波导滤波器
ads波导腔体滤波器设计
ads波导腔体滤波器设计
ADS软件可以用于波导腔体滤波器的设计。
下面简单介绍一下设计过程:
1. 确定滤波器的参数,包括中心频率、通带带宽、阻带带宽和衰减。
2. 在ADS软件中新建一个“layout”工程,在其中选择一个合适的波导宽度。
3. 将波导布满整个布局区域,并在中央添加两个矩形缺口,调整宽度和长度以达到带宽要求。
4. 运用仿真和优化工具进行电磁仿真和优化。
如果需要更精细的仿真结果,可以引入三维电磁仿真软件。
5. 通过布局编辑器进行布局优化和参数调整,如增加爬行线和扇形盖板、调整缺口形状等。
6. 通过ADS软件的“加工输出”功能将布局数据输出到CNC机器进行加工。
7. 完成加工后,进行测试和调试。
如果滤波器不满足要求,可以返回到步骤3到步骤6进行优化。
以上是波导腔体滤波器设计的基本流程,当然具体细节还需要根据具体情况进行调整。
在设计过程中,需要注意滤波器的可制造性和可靠性。
同时,在设计过程中要注意避免过度优化导致生产成本过高。
波导滤波器
滤波器从 14.9到 15.35 GHz连续可调 到 连续可调 BJ-140波导技术参数: 波导技术参数: 波导技术参数 a=15.8mm; b=7.9mm; 工作频率范围: 工作频率范围: 11.9~18GHz
滤波器原型
f0
1a) Obtain low-pass prototype parameters (gi) from filter specifications (see e.g. Matthaei*)
do
φ
优化谐振腔长度
For all resonators: calculate resonator length, fine tune until the structure resonates at the center frequency
-10
0A
K01
Z0
lr
K12
-15
-20
Denne figuren er IKKE for første resonator
-25
-30
-35
φ1 φr φ2
φr = (π −φ1 −φ2 )
1 2
-40 15.31
15.32
15.33
15.34
15.35
15.36
φr λg l=− 2π
resonator length l1 = 10.839 mm 15.37 15.38 15.39 15.4 l2 = 11.346 mm l3 = 11.395 mm l4 = 11.395 mm l5 = 11.346 mm l6 = 10.839 mm
-4
-40 -50 -60 -70 -80 -90 15.24
-5
-6 15.29
滤波器详细分类
带通滤波器技术指标
• 插入损耗
又称衰减,在理想情况下,插入到射频电路中的理想滤波 器,不应在其通带内引入任何功率损耗.然而现实中我们 无法消除滤波器固有的,某种程度的功率损耗。插入损 耗定量的描述了功率响应幅度与0dB基准的插值,其数学 表达式为:
其中PL 是滤波器向负载输出的功率,Pin 是滤波器从信 号源得到的输入功率,一般希望插入损耗越小越好。
带通滤波器技术指标
• 带内波动
在规定的带宽内,插入损耗最大点减去最小点的即为带内 波动。又叫带内波纹或者通带波纹。指通带内信号幅度的 起伏程度,也受限于谐振器的固有Q值,一般希望尽可能 的小。
带通滤波器技术指标
• 带外抑制
又称阻带抑制,理想的滤波器是矩形的,通带内的信号全 部通过,通道外的信号全部过滤掉。
光速波长电磁波波段代号波段代号频率范围ghz频率范围ghzuhf031ka274080100ku1218300mhz3000ghz1m电磁波谱01mm频率波长3ghz30ghz300ghz10cm1cm1mm普通无线电波普通无线电波红外线红外线紫外线紫外线亚毫米分米厘米毫米中波短波超短波长波顾名思义就是对电磁波信号进行过滤让需要的信号通过抑制不需要的信号主要目的为了解决不同频段不同形式的无线通讯系统之间的干扰问题其特性可以用通带工作频段插入损耗带内波动带外抑制端口驻波比隔离度矩形系数功率容量群时延指标来描述
波导滤波器Q值高,插损小,温度稳定性好,特别 适合于窄带应用。在1.7~26GHz的频率范围内可实 现0.2%~3.5%带通滤波,在各种要求高性能滤波特 性的军用电子产品中被广泛使用。波导滤波器中比 较常见的有两种:金属波导滤波器(直接耦合式) 和基片集成波导滤波器。
金属波导滤波器:
波导型定向滤波器的研究
摘 要 : 向滤波器是一个 完全 匹配的 四端 口器件 , 定 它有着类似 滤波器 的频率特性 。 波导型定 向滤波器利用 圆极化波 导来 实现信号的定 向分 配, 本文介绍 了它的原理及设计 方法, 出了仿真实例。 给
关键词 : 波导 ;定 向滤 波器 ;双模 中图分类号 : N4 T 7 文献 标识码 : A 文章编号 : 6 1 4 9 -2 1 )- 0 3 0 1 7 - 7 2 (0 05 0 3 — 3
如 图二 所示 , 在频 带的 中心频 率上 , 入 端 口 的信号 进 先通 过耦合孔在 中间第 一个空 腔 内激起 圆极 化 T l 模 , EI 又
o 其中, 神 为矩 形波导在 ∞ 上 的波导波长 。 o
一
对于圆孔耦合 , 其孔径近似为 :
川 : =4M , ~ 36j o
i e h di ec on pro ert s. z t e r ti al p ie Thi p s ape in rod ces r t u th pr nci le nd esi n e i p a d g wi h si la on ex pl t a mu ti am e.
《一 口 2
《一 0 1
一藕 U 4 J
一l 柏 m
2定向 分 性 析
能 空 激 极化Tl 模, 合 位 必 选 在 腔中 起圆 E1 耦 孔的 置 须 在 1
定 向 蝴
如三示 形导空间耦为藕。了 图所, 波与腔的合磁合为 矩
I I处. : 萁中厅 与扈为矩形波导中 T1 樟存 XZ E0 . 方向
滤 波器 , 采用双模 圆波导, 它 利用 圆极化 模 和特殊 的耦合 结 构来实 现信号的定 向分配 。
c.: ; ^I : . l
4、波导滤波器设计
π wλB
2 gn gn+1
λgi0 ∆f wλi = λ f 0 0
2、耦合设计 、 WR62波导:15.799mm*7.899mm 波导: 波导
Z0A K01 Z0
S21 = 2 jK′ − j K′
d
do
Coupling S21 (dB) 1 -16.14 2 -40.40 3 -43.47 4 -43.93 5 -43.47 6 -40.40 7 -16.14
lengt h2 wid th2
lengt h2 wid th3
lengt h1 wid th2
wid th1
a / b 2 port 1
耦合膜片设计 传输线段设计
symmetry boundary
设计步骤 1、由滤波器指标得到原型电路:得到K变换器的值; 、由滤波器指标得到原型电路:得到 变换器的值 变换器的值; 2、膜片尺寸设计(耦合设计):使用HFSS优化膜片 、膜片尺寸设计(耦合设计):使用 ):使用 优化膜片 尺寸,得到要求的 变换器的值对应膜片的尺寸 变换器的值对应膜片的尺寸; 尺寸,得到要求的K变换器的值对应膜片的尺寸; 3、传输线尺寸设计(谐振器设计):得到各传输线段 、传输线尺寸设计(谐振器设计):得到各传输线段 ): 的长度 优点: 优点: • 每一步仅仅有简单结构仿真,速度快; 每一步仅仅有简单结构仿真,速度快; • 每一步仅仅有一个优化变量,收敛快速; 每一步仅仅有一个优化变量,收敛快速;
′ Ln = g n
′ Cn = g n
′ Rn+1 = g n+1
或
′ Gn+1 = g n +1
阶梯LC到 阶梯LC到 LC 单一元件低通
小型化基片集成波导滤波器研究进展
• 36•小型化基片集成波导滤波器研究进展武警工程大学信息工程学院 张怿成 刘方毅 孟志豪综述了基片集成波导滤波器小型化研究现状。
首先介绍了基片集成波导谐振器的基础理论,其次总结了基片集成波导谐振器小型化的实现方法和存在不足,最后对未来的发展趋势进行了展望。
引言:基片集成波导(Substrate Integrated Waveguide,SIW )滤波器是一种新型结构器件,既具备了传统金属波导高品质因数、高功率等优点,又兼容了微带滤波器结构体积小、易集成的特点,在当今频谱环境日益紧张的通信系统中具有很高的研究和应用价值。
小型化基片集成波导滤波器有利于减少射频前端的体积,且便于和天线、功分器等微波器件相集成,是国内外学者研究的热点方向。
本文阐述了SIW 滤波器小型化的相关理论,介绍了其研究现状和发展趋势。
1 基片集成波导基础理论一般结构的SIW 谐振腔由金属层和介质层构成,腔体边缘周期性排列的的金属过孔可以等效为传统金属波导的侧壁,介质层通常选用Rogers RT/duroid 5880等材料,其结构如图1所示:图1 基片集成波导模型2005年,FengXu 在[Xu F,Wu K.Guided-wave and leakage characteristics of substrate integrated waveguide[J].IEEE Trans-actions on Microwave Theory & Techniques,2005,53(1):66-73]中给出了基片集成波导与金属波导的等效关系式:(1)且SIW谐振器的谐振频率可由下式确定:(2)其中m=1,2,3…, p=1,2,3…, ε为相对介电常数, μ为相对磁导率。
2 基片集成波导滤波器小型化方式SIW 滤波器的小型化技术可以分为三个方面:模切割技术、多层折叠技术、加载技术。
2.1 基于模切割技术的SIW小型化2005年,东南大学的洪伟教授在论文[Hong W,Liu B,Wang Y,et al.Half Mode Substrate Integrated Waveguide:A New Guided Wave Structure for Microwave and Millimeter Wave Application[C]//Joint,International Conference on Infra-red Millimeter Waves and,International Conference on Teraherz Electronics,2006.Irmmw-Thz.IEEE,2007:219-219]中提出了将全模SIW 沿中心线进行切割形成HMSIW ,其切口可等效于虚拟磁壁,既保留了前者的波导特性,又缩小了一半体积,其结构和场分布如图2所示。
介质波导滤波
介质波导滤波
介质波导滤波器是一种利用介质波导传输电磁波的滤波器。
它通常由两个或多个介质波导段组成,这些波导段之间通过耦合器或交叉线等结构相互连接。
在介质波导滤波器中,电磁波在波导中传播时,会受到波导壁的限制和散射,从而在波导中形成一系列的谐振模式。
这些谐振模式具有特定的频率和带宽,因此介质波导滤波器可以通过调整波导的结构和尺寸,以及耦合器的位置和大小等参数,来控制和优化滤波器的频率响应和带宽等性能。
介质波导滤波器具有高Q值、低插入损耗、低交叉极化、低成本等优点,因此在通信、雷达、电子对抗等领域得到了广泛应用。
【最新文档】awr波导滤波器设计-范文word版 (6页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==awr波导滤波器设计篇一:AWR微波实验报告实验一A整流器非线性分析一.实验目的1. 了解非线性二极管整流器工作原理2. 学会AWR对电路进行非线性分析及非线性调节二.实验原理所有整流器类别中最简单的是二极管整流器。
在最简单的型式中,二极管整流器不提供任何一种控制输出电流和电压数值的手段。
为了适用于工业过程,输出值必须在一定范围内可以控制。
通过应用机械的所谓有载抽头变换器可以完成这种控制。
作为典型情况,有载抽头变换器在整流变压器的原边控制输入的交流电压,因此也就能够在一定范围内控制输出的直流值。
通常有载抽头变换器与串联在整流器输出电路中的饱和电抗器结合使用。
通过在电抗器中引入直流电流,使线路中产生一个可变的阻抗。
因此,通过控制电抗器两端的电压降,输出值可以在比较窄的范围内控制。
本次试验要求设计一个非线性二极管整流器,添加测量项,调节电阻,观察电压的变化情况,从而去分析二极管的非线性。
三.实验步骤1、完成非线性二极管整流器电路图如下2、设计模拟频率如下3、添加图表,往图表中添加测量项Vtime,ACVS.V1,V_Meter.VM1,并分析电路4、添加图表,往图表中添加测量项Vtime,ACVS.V1,V_Meter.VM1,并分析电路5、使用Simulate/Tune tool调节MAG及R参数观察Graph1和Graph2变化观察得调节MAG会使得测量项ACVS.V1,V_Meter.VM1的幅值变大,而调节R电路特性变化不大。
四.实验总结通过此次试验,学会如何向工程中添加原理图,并成功绘制符合元件参数的原理图。
学会添加图表,往图表中添加非线性测量项。
学会使用Tune tool调节电路中元件的参数,从而观察到改元件参数对电路特性的影响。
实验一B 集总元件滤波器线性分析一、实验目的:1.了解电感输入式集总元件滤波器工作原理 2.学会调节参数及优化电路二、实验原理设计一个电感输入式集总元件滤波器,已知L1=L4=15nH,L2=L3=30nH,C1=C3=8pF,C2=10pF,输入输出端特性阻抗均为50Ω,工作频率100~1000MHz。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-30
-40
S11 Measured
-50
S21 Measured S11 HFSS
S21 HFSS
S11 Goal
-60
S21 Goal
-40
-30
-20
-10
0
10
20
30
f -f0 (MHz)
g/2
0 jK
A j K
0
1 K2
2K
K12
S
Z10
mj
1
K 2 2K
mj
K23 1
K2 1
1ZK0 K2
K2
2
;
g/2 S11
S22
1 1
K 2 K 2
;
S21
S12
mj
2K 1 K2
Z0 K
K变换器计算模型
Z0A
K01 Z0
K12
Z0
K23 Z0
利用对称面g可/2 以简化模g/型2 ;
滤波器测试结果
Designed at 15.35 GHz Tunable from 14.9 to 15.35
GHz Measured at 15.32 GHz
S21 (dB)
S (dB)
0
-1
-2
-3
-4
-5
-6
15.29
15.3
15.31
15.32
15.33
15.34
15.35
frequency (GHz)
现代滤波器设计讲座(三)
腔体级联耦合波导滤波器
电子科技大学 贾宝富 博士
矩形波导滤波器常见类型
对称膜片 纵向条带
横向条带
方柱
圆柱
波导滤波器设计举例
设计参数: f0 = 15.35 GHz BW= 32 MHz S11 < -20 dB S21 < -40 dB @ f0 ± 40 MHz
滤波器从 14.9到 15.35 GHz连续可调
现代滤波器设计讲座(三)
波导滤波器设计
电子科技大学 贾宝富 博士
波导滤波器概述
波导滤波器具有插入损耗低、功率容量大和容易批量 生产的特点;
波导滤波器的工作频率可以达到毫米波波段。主要用 于卫星通讯、电子对抗和雷达系统。
波导滤波器有以下几种类型:
直接耦合波导滤波器; 交叉耦合波导滤波器; 带抑制谐振器的波导滤波器; 使用非谐振结点的波导滤波器; 使用过模谐振器的波导滤波器; 凋落模波导滤波器;
计算K值;
K 1 S11 1
计算附加相移;1 S11 S21
1 S21
2
1
i 90 argS21
Z0 Kn
优化耦合系数
For all couplings: Optimize coupling to give the right K-inverter value at
the center frequency
10 0
-10 -20 -30 -40 -50 -60 -70 -80 -90 15.24 15.26 15.28 15.3 15.32 15.34 15.36 15.38 15.4 15.42
frequency (GHz)
仿真与测试结果比较
data centered on f0
0
-10
-20
S (dB)
2
Kn,n1
Kn,n1 Z0B
ห้องสมุดไป่ตู้
wB
2 gn gn1
wi
gi 0 0
2
f f0
gi0
0
1 0 c 2
0
c f0
1
gi gi1
Example:
K´01=0.0775 K´12=0.0048 K´23=0.0034 K´34=0.0032
K变换器的S参数
在滤波器中心工作频率
Z0A
K01 Z0
offset
do1 = 3.845mm do2 = 3.135 mm do3 = 2.960 mm do4 = 2.972 mm do5 = 2.960 mm do6 = 3.135 mm do7 = 3.845 mm
优化谐振腔长度
For all resonators: calculate resonator length, fine tune until the structure resonates at the center frequency
带K变换器滤波器模型
1b) Calculate K-inverters (band-pass prototype parameters)
Z0A
K01 Z0
K12
Z0
K23 Z0
Z0 Kn,n+1
Z0B
g/2
g/2
K01
K01 Z0 A
w A
2 g0 g1
Ki,i1
K i ,i 1
wi
Z0i Z0,i1
BJ-140波导技术参数: a=15.8mm; b=7.9mm; 工作频率范围: 11.9~18GHz
滤波器原型
1a) Obtain low-pass prototype parameters (gi) from filter specifications (see e.g. Matthaei*)
K 1 S11
1 S11
Z0A
K01
d
Z0 g/2
K12
Z0
K 1
g/2 S21
K23
1Z02
S21
1
Z0
do
Coupling S21 (dB)
1
-16.14
2
-40.40
3
-43.47
4
-43.93
5
-43.47
6
-40.40
7
-16.14
diameter
d1 = 2.50 mm d2 = 3.50 mm d3 = 3.50 mm d4 = 3.50 mm d5 = 3.50 mm d6 = 3.50 mm d7 = 2.50 mm
15.33
l1 = 10.839 mm
l = 11.346 mm 15.34 15.35 15.36 15.37 15.38 15.39 15.4
frequency (GHz)
2
l3 = 11.395 mm
l rg 2
l4 = 11.395 mm l5 = 11.346 mm l6 = 10.839 mm
networks, and coupling structures”, Artech House, Norwood, MA, 1992
6th order
Chebychev filter
prototype
elements
g0 = 1.0000 g1 = 0.8836 g2 = 1.3966 g3 = 1.7894 g4 = 1.5528 g5 = 1.6095 g6 = 0.7667 g7 = 1.1524
g2
g4
f0 BW IL RL
gn
g0
g1
g3
gn-1
gn+1
Z0A
K01 Z0
K12
Z0
K23 Z0
Example:
f0 = 15.35 GHz BW= 32 MHz S11 < -20 dB S21 < -40 dB @ f0 ± 40 MHz
Z0 Kn,n+1
Z0B
g/2
g/2
*Matthaei, Young and Jones “Microwave filters, impedance-matching
Z0A
K01 Z0
lr
g/2
K12
Z0 g/2
S (dB)
-10
K Z -15
23
0
Z0 Kn,n+1
-20
Denne figuren er IKKE for første resonator
-25
-30
Z0B
1 r 2
r
1 2
1
2
-35
resonator length
-40 15.31
15.32