初中数学人教版七年级上册正数和负数的概念

合集下载

初中数学七年级上册知识点总结(最新最全)

初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

人教七年级数学上知识点

人教七年级数学上知识点

人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。

二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。

三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。

四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。

五、解方程
一元一次方程的概念和性质,基本解法和应用。

六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。

七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。

八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。

九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。

十、几何变换
平移、旋转、翻折及其组合。

以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。

希望本文对广大师生有所帮助,祝大家学习进步!。

人教版初一数学知识点总结

人教版初一数学知识点总结

人教版初一数学知识点总结人教版七年级数学上册主要包含有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。

其中第一章是有理数。

1.有理数有理数是指能够写成 p/q(p、q 为整数且p ≠ 0)形式的数,包括正整数、负整数、正分数、负分数以及零。

注意,π 不是有理数。

有理数可以分为零、正有理数、负有理数、正整数、负整数、正分数和负分数。

2.数轴数轴是一条带有原点、正方向和单位长度的直线。

3.相反数只有符号不同的两个数互为相反数,它们的和为零。

4.绝对值正数的绝对值是其本身,负数的绝对值是它的相反数。

绝对值的意义是数轴上表示某数的点离开原点的距离。

5.有理数比大小正数的绝对值越大,这个数越大。

正数永远比负数大,两个负数比大小,绝对值大的反而小。

在数轴上,右边的数总比左边的数大。

大数减去小数大于零,小数减去大数小于零。

6.互为倒数乘积为 1 的两个数互为倒数,如果a ≠ 0,则 a 的倒数是1/a。

7.有理数加法法则同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;一个数与零相加,仍得这个数。

8.有理数加法的运算律加法的交换律:a+b=b+a;加法的结合律:(a+b)+c=a+(b+c)。

9.有理数减法法则减去一个数,等于加上这个数的相反数;即 a-b=a+(-b)。

10.有理数乘法法则两数相乘,同号为正,异号为负,并把绝对值相乘;任何数同零相乘都得零。

11.当几个数相乘时,如果有一个因式为零,那么积就为零;如果所有因式都不为零,那么积的符号由负因式的个数决定。

12.有理数除法的法则是,除以一个数等于乘以这个数的倒数。

但需要注意的是,零不能做除数,因为这是无意义的。

13.有理数乘方的法则包括以下两点:正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数。

此外,当n为正奇数时,(-a)n=-an或(a-b)n=-(b-a)n;当n为正偶数时,(-a)n=an或(a-b)n=(b-a)n。

初一数学正负数的概念理解

初一数学正负数的概念理解

初一数学正负数的概念理解正文:初中数学是数学学习的重要阶段,正负数是其中的基础概念之一。

正负数的概念理解对于学生打下数学基础、培养逻辑思维非常重要。

本文将对初一数学正负数的概念理解进行探讨。

一、正负数的起源和定义正负数的概念源于古代商人在计算盈亏时的记号。

正数表示盈余,负数表示亏损。

在数学中,正数表示大于零的数,负数表示小于零的数,零是正数和负数的分界点。

二、正负数的意义与应用1. 温度计与正负数我们日常生活中接触到的温度表就是一个常见的例子。

温度表上的负数表示低于冰点的温度,正数表示高于冰点的温度。

通过温度计的观测,我们可以了解到不同区域的温度变化,从而更好地调节生活。

2. 债务与正负数债务也是正负数的应用之一。

借贷关系中,借方的金额为正数,表示债务的增加;贷方的金额为负数,表示债务的减少。

通过正负数的概念,我们可以更好地了解债务的变化,并进行相应的还款。

3. 运动方向与正负数正负数的概念也可以应用到运动方向的表示上。

例如,向右为正,向左为负。

通过对运动方向的理解,我们可以更好地规划路径,并进行导航等应用。

三、正负数的性质与运算1. 正数与正数相加正数与正数相加,符号保持不变,数值相加。

例如,3 + 5 = 8,仍然是正数。

2. 负数与负数相加负数与负数相加,符号保持不变,数值相加,并在结果前加负号。

例如,(-3) + (-5) = -8,仍然是负数。

3. 正数与负数相加正数与负数相加,以绝对数大的符号为准,数值相减,并在结果前加符号。

例如,3 + (-5) = -2,结果为负数。

四、正负数的比较与排序比较正负数的大小,我们可以根据以下规则进行判断:1. 正数与正数比较,数值大的大。

2. 负数与负数比较,数值小的大。

3. 正数与负数比较,正数大于负数。

通过对正负数的比较,我们可以将数值进行排序,便于从大到小或从小到大进行整理和分析。

五、正负数在代数中的应用正负数的概念对于代数的理解和运算也有着重要的作用。

七年级上册数学要点

七年级上册数学要点

七年级上册数学要点
1. 正负数:正数是大于0的数,负数是小于0的数。

0既不是正数也不是负数。

2. 有理数:有理数是可以表示为两个整数之比的数,包括整数和分数。

整数包括正整数、0和负整数,分数包括正分数和负分数。

3. 数轴:数轴是一条直线,可以用来表示所有的有理数。

数轴上的每一个点都对应一个有理数,反之亦然。

数轴上的点有原点(表示0的点)、正方向和单位长度。

在数轴上,右边的数总比左边的数大。

4. 相反数和绝对值:只有符号不同的两个数互为相反数。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

5. 倒数:乘积为1的两个数互为倒数。

0没有倒数。

6. 直线、射线和线段:直线可以向两侧无限延伸,没有端点。

射线有一个端点,可以向一侧无限延伸。

线段有两个端点,长度有限。

7. 角:角是由有公共端点的两条射线组成的图形。

这个公共端点是角的顶点,两条射线是角的两边。

角的度、分、秒是60进制的,即1度等于60分,1分等于60秒。

初中七年级上册数学复习定义性质(人教新目标)

初中七年级上册数学复习定义性质(人教新目标)

1.把0以外的数分为正数和负数,大于0 的数叫做正数,小于0的数叫做负数,0既不是正数也不是负数。

应用:(1)海拔高度:正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。

例如:珠穆朗玛峰的海拔高度为8844M,吐鲁番盆地的海拔高度为-155M。

(2)记录帐目时,通常用正数表示收入款额,负数表示支出款额。

(3)天气的温度:零上5度,即50,零下5度,即-50(4)相反的方向,也可用正负来表示。

例如东和西,如果东为正的话,西则为负。

同理,假设南为正的话,北则为负。

(5)水位升高可用正数表示,水位降低可用负数表示,水位不变可记作0。

正整数整数2.有理数0 或或:有理数可以写作两整数之比。

负整数分数数轴:用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点。

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向。

(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点。

分数或小数也可以用数轴上的点表示。

(4)在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

3.绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

4.符号相反且绝对值相等的数互为相反数。

正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

5.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

(4)两个数相加,交换加数的位置,和不变。

三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

6.有理数减法法则:减去一个数,等于加上这个数的相反数。

初一数学正数和负数的概念

初一数学正数和负数的概念

初一数学正数和负数的概念数学是一门普遍认为枯燥乏味的学科,而数学的基础概念尤其关键。

在初中数学中,正数和负数的概念是非常重要的一部分。

本文将探讨正数和负数的定义、性质以及应用,以帮助初一学生更好地理解这一概念。

一、正数的定义与性质在数学中,正数是指大于零的数。

可以用直观的方式来理解正数,比如1、2、3等。

正数具有以下几个性质:1. 正数与正数相加,结果仍为正数。

2. 正数与正数相乘,结果仍为正数。

3. 正数与零相加,结果仍为正数。

4. 正数与零相乘,结果仍为零。

理解正数的概念对于初一学生来说相对容易,因为在生活中我们总是偏向于正面的想法和正面的事物。

二、负数的定义与性质负数是指小于零的数,比如-1、-2、-3等。

负数相比于正数可能会让人感到困惑,但是负数在数学中有着重要的地位。

以下是负数的几个性质:1. 负数与负数相加,结果仍为负数。

2. 负数与负数相乘,结果为正数。

3. 负数与零相加,结果仍为负数。

4. 负数与零相乘,结果仍为零。

虽然负数的概念对初一学生来说可能有些抽象,但是在数学中有着广泛的应用。

三、正数和负数的应用正数和负数的概念不仅仅停留在纸面上,实际生活中也有很多涉及到正数和负数的情境。

以下是一些常见的应用场景:1. 温度计:温度计上的温度可以是正数,也可以是负数。

正数表示高温,负数表示低温。

这种情况下正数和负数可以用于表示温度相对于绝对零度的高低。

2. 账户余额:银行账户上的余额可以是正数,也可以是负数。

正数表示余额充足,负数表示透支状态。

这种情况下正数和负数可以用于表示资金的盈余或亏损。

3. 海拔高度:海拔高度可以是正数,也可以是负数。

正数表示地势高,负数表示地势低。

这种情况下正数和负数用于表示相对于海平面的高低。

总结:在初一数学中,正数和负数是非常重要的概念。

通过理解正数和负数的定义和性质,我们可以更好地理解数学中的各种问题。

正数和负数的概念不仅仅是数学上的抽象概念,还广泛应用于日常生活中的各种场景。

新人教版七年级数学上册重要知识点汇总

新人教版七年级数学上册重要知识点汇总

新人教版七年级数学上册重要知识点汇总第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

〔根据需要,有时在正数前面也加上“+”〕②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

1.2 有理数1、有理数〔1〕整数:正整数、0、负整数统称整数;〔2〕分数;正分数和负分数统称分数;〔3〕有理数:整数和分数统称有理数。

2、数轴〔1〕定义:通常用一条直线上的点表示数,这条直线叫数轴;〔2〕数轴三要素:原点、正方向、单位长度;〔3〕原点:在直线上任取一个点表示数0,这个点叫做原点;〔4〕数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

〔例:2的相反数是-2;0的相反数是0〕〔2〕一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法。

1.4 有理数的乘除法①有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律②有理数除法法那么:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

1.5 有理数的乘方1、求n个一样因数的积的运算,叫乘方,乘方的结果叫幂。

在a的n次方中,a叫做底数,n叫做指数。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何次幂都是0。

2、有理数的混合运算法那么:先乘方,再乘除,最后加减;同级运算,从左到右进展;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进展。

3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a⑵打满14场比赛最高能得17+〔14-8〕×3=35分.⑶由题意知,以后的6场比赛中,只要得分不低于12分即可.∴胜不少于4场,一定能到达预期目的. 而胜了3场,平3场,正好到达预期目的. 所以在以后的比赛中,这个球队至少要胜3场.例10. 国家为了鼓励青少年成才,特别是贫困家庭的孩子能上得起大学,设置了教育储蓄,其优惠在于,目前暂不征收利息税. 为了准备小雷5年后上大学的学费6000元,他的父母如今就参加了教育储蓄,小雷和他父母讨论了以下两种方案:⑴先存一个2年期,2年后将本息和再转存一个3年期;⑵直接存入一个5年期.你认为以上两种方案,哪种开场存入的本金较少?[教育储蓄〔整存整取〕年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%. ]解析:理解储蓄的有关知识,掌握利息的计算方法,是解决这类问题的关键,对于此题,我们可以设小雷父母开场存入x元. 然后分别计算两种方案哪种开场存入的本金较少.⑴2年后,本息和为x〔1+2. 70%×2〕=1. 054x;再存3年后,本息和要到达6000元,那么1. 054x〔1+3. 24%×3〕=6000.解得x≈5188.⑵按第二种方案,可得方程x〔1+3. 60%×5〕=6000.解得x≈5085.所以,按他们讨论的第二种方案,开场存入的本金比拟少.例11. 扬子江药业集团消费的某种药品包装盒的侧面展开图如下图. 假如长方体盒子的长比宽多,求这种药品包装盒的体积.分析^p :从展开图上的数据可以看出,展开图中两高与两宽和为350px,所以一个宽与一个高的和为175px,假如设这种药品包装盒的宽为xcm,那么高为〔7-x〕cm,因为长比宽多100px,所以长为〔x+4〕cm,根据展开图可知一个长与两个高的和为325px,由此可列出方程.解:设这种药品包装盒的宽为xcm,那么高为〔7-x〕cm,长为〔x+4〕cm.根据题意,得〔x+4〕+2〔7-x〕=13,解得x=5,所以7-x=2,x+4=9.故长为225px,宽为125px,高为50px.所以这种药品包装盒的体积为:9×5×2=90〔cm3〕.例12. 某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得〔1+x〕〔1-5%〕=1+14%解得x=20%答:这个月的石油价格相对上个月的增长率为20%.点评:此题是一道增长率的应用题. 本月的进口石油的费用等于上个月的费用加上增加的费用,也就是本月的石油进口量乘以本月的价格. 设出未知数,分别表示出每一个数量,列出方程进展求解. 列方程解应用题的关键是找对等量关系,然用代数式表示出其中的量,列方程解答.例13. 某市参加省初中数学竞赛的选手平均分数为78分,其中参赛的男选手比女选手多50%,而女选手的平均分比男选手的平均分数高10%,那么女选手的平均分数为____________.解析:总平均分数和参赛选手的人数及其得分有关. 因此,必须增设男选手或女选手的人数为辅助未知数. 不妨设男选手的平均分数为x分,女选手的人数为a 人,那么女选手的平均分数为1. 1x分,男选手的人数为1. 5a人,从而可列出方,解得x=75,所以1. 1x=82. 5. 即女选手的平均分数为82. 5分.第四章几何图形初步4.1 几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。

初中数学七年级上册知识点总结

初中数学七年级上册知识点总结

人教版七年级数学上册各单元重点知识清单第一章有理数一.正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

人教版数学七年级初一上册 正数、负数以及0的意义 名师教学教案 教学设计反思 (3)

人教版数学七年级初一上册 正数、负数以及0的意义 名师教学教案 教学设计反思 (3)
激发學生學习探究的欲望,给學生學习的信心。
敎學过程
一:数的产生与发展
古人由计数、排序,产生数1、2、3...;由表示“没有”“空位”,产生数0;由分物、测量,产生分数。可见数的产生与发展是离不开生活和生产的需要的。那么,虽着社会的发展,我们小學學过的自然数和分数就够用了吗?带着这个疑问先来做个游戏。
學科导學案
年级:七年级敎师:高桂华
第 一 单元
课题
正数负数及零的意义
第 1 课时
學法指导
自主探究
敎學目标
1.掌握正数和负数的概念,正数负数及零的意义
2.能区分两种不同意义的量,会用符号表示正数和负数;
3.体验数學发展的一个重要原因是生活实际的需要,激发學:生學习数學的兴趣。
敎學重点
正确区分两种不同意义的量。
敎學难点
两种相反意义量的实际应用。
敎學设计
學生活动指导
设计意图
新课导入
经历了小學六年的學习生活,同學们學习到了许多丰富多彩的数學知识,初中的學习生活即将开始,孩子们,你们准备好了吗?老师相信,只要抱有一颗求知的心,不断努力的學习,就一定能够在初中数學的知识海洋里快乐的遨游,让我们一起探索这变幻莫测的数學奥秘吧!
四:举一反三 思维拓展
请举一些实际中用正数、负数表示数量的例子。
通过同學们举的这些例子,你能体会到负数到底是怎么产生的吗?
我们看看用负数是怎样解决实际问题的呢?
四:典型例题精析
出示例题1,例题2
五:拓展探究训练
以抢红包的形式检测學生本堂知识的掌握情况
敎师通过让學生了解数的产生与发展是与我们的生活和生产分不开的,并由此请學生思考:生活中仅有这些“以前學过的数”够用了吗?
讨论0的意义。数0既不是正数,也不是负数,0是正数与负数的分界。0℃是一个确定的温度,海拔0表示海平面的平均高度。0的意义已不仅是表示“没有”。

(人教版)初中数学各章节详细知识点

(人教版)初中数学各章节详细知识点

各章节详细知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线15.余角的概念16.补角的概念17.余角(补角)的性质七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定11.平行线的性质12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理9.多边形及其相关概念(多边形、对角线、正多边形)10.多边形的内角和定理11.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)4.二元一次方程的应用5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质6.一元一次不等式的解法7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定5.角平分线的性质6.角平分线的判定第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质5.线段垂直平分线的判定6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质4.立方根的概念5.立方根的性质6.实数的概念7.实数的分类8.实数的相反数、绝对值9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质6.一次函数的解析式7.一次函数的图象及其性质8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式2.幂的乘方公式3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则6.平方差公式7.完全平方公式8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质3.约分与通分4.最简分式5.分式乘除的法则6.分式加减的法则7.整数指数幂的运算性质8.分式方程的概念9.分式方程的解法10.分式方程的应用第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质3.反比例函数的应用第十八章《勾股定理》1.勾股定理2.勾股定理的逆定理第十九章《四边形》1.平行四边形的概念2.平行四边形的性质3.平行四边形的判定4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质8.菱形的概念9.菱形的性质10.菱形的判定11.正方形的概念12.正方形的性质与判定13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数4.方差九年级上册第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则6.最简二次根式7.二次根式的加减法法则第二十二章《一元二次方程》1.一元二次方程的概念2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)第二十三章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质3.中心对称的相关概念(中心对称、对称中心、对称点)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征第二十四章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论3.弧、弦、圆心角、弦心距之间的关系定理4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念12.切线的性质及判定定理13.切线长定理14.圆与圆的位置关系及其相关概念15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式17.圆锥及圆柱的侧面积及表面积第二十五章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式5.用列表法、树形图计算概率6.频率与概率的关系。

初一数学正负数概念解析

初一数学正负数概念解析

初一数学正负数概念解析数学作为一门抽象而又实用的学科,其中数的概念是其核心内容之一。

在初中数学中,正负数是一个重要的概念,它被广泛应用于各种计算和问题求解中。

本文将对初一数学中的正负数概念进行解析,帮助读者更好地理解和应用这一概念。

一、什么是正负数正负数是指整数的正数和负数的统称。

正数是大于零的整数,用正号表示,负数是小于零的整数,用负号表示。

例如,2是正数,-3是负数。

正负数可以通过数轴进行可视化表示,数轴上的原点表示零,右边表示正数,左边表示负数。

二、正负数的表示与比较正负数的表示方法就是在数字前添加正负号。

例如,5表示正数5,-7表示负数7。

当我们比较两个正负数的大小时,可以借助数轴来判断。

如果一个数在另一个数的右边,那么它就比另一个数大;反之,如果一个数在另一个数的左边,那么它就比另一个数小。

例如,-3在数轴上比2靠左,所以-3小于2。

三、正数和负数的运算正负数的加减法是初中数学中的基础知识。

当两个数的符号相同时,它们的绝对值相加或相减并带上相同的符号即可。

例如,2 + 3 = 5,-4 + (-2) = -6。

当两个数的符号不同时,我们需要先计算绝对值相减,然后带上较大数的符号。

例如,5 - 8 = -3,-3 + 7 = 4。

除法也是正负数的运算之一。

当两个正数相除时,结果仍为正数;当两个负数相除时,结果也为正数。

但是,当一个正数除以一个负数时,结果为负数;当一个负数除以一个正数时,结果也为负数。

例如,10 ÷ 2 = 5,-6 ÷ (-3) = 2,-9 ÷ 3 = -3。

四、正负数在实际问题中的应用正负数在实际生活和问题中起着重要的作用。

比如,在温度计中,温度高于零度的部分用正数表示,温度低于零度的部分用负数表示。

当我们需要比较不同地区的温度时,就可以利用正负数进行比较。

另外,正负数还可以用来表示欠债和资产、盈利和亏损等概念。

当我们遇到负数时,可以理解为亏损或者欠债的情况;而遇到正数时,可以理解为盈利或者资产的情况。

人教版数学七年级上册1.1《正数和负数》教学设计

人教版数学七年级上册1.1《正数和负数》教学设计

人教版数学七年级上册1.1《正数和负数》教学设计一. 教材分析《正数和负数》是人教版数学七年级上册的第一节内容,为学生以后学习更高级的数学知识打下基础。

这一节主要介绍正数和负数的概念,以及它们的性质。

教材通过简单的例子引入正数和负数,使学生能够直观地理解和掌握。

二. 学情分析七年级的学生刚从小学升入初中,对数学的知识体系还不够了解。

他们对正数和负数可能有一定的了解,但对其性质和运算可能还不够熟悉。

因此,在教学过程中,需要注重引导学生从实际情境中发现问题,通过自主探究和合作交流来理解和掌握正数和负数的概念和性质。

三. 教学目标1.理解正数和负数的概念,掌握它们的性质。

2.能够运用正数和负数解决实际问题。

3.培养学生的抽象思维能力和团队合作能力。

四. 教学重难点1.重难点:正数和负数的概念及其性质。

2.难点:理解正数和负数的运算规律。

五. 教学方法1.情境教学法:通过实际情境引导学生理解和掌握正数和负数的概念和性质。

2.自主探究法:鼓励学生自主探究,发现问题,解决问题。

3.合作交流法:引导学生与他人合作,共同解决问题,提高团队协作能力。

六. 教学准备1.教学PPT:制作精美的PPT,展示正数和负数的例子和性质。

2.教学素材:准备一些实际问题,用于引导学生运用正数和负数解决。

3.学生活动材料:准备一些练习题,用于学生在课堂上进行自主学习和巩固。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际情境,如购物、温度等,引导学生发现正数和负数的存在。

让学生分享他们对正数和负数的理解,为新课的展开做好铺垫。

2.呈现(10分钟)通过PPT呈现正数和负数的概念和性质,用简洁的语言进行讲解。

同时,给出一些例子,让学生跟随老师一起分析和总结正数和负数的性质。

3.操练(10分钟)让学生分成小组,共同解决一些与正数和负数相关的问题。

教师巡回指导,解答学生遇到的问题。

4.巩固(5分钟)挑选几名学生上黑板进行正数和负数的运算练习,让其他学生进行评价和补充。

人教版初中数学七年级上册第一章 正数和负数

人教版初中数学七年级上册第一章 正数和负数

C.﹣3m
D.﹣2m
4.如果温度上升10℃记作+10℃,那么温度下降5℃记作
( D )
A.+10℃
B.﹣10℃ C.+5℃
D.﹣5℃
课堂检测
1.1 正数和负数/
能力提升题
某银行一天内接待了四笔大业务,存款40 000元,取款25 000
元,存款30万元,取款7万元.若存款为正,请你用正、负数
表示这四笔款项.
1. 了解正数与负数是从实际需要中产生的.
探究新知
1.1 正数和负数/
知识点 1
正数、负数的定义
观察下列图片,体会数的产生和发展过程.
结绳计数
由表示“没
由分物、测量,
由记数、排序,
有”“空位”,
产生 , …
产生数1,2,3…
产生数0.





探究新知
1.1 正数和负数/
【思考】根据实际生活的需要,人们引进了另一种数,你知道
课堂检测
1.1 正数和负数/
2.下列各对关系中,不具有相反意义的量的是( D )
A.运进货物3吨与运出货物2吨
B.升温3℃与降温3℃
C.增加货物100吨与减少货物2000吨
D.胜3局与亏本400元
课堂检测
1.1 正数和负数/
3.如果向东走2m记为+2m,则向西走3m可记为( C )
A.+3m
B.+2m
例2(2)某年下列国家的商品进出口总额比上年的变化情
况是:
美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%,中国增长7.5%.

人教版数学七年级上册1.1《正数和负数》课程教学设计

人教版数学七年级上册1.1《正数和负数》课程教学设计

《正数与负数》教学设计一、教材分析正数和负数的概念和意义不仅是本章节关于有理数的概念和运算的基础,也是初中数学代数部分的基础。

同时,引入负数是实际的需要。

二、学情分析(一)学生刚上初中,对初中的新鲜事物都不熟悉,因此会对初中学习的内容比较感兴趣,是老师培养学生对数学的兴趣的关键时刻。

如果这个时候不能培养起学生的数学学习兴趣,那么到了后期就难以让学生对学习内容感兴趣了。

(二)小学阶段已经学习了正整数和分数,对数字的了解有了一定的基础,数字在生活中被广泛应用,为了解决更多问题,我们将所学数字的范围扩大,负数概念应运而生。

本节内容将为后面的有理数的学习以及比较大小奠定基础。

三、教学目标(一)知识与技能1. 了解负数和正数是怎么样产生的。

2. 理解什么是正数和负数。

3. 理解数0表示的量和意义。

(二)过程与方法1. 体会数学符号的意义。

2. 掌握用正负数表示具有相反意义的量的符号化方法。

(三)情感态度与价值观1. 通过师生互动,联系实际,激发学生学好数学的热情。

四、教学重难点教学重点:理解什么是正数和负数;掌握用正负数表示具有相反意义的量的符号化方法。

教学难点:理解负数和0表示的量的意义。

五、教学方法与手段师生互动,启发式和讲授式结合。

采用多媒体辅助教学六、教学设计思想先举一些贴近初中生生活的例子,引发学生的思考,进而引出什么数是正数,什么数是负数。

阐述正负数的描述性定义,并列举一些数字让学生辨析。

再着,回归引入负数的例子,讲述负数的意义。

同时让学生感受正负数确实有着极大的作用。

并采用讲解习题的方式让学生对负数的意义有进一步的认识。

然后运用新知,回归生活。

最后总结,让学生对本次课有着全面的认识。

活动一:整理前两个学段学过的整数、分数(包括小数)的知识,引出生活中仅有这些“以前学过的数”不够用了。

上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考:师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%…问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师生小结:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?学生活动:请同学们看书和观察(观察本节前面的几幅图中用到了什么数,出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等,让学生感受引入负数的必要性)并思考讨论交流。

七年级上册数学书知识点

七年级上册数学书知识点

七年级上册数学书知识点七年级上册数学书知识点1一、正数与负数1.在实际中表示意义相反的量上升5米记为5米; -8米则表示下降8米。

2.正数:大于0的数。

3.负数:在正数的前面加上“-”。

4.0的含义:①既不是正数也不是负数;②0在计数时表示没有,比如0元;③0表示某种量的基准,比如0℃表示温度的基准5.有理数的分类分数概念(1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数;(2)无限不循环小数不属于有理数,如:π=3.141592... 2.010010001...“非”的概念非负数:正数和0非正分数:负分数非正数:负数和0非负分数:正分数非负整数:正整数和0非正整数:负整数和0二、数轴1.三要素:原点、正方向、单位长度。

通常原点用“O”表示,向右的方向为正方向,单位长度为1.2.如何画数轴①画直线(一般画成水平的),定原点,标出原点“O”;②取原点向右的方向为正方向,并标出箭头;③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3各点。

3.数轴上的点与有理数:(1)数轴上的点与有理数一一对应(2)左边的数<右边的数三、相反数①只有符号不同的两个数,叫做互为相反数。

0的相反数是0。

②a的相反数-a③a与b互为相反数:a+b=0④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b⑥求一个数的相反数方法:在这个数的前面加“-”号.⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

四、绝对值1.几何意义:从数轴上表示a的点到原点的距离即为|a|2. ①一个正数的绝对值等于它本身;当a是正数时,|a|=a;②一个负数的绝对值等于它的相反数;当a是负数时,|a|=-a;③0的绝对值等于0。

当a=0时,|a|=0。

3.互为相反数的两个数的绝对值相等。

五、有理数的大小比较1.正数>0>负数;2.两个负数比较①右边的点表示的数比左边的点表示的数大。

初中数学人教版七年级上册正数和负数的概念

初中数学人教版七年级上册正数和负数的概念
知识回顾
问题一:我们在小学学过哪些数?你能按 照某一标准将它们分类?
自然数:0、1、2、3…… 分数(小数):1/2、0.36、5%……
随着社会的发展,小学学过的自然数、分数和小 数已不能满足实际的需要 。
数的产生和发展离不开生活和生产的需要
问题情境
例1:乌鲁木齐某一天的气温为-2 ℃ ~ 4℃, 它的确切含义是什么?这一天乌鲁木 齐的温差是多少?
(3)相反意义的量包含两个要素:一是它 们的意义要相反;二是它们都具有数量。如前 进8m与后退5m。
(4)相反意义的量中的两个量必须是同类量, 如节约汽油3吨与浪费1吨水就不是具有相反意义 的量。
怎样用正负数表示具有 相反意义的量?
• 对于两个具有相反意义的量,把哪一种意 义规定为正,带有任意性,不过习惯上把 上升、增加、收入、零上等规定为正,而 把与它们意义相反的量规定为负。
+0.5、+3、+1/2……“+”号可以省略。
我们把在以前学过的数(0除外) 前面加上负号“-”的数叫做负数。如-2、
-1500、-2/3……
一个数前面的“+”、“-”号叫做它的符号。 “-”号读 做“负”,如:“-5”读作“负5”;“+”号读作“正”, 如:“+3”读作“正3”。“+”号可以省略。
思考
一个数不是正数就是 负数,对吗?
0既不是正数也不是负数。0是正负 数的分界。
具有相反意 义的两个量
知识结构
规定其中一个为正 用正数表示 分界点为零
则另一个为负
用负数表示
在数学 在数学的天地里,重要的不是 我们知道什么,而是我们怎么知道 什么。
——毕达哥拉斯要
问题情境
பைடு நூலகம்

初中数学人教版七年级上册正数和负数的概念

初中数学人教版七年级上册正数和负数的概念

牛刀小试 测试一:把下列的数分别填在相应的圈里: -11, 4.8, +73, -2.7,
4.8,+73, ,100

, - 负数 测试二:一个物体沿着东、西两个相反的方向运动时,可以用 正负数表示它的运动。 (1)如果向东运动4m记作4m,那么向西运动5m记作什么? (2)如果-7m表示物体向西运动7m,那么6m表示物体怎样 运动? 答案:(1)向西运动5m记作-5m。 (2)6m表示物体向东运动6m。
正数和负数
制作教师:都匀十中 孙良红
问一问,答一答
问题1:盘中 有几个苹果?
问题2:盘中 有苹果吗?
问题3:我们怎 么表示盘中的 一份苹果?
5
0
以上三个问题中出现的数字,是小学所过的整数和分数。
看一看,想一想(1)
在左图中有三个温 度计,你能说出它 们各表示多少℃吗?
零上10℃
0℃
零下10℃
在生活中,我们知道: 零上10℃,记作:10℃ 零下10℃,记作:-10℃
看一看,想一想(2)
观察下图,图中为存折的一页,上面有一些交易记录。请 问:在银行存款或取款时,存折中是如何区分存入与支出的款 项呢?
取款时数字前面有“-”号,存款时数字前面没有符号。
看一看,想一想(3)
观察左边的地形图, 高于海平面的A、B两 点与低于海平面的C、 D两点在高度的表示 上存在什么区别?
由图可知:高于海平面30米,记为:30m 低于海平面30米,记为:-30m
思考
从3个“看一看,想一想”中,我们发现了什么? 温度计中的“零上”和“零下” 存折中的“存入”和“支出” 具有相反意义的量 地形图中的“高于”和“低于” 总结 数学上规定: 在具有相反意义的一对量中,把其中的一个量用正数表 示 ,如小学学过的不等于0的自然数和分数(或小数)就是 正数: ,3,1.559,+0.123 ,正数的前面没有符号或者有 “+”号; 而另一个量用负数表示,它是在正数前面加上 “-”(读作负号)如:-3,-25.5, -100.00, ,… 就是负数,负数前面必须有“-”号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这天的最高温度是零上3℃,最低 温度是零下3℃,温差是6℃.
增长-2.7%表示减少2.7%.
3.夏新同学通过捡、卖废品,既保护了环境,又积 攒了零花钱.下表是他某个月的部分收支情况:
日期 支-余出 )-1.2”表示缺少1.2元,
2日 由3收.50入减8去.50支出得卖到废品.
8日 -4.50 4.00 买圆珠笔、铅笔 芯
12日 -5.20 -1.20 买科普书,同学 什代么付意思?
像-3,-2.7%, -1.2 , …这样的数(即以前学过 的0以外的数前面加上负号“-”的数叫做负数.
而在小学学过的除“0”以外的自然数都叫正 数.
为了突出数的符号,可以在正数的前面加“+” 号,如+5, + 1 ,+1.2, …
. 解:(2)六个国家这一年商品进出口总额的增长率 是 :美国-6.4%, 德国1.3%,法国-2.4%, 英国-3.5%,意大利0.2%,中国7.5%.
归纳
如果一个问题中出现相反意义的 量,我们可以用正数和负数分别表 示它们.
观察下图,试着说明它们的海拔高度. 8844
0
-155 珠穆朗玛峰的海拔高度为8844米,吐鲁 番盆地的海拔高度为-155米.
思考并回答:
1.如果收入2000元,记为+2000元,那 么支出5000元,记为 -5000元 .
2.海拔+300米表示高于海平面300米, 则海拔-600米表示低于海平面600米 .
3.你认为负数的引入有什么作用?
可以表示具有相反意义的量.
作业 课本习题
人生的价值,并不是用时间,而 是用深度去衡量的.
正数和负数
问题:我们在小学学过哪些数?你能按 照某一标准将它们分类吗?
自然数:0、1、2、3……
分数(小数):1/2、0.36、5%……
数的产生和发展离不开生活和生产的需要, 哪位同学知道这些图片介绍的是什么内容?
在生活、生产、科研中,经常遇到数的表示与数 的运算的问题.例如:
1、 天气预报2016年11月某天灵丘县的温度为-3~3℃, 它的确切含义是什么?这一天灵丘县的温差是多少?
——列夫·托尔斯泰
观察下图,试着说明它们的海拔高度. 8844
0
0米
-155 海平面的高度如何表示?
解释图中的正数和负数的含义
10℃表示白天温度为零 上10℃ -5℃表示晚上温度为零 下5℃
它们以什么为基准?
0℃
这是该存折中记录的支出、存入信息,试着说说 其中“支出或存入”那一栏中数字的含义是什么 ?
存折中的正数表示存入,反之,负数表示支出.
2
0既不是正数,也不是负数.
0是正数么?是负数么? 答:0既不是正数,也不是负数.
例 (1)一个月内,小红体重增加2 kg,小华体 重减少1 kg,小明体重无变化,写出他们这个月 的体重增长值;
解:(1)这个月小红 体重增长2 kg,
小华增长-1 kg, 小明体重增长0 kg .
(2) 某年,下列国家的商品进出口总额比上年 的变化情况是:美国减少6.4%,德国增长1.3%,法国 减少2.4%,英国减少3.5%,意大利增长0.2%,中国增 加7.5%.写出这些国家这一年商品进出口总额的增长率
相关文档
最新文档