高考文科立体几何证明专题

合集下载

立体几何(点到面的距离)

立体几何(点到面的距离)

立体几何(文科综合)1.如图, 在四棱锥P ABCD 中,四边形ABCD 是直角梯形, DC 2AD 2AB 2,DAB ADC 90 , PB 2,PDC 为等边三角形.1)证明:PD BC ;2)求点B到平面PCD的距离.答案】(1)略;(2)632.如图,圆锥PO中,AB是圆O的直径,C是底面圆O上一点,且CAB ,点D为半径OB的中6(Ⅰ)求证:CD 平面APB ;(Ⅱ)当APB是边长为4的正三角形时,求点A到平面PBC的距离. 【答案】(Ⅰ)见证明;(Ⅱ)h 4 1553.如图,已知在直四棱柱ABCD A1 B1C1D1 中,AD DC ,AB/ /DC ,DC DD1 2AD 2AB 2 .(1)求证:DB 平面B1BCC1 ;(2)求点A1到平面C1BD 的距离.【答案】(1)证明见解析;(2)3. 4.如图,四棱锥的底面是直角梯形,点,。

1)证明:平面2)求点到平面的距离。

答案】( 1 )见解析;( 2 )1)证明:平面平面2)求点到平面的距离.答案】(1)见解析(2)6.如图所示,在三棱锥D-ABC中,AC,BC,CD两两垂直,AC=CD=1,=,O为AB 的中点.平面的中5.如图,在三棱柱,是边的中点.中(底面为正三角形),平面说明点 M , N 的位置 ( 不要求证明 );(2) 求点 C 到平面 ABD 的距离.【答案】( 1)见解析;( 2)(1) 求证: CF ∥平面 ; (2) 求三棱锥 C - 的高.【答案】( 1)见解析;( 2)求证:平面 平面,求点 到平面 的距离与平面 ACD 平行,且与棱 DB ,CB 分别相交于 M , N ,在图中画出该截面多边形,并在 的条件下,若 ,求 与平面 所成角的正切值的侧棱 AA1⊥底面 ABC ,∠ACB =90°, E 是棱 的中点, F 是 AB 的中点,8.已知四棱锥的底面 是菱形, 底面 是 上的任意一点7.如图,三棱柱 ABC -答案】( 1)见解析( 2) (3)9.如图, 已知 平面 , 为矩形, 、 分别为 、 的中点,1)求证: 平面 ;2)求证:面平面3)求点 到平面 的距离 .答案】( 1)证明见解析; (2)证明见解析; (3) .1)证明: 平面答案】( 1)证明见解析; (2)11.在长方体 ABCD A 1BC 1 1D 1 中,底面 ABCD 是边长为 2的正方形, AA 1=2 3,E 是 AB 的中点, F10.如图,在四棱锥 点 Q 在棱 AB中, 平面的体积为,求点 B 到平面 PDQ 的距离 .是 BB 1 的中点1)求证:EF / / 平面A1DC1;2)求点A到平面A1DC1 的距离.答案】(1)见解析(2) 2 217ADFC是边长为2的正方形,点M 是棱EF 的中点.2)若三棱锥B DEF 的体积为4,求点B到平面ADFC 的距离.答案】(1)见解析(2)613.已知四棱锥P ABCD的底面为菱形,且ABC 60 ,AB PC 2,AP BP 2 .1)求证:平面PAB 平面ABCD ;2)求点D 到平面APC的距离.答案】(1)证明见解析;(2) 2 21714.如图,在等腰梯形ABCD中,AB/ /CD ,AD DC CB CF ,ABC 60 ,四边形ACFE为平行四边形,FC 平面ABCD ,点M 为线段EF 中点.1)求证: BC ⊥平面 ACFE ;2)若 AD 2,求点 A 到平面 MBC 的距离 答案】( 1)详见解析; ( 2) 4 21 .715.如图所示,在梯形 ABCD 中, AD ∥ BC ,AB ⊥BC ,AB BC 1, PA ⊥平面 ABCD , CD ⊥2)若 PA AD ,求点 B 到平面 PAC 的距离.答案】( 1)见解析( 2) 16.如图, 在直三棱柱 ABC-A 1B 1C 1 中, ABC 为正三角形, AB=AA=1 2 , M 是 A 1C 的中点, N 是 A 1B 1 的中点1)证明:MN ∥ 平面 BCC 1B 1 ; 2)求点 M 到平面 ACB 1的距离 .PAC ;【答案】( 1)见证明;(2) 21717.如图,在底面是正方形的四棱锥P ABCD 中, PA 平面 ABCD , BD 交 AC 于点 E , F 是 PA 的中点, G 为 AC 上一动点.1)求证: BD FG ;2)若 G 是AE 的中点, PA AB 4,求点 P 到平面 FGD 的距离. 答案】(1)证明见解析; (2) 2 14.718.如图,四面体 ABCD 中, O 、 E 分别是 BD 、BC 的中点,1)求证: AO 平面 BCD ;2)求异面直线 AB 与 CD 所成角的余弦值; 3)求点 E 到平面 ACD 的距离。

2020高三数学立体几何专项训练文科

2020高三数学立体几何专项训练文科

2020高三数学立体几何专项训练文科1.在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,E是PD的点。

Ⅰ) 证明PB平行于平面AEC。

Ⅱ) 设AP=1,AD=3,求三棱锥P-ABD的体积V和A点到平面PBD的距离。

2.在四棱锥P-ABCD中,AB平行于CD且AB等于2CD,E为PB的中点。

1) 证明CE平行于平面PAD。

2) 是否存在一点F在线段AB上,使得平面PAD平行于平面CEF?若存在,证明结论;若不存在,说明理由。

3.在四棱锥P-ABCD中,平面PAC垂直于平面ABCD,且PA垂直于AC且等于AD等于2,四边形ABCD满足BC平行于AD,AB垂直于AD且等于1,点E和F分别为侧棱PB和PC上的点,且PEPF等于λ(λ不等于0)。

1) 证明EF平行于平面PAD。

2) 当λ等于2时,求点D到平面AFB的距离。

4.四棱柱ABCD-A1B1C1D1的底面ABCD是正方形。

1) 证明平面A1BD平行于平面CD1B1.2) 若平面ABCD与平面B1D1C相交于直线l,证明B1D1平行于l。

5.在平行四边形ABCD外一点P,PC的中点为M,在DM上取一点G,过G与AP作平面交平面BDM于H。

证明AP平行于GH。

6.在四棱锥P-ABCD中,PA垂直于底面ABCD,AB垂直于AD,AC垂直于CD,且∠ABC等于60度,PA等于AB等于BC,E是PC的中点。

证明:1) CD垂直于AE;2) PD垂直于平面ABE。

7.在四棱锥P-ABCD中,平面PAB垂直于平面ABCD,四边形ABCD为正方形,△PAB为等边三角形,E是PB的中点,平面AED与棱PC交于点F。

1) 证明AD平行于EF;2) 证明PB垂直于平面AEFD;3) 设四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,求V1和V2的值。

8.在四棱锥P-ABCD中,底面ABCD是边长为a,∠DAB 等于60度的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,G为AD的中点。

高考数学立体几何专题:证明

高考数学立体几何专题:证明
PA AD , EF AD PA // EF 。
根据直线与平面平行的判定定理得到:
PA // EF , EF 平面 BEF 直线 PA // 平面 BEF 。
跟踪训练一:已知:在四棱柱 ABCD A1B1C1D1 中: E 为 C1D1 上一点, C1EB1 A1D1C1 。 求证:直线 B1E // 平面 A1 ADD1 。
跟踪训练一:已知:在三棱柱 ABC A1B1C1 中: O 为 AB 边上一点。 证明:直线 B1C1 // 平面 OBC 。
跟踪训练二:已知:在四棱柱 ABCD A1B1C1D1 中: E 为 BB1 的中点。 证明:直线 AD // 平面 A1 D1E 。
题型二:棱柱的所有侧棱都平行。
例题:已知:在三棱柱 ABC A1B1C1 中, O 为 A1C1 的中点。 证明:直线 AA1 // 平面 OBB1 。
例题一:已知:在四棱锥 P ABCD 中, E 为 AB 上一点, DEA EDC 。 证明:直线 CD // 平面 PAB 。
证明:如下图所示:
根据内错角相等,两条直线平行得到:
DEA EDC AB // CD 。
根据直线与平面平行的判定定理得到:
AB // CD , AB 平面 PAB 直线 CD // 平面 PAB 。
(4)直棱柱:所有侧面都为矩形;斜棱柱:所有侧面都是平行四边形。
举例:在直三棱柱 ABC A1B1C1 中:侧面 A1 ABB1 为矩形; 侧面 A1 ACC1 为矩形; 侧面 B1BCC1 为矩形。
举例:在斜三棱柱 ABC A1B1C1 中:侧面 A1 ABB1 为平行四边形; 侧面 A1 ACC1 为平行四边形; 侧面 B1BCC1 为平行四边形。
(2)两条有中点的线段没有公共端点,则两个中点的连线不是中位线。 得到中位线平行于底边,是否可以证明直线与平面平行?

立体几何文科常考证明题汇总

立体几何文科常考证明题汇总

立体几何证明题1. 正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点. (Ⅰ) 求证:11B D AE ⊥; (Ⅱ) 求证://AC 平面1B DE ; (Ⅲ)求三棱锥A-BDE 的体积.2.已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D .3.如图,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 和PC 的中点. (Ⅰ)求证:MN ∥平面PAD ;(Ⅱ)求证:MN CD ⊥;(Ⅲ)若45PDA ∠=,求证:MN ⊥平面PCD .NM PDBA A11A EC D 1ODBAC 1B 1A 1C4. 如图(1),ABCD 为非直角梯形,点E ,F 分别为上下底AB ,CD 上的动点,且EF CD ⊥。

现将梯形AEFD 沿EF 折起,得到图(2)(1)若折起后形成的空间图形满足DF BC ⊥,求证:AD CF ⊥;(2)若折起后形成的空间图形满足,,,A B C D 四点共面,求证://AB 平面DEC ;5.如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点, N 为AE 的中点,AF=AB=BC=FE=12AD (I) 证明平面AMD ⊥平面CDE ; (II) 证明//BN 平面CDE ;6.在四棱锥P -ABCD 中,侧面PCD 是正三角形,且与底面ABCD 垂直,已知菱形ABCD 中∠ADC =60°, M 是P A 的中点,O 是DC 中点. (1)求证:OM // 平面PCB ; (2)求证:P A ⊥CD ;(3)求证:平面P AB ⊥平面COM .A B C D E F 图(1) EBCF DA 图(2)A FEBC DMN PDABCOM7.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明P A//平面EDB;(2)证明PB⊥平面EFD8.正四棱柱ABCD-A1B1C1D1的底面边长是3,侧棱长是3,点E,F分别在BB1,DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥面AEF;(2)求二面角A-EF-B的大小;(3)点B1到面AEF的距离.1.已知直线l、m、平面α、β,且l⊥α,m⊂β,给出下列四个命题:(1)α∥β,则l⊥m (2)若l⊥m,则α∥β(3)若α⊥β,则l∥m (4)若l∥m,则α⊥β其中正确的是__________________.2. m、n是空间两条不同直线,αβ、是空间两条不同平面,下面有四个命题:①,;m n m nαβαβ⊥⇒⊥, ②,,;m n m nαβαβ⊥⊥⇒③,,;m n m nαβαβ⊥⇒⊥④,,;m m n nααββ⊥⇒⊥其中真命题的编号是________(写出所有真命题的编号)。

高考文科立体几何题汇总(含答案)

高考文科立体几何题汇总(含答案)

19.(本小题满分12分)2008 如图,在四棱锥P ABCD -中,平面PAD ^平面ABCD ,AB DC ∥,P AD △是等边三角形,已知28BD AD ==,245AB DC ==.(Ⅰ)设M 是PC 上的一点,证明:平面MBD ^平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积.的体积.18.(本小题满分12分)分) 2009 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1分别是棱AD 、AA 1的中点. (1) 设F 是棱AB 的中点,证明:直线EE 1//平面FCC 1; (2) 证明:平面D 1AC ⊥平面BB 1C 1C. 2010 (20)(本小题满分12分)分)在如图所示的几何体中,四边形ABCD 是正方形,BCD A MA 平面^,PD ∥MA ,E G F 、、分别为MB 、PC PB 、的中点,且2MA PD AD ==.(Ⅰ)求证:平面PDC EFG 平面^; (Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.A B C M P D EA B C F E 1 A 1 B 1 C 1 D 1 D 2011 19.(本小题满分12分)分)如图,在四棱台1111ABCD A B C D -中,1D D ^平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=Ð60° (Ⅰ)证明:1AA BD ^;(Ⅱ)证明:11CC A BD ∥平面.2012 (19) ( (本小题满分本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =^. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =°,M 为线段AE 的中点,的中点, 求证:DM ∥平面BEC .53238545545523163 ACM PDOEA B C F 1 1 C 1 D 1 D F 1 EC 1 1 C 1 D 1 D 所以CC 1⊥AC,因为底面ABCD 为等腰梯形,AB=4, BC=2, F 是棱AB 的中点,所以CF=CB=BF ,△BCF 为正三角形,为正三角形, 60BCF Ð=°,△ACF 为等腰三角形,且30ACF Ð=°所以AC ⊥BC, 又因为BC 与CC 1都在平面BB 1C 1C 内且交于点C, 所以AC ⊥平面BB 1C 1C,而AC Ì平面D 1AC, 所以平面D 1AC ⊥平面BB 1C 1C. 2010 (20)本小题主要考查空间中的线面关系,考查线面垂直、)本小题主要考查空间中的线面关系,考查线面垂直、面面垂直的判定及几面面垂直的判定及几何体体积的计算,考查试图能力和逻辑思维能力。

完整)高中立体几何证明平行的专题

完整)高中立体几何证明平行的专题

完整)高中立体几何证明平行的专题在此文章中,存在一些格式错误和明显有问题的段落,需要进行修改和删除。

修改后的文章如下:立体几何——平行的证明例1】如图,四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点。

求证:AF∥平面PCE。

分析:取PC的中点G,连EG,FG,则易证AEGF是平行四边形。

例2】如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+3,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC。

Ⅰ)求证:BC⊥面CDE;(Ⅱ)求证:FG∥面BCD。

分析:取DB的中点H,连GH、HC,则易证FGHC是平行四边形。

例3】已知直三棱柱ABC-A1B1C1中,D、E、F分别为A1A、C1C、AB的中点,M为BE的中点,AC⊥BE。

求证:(Ⅰ)C1D⊥BC;(Ⅱ)C1D∥平面B1FM。

分析:连EA,易证C1EAD是平行四边形,于是MF//EA。

例4】如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E为PC的中点。

证明:EB//平面PAD。

分析:取PD的中点F,连EF、AF,则易证ABEF是平行四边形。

例5】如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:AM∥平面EFG。

分析:连MD交GF于H,易证EH是△AMD的中位线。

例6】如图,ABCD是正方形,O是正方形的中心,E是PC的中点。

求证:PA∥平面BDE。

AEBGMFCD例7】如图,三棱柱ABC-A1B1C1中,D为AC的中点。

求证:AB1//面BDC1.分析:连B1C交BC1于点E,易证ED是△B1AC的中位线。

例8】如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90,BC//AD,BE//AF,G、H分别为FA、FD的中点。

Ⅰ)证明:四边形BCHG是平行四边形;Ⅱ)C、D、F、E四点是否共面?为什么?例9】正方体ABCD-A1B1C1D1.例10:在四棱锥P-ABCD中,AB∥CD,AB=DC,E为PD中点。

高中立体几何证明题

高中立体几何证明题

高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。

解析1. 连接AC。

- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。

2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。

- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。

- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。

- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。

题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。

解析1. 连接BC_{1},交B_{1}C于点E。

- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。

2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。

- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。

- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。

二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。

解析1. 连接AC,BD交于点O,连接PO。

- 因为底面ABCD是正方形,所以O为AC,BD中点。

- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。

- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。

- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。

- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。

2024届高考二轮复习文科数学课件:立体几何中的证明与计算

2024届高考二轮复习文科数学课件:立体几何中的证明与计算
∵BC⊥EB,PE,BE⊂平面PEB,PE∩BE=E,∴BC⊥平面PEB.∵EM⊂平面PEB,
∴EM⊥BC,由PE=EB,PM=MB知EM⊥PB.又BC,PB⊂平面PBC,BC∩PB=B,
∴EM⊥平面PBC,又EM⊂平面EMN,∴平面EMN⊥平面PBC.
1
·
2
(2)解 ∵点 N 为 BC 的中点,∴△EBN 与正方形 EBCD 的面积之比为
1
4
知 HM= PD= ,所以三棱锥 C-ABH 的体积就等于三棱锥 H-ABC 的体积,所
3
3
1
以所求体积是
3
×
1
1
AB·
AD·
HM=
2
3
×
1
4
×1×1×
2
3
=
2
.
9
2.(2023陕西渭南一模)如图,在直三棱柱ABC-A1B1C1中,点E为A1C1的中点,
AB=BC=2,C1F⊥AB.
(1)求证:AB⊥BC;
(1)证明 连接 CO1 并延长交 AB 于点 H,连接 O2H.
∵△ABC 为底面圆 O1 的内接正三角形,∴CH⊥AB.∵AB∥DE,∴CH⊥DE.
∵四边形 DEFG 为圆柱 O1O2 的轴截面,∴O1O2⊥圆面 O1.∵DE⊂圆面 O1,
∴O1O2⊥DE.∵O1O2∩CH=O1,∴DE⊥平面 CHO2.∵DE∥FG,∴FG⊥平面
成的角.因为 EG=1,BE=2,所以 BG= 5.在 Rt△AOB 和 Rt△BEG 中,易知∠


·
4×2
EBG=∠OAB,所以 Rt△AOB∽Rt△BEG,所以 = ,即 AO=
=
=

8 5

文科数学高考立体几何考点总结学习资料

文科数学高考立体几何考点总结学习资料

C
B
D
A
【例 7】如图所示的多面体是由底面为 ABCD 的长方体被截面 AEC1F 所截面而得到的,其
中 AB 4, BC 2,CC1 3, BE 1. (Ⅰ)求 BF 的长; (Ⅱ)求点 C 到平面 AEC1F 的距离.
F D
A
C1
C E B
【例 8】 P ABCD中,ABC BAD 90 ,BC 2AD, PAB与PAD 都是边长为 2 等边三角
【例 13】如图,直三棱柱 ABC -A1B1C1 中,D,E 分别是 AB,BB1 的中点. (1)证明:BC1∥平面 A1CD; (2)设 AA1=AC=CB=2,AB=2 2,求三棱锥 C -A1DE 的体积.
二、 角度、距离问题计算
【例 1】.如图,在正方体 ABCD A1B1C1D1 中,M、N 分别是 CD ,CC1 的中点,则异面 直线 A1M 与 DN 所成的角的大小是____________.
【 例 2 】 如 图 , 三 棱 柱 ABC A1B1C1 中 , 侧 面 AA1C1C 底 面 ABC ,
AA1 A1C AC 2, AB BC ,且 AB BC ,O 为 AC 中点.
在 BC1 上是否存在一点 E ,使得 OE // 平面 A1AB ,若不存在,说明理由;若存在,确定点 E
【例 2】如图,边长为 4 的正方形 ABCD 所在平面与正三角形 PAD 所在平面互相垂直, M,Q 分别为 PC,AD 的中点. (1)求四棱锥 P-ABCD 的体积; (2)求证:PA∥平面 MBD; (3)试问:在线段 AB 上是否存在一点 N,使得平面 PCN⊥平面 PQB?若存在,试指出点 N 的位置,并证明你的结论;若不存在,请说明理由.

高考二轮复习文科数学课件高考保分大题3立体几何中的证明与计算

高考二轮复习文科数学课件高考保分大题3立体几何中的证明与计算

(1)证明:MN∥平面C1DE;
(2)求三棱锥N-C1DE的体积.
(1)证明 连接ME,B1C.
∵点E,M分别为BC,BB1中点,
∴ME为△B1BC的中位线,
∴ME∥B1C且ME=
1
B1C,
2
又点N为A1D的中点,A1D∥B1C,A1D=B1C,
∴ND∥B1C,ND=
1
B C,
21
∴ME∥ND,ME=ND,∴四边形MNDE为平行四边形,
又CM=B1M,∴B1F=3CF.
∵AB1∥PF,B1F=3CF,∴AP=3PC,
∴点P是线段AC上靠近点C的四等分点.
(2)如图,取AB的中点O,连接OC,OA1.
∵四边形ABB1A1为边长为2的菱形,∠A1AB=60°,
∴△AA1B为等边三角形,
∴OA1⊥AB.
又∵平面 ABB1A1⊥平面 ABC,且两平面的交线为 AB,∴OA1⊥平面 ABC,又
∴AD⊥平面 A1C1D.
(2)解 连接
2
=1 +2
π
π
2
2
2
AB1,∵∠ABB1= ,AB=1,BB1=2,A1 =AB +B1 -2AB·
BB1cos
3
3
1
-2×1×2×2=3,
2
∴B12 =AB2+A12 ,∴AB1⊥AB,且 AB1= 3.
∵AC⊥平面 AA1B1B,∴AC⊥AB1.
∴MN∥DE,又MN⊄平面C1DE,DE⊂平面C1DE,
∴MN∥平面C1DE.
(2)解 由(1)得 MN∥平面 C1DE,
∴-1 = -1 = -1 .
连接 C1M,ME.在矩形 BCC1B1 中,

《几何证明》高中文科数学专题复习

《几何证明》高中文科数学专题复习

B1B C1A CA1D 高考复习专题《几何证明》17分知识点1:线面平行 线面平行判定定理:线面平行性质定理:基础练习:1. 三棱柱ABC —A 1B 1C 1中,若D 为BB 1上一点, M 为AB 的中点,N 为BC 的中点.求证:MN ∥平面A 1C 1D ;2、如图,在底面为平行四边形的四棱锥 P —ABCD 中,点 E 是 PD 的中点. 求证:PB//平面 AEC ;3.四棱锥P -ABCD 中,底面ABCD 是矩形,M 、N 分别是AB 、PC 的中点,求证:MN ∥平面PAD ;4.在四棱锥P —ABCD 中,底面ABCD 是矩形,M ,N 分别是AB ,PC 的中点.求证:MN ∥平面PAD ;第4题 第5题ABC DE Py P AB C D M NAB C D E FP 5、如图,在三棱柱ABC —A 1B 1C 1中, D 是 AC 的中点。

求证:AB 1//平面DBC 16、如图,在正方体ABCD ——A 1B 1C 1D 1中,O 是底面ABCD 对角线的交点.求证:C 1O//平面AD 1B 1.第6题 第7题7.正四棱锥S ABCD -中,E 是侧棱SC 的中点.求证:直线SA //平面BDE8. 已知四棱锥P-ABCD 中,底面ABCD 是矩形,E 、F 分别是AB 、PD 的中点.求证:AF//平面PEC第8题 第9题9 在三棱柱ABC -A 1B 1C 1中,M ,N 分别是CC 1,AB 的中点.求证:CN //平面AB 1M .10.ABCD-A 1B 1C 1D 1是正四棱柱,E 是棱BC 的中点。

求证:BD 1//平面C 1DE第10题 第11题11.在三棱柱111ABC A B C -中, D 为BC 中点.求证:1//A B 平面1ADC ;ABCD C 1A 1B 1N M C 1B 1A 1CB A知识点2:面面平行 面面平行的判定面面平行的性质 基础练习:1.如图,已知四棱锥P-ABCD 中,地面ABCD 为平行四边形,点M,N,Q 分别为PA,BD,PD 上的中点,求证:平面MNQ ∥平面PBA第1题 第2题 2.在长方体ABCDA 1B 1C 1D 1中,E 、F 、E 1、F 1分别是AB 、CD 、A 1B 1、C 1D 1的中点. 求证:平面A 1EFD 1∥平面BCF 1E 1.3.在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 、P 、Q 、R 分别是所在棱AB 、BC 、BB '、A 'D '、D 'C '、DD '的中点,求证:平面PQR ∥平面EFG 。

(完整版)高考文科立体几何证明专题

(完整版)高考文科立体几何证明专题

图 4立体几何专题1.如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ;(3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.【解析】(1)在等边三角形ABC 中,AD AE =AD AEDB EC∴=,在折叠后的三棱锥A BCF -中 也成立,//DE BC ∴ ,DE ⊄Q 平面BCF ,BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12BFCF ==. Q 在三棱锥A BCF -中,2BC =,222BC BF CF CF BF ∴=+∴⊥② BF CF F CF ABF ⋂=∴⊥Q 平面;(3)由(1)可知//GE CF ,结合(2)可得GEDFG ⊥平面.111111132323323324F DEG E DFGV V DG FG GF --⎛⎫∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎪ ⎪⎝⎭【解析】这个题是入门级的题,除了立体几何的内容,还考查了平行线分线段成比例这个平面几何的内容.2.如图5所示,在四棱锥P-ABCD 中,AB ⊥平面PAD,AB CD,PD=AD,E 是PB 的中点,F 是DC 上的点且DF=21AB,PH 为∆PAD 中AD 边上的高. (1) 证明:PH ⊥平面ABCD ;(2) 若PH=1,AD=2,FC=1,求三棱锥E-BCF 的体积; (3) 证明:EF ⊥平面PAB . 解:(1)ABCDPH PAD PAD AB PAD 平面所以平面,面又中的高为⊥=⋂⊥∴⊂⊥⊥∴∆AAD AB AB PH PH AD PH PH Θ(2):过B 点做BG G CD BG ,垂足为⊥;连接HB,取HB 中点M ,连接EM ,则EM 是BPH ∆的中位线ABCD )1(平面知:由⊥PH ΘABCD 平面⊥∴EM BCF 平面EM⊥∴即EM 为三棱锥B CF -E 底面上的高BG FC •=∆21S BCF =222121=⨯⨯2121=PH EM=12221223131=⨯⨯=••=-EMS V BCF BCF E(3):取AB 中点N ,PA 中点Q ,连接EN ,FN ,EQ ,DQ NFN EN FN AB NADF AB 21DF //EN PAB EN PAD PAD AB PAD ,//=⋂⊥∴∴=⊥∴∴∆⊥∴⊂⊥∴⊥是距形四边形又的中位线是又平面,平面平面ΘΘΘENAB PA PAAB PA CD CD AB3、如图,已知三棱锥A —BPC 中,AP ⊥PC , AC ⊥BC , M 为AB 中点,D 为PB 中点,且△PMB 为正三角形。

(完整版)高考文科立体几何证明专题

(完整版)高考文科立体几何证明专题

立体几何专题1.如图 4,在边长为 1 的等边三角形 ABC 中, D , E 分别是 AB, AC 边上的点, AD AE ,F 是 BC 的中点, AF 与 DE 交于点G ,将 ABF 沿 AF 折起,获取如图5 所示的三棱锥A BCF ,其中 BC2 .2(1) 证明: DE // 平面 BCF ;(2) 证明: CF 平面 ABF ;(3) 2时,求三棱锥 FDEG 的体积 V F DEG .当 AD3ADGEBFC图 4【剖析】( 1)在等边三角形ABC 中, ADAEAD AE ,A BCF 中DB在折叠后的三棱锥EC也成立, DE / / BC ,Q DE平面 BCF ,BC 平面 BCF ,DE / / 平面 BCF ;AGEDFCB图 5(2 )在等边三角形ABC 中, F 是 BC 的中点,所以 AFBC 1 ①, BF CF.2Q 在三棱锥 ABCF 中, BC2, BC 2 BF 2 CF 2 CF BF ②2Q BF CF F CF 平面 ABF ;( )由( )可知 GE / /CF ,结合( 2)可得 GE平面 DFG.3 1VF DEGV E1 11 1 1 1 3 13 DFG3 DG FG GF2 3 3 2332423【剖析】 这个题是入门级的题,除了立体几何的内容, 还观察了平行线分线段成比率这个平面几何的内容 .2.如图 5 所示,在四棱锥P-ABCD 中,AB平面PAD,AB CD,PD=AD,E是PB的中点,F是 DC 上的点且 DF= 1AB,PH 为PAD 中 AD 边上的高.2(1)证明: PH 平面 ABCD ;(2)若PH=1,AD= 2 ,FC=1,求三棱锥E-BCF 的体积;(3)证明:EF平面PAB.解: (1)PH 为PAD中的高PH AD又 AB面PAD,PH平面PADPH ABAB AD A所以PH平面ABCD(2):过 B 点做 BG BG CD ,垂足为 G ;连接 HB, 取 HB 中点 M ,连接 EM ,则 EM 是BPH 的中位线由(1)知: PH平面ABCDEM平面 ABCDEM平面 BCF即 EM 为三棱锥E - BCF底面上的高EM=1PH1 22SBCF 1FC ? BG =11 22 222 1V E BCF? S BCF ? EM1 2 13 2 2212.(3):取 AB 中点 N, PA 中点 Q,连接 EN , FN ,EQ, DQ AB // CD , CD平面PADAB平面PAD,PA平面PADAB PA又EN 是 PAB 的中位线EN // PAAB EN1又DF AB四边形NADF是距形AB FNEN FN NAB平面NEF又 EF平面NEFEF AB四边形NADF是距形AB NF 3、如图,已知三棱锥 A —BPC 中,AP ⊥ PC , AC ⊥ BC ,M为 AB 中点, D 为 PB 中点,且△ PMB 为正三角形。

高考数学最新真题专题解析—立体几何(文科)

高考数学最新真题专题解析—立体几何(文科)

高考数学最新真题专题解析—立体几何(文科)考向一 线面夹角【母题来源】2022年高考全国甲卷(文科)【母题题文】 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30,则( ) A. 2AB AD =B. AB 与平面11AB C D 所成的角为30C. 1AC CB =D. 1B D 与平面11BB C C 所成的角为45︒ 【答案】D【试题解析】【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D==,即b c =,22212B D c a b c ==++2a c =. 对于A ,AB a ,AD b ,2AB AD =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为2tan c BAE a ∠==30BAE ∠≠,B 错误; 对于C ,223AC a b c =+=,2212CB b c c =+=,1AC CB ≠,C 错误; 对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,112sin 22CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确. 故选:D .【命题意图】本题主要考查直线与平面夹角,是一道容易题.【命题方向】这类试题在考查题型上选择题、填空题、解答题形式出现,试题难度不大,多为中低档题,重点考查线面夹角的求法问题. 【得分要点】(1)找斜线在平面中的射影; (2)求斜线与其射影的夹角; 考向二 线面平行、垂直的证明【母题来源】2022年高考全国乙卷(文科)【母题题文】 如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积. 【试题解析】【小问1详解】由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CD BD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BD ⊥,由于DE BD D ⋂=,,DE BD平面BED ,所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD . 【小问2详解】依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形, 所以2,1,3AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =.222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC . 由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅,所以AF CF =,所以EF AC ⊥,由于12AFCS AC EF =⋅⋅,所以当EF 最短时,三角形AFC 的面积最小值.过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得32EF =,所以223131,2222DF BF DF ⎛⎫=-==-= ⎪ ⎪⎝⎭,所以34BF BD =. 过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==, 所以34FH =,所以11133233324F ABC ABCV SFH -=⋅⋅=⨯⨯=【命题意图】本题考查线面平行、垂直的证明.【命题方向】这类试题在考查题型多以解答题形式出现,多为中档题,是历年高考的必考题型. 常见的命题角度有:(1)线面平行的证明;(2)线面垂直的证明;(3)面面平行的证明;(4)面面垂直的证明. 【得分要点】(1)利用线面、面面平行的判定定理与性质定理; (2)利用线面、面面垂直的判定定理与性质定理. 真题汇总及解析 一、单选题1.(2022·内蒙古·乌兰浩特一中模拟预测(文))已知,αβ为空间的两个平面,直线,l ααβ⊄⊥,那么“l ∥α”是“l β⊥”的( )条件 A .必要不充分 B .充分不必要C .充分且必要D .不充分也不必要【答案】A 【解析】 【分析】根据空间线面位置关系,结合必要不充分条件的概念判断即可. 【详解】当直线,l ααβ⊄⊥,l ∥α,则l β//,l 与β相交,故充分性不成立; 当直线l α⊄,且αβ⊥,l β⊥时,l ∥α,故必要性成立, ⸫“l ∥α”是“l β⊥”的的必要不充分条件. 故选:A.2.(2022·贵州·贵阳一中模拟预测(文))在正方体1111ABCD A B C D -中,M 为1A D 的中点,则直线CM 与11A C 所成的角为( ) A .π2B .π3C .π4D .π6【答案】D 【解析】 【分析】11AC AC ∥,所求角为ACM∠,利用几何体性质,解CMA 即可【详解】设正方体棱长为1,连接11,,AC AC AC CM ∴与11A C 所成角即是CM 与AC 所成角,22222221162,,1,2222AC AM CM AM CM AC ⎛⎫⎛⎫===++=∴+= ⎪ ⎪⎝⎭⎝⎭,CMA ∴为Rt △,1πsin ,26AM ACM ACM AC ∠∠==∴= 故选:D3.(2022·青海·模拟预测)已知四面体ABCD 的所有棱长都相等,其外接球的6π,则下列结论错误的是( ) A .四面体ABCD 的棱长均为2 B .异面直线AC 与BD 2 C .异面直线AC 与BD 所成角为60︒D .四面体ABCD 的内切球的体积等于6π27【答案】C 【解析】 【分析】对于A, 设该四面体的棱长为a ,表示出高,根据其外接球的体积等于6π,求得外接球半径,即可求得a ,判断A;对于B, 分别取BD,AC 的中点为E,F ,连接EF ,求得EF 的长,即可判断;对于C ,证明线面垂直即可证明异面直线AC 与BD 互相垂直,即可判断;对于D ,利用等体积法求得内切球半径,即可求得内切球体积,即可判断. 【详解】如图示,设该四面体的棱长为a ,底面三角形BCD 的重心为G ,该四面体的外接球球心为O ,半径为R ,连接AG ,GB,OB ,AG 为四面体的高,O 在高AG 上,在Rt AGB △中,2223336,()33BG AG a a ===-, 在Rt OGB △中,22263()()R R =-+,解得6R = , 6π,即34π6π3R ,故336R =故38,2a a == ,故A 正确; 分别取BD,AC 的中点为E,F ,连接EF ,正四面体ABCD 中,AE=EC ,故EF AC ⊥ ,同理EF BD ⊥, 即EF 为AC,BD 的公垂线,而3232CE =⨯= , 则2222(3)12EF CE CF =-=-= ,故B 正确;由于,AE BD CE BD ⊥⊥ , AE CE ⊂,平面ACE ,故BD ⊥平面ACE , 又AC ⊂平面ACE ,所以BD AC ⊥,即异面直线AC 与BD 所成角为90︒ ,故C 错误; 设四面体内切球的半径为r ,而263AG =,故11433BCDBCDSr SAG ⨯⨯⨯=⨯⨯,故646AG r a ==, 所以四面体ABCD 的内切球的体积等于3344666ππ()π3327r a ==,故D 正确, 故选:C4.(2022·湖北·华中师大一附中模拟预测)如图,正方体1111ABCD A B C D -中,P 是1A D 的中点,则下列说法正确的是( )A .直线PB 与直线1A D 垂直,直线PB ∥平面11B DC B .直线PB 与直线1D C 平行,直线PB ⊥平面11AC D C .直线PB 与直线AC 异面,直线PB ⊥平面11ADC B D .直线PB 与直线11B D 相交,直线PB ⊂平面1ABC【答案】A 【解析】 【分析】根据空间的平行和垂直关系进行判定. 【详解】连接11111,,,,DB A B D B D C B C ;由正方体的性质可知1BA BD =,P 是1A D 的中点,所以直线PB 与直线1A D 垂直;由正方体的性质可知1111//,//DB D B A B D C ,所以平面1//BDA 平面11B D C , 又PB ⊂平面1BDA ,所以直线PB ∥平面11B D C ,故A 正确;以D 为原点,建立如图坐标系,设正方体棱长为1,()111,1,,0,1,122PB D C ⎛⎫==- ⎪⎝⎭显然直线PB 与直线1D C 不平行,故B 不正确;直线PB 与直线AC 异面正确,()1,0,0DA =,102PB DA ⋅=≠,所以直线PB 与平面11ADC B 不垂直,故C 不正确;直线PB与直线B D异面,不相交,故D不正确;11故选:A.5.(2022·安徽·合肥市第八中学模拟预测)下列四个命题,真命题的个数为()(1)如果一条直线垂直于一个平面内的无数条直线,则这条直线垂直于该平面;(2)过空间一定点有且只有一条直线和已知平面垂直;(3)平行于同一个平面的两条直线平行;(4)a与b为空间中的两条异面直线,点A不在直线a,b上,则过点A有且仅有一个平面与直线a,b都平行.A.0 B.1 C.2 D.3【答案】B【解析】【分析】根据线面垂直的定义即可判断命题(1);根据线面垂直的性质定理即可判断命题(2);根据空间中线面的位置关系即可判断命题(3);结合图形即可判断命题(4). 【详解】命题(1):由直线垂直平面的定义可知,若直线垂直于一个平面的任意直线,则该直线垂直于该平面,故命题(1)错误;命题(2):由直线与平面垂直的性质定理可知,过空间一定点有且只有一条直线与已知平面垂直,故命题(2)正确;命题(3):平行于同一个平面的两条直线,可能平行,可能相交,也可能异面,故命题(3)错误;命题(4):如图,当点A在如图上底面时,不存在平面同时平行于直线a、b;点A不在异面直线a、b上,若点A在直线a、b之间,则可以确定一个平面同时平行于直线a、b;若点A在直线a、b的外侧,也可以确定一个平面同时平行于直线a、b,故命题(4)错误.故选:B.6.(2022·河南安阳·模拟预测(文))如图,在四面体ABCD中,90BCD AB∠=︒⊥,平面BCD,AB BC CD==,P为AC的中点,则直线BP与AD所成的角为()A.π6B.π4C.π3D.π2【答案】D【解析】【分析】根据给定条件,证明BP⊥平面ACD即可推理计算作答.【详解】在四面体ABCD中,AB⊥平面BCD,CD⊂平面BCD,则AB CD⊥,而90BCD∠=︒,即BC CD⊥,又AB BC B⋂=,,AB BC⊂平面ABC,则有CD⊥平面ABC,而BP⊂平面ABC,于是得CD BP ⊥,因P 为AC 的中点,即AC BP ⊥,而AC CD C =,,AC CD ⊂平面ACD ,则BP ⊥平面ACD ,又AD ⊂平面ACD ,从而得BP AD ⊥, 所以直线BP 与AD 所成的角为π2. 故选:D7.(2022·四川成都·模拟预测)如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,A ,B ,C ,D 是该三棱锥表面上四个点,则直线AC 和直线BD 所成角的余弦为( )A .0B .13C .13-D 22【答案】A 【解析】 【分析】由三视图还原几何体,根据线面垂直的判定有BG ⊥面AGD ,线面垂直的性质可得BG AC ⊥,再由线面垂直的判定和性质得AC BD ⊥,即可得结果. 【详解】由三视图可得如下几何体:BG AG ⊥,BG DG ⊥,AG DG G =,则BG ⊥面AGD ,又AC ⊂面AGD ,则BG AC ⊥,而AC GD ⊥, 由BG GD G ⋂=,则AC ⊥面BGD ,又BD ⊂面BGD , 所以AC BD ⊥,故直线AC 和直线BD 所成角的余弦为0. 故选:A8.(2022·山东潍坊·三模)我国古代数学名著《九章算术》中给出了很多立体几何的结论,其中提到的多面体“鳖臑”是四个面都是直角三角形的三棱锥.若一个“鳖臑”的所有顶点都在球O 的球面上,且该“鳖臑”的高为2,底面是腰长为2的等腰直角三角形.则球O 的表面积为( ) A .12π B .43π C .6π D .26π【答案】A 【解析】 【分析】作出图形,设在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥且2BC CD ==,2AB =,证明出该三棱锥的四个面均为直角三角形,求出该三棱锥的外接球半径,结合球体表面积公式可得结果. 【详解】 如下图所示:在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥且2BC CD ==,2AB =, 因为AB ⊥平面BCD ,BC 、BD 、CD ⊂平面BCD ,则AB BC ⊥,AB BD ⊥,CD AB ⊥,CD BC ⊥,AB BC B ⋂=,CD平面ABC ,AC ⊂平面ABC ,AC CD ∴⊥,所以,三棱锥A BCD -的四个面都是直角三角形,且2222BD BC CD =+=,2223AD AB BD =+=,设线段AD 的中点为O ,则12OB OC AD OA OD ====, 所以,点O 为三棱锥A BCD -的外接球球心,设球O 的半径为R ,则132R AD ==,因此,球O 的表面积为2412R ππ=. 故选:A. 二、填空题9.(2022·四川成都·模拟预测(理))如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的表面积为________.【答案】816283++ 【解析】 【分析】根据三视图可知这是一个四面体,根据长度即可根据三角形面积公式求每一个面的面积,进而可得表面积. 【详解】该几何体的直观图是正方体中的四面体ABCD ,4,42,43AB AD BD BC CD AC ======,()21113448,44282,44282,42832224ABD ABC ADC DBCS S SS =⨯⨯==⨯⨯==⨯⨯==⨯= 故答案为: 816283++.10.(2022·上海普陀·二模)已知一个圆锥的侧面积为2π,若其左视图为正三角形,则该圆锥的体积为________. 3π3 【解析】 【分析】由圆锥侧面积公式求得底面半径12r =3.【详解】由题设,令圆锥底面半径为r ,则体高为3r ,母线为2r , 所以12222r r ππ⨯⨯=,则12r =,故圆锥的体积为2133324r r ππ⨯⨯=. 故答案为:324π 11.(2022·黑龙江·佳木斯一中模拟预测(理))如图,在正方体1111ABCD A B C D -中,点F 是棱1AA 上的一个动点,平面1BFD 交棱1CC 于点E ,则下列正确说法的序号是___________.①存在点F 使得11A C ∥平面1BED F ; ②存在点F 使得1B D ∥平面1BED F ; ③对于任意的点F ,都有EF BD ⊥;④对于任意的点F 三棱锥1E FDD -的体积均不变. 【答案】①③④ 【解析】 【分析】①,找到点F 为1AA 的中点时,满足11A C ∥平面1BED F ;②,证明出11,BD B D 相交,得到不存在点F 使得1B D ∥平面1BED F ;③,作出辅助线,证明线面垂直,进而得到线线垂直; ④,得到三棱锥1E FDD -的体积等于正方体体积的16,为定值. 【详解】当点F 为1AA 的中点,此时点E 为1CC 的中点,此时连接EF ,可得:11A C EF , 因为11A C ⊄平面1BED F ,EF ⊂1BED F ,所以11A C ∥平面1BED F ,①正确;连接11,BD B D ,因为11//BB DD ,且11BB DD =,所以四边形11BB D D 为平行四边形, 所以11,BD B D 相交, 因为1BD ⊂平面1BED F ,所以不存在点F 使得1B D ∥平面1BED F ,②错误连接AC ,BD ,则AC ⊥BD ,又1AA ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AA ⊥BD , 因为1AA AC A =, 所以BD ⊥平面11AAC C ,因为EF ⊂平面11AAC C , 所以BD ⊥EF ,③正确;连接DF ,EF ,ED ,则无论点F 在1A A 的何处,都有1112DFD SDD AD =⋅,是定值,为正方形11ADD A 面积的一半,又高等于CD ,故体积也为定值,为正方体体积的16,④正确.故选:①③④12.(2022·甘肃·武威第六中学模拟预测(文))如图,在长方体1111ABCD A B C D -中,E ,F 是棱CD 上的两个动点,点E 在点F 的左边,且满足122EF DC BC ==,给出下列结论:①11B D ⊥平面1B EF ;②三棱锥11D B EF -的体积为定值; ③1A A //平面1B EF ; ④平面11A ADD ⊥平面1B EF . 其中所有正确结论的序号是______. 【答案】②④ 【解析】 【分析】根据线面位置关系、面面位置关系判断命题①③④,由棱锥体积公式判断②. 【详解】11B D 与11D C 显然不垂直,而11//EF C D ,因此11B D 与EF 显然不垂直,从而11B D ⊥平面1B EF 是错误的,①错;1111D B EF B D EF V V --=,三棱锥11B D EF -中,平面1D EF 即平面11CDD C ,1B 到平面11CDD C 的距离为11B C 是定值,1D EF 中,EF 的长不变,1D 到EF 的距离不变,面积为定值,因此三棱锥体积是定值,②正确;平面1B EF 就是平面11B A DC ,而1AA 与平面11B A DC 相交,③错;长方体中CD ⊥平面11A D DA ,CD ⊂平面11B A DC ,所以平面11A D DA ⊥平面11B A DC ,即平面11A ADD ⊥平面1B EF ,④正确. 故答案为:②④.三、解答题13.(2022·四川成都·模拟预测(文))如图,四棱锥P ABCD -中,四边形ABCD 为直角梯形,,PB PD 在底面ABCD 内的射影分别为,AB AD ,222PA AB AD CD .(1)求证:PC BC ⊥; (2)求D 到平面PBC 的距离. 【答案】(1)证明见解析 3【解析】 【分析】(1)由题意可证AD PA ⊥、AB PA ⊥,则可得PA ⊥面ABCD ,即可知PA BC ⊥,又AC BC ⊥则可得BC ⊥面PAC ,即可证PC BC ⊥.(2)分别计算出BCD S 与PBC S ,再利用等体积法D PBC P BCD V V --=即可求出答案. (1)因为PB 在底面ABCD 内的射影为AB ,所以面PAB ⊥面ABCD , 又因为AD AB ⊥,面PAB ⋂面ABCD AB =,AD ⊂面ABCD 所以AD ⊥面PAB ,又因PA ⊂面PAB 因此AD PA ⊥, 同理AB PA ⊥,又AB AD A ⋂=,AD ⊂面ABCD ,AB 面ABCD 所以PA ⊥面ABCD ,又BC ⊂面ABCD ,所以PA BC ⊥,连接AC ,易得2AC =45BAC ∠=,又2AB =, 故AC BC ⊥,又PA AC A =,PA ⊂面PAC ,PA ⊂面PAC 因此BC ⊥面PAC , 又PC ⊂面PAC 即PC BC ⊥;(2)在RT PAC 中426PC =+=在RT ACB 中422BC =-把D 到平面PBC 的距离看作三棱锥D PBC -的高h , 由等体积法得,D PBC P BCD V V --=,故1133PBC BCD S h S PA ,即123213622BCD PBCS PA h S ,故D 到平面PBC 的距离为33. 14.(2022·青海·海东市第一中学模拟预测(文))如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,PCD 为等边三角形,22CD AB ==,2AD =,90BAD ADC ∠=∠=︒,M 是棱PC 上一点.(1)若2MC MP =,求证://AP 平面MBD .(2)若MC MP =,求点P 到平面BDM 的距离.【答案】(1)证明见解析22 【解析】【分析】(1)连接AC ,记AC 与BD 的交点为H ,连接MH ,先证明//AP MH ,再由线面平行的判定定理即可证明.(2)由等体积法B DMP P BMD V V --=,即可求出点P 到平面BDM 的距离.(1)连接AC ,记AC 与BD 的交点为H ,连接MH .由90BAD ADC ∠=∠=︒,得//AB CD ,12AB AH CD HC ==,又12PM MC =,则AH PM HC MC =, ∴//AP MH ,又MH ⊂平面MBD ,PA ⊄平面MBD ,∴//AP 平面MBD .(2) 由已知易得3BD DM ==,3BM =,所以在等边BMD 中,BM 边上的高为32h =,所以BMD 的面积为13333224BMD S =⨯⨯=△, 易知三棱锥B PDM -的体积为116132326B DMP V -=⨯⨯⨯⨯=, 又因为B DMP P BMD V V --=,所以点P 到平面BDM 的距离为3223P BMD BMD V d S -==△. 15.(2022·贵州·贵阳一中模拟预测(文))如图,四棱锥P ABCD -中,平面,PAB ABCD ⊥平面,AB CD ∥,AB AD ⊥3,3,2,60AB AD AP CD PAB ====∠=︒.M 是CD 中点,N 是PB 上一点.(1)若3,BP BN =求三棱锥P AMN -的体积;(2)是否存在点N ,使得MN 平面PAD ,若存在求PN 的长;若不存在,请说明理由.【答案】(1)1;(2)存在,73=PN . 【解析】 【分析】 (1)证得点M 到平面PAB 的距离是3AD =,进而可求出结果; (2)证得//MN PE ,进而可证出MN //平面PAD ,从而可求出PN 的长.(1)P AMN M PAN V V --=, 由面PAB ⊥面ABCD 且交线是AB ,又DA AB ⊥,DA ⊂面PAB , 所以DA ⊥平面PAB ,又MD //AB , ∴点M 到平面PAB 的距离是3AD =, 又3BP BN =,则22123sin603332APN APB S S ==⨯⨯⨯⨯=, ∴三棱锥P AME -的体积13313=⨯⨯=. (2)存在.//,3,2AB DC AB CD==,连接BM并延长至于AD交于点E,//DM AB,∴在EAB中:13 EM DMEB AB==,∴在PBE△中:在PB上取点N,使得23 BN BMBP BE==,而13PN PB=,则//MN PE,又MN⊄平面PAD,PE⊂平面PAD,MN∴//平面PAD,在PAB△中,2212322372PB=+-⨯⨯⨯=7PN∴=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何专题1•如图4,在边长为1的等边三角形 ABC 中,D,E 分别是AB, AC 边上的点,AD = AE ,F 是BC 的中点,AF 与DE 交于点G ,将厶ABF 沿AF 折起,得到如图5所示的三棱锥 A-BCF ,其中 BC 22AD AEDB=EC '在折叠后的三棱锥—BCF 中也成立,.DE //BC ,;DE 二平面 BCF ,BC 二平面 BCF ,. DE //平面 BCF ;(2)在等边三角形 ABC 中,F 是BC 的中点,所以 AF _ BC ①,BF=CFJ 2A -BCF 中,BC - , . BC 2 = BF 2 CF 2 CF _ BF ②2【解析】这个题是入门级的题, 除了立体几何的内容, 面几何的内容•证明: DE //平面 BCF ; 证明:CF —平面ABF 当AD F - DEG 的体积 V F _DEG •TBF ' CF=F- CF _ 平面 ABF ;(3)由(1) 可知GE//CF ,结合(2)可得 GE _ 平面 DFG .■ V F -DEG =V E-DFG1 1 DG FG GF3 21 .33 324还考查了平行线分线段成比例这个平图4【解析】(1)在等边三角形 ABC 中,AD=AE=-时,求三棱锥3C2. 如图5所示,在四棱锥 P-ABCD中,AB _平面PAD,AB CD,PD=AD,E 是PB的中点,F1是DC上的点且DF= AB,PH为厶PAD中AD边上的高.2(1)证明:PH _平面ABCD ;(2)若 PH=1,AD= . 2 ,FC=1 ,求三棱锥 E-BCF 的体积;(3)证明:EF _平面PAB . 解: (1)PH为厶PAD 中的高PH _ AD 又 AB _ 面 PAD , PH 平面 PADPH _ ABAB ' AD = A 所以 PH _平面 ABCD(2):过B点做BG BG _ CD ,垂足为G ;连接HB,取HB中点M,连接EM ,贝U EM 是BPH的中位线{由(1)知:PH —平面ABCD.EM —平面ABCD.EM _ 平面BCF即EM为三棱锥E-BCF底面上的高EM= 1PH J2 21 1 — 2SB C^ 2FC-BG=2 1"云1 X2 1=—X-------- X:—3 2 2.212图FV E -BCF(3):取 AB 中点 N, PA 中点 Q,连接 EN , FN , EQ, DQ ■■- AB// CD ,CD _ 平面 PAD .AB 丄 平面 PAD , PA 平 面 PAD.AB 丄 PA又■ EN 是 .IPAB 的中位线.EN // PA .AB丄 EN又■ DF-AB2.四边: 形N ADF 是距形.AB 丄 FNEN - FN 二 :N3、如图,已知三棱锥 A — BPC 中,AP 丄PC , AC 丄BC , M 为AB 中点,D 为PB 中点,且△ PMB 为正三角形。

(I) 求证:DM //平面APC ;(∏)求证:平面 ABC 丄平面 APC ;(川)若 BC = 4 , AB = 20,求三棱锥 D — BCM 的体积.4、已知正方体 ABCD — A I B I C I D I ,其棱长为2, O 是底ABCD 对角线的交点。

求(1) C -O //面 AB i D i ; (2) A i C 丄面 AB ιD ι°AB _平面 NEF 又EF 平面 NEF EF _ AB.四边形 NADF 是距形AB _ NF NF -NE =N AB _平面 NEF(3)若M是CC i的中点,求证:平面 AB I D I⊥平面MB i D i、F 分另IJ是AB、PDAD = PA= 2, CD = 2 2, E的中点•(1) 求证:AF //平面PCE ;(2) 求证:平面PCE丄平面PCD ;(3) 求四面体PEFC的体积•6•如图,已知在三棱柱ABC- A i B i C i 中,AA i ⊥平面ABC, AC = BC, M、N、P、Q 分别是AA i、BB i、AB、B i C i 的中点•(i)求证:平面PCC i ⊥平面MNQ ;⑵求证:PC i//平面MNQ.7•如图,在棱长为 2的正方体ABCD - AιBιCιDι中,E、F分别为DD i、DB的中点.(1)求证:EF 〃平面ABC1D1;(2)求证:EF-B1CDI A8.右图为一简单集合体,其底面ABCD为正方形,EC//PD ,且PD=AD=2EC =2 .(1)画出该几何体的三视图;(2)求四棱锥B- CEPD的体积;B(3)求证:BE//平面PDA.9.如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD _平面ABCD , PD=AB= 2 , E , F , G 分别为PC、PD、BC 的中点.(1) 求证:GC _ 面EFP ;(2) 求证:;PA// 面EFG ;(3) 求三棱锥P -EFG的体积.3、解:(I)由已知得,MD是厶ABP的中位线MD // APMD 二面APC, AP 面APC.MD // 面APC ........ 4 分(∏) ;CPMB为正三角形,D为PB的中点,MD _ PB,5分.AP _ PB .......... 6 分又AP _ PC, PB - PC= P . AP _ 面PBC ............. 7 分BC 面 PBC AP _ BC又BC _ AC, AC - AP= A. BC _ 面APC .......... 9 分■■ BC 面ABC •平面ABC丄平面APC .......... 10分(川)∙∙∙MD _面PBC , MD是三棱锥 M— DBC的高,且MD = 5..3…11分又在直角三角形 PCB中,由PB = 10, BC = 4 ,可得PC = 2. 21 ..... 12分于是S. B CD = 2 S. BCP = 2^21 ,.............................. 13分VD _BCM = V M _DBC Sh = 10∙∙. 7.............................. 1 4分34、证明:(1)连结A I C I ,设AC In B1D1 =。

1连结AO1 , V ABCD -A1B1C1D1是正方体.A1ACC1是平行四边形AG L AC 且AQ1 = AC又O1,O 分别是A l C I, AC 的中点,.O1C1 L AO 且O1C1= AO■ AOC1O1是平行四边形GO L AO1, A0∙∣—面AB1D1, GO面AB1D1…G O L面AB1D1(2) V CC1丄面A1B1C1D1二CC 丄BD又7 A1C1 _ B1D1, B1 D1—面 A l C I C即 AC- B1D1同理可证AQ — AB1 ,又 D i B i 门 AB I= B i「” A-C-L 面AB I D i ........................................... 9 分(3)设B-D i的中点为N,则AN丄B-Dι,MN丄B i D i ,则MNi3, AN「6, AM =3.AN2 MN2=AM2,厶AMN 是 RT :,.AN _MN ,. AN _ 面 M3ιDι,.面AB-D i _面MS1D i1(也可以通过定义证明二面角是直二面角) ..... 14分5、•解:(1)证明:设G为PC的中点,连结∙∙∙ F为PD的中点,E为AB的中点,∙∙∙ FG 丄-CD , AE丄-CD∙∙∙ FG j AE,∙∙∙ AF Il GE∙∙∙ GE?平面 PEC,∙ AF H 平面 PCE;(2)证明:I PA = AD= 2,∙∙∙ AF 丄 PD 又∙∙∙ PA丄平面 ABCD , CD?平面ABCD , ∙PA 丄 CD , VAD 丄 CD, FA ∩AD = A, ∙ CD丄平面PAD,V AF?平面 FAD , ∙ AF 丄 CD.V PD ∩CD = D, ∙ AF 丄平面 PCD,∙GE⊥ 平面 PCD,V GE?平面 PEC ,∙平面PCE丄平面PCD ;⑶由⑵知,GE⊥平面PCD, 所以EG为四面体PEFC的高,又GF H CD,所以GF丄PD ,EG= AF = 2 , GF = ^CD = 2 ,1SXPCF = ?PD GF = 2.得四面体PEFC的体积V= 3δ∆PCF EG= 23^.3 36、证明:⑴I AC= BC, P 为AB 的中点,∙∙∙AB⊥ PC,又CC1// AA1,AA i ⊥ 平面ABC,∙CC i ⊥平面ABC ,∙CC1⊥ AB,又∙∙∙CC i ∩PC= C,∙AB ⊥ 平面PCC i,由题意知MN // AB,故MN丄平面PCC i,MN在平面MNQ内,∙平面PCC i⊥平面MNQ.⑵连接AC i、BC i, ∙∙∙ BC i // NQ, AB // MN ,又BC i ∩AB= B,∙平面ABC i //平面MNQ,∙∙∙ PC i在平面ABC i内,∙PC i// 平面MNQ .解:⑴证明:连接AF ,则AF = 2 2, 又AD = 4,∙∙∙ DF2+ AF2= AD2,DF = 2 2,∙DF丄AF.又FA丄平面ABCD ,∙DF 丄FA ,又PA∩AF = A,DF;平面PAF=DF _ PF PF 平面PAF(2)过点E作EH // FD交AD于点H,EH //平面PFD 且AH = i AD.4再过点H作HG // DP交FA于点G,HG //平面PFD 且AG=^AP,EHG // 平面PFD .∙EG // 平面PFD.从而满足AG=4AP的点G为所求.7、证明:(i)连接BD iE、F分别为DD i、DB的中点, EF // BD i ,N又BD^-平面ABC i D i, EF :二平面ABC i D i,11 ∙∙∙ EF // 平面 ABC 1D 1(2)正方体 ABCD - A I B I C I D I 中,AB _ 平面 BCC i B i ,则 AB _ B i C 正方形 BCC 1B 1 中,B 1C- BC 1 ,又 AB- BC 1=B, AB BC 1 二平面 ABC 1D 1, 则 BQ _ 平面 ABC 1D 1,BD 1 平面 ABC 1D 1 ,所以 BQ_ BD 1又 EF // BD 1,所以 B 1C-EF.8、解:(1)该组合体的主视图和侧视图如右图示: -----3 ⑵∙∙∙ PD _ 平面 ABCD , PD 平面 PDCE∙平面PDCE _平面ABCD∙∙∙ BC _CD ∙ BC_ 平面 PDCE ----------- 5 分1 1 τ S 弟形PDCE(PD EC) DC 3 2=3--6 分 2 2∙四棱锥B — CEPD 的体积(3)证明:∙∙∙ EC// PD , PD 二平面 PDA ,EC 二平面PDA∙ EC//平面 PDA , ------------------------- 10 分同理可得BC//平面PDA ---------------- 11 分∙∙∙ EC 平面 EBC,BC 平面 EBC 且 ECrl BC=C∙平面BEC //平面PDA ------------------- 13 分又∙∙∙ BE 平面 EBC ∙ BE//平面 PDA ----------------------------------- V B -CEPD S 梯形PDCE 3 BCJ 3 2=2.----8 分 3 14 分证明⑴ 解:TFD丄平面ABCD t GCC平面ABCD t :、QC丄PzX ..... 1 分':ABCD为正方形TΛGC丄CD. ......... 2分t: PDΓ]CD = D, .∖GC丄平面PCD... 4 分⑵证法L如图,取M的中点E,连接G瓦朋V 分别^FC l PD的中凰:、EFlICD.......... 6 分T G r H分别为BC r AD的中点…J GHf/CD.Λ EFIJ GH .∖E t F t H t G四点共面..... T 分V F t H分别为DP I DA B5中点.r. PAH FH.T PAα 平面EFG, 二PAU平面EFG FH U平面EFG i..... 9分.证法2∣∖ E.F.G分别^PC f PD f BCtħ中点,.∖EFf/CDffAB)EG//PB...... 5 分'/ ABα 面EFGEF U 面EFG J:・AB/i ^EFG ...... 国分'/ EGH PB J PB <Z面EFG r EG U 面EFG.∖ PBU面肿G ....... 7分'.'PB∩ AB - B1 EF0EG = E∖:*平蔚E7r(7"平面FAS・ B 分'/ PA匚平面PAB^ .'-PA"平面£阳・ .... 9分面PCD •••三棱锥以GC为高,三角形PEF为底.......... 10分1 1∙∙∙ PF PD =1, EF CD =1,2 21 1•S PEFS EF PF 了•………12分1•GC BC = 1,2121 1 1 1∙∙ V P _EFG -V G-PEF S PEF GC 1 ... 14 分3 3 2 613。

相关文档
最新文档