三类:(1)使用脉冲测距技术。
其测距范围可达数百米,甚至上千米。
(2)基于相位测量原理。
主要用来进行中等距离的扫描测量,其扫描范围一般在米内,与采用脉冲测距原理的扫描设备相比,它的精度相对为高。
(3)基于光学的三角测量原理。
采用光学三角测量原理的扫描设备,一般工作距离较近,一般在数米数十米,主要应用于工程测量及逆向建模等工程中,可以达到很高的测量精度。
三维激光扫描仪工作原理
三维激光扫描仪工作原理三维激光扫描仪是一种采集、处理和输出三维空间形状的高精度测量仪器,广泛应用于各行各业,如制造、建筑、航空航天以及多种科研领域。
但是,激光扫描仪如何实现三维图像采集呢?本文将介绍激光扫描仪的工作原理,并重点介绍四种不同的激光三维扫描技术。
第一,激光条纹扫描工艺。
激射激光射线,其目的是构建一条条狭长的激光条纹,然后把条纹照射到物体表面,并在另一个方向收集反射的光束。
激光条纹扫描的主要原理是运动两个发射器中的一个,使其照射到物体点上,以及另一个将照射到点上的反射光收集,从而计算出物体表面每个点的坐标。
第二,三维激光点扫描工艺。
三维激光点扫描是一种类似激光条纹扫描的测量形式,基本原理也是利用发射器和接收器的运动来实现三维测量的,即发射器和接收器在三维空间运动,从而实现了三维激光点扫描,这种激光点扫描可以通过多次重复来采集物体表面各个点的坐标信息,从而构建出三维激光点云数据。
第三,激光扫描三维重建技术。
它是一种用于生成三维激光点云数据的技术,它可以绘制出模型的某些表面特征,如曲面,细节等。
它是基于一种新型的激光探测技术,可以利用多种类型的激光束,如红外线,可见光等,并利用激光跟踪程序来记录被扫描物体的几何形状特征。
最后,激光建模技术。
激光建模技术的核心原理是通过激光带的扫描和重建产生的三维激光点云,然后通过计算机计算来建立物体的三维模型,从而可以直接在计算机上显示出物体的三维模型。
而激光建模技术可以在不改变原有模型形状的情况下更加容易和快速地创建物体的三维模型,并且可以在计算机上轻松显示出来。
综上所述,三维激光扫描仪的工作原理主要有激光条纹扫描、激光点扫描、激光三维重建技术和激光建模技术,这些技术的实现均与激光的发射和接收有关。
激光扫描仪可以构建出高精度的三维图像,这对于对空间位置精确测量和三维重建有重要意义。
三维激光扫描仪分类及原理
三维激光扫描仪分类及原理
根据扫描原理和操作方式的不同,可以将三维激光扫描仪分为以下几类:
1.结构光扫描仪:结构光扫描仪通过投射光栅或编码器形成的结构光
条纹,来测量物体的表面形状。
它主要包括摄像头、光源和专业软件等组成。
在扫描过程中,光源发射光线,照射到物体表面后被摄像头捕捉到,
然后通过计算机处理,从而得到物体表面的三维坐标信息。
2.时间飞行扫描仪:时间飞行扫描仪使用脉冲激光器发射一束光,当
光束照射到物体上后,一部分光会被物体反射回来,接收器会记录返回的
光线的时间和强度信息。
通过测量光线往返的时间,可以计算出物体的距离。
时间飞行扫描仪具有较高的精度和快速扫描速度,适用于大范围的场
景测量。
3.相移扫描仪:相移扫描仪是一种通过利用相位差计算距离的扫描仪。
它通过发射不同相位的光束,在接收端通过计算两束光之间的相位差,从
而测量出物体的距离信息。
相移扫描仪具有高测量精度和较高的光照适应性,适用于颜色、反射率变化较大的物体测量。
4.激光雷达:激光雷达通过发射激光束,在物体表面上形成反射光斑,通过接收器接收返回的光强信号,通过测量光线的时间和波长,从而测量
出物体的位置和表面特征。
激光雷达具有高精度和远距离测量的能力,适
用于大范围的测量需求。
以上是几类常见的三维激光扫描仪。
不同的扫描原理和操作方式适用
于不同的测量场景和要求。
随着激光技术的不断发展,三维激光扫描仪在
工业、建筑等领域的应用前景也将越来越广阔。
美国Surphaser三维激光扫描仪
测绘测量革命性产品美国Surphaser三维激测绘测量革命性产品-----美国Surphaser三维激光扫描仪00一、三维激光扫描技术简介1 三维激光扫描仪原理与应用1.1三维激光扫描仪原理三维激光扫描仪主要由激光发射器、接收器、时间计数器、马达控制可旋转的滤光镜、控制电路板、微电脑和软件等组成。
激光脉冲发射器周期地驱动激光二极管发射激光脉冲,由接收透镜接受目标表面后向反射信号,产生接收信号,利用稳定的石英时钟对发射与接收时间差作计数,最后由微电脑通过软件,按照算法处理原始数据,从中计算出采样点的空间距离;通过传动装置的扫描运动,完成对物体的全方位扫描;然后进行数据整理从而获取目标表面的点云数据。
1.2三维坐标确定方法1.3 三维激光扫描仪应用量化实景对象、三维信息采集、逆向三维重构、逆向三维建模空间数据反求、对象逆程设计、预研仿研仿制、虚拟现实应用正向工程反证、逆向工程实施、概念设计仿真、逆向制图还原结构特性分析、试验工程仿真、后数据测计量、目标形变监测工程技效评估、电脑模拟实战、环境适应仿真、工程力学分析对抗模拟推演、企业无纸操作、虚拟设计制造、科目效果测试整合三维资源、创建三维流程、工装工艺规划、改进改造工程历史资源修复、任务方案优化、对象加载仿真、设施维护维修应用领域:包括:核电站,文物,考古,建筑业,航天,航空,船舶,制造,军工,军事,石化,医学,水利,能源,电力,交通,机械,影视,教学,科研,汽车,公安,市政建设......2 点云数据处理与建模2.1 点云的预处理由于扫描过程中外界环境因素对扫描目标的阻挡和遮掩,如移动的车辆、行人树木的遮挡,及实体本身的反射特性不均匀,需要对点云经行过滤,剔除点云数据内含有的不稳定点和错误点。
实际操作中,需要选择合适的过滤算法来配合这一过程自动完成。
2.2 点云配准使用控制点配准,将点云配准到控制网坐标系下;靶标缺失的点云,利用公共区域寻找同名点对其进行两两配准,当同名点对不能找到时,利用人工配准法。
三维激光扫描仪原理
三维激光扫描仪原理
三维激光扫描仪是一种能够快速获取物体表面三维形状信息的高精度测量设备。
它通过激光束在物体表面的反射和回波信号的接收,实现对物体表面的高精度扫描和测量。
三维激光扫描仪的工作原理是基于激光测距技术和三角测量原理,通过激光束的发射和接收,计算出物体表面各点的三维坐标信息,从而实现对物体表面的快速、精确的三维测量。
首先,三维激光扫描仪通过发射激光束照射到物体表面,激光束在物体表面被
反射后,激光束的回波信号被接收器接收到。
接收器接收到回波信号后,根据激光束的发射和接收时间,计算出激光束从发射到接收的时间差,再根据光速和时间差计算出激光束在空间中的传播距离。
其次,三维激光扫描仪通过三角测量原理计算出物体表面各点的三维坐标信息。
三角测量原理是利用已知的一条边和两个角或者两条边和一个角来确定一个三角形的大小和形状。
在三维激光扫描仪中,激光束的发射点、接收点和物体表面上的点构成一个三角形,通过测量激光束的发射点和接收点的坐标,以及激光束在空间中的传播距离,就可以计算出物体表面上各点的三维坐标信息。
最后,三维激光扫描仪通过对物体表面上各点的三维坐标信息进行采集和处理,生成物体的三维模型。
在采集和处理过程中,需要考虑到激光束的发射和接收精度、扫描速度、采样密度等因素,以确保生成的三维模型具有高精度和高质量。
总的来说,三维激光扫描仪的工作原理是基于激光测距技术和三角测量原理,
通过激光束的发射和接收,计算出物体表面各点的三维坐标信息,从而实现对物体表面的快速、精确的三维测量。
三维激光扫描仪在工业制造、建筑测量、文物保护、数字化设计等领域有着广泛的应用前景,是一种非常重要的测量设备。
三维激光扫描仪解决方案
三维激光扫描仪解决方案一、引言随着科技的不断发展,三维激光扫描仪作为一种高精度、高效率的测量工具,被广泛应用于工业领域、建筑设计、文物保护等各个领域。
本文将介绍三维激光扫描仪的原理、应用场景以及解决方案。
二、原理三维激光扫描仪通过发射激光束并接收反射回来的光来测量物体的形状和位置。
其原理是利用激光的光电效应,将物体表面的光反射回来后,通过对反射光进行测量,便可得到物体的三维坐标信息。
三、应用场景1. 工业领域:三维激光扫描仪可以用于工件的测量和检测,可以快速准确地获取工件的三维形状和尺寸信息,提高生产效率和质量控制能力。
2. 建筑设计:在建筑设计中,三维激光扫描仪可以帮助设计师快速获取建筑物的准确三维模型,减少了传统测量的时间和成本,并提供了更精确的数据支持。
3. 文物保护:文物保护是一个非常重要的领域,三维激光扫描仪可以对文物进行精确的三维扫描,帮助保护者更好地了解和保护文物,同时也为文物的数字化保存提供了有效的手段。
四、解决方案1. 数据采集:使用三维激光扫描仪对目标进行扫描,获取大量点云数据。
通过扫描仪的高速扫描和高分辨率的光电探测器,可以在很短的时间内获得大量的高精度三维数据。
2. 数据处理:对采集到的点云数据进行处理和优化,包括去噪、滤波、配准等步骤。
数据处理的目的是提高数据的质量和准确性,为后续应用提供可靠的数据基础。
3. 数据分析:根据具体需求,对处理后的点云数据进行分析,如提取物体的特征、测量尺寸、进行形状比对等。
通过数据分析,可以深入挖掘数据的内在价值,为决策提供科学依据。
4. 数据可视化:将处理后的数据以三维模型的形式进行可视化展示。
通过可视化,可以直观地观察和分析物体的形状和结构,为用户提供更直观的理解和判断依据。
五、优势和挑战1. 优势:a. 高精度:三维激光扫描仪可以实现亚毫米级的测量精度,远高于传统测量工具的精度。
b. 高效率:激光扫描仪可以在短时间内获取大量数据,大大提高了测量和分析的效率。
三维激光扫描仪检定规程
三维激光扫描仪检定规程
三维激光扫描仪检定规程通常是为了确保扫描仪的精确性、稳定性和可靠性。
这些规程可以根据具体的制造商、型号和用途而有所不同,但通常包括以下一般性步骤:
准备工作:
确保检定仪器和设备处于适当的工作环境中,包括温度、湿度等条件。
核实检定仪器和所需的标准是否处于有效期内。
校准前的准备:
清理和校准扫描仪的光学元件,确保它们处于良好状态。
检查所有连接和电缆,确保没有断开或损坏。
校准程序:
进行零点校准,确保系统在无输入时输出为零。
进行比例校准,验证扫描仪的尺度和测量单位的准确性。
进行角度校准,确保扫描仪在水平和垂直方向上的测量角度准确。
检查和校准激光强度,确保激光的输出符合标准。
系统性能检测:
进行精度测试,使用标准物体或标准工件来验证扫描仪的空间分辨率和测量精度。
检查系统的重复性和稳定性,确保多次测量的结果一致性。
数据分析和记录:
分析检测到的数据,评估系统的性能和准确性。
记录所有校准和检测的结果,包括任何异常或校准调整。
校准报告:
生成校准报告,详细说明扫描仪的性能、校准过程和结果。
报告中应包括校准的日期、执行校准的人员信息以及任何必要的备注。
维护和追踪:
制定定期维护计划,确保扫描仪的长期性能。
设立系统以跟踪和管理校准的有效性,及时调整和重新校准。
请注意,具体的三维激光扫描仪检定规程可能会因制造商和型号的不同而有所差异。
在执行检定程序之前,建议参考扫描仪的用户手册和制造商提供的文档以获取详细的检定指南。
此外,遵循相关行业标准和法规也是非常重要的。
三维激光扫描仪使用说明
三维激光扫描仪使用说明1、三维激光扫描原理trimblegx200三维激光扫描系统由三维激光扫描仪、数码相机、扫描仪旋转平台、软件控制平台,数据处理平台及电源和其它附件设备共同构成,是一种集成了多种高新技术的新型空间信息数据获取手段。
地面三维激光扫描系统的工作原理:首先由激光脉冲二极管发射出激光脉冲信号,经过旋转棱镜,射向目标,然后通过探测器,接收反射回来的激光脉冲信号,并由记录器记录,最后转换成能够直接识别处理的数据信息,经过软件处理实现实体建模输出。
2、三维激光扫描工作流程应用三维激光测量技术采集数据的工作过程大致可以分为计划制定、外业数据采集和内业数据处理三部分。
在具体工作展开之前首先需要制定详细的工作计划,做一些准备工作,主要包括:根据扫描对象的不同和精度的具体要求设计一条合适的扫描路线、确定恰当的采样密度、大致确定扫描仪至扫描物体的距离、设站数、大致的设站位置等等;外业工作主要是采集数据:主要包括数据采集、现场分析采集到的数据是否大致符合要求、进行初步的质量分析和控制等等;内业数据处理是最重要也是工作量最大的一环,主要包括:外业采集到的激光扫描原始数据的显示,数据的规则格网化,数据滤波、分类、分割,数据的压缩,图像处理,模式识别等等。
3、三维激光扫描仪用途目前trimblegx200三维激光扫描仪的主要用途为工程测量、地形测景、虚拟现实和模拟可视化、矿区土方开挖断面和体积测量、工业制造、变形测量、加工检测、施工控测、事故调查、历史古迹的调查与恢复,以及特殊动画效果的测量等。
4、本校对三维激光扫描仪主要用途表明本校对trimblegx200三维激光扫描的主要用途有如下三个方面:(1)本科生可以运用三维激光扫描仪展开有关的教学实验,用作创建直观的建筑物模型,介绍外业操作方式和内业数据处理的基本方法,并使自己掌控一流的测量仪器,拓宽自己知识面,为以后进一步的研究打下基础。
(2)硕士研究生可以结合本专业情况运用三维激光扫描仪进行各种实验项目,例如可以在变形监测方面运用仪器进行相关实验,获得测量数据进行相关的后续研究。
3d激光扫描仪的原理
3d激光扫描仪的原理
激光扫描仪是一种利用激光技术进行三维空间扫描和建模的设备。
它的原理基于激光和相机的配合工作,通过发射激光束并记录其在环境中的反射情况,进而获取环境中物体的准确三维坐标信息。
在激光扫描仪中,激光发射器会发出一束激光光束,并经过凸透镜或光纤束聚集成一条较为准直的光线。
这束激光经过一个旋转的镜面反射,被引导至环境中需要测量的物体表面上。
当激光束照射到物体表面时,其中的一部分光会被物体反射回激光扫描仪中的相机系统中。
相机接收到反射光并记录下来,形成一个二维的激光斑图像。
在扫描过程中,镜面会以较高的速度旋转,激光束通过多个角度照射到目标物体表面,相机也会记录下不同角度下物体表面反射光的信息。
通过激光扫描仪提供的多个二维激光斑图像,可以通过计算机算法进行处理,获得每个激光斑在空间中的三维坐标。
将这些坐标进行连接,就可以生成完整的物体三维模型。
需要注意的是,由于激光扫描仪测量的是物体表面上的点云数据,并不能直接获取内部结构。
如果需要获取物体内部的三维结构,需要通过其他技术手段进行处理。
总的来说,激光扫描仪利用激光照射和相机记录的原理,可实
现对物体表面的高精度三维测量,具有广泛应用于文化遗产保护、工程设计、制造业等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用三维激光扫描仪提取塌陷裂缝张飞跃(西安科技大学,陕西西安 710600)摘要:三维激光扫描技术作为一种新兴的测量技术,是一种先进的、自动化的、非接触式、高精度三维激光技术,是继GPS之后测量技术的又一次革新。
由于地面沉降引起的地裂缝是一种日趋普遍且显著的地质问题,对矿区地表作物及生态产生重大影响。
利用三维激光扫描仪并结合数字图像技术提取塌陷裂缝是对三维激光技术应用的又一次扩展。
论文对三维激光扫描仪进行了详细的介绍说明并通过对矿区实地数据的处理和分析,探索三维激光扫描仪在地表变形监测领域的应用理论和方法。
关键词:三维激光扫描技术,点云数据处理,数字滤波,裂缝信息提取Using three-dimensional laser scanner to extract Surface crackZHANG Fei-Yue(xi’an university of science and technology)Abstract:As a new measurement technique,three-dimensional laser scanning technology is an advanced, automated, non-contact, high-precision three-dimensional laser technology, following another GPS measurement technology innovations.Due to cracks caused by ground subsidence is a common and increasingly significant geological problems, there has a significant impact on the mine surface crops and ing three-dimensional laser scanner and digital image technology to extract collapse crack is another expansion of three-dimensional laser technology .This paper has been illustrated and described in detail by mine field data processing and analysis for three-dimensional laser scanner,to explore the three-dimensional laser scanner application theory and methods in the field of surface deformation monitoring.Key words: Three-dimensional laser scanning technology,Point cloud data processing,Digital Filter,Cracks information extraction0 引言三维激光扫描系统是一种集高新科技于一身的空间数据获取系统。
利用地面三维激光扫描技术,可以进行复杂地形地貌的地区或是管线设施密集的工厂进行扫描作业,并可以直接实现各种大型的、复杂的、不规则、标准或非标准的实体或实景三维数据完整的采集,进而快速重构出实体目标的三维模型及线、面、体、空间等各种制图数据。
同时,还可对采集的三维激光点云数据进行各种后处理分析,如测绘、分析、模拟、展示、监测、虚拟现实等操作。
在矿山开采沉陷研究中,传统地表沉陷观测方法在地表变形盆地主断面上步设一定密度的监测点获取地表变形数据。
监测点数量有限,并且在较长的观测周期中出现因监测点难以保护而造成点位丢失的现象,给之后的数据处理工作带来麻烦,甚至无法满足观测站的监测精度要求。
在塌陷裂缝信息提取方面,也因为观测数据不充足而无法对裂缝进行全面展示分析。
地面三维激光扫描技术引入矿山开采沉陷研究以后,上述问题得到了有效的解决。
三维激光扫描技术通过扫描获取地表或空间点云数据替代传统的线状观测数据,大大增加了采集数据的信息量,使得在之后的数据处理阶段从点云中提取完整的地表裂缝信息。
1 三维激光扫描仪的工作原理及特点三维激光扫描仪测量过程使用自身内部坐标系。
获取扫描点的三维坐标的原理是:扫描过程中以扫描仪的内部为原点O 的扫描坐标系统,X 、Y 轴在扫描坐标系的水平面上,X 轴为扫描方向,Z 轴为垂直方向,构成如图3-2的左手系。
由激光脉冲发射器周期地发射激光脉冲,精密时钟控制编码器获取发射出的激光光束的水平方向角和垂直方向角,由脉冲激光发射到被目标反射被接收的时间差计算得到扫描点到坐标原点的距离S ,由此可得到扫描点P 的(x,y,z)三维坐标的计算公式:θϕθϕθsin sin cos cos co S Z S Y s S X === 根据地面三维激光扫描仪的工作原理,对公式(3.1)每项中的S 、θ、ϕ分别求偏导,根据误差传播定律可得:()()()()()()()()222222222222222222222222/cos sin /cos cos /sin sin sin cos /sin cos /cos sin cos cos ρσθσθσρσϕθρσϕθσϕθσρσϕθρσϕθσϕθσθϕθϕθS S S S S s s s y s x +=++=++= (6.8)在上式中,s σ为测距中误差,θσ是竖直角中误差,ϕσ是水平角中误差,ρ=206265。
则地面三维激光扫描仪理论点位中误差p σ为: 2222222222//ρσρσσσσσσϕθS S s s y x p ++±=++±= (6.9) 已知徕卡Scanstation 10在扫描50m 处时的测距中误差为4mm,水平角和竖直角的中误差都为12″。
三维激光扫描仪没有类似于全站仪的盘左盘右之分,故认定厂家给定的测角精度s σ是指扫描仪的半测回方向中误差,则根据误差传播定律得三维激光扫描仪半测回的测角中误差为s σ2。
将测角和测距中误差带入上式得在扫描距离为50m 时的理论点位中误差为7.06mm 。
传统的测量设备主要是单点测量,获取其三维坐标。
三维激光扫描技术是一种全新的数据采集方式,它能够快速、高效、精确、自动化的采集地表信息(点云数据)。
特点如下:(1)非接触测量。
三维激光扫描仪可以对目标进行非接触式测量,并且不需要反射棱镜,可以用来解决危险目标或是无法到达的区域的测量工作。
(2)数据采样率高。
目前,三维激光扫描仪扫描速度可以达到百万点/秒,这是传统测量仪器无法比拟的。
(3)主动发射扫描光源。
通过探测发射的激光回波信号来获取目标物体的信息。
可以全天作业,不受光线的影响。
(4)具有高分辨率、高精度的特点。
三维激光扫描仪单点精度可以达到2mm ,采样间隔为1mm 。
(5)数字化采集。
三维激光扫描系统直接获取距离的数字信号,具有全数字特征,抑郁自动化显示输出,可靠性好。
(6)外置(或内置)数码相机。
系统内置数码相机可以协助扫描工作进行监测、拍照等操作。
在数据处理阶段,可对三维模型进行纹理映射,重构三维模型。
(7)集成了高精度定位装置。
新型的扫描系统集成了GPS 接收机等高精度定位装置,并通过自身的软件实现坐标系统的转换,从而可以将点云数据直接输出为大地坐标,方便日常使用。
2矿区实例数据分析本次数据采集使用三维激光扫描仪对地表塌陷地区进行扫描,将扫描得到的点云数据使用Geomagic Studio软件进行编辑,将之后处理过的点云数据使用Envi软件进行裂缝提取工作。
2.1点云数据配准Geomagic Studio是Geomagic公司的一款逆向工程软件,可根据扫描点点云数据生成准确的数字模型[34]。
可输出行业标准格式文件,包括STL、IGES、CAD 等多种文件格式。
其主要功能包括:点云数据去噪、配准精简等;将点云转换为曲面;对曲面进行公差分析等。
使用Geomagic Studio软件进行点运数据配准。
相邻站之间进行一一配准,再进行整个测区的配准,完成后采用精密配准,控制点云数据的整体精度。
点云数据配准工作要求细致耐心仔细观察每个纹理特点,从各配准图像上可看到配准精度都在4mm左右,精度比较高,对后续工作有很大帮助。
图5-6 精密配准2.2数据降噪完整点云数据中含有噪音,会影响后续工作效率,需要对其进行剔除。
数据降噪分两部分,一个是例如杂草、树木类的噪音,通过人机交互的方式手动剔除;另一种是仪器或是外界环境造成的离散的噪音,通过数据滤波的的方式剔除。
此次采用自由曲面和棱柱模型两种不同的数据模型对点云处理,其结果是自由曲面模型降噪效果更为明显,更适用于此类地表。
2.3数据精简在Geomagic Studio软件中,选择曲率采样对点云数据进行精简,经过多次试验最终选择采样率为80%。
曲率采样的特点是在模型特征比较明显或是特征较多的地方保留的较多的点云;而在地形较简单的地区,特征和纹理较少,用较少的点来表示较大的区域,删除的点就会比较多。
该方法的优点是能够在根据模型的特征变化灵活的对点云数据进行精简,同时对模型特征的完整保持良好,将点云中点的数量从198万减少到159万,大大减小了数据量同时很好的保留了细节纹理特征(图5-10)。
图5-10 数据精简2.4数据输出利用三维激光扫描仪对矿区地表裂缝的提取是对三维激光扫描仪应用的扩展,并充分考虑裂缝的特点,我们选取数据输出为正射图像,使用数字图像的技术对裂缝信息进行提取。
利用Geomagic Studio的图像输出功能将点云数据输出为高分辨率的.jpg格式文件,并设置分辨率为4096*2170。
图5-11 点云数据图像输出3数字滤波提取图像信息数字滤波是通过一定的算法,对图像进行处理,将某一频段的信号进行滤除生成新图像的过程。
本次数据处理采用的数据滤波有Sobel、Laplacian、Directional、Median、Robert。
分析各种滤波器的优缺点,比较其各自特点,选择最完整、最清晰的图像保留使用。
此次实验使用Envi 4.5软件对数字图像做数字滤波。
图5-14 中值滤波处理图像从图中可看到中值滤波对噪音的抑制做得相当好,同时又很好地保留了边缘信息,唯一美中不足的是对一些细线和小块信息丢失的较多,使塌陷裂缝信息产生断续效果。
高斯-拉普拉斯边缘检测算子是二阶微分算子,首先使用高斯低通滤波对图像做平滑处理,这样有利于减小拉普拉斯算子对噪音的二次影响。