半导体

合集下载

半导体知识

半导体知识

3、扩散运动和漂移运动同时存在
在电场作用下,任何载流子都做漂移运 动,但是漂移电流主要是多数载流子的贡献, 而扩散情况下,只有光照产生的少数载流子 存在较大的浓度梯度,故对扩散电流的贡献 主要是少数载流子。
4、PN 结
在一块单晶半导体中,一部分掺有受主杂质是P型半导体, 另一部分掺有施主杂质是N型半导体时,P型半导体和N型 半导体的交界面附近的过渡区称为PN结。
• 只有最外层的电子的共有化特征最明显。
• 晶体中电子因为共有化特征,可以在原子间转移,但是它 只能在能量相同的量子态之间发生转移,所以,共有化的 量子态与原子的能级之间存在着直接的对应关系。
B、能带:能量近乎相同的能级相互靠的很近,组
成一定的能量区域,我们将这些能量区域中密集的
能级形象的称为能带。
温度愈高,晶体中产生的 自由电子愈多。
导电过程
在外电场的作用下,空穴吸引相邻原子的价电子来填补, 出现了一个新的空穴,其结果相当于空穴的运动(相当于正 电荷的移动)。
在半导体中将出现两部分电流: (1) 自由电子作定向运动:电子电流。 (2) 价电子递补空穴:空穴电流。 自由电子和空穴都称为载流子。
同质结:用同一种半导体材料制成的PN结; 异质结:由禁带宽度不同的两种半导体材料(如GaAl/GaAs、 InGaAsP/InP等)制成的PN结。
制造PN结的方法有合金法、扩散法、离子注入法和外延生长 法等。制造异质结通常采用外延生长法。
5、半导体对光的吸收
h Eg Eg / h v c/
间的半导体。 • 电阻率<10-3欧姆•厘米——导体:金属 • 电阻率>1012欧姆•厘米——绝缘体:玻璃 • 电阻率介于导体和绝缘体之间——半导体:硫化镉

半导体是什么

半导体是什么

半导体的本质和应用
半导体是一种介于导体和绝缘体之间的材料。

它具有在特定条件下可以有选择
性地导电的特性。

半导体的本质在于其电子结构中存在一些未被填满的能级,使得在外加电场或热激发的作用下,电子可以很容易地在材料中移动。

半导体的基本特性
半导体材料中的导带和价带之间存在称为“禁带宽度”的能隙。

在原子折叠之后,半导体材料通过共价键连接,因此其电子虽然处于原子间,但在整个材料中可以自由移动。

当外界条件施加以后,这些电子会在导带和价带之间跃迁,从而实现电导。

半导体的应用
半导体材料在现代科技中有着广泛的应用。

其中最重要的当属半导体器件,如
二极管和晶体管。

这些器件可以用来控制电流的流动,从而实现逻辑电路、放大器和其他电子设备。

此外,半导体还广泛应用于光电子领域,如太阳能电池和发光二极管。

通过半
导体材料的光电转换性质,可以将光能转化为电能或者发光,实现各种照明和能源转换的功能。

总的来说,半导体作为一种特殊的材料,在现代社会的科技发展中起着至关重
要的作用。

其独特的导电性能和光电性能广泛应用于电子器件、光电子器件以及能源技术等领域,推动了科技的不断进步和创新。

半导体

半导体

半导体半导体简介:顾名思义:常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,叫做半导体(semiconductor)。

我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。

而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。

可以简单的把介于导体和绝缘体之间的材料称为半导体。

半导体定义:电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质。

半导体室温时电阻率约在10E-5~10E7欧·米之间,温度升高时电阻率指数则减小。

半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。

有元素半导体,化合物半导体,还有非晶态的玻璃半导体、有机半导体等。

半导体材料:半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电路的电子材料。

半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。

正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。

半导体材料按化学成分和内部结构,大致可分为以下几类。

1.元素半导体有锗、硅、硒、硼、碲、锑等。

2.化合物半导体由两种或两种以上的元素化合而成的半导体材料,包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。

3.无定形半导体材料,用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。

4.有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。

制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。

半导体材料的不同形态要求对应不同的加工工艺。

常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。

什么是半导体

什么是半导体

什么是半导体半导体是一种介于导体和绝缘体之间的材料,其特点是在一定条件下能够有选择地导电。

半导体材料中的电子能带结构使得其在导电性质上与金属和绝缘体存在显著差异。

半导体材料通常由硅、锗、砷化镓等元素构成,这些元素的原子在晶体中按照一定的排列方式组成晶格结构。

在晶体结构中,半导体原子间的共价键结构使得电子在晶体中能够形成价带和导带。

在半导体的价带中,填满电子的能级称为价带,其中的电子处于稳定状态,无法向导电产生贡献。

而导带则位于更高的能级,电子在导带中处于激发状态,能够参与导电。

半导体材料在绝对零度时处于基态,其电子主要集中在价带中,不产生导电现象。

当半导体材料受到外界激发时,如加热或添加杂质,其中的电子会得到额外的能量,从而跃迁到导带中,形成可流动的自由电子或空穴。

自由电子和空穴是半导体中的导电载流子,它们的流动使得半导体具有了导电特性。

在半导体中,掺杂是一种常见的方法,通过向半导体中引入少量杂质元素,可以有效地调控其导电性质。

掺入五价元素(如砷、磷)的半导体成为N型半导体,其中引入了额外的自由电子。

而掺入三价元素(如硼、铝)的半导体成为P型半导体,其中引入了额外的空穴。

N型和P型半导体可以通过接触形成PN结。

在PN结的电子流动过程中,N型区的自由电子和P型区的空穴发生复合,形成电荷中性的空间区域,称为耗尽层。

由于PN结上的电荷分布及耗尽层的形成,形成了势垒,使得PN结具有整流特性,可以用于制造二极管、三极管等各种电子器件。

除了PN结,半导体材料还可以利用场效应调控电流。

场效应晶体管(FET)是一种基于半导体材料的电子器件,通过调节栅极电场控制源漏电流的开关特性。

FET在数字电路和模拟电路中被广泛应用。

半导体的特殊性质也使得它在光电子器件中发挥重要作用。

半导体材料经过合适的加工工艺可以实现光的发射和接收,例如发光二极管(LED)和光电二极管(光电二极管)等。

此外,基于半导体材料的光伏效应使得太阳能电池成为可再生能源的重要组成部分。

对半导体的认识

对半导体的认识

对半导体的认识一、什么是半导体半导体是一种介于导体和绝缘体之间的材料,它的电导率介于金属和非金属之间。

半导体材料在常温下的电导率较低,但当加热或施加外加电场时,半导体材料的电导率会显著增加。

二、半导体的特性1. 带隙:半导体材料的带隙是指导带和价带之间的能量差。

带隙大小决定了半导体材料的导电性质。

带隙越小,半导体材料的导电性越好。

2. 控制导电性:半导体材料的电导率可以通过控制材料中杂质的类型和浓度来调节。

掺杂是指在半导体材料中引入掺杂剂,以改变材料的导电性质。

根据掺杂剂的类型,半导体可以分为n型半导体和p型半导体。

3. 温度依赖性:半导体材料的电导率随温度的变化而变化。

一般情况下,随着温度的升高,半导体材料的电导率会增加。

三、半导体的应用领域1. 电子器件:半导体材料广泛应用于各种电子器件中,如晶体管、二极管、集成电路等。

这些器件不仅在计算机、手机等电子产品中得到应用,也在通信、医疗、能源等领域发挥着重要作用。

2. 光电子器件:半导体材料的特性使其非常适合用于制造光电子器件,如激光器、LED等。

这些器件广泛应用于显示技术、光通信、光储存等领域。

3. 太阳能电池:半导体材料可将光能转化为电能,因此被广泛应用于太阳能电池中。

太阳能电池通过吸收太阳光的能量,将其转化为电能,可以用于供电或储存能量。

4. 传感器:半导体材料的电导率随温度、光照、压力等因素的变化而变化,因此被广泛应用于传感器中。

传感器可以感知环境的变化,并将其转化为电信号,用于测量、监测等应用。

四、半导体的发展趋势1. 微电子技术的进步:随着微电子技术的不断进步,半导体器件的尺寸不断缩小,性能不断提高,功耗不断降低。

这使得半导体器件在各个领域的应用更加广泛。

2. 新材料的研发:为了满足不同应用领域对半导体材料性能的需求,研究人员正在努力开发新的半导体材料。

例如,砷化镓、碳化硅等材料的应用越来越广泛。

3. 新技术的应用:随着人工智能、物联网等新技术的快速发展,对半导体器件的需求也在不断增加。

半导体指的是什么东西

半导体指的是什么东西

半导体指的是什么东西半导体是一种电子材料,具有介于导体和绝缘体之间的电导率。

它的电导率介于导体和绝缘体之间,当半导体处于不同的电场中或受到光照时,其电导率会发生变化。

半导体在电子学和光电子学领域有着广泛的应用,是现代电子行业中至关重要的材料之一。

半导体的基本特性1.导电性质半导体的导电性介于导体和绝缘体之间,当外加电压或光照作用于半导体材料时,会产生载流子,从而改变其电导率。

这种特性使得半导体可以被用于制造各种电子器件,如晶体管、二极管等。

2.能带结构半导体的导电性取决于其能带结构,包括价带和导带。

在基本结构中,价带中填充了电子,当电子受到激发或加热时,会跃迁到导带中,从而形成电子与空穴对,使半导体具有导电性。

3.半导体材料常见的半导体材料包括硅、锗、砷化镓等。

其中,硅是最为广泛应用的半导体材料,其稳定性和可控性较高,适用于各种电子器件的制造。

半导体的应用领域1.微电子器件半导体器件的制造和发展推动了微电子技术的进步,例如集成电路、晶体管等,广泛应用于计算机、通信设备等领域。

2.光电子器件某些半导体材料还具有光电转换特性,可以用于制造激光器、太阳能电池等光电子器件,将光能转化为电能。

3.传感器半导体传感器利用半导体材料的导电性变化来感知温度、压力、光照等物理量,广泛应用于工业控制、汽车电子等领域。

未来发展趋势随着技术的不断创新和发展,半导体材料和器件的研究也在不断向着更高性能、更小尺寸的方向发展。

纳米技术、量子技术等将为半导体领域带来全新的突破,推动电子学、光电子学等领域的进步。

总的来说,半导体作为一种介于导体和绝缘体之间的电子材料,在现代电子领域中发挥着不可替代的作用。

通过不断的研究和应用,将为人类带来更多更好的科技产品和服务。

半导体的概念

半导体的概念

半导体的概念半导体是一种由半导体元件所组成的电子电路装置,是由两类基本元件即晶体管和电子器件构成的电子设备。

它是由于具有一定半导体属性,具有较强的逻辑处理和控制能力,可以大大提高系统的性能,从而在世界范围内发挥着重要的作用。

I. 半导体的定义半导体是一种半导体电路,由晶体管和电子器件组成,最主要的特点是其具有可控的电子性能和特定的物理结构,可产生强大的电子处理和控制能力,通常可分为金属氧化物半导体 (MOS) 和外延结构半导体(CMOS) 两大类。

II. 半导体的发展历史半导体发展至今,历经金属氧化物半导体 (MOS)、外延结构半导体(CMOS) 、有机晶体管(ProTextiles) 和三维可重构中央处理器 (3dRGB-CPU) 等发展的历史,可谓技术的历史性进步,使半导体技术在今天具有更强大的处理能力。

III. 半导体的应用半导体可以用于电子设计中的微处理器,它可以实现电子产品控制和处理,例如计算机存储器、控制电路和感应器,也可以用于汽车电子控制系统、数字通信系统和新风能系统。

半导体电路也可以应用在电源、电池充电控制器,无线射频收发器和发声器等电子产品中,帮助现代科技进步,改善人们的技术生活。

IV. 半导体的优势半导体的优势主要体现在以下几点:(1)发展迅速,技术进步不断;(2)体积小巧,重量轻便;(3)电气性能可靠、效率高;(4)结构紧凑、成本低;(5)能控制脉冲和电流;(6)可用于宽频段、模拟以及信号处理等应用;(7)抗干扰能力强,稳定性高。

决定了半导体技术应用的各类装置在电子产品中占据重要的地位,具有在大量电子装置中占据主导地位的重要性。

半导体技术将带给我们更多方便和改善,所以此技术也是世界科技发展一个重要的一部分!。

半导体指的是什么

半导体指的是什么

半导体的定义和特性
半导体是一种电子导体,介于导体和绝缘体之间。

它具有导电性能介于金属和绝缘体之间,其特性使其在电子学领域中具有重要作用。

物理特性
半导体的导电性介于导体和绝缘体之间的主要原因是它的能带结构。

在半导体中,带隙是指电子在价带和导带之间跃迁所需要的最小能量。

当这个能隙很小时,半导体就会更容易地导电,因为较小的能量就足够让电子跃迁到导带中。

此外,半导体的导电性质还取决于掺杂。

掺杂是指在半导体中加入少量其他元素,通过掺杂可以改变半导体的导电性能。

掺杂分为N型和P型,N型半导体中掺入的杂质是能够提供额外自由电子的元素,而P型半导体中掺入的杂质则是能够提供额外空穴的元素。

应用领域
半导体在现代电子学中应用广泛。

例如,半导体器件如二极管、场效应晶体管和集成电路是电子设备的关键组成部分。

二极管可以实现电流的单向导通,场效应晶体管可以控制电流,而集成电路则将多个器件集成到一块芯片上,实现了更高的集成度和更大的功能。

此外,半导体在光电子学领域也有重要应用。

例如,LED(发光二极管)利用半导体材料电子跃迁产生光,广泛应用于照明、显示和通信等领域。

结语
总的来说,半导体是一种在电子学领域中至关重要的材料,其特性使其成为现代电子设备的核心组件之一。

通过对半导体的深入研究和应用,我们可以不断推动电子技术的发展,实现更多创新和应用。

半导体概念解释

半导体概念解释

半导体概念解释
x
半导体是一种特殊的材料,具有电子导电能力,能够在特定情况下产生半导体效应。

它通常是由晶体硅,碳或者其他元素组成的固体,具有良好的电子导电能力,能够在一定的电压范围内有极大的电流密度,可以用来制造电子元件及其他微电子器件,是现代电子工业的基础。

半导体的电子导电性质与金属不同,金属是完全导电,但半导体在某些电压范围内,其通过电流可以控制,这种电流控制就是半导体效应。

电子元件的效率和可靠性很大程度上取决于半导体的性质,因此,对半导体的研究也是现代电子工业非常重要的部分。

半导体最重要的特性是能够控制电流,即当驱动电压超过一定电压时,半导体就会导通,形成经典的“开关”电路,而电子元件就是利用这种特性而设计出来的。

在日常生活中,大家可以看到很多半导体元件,比如计算机中的CPU,电子表中的显示屏等等,都是利用半导体效应而制造出来的。

什么是半导体

什么是半导体

什么是半导体?
半导体是一种介于导体(如金属)和绝缘体(如塑料)之间的材料。

在半导体中,电子的导电能力介于导体和绝缘体之间,即在一定条件下,半导体可以导电,但在其他条件下则表现为绝缘。

这种特性使得半导体在电子器件中具有重要的应用价值。

半导体的导电性质可以通过外加电场、温度或光照等外部条件进行控制,这种控制能力是现代电子器件的基础。

半导体的导电性主要依赖于两种载流子:电子和空穴。

在纯净的半导体中,电子和空穴的数量相等,因此其导电性较弱。

但通过在半导体中引入杂质或施加外部电场,可以改变电子和空穴的浓度,从而调节半导体的导电性能。

半导体在电子技术中有广泛的应用,包括但不限于:
1. **集成电路(IC)**:半导体晶体管的集成电路是现代电子产品的核心,如微处理器、存储器等。

2. **光电子器件**:半导体的光电特性使其用于光电二极管、激光器、光伏电池等。

3. **传感器**:利用半导体的电阻、电容或光电效应制作的传感器,用于测量温度、压力、光照等物理量。

4. **太阳能电池**:利用半导体材料的光电转换效应制作的太阳能电池,将光能转化为电能。

5. **电子管件**:半导体二极管、三极管等在电路中用于整流、
放大、开关等功能。

6. **发光二极管(LED)**:通过半导体材料的电致发光特性制作的LED,用于照明、显示等。

7. **光伏电池**:半导体材料制成的光电池,可以将光能转化为电能,用于太阳能发电等。

总的来说,半导体是现代电子技术的基础,其特性和应用推动了信息技术、通信技术、能源技术等领域的发展和进步。

半导体的基本知识

半导体的基本知识
3.1 半导体的基本知识
3.2 PN结的形成及特性
3.3 二极管
3.4 二极管的基本电路及其分析方法
3.5 特殊二极管
3.1 半导体的基本知识
3.1.1 半导体材料
3.1.2 半导体的共价键结构 3.1.3 本征半导体、空穴及其导电作用
3.1.4 杂质半导体
3.1.1 半导体材料
导电能力(电阻率)介于导体和绝缘体之间的
物质,称为半导体。
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
半导体还具有有一些重要特点: Nhomakorabea1、光照或温度改变时,导电能力显著变化; 2、掺入某些微量杂质后,导电能力显著变化。
3.1.2 半导体的共价键结构
硅和锗的原子结构简化模型及晶体结构
3.1.3 本征半导体、空穴及其导电作用
本征半导体 —— 化学成分纯净的半导体。它在物理结构上呈单 晶体形态。(9个9) 空穴——共价键中的空位。 本征激发——在室温或光照 下,少数价电子可以获得足 够的能量挣脱共价键的束缚 称为自由电子,同时形成一 个空位的现象。
end
本征半导体、杂质半导体, 施主杂质、受主杂质,
N型半导体、P型半导体, 多数载流子、少数载流子
自由电子、空穴,
注意:
1、杂质离子虽然带电荷,但不能移动,因此不是载流子; 2、杂质半导体中虽然一种载流子占多数,但整个半导体仍 呈电中性; 3、杂质半导体的导电性能主要取决于多数载流子浓度,多 数载流子浓度取决于掺杂浓度,其值较大且稳定;少数载流子 浓度与本征激发有关,对温度敏感。
电子空穴对——由本征(热) 激发而产生的自由电子和空 穴总是成对出现。
3.1.3 本征半导体、空穴及其导电作用
空穴的移动——空穴的运动 是靠相邻共价键中的价电子 依次填充空穴来实现的。 复合——自由电子和空穴在 自由 电子 价电子

什么是半导体?

什么是半导体?

什么是半导体?一、半导体的基本概念与特性半导体是一类介于导体和绝缘体之间的物质,它具有独特的电导特性。

与导体相比,半导体的电导率较低,但比绝缘体要高。

这种特殊的电导特性使得半导体被广泛应用于电子技术领域。

半导体的电导特性与其内部电子结构密切相关。

在半导体中,价带和导带之间存在一条能隙,称为禁带。

当半导体处于平衡状态时,禁带中没有自由电子或空穴,因此电导效果较差。

然而,当外界施加电场或光照等外界条件时,禁带中的电子可以跃迁到导带或离开价带,形成电流,从而实现电导。

二、半导体器件的应用领域1. 硅片在信息技术领域的应用硅片是半导体器件的重要组成部分,它在信息技术领域扮演着重要的角色。

如今,计算机、手机、电视等现代电子产品中几乎都离不开硅片的应用。

硅片的制造需要经历多道工艺流程,包括晶体生长、晶圆切割、芯片制作等。

通过在硅片上掺杂不同的杂质,可以实现不同的电导特性,从而制造出各种功能各异的半导体器件。

2. 光电子器件的发展与应用半导体的特殊电导特性还使其成为制造光电子器件的理想材料。

例如,光电二极管和激光器等器件通过利用半导体材料吸收或辐射光能来实现电光转换或光电转换。

这些器件在光通信、光储存、显示技术等领域起着举足轻重的作用。

而随着光通信技术的快速发展,半导体光电子器件的应用前景也越来越广阔。

三、半导体技术的发展趋势1. 纳米技术的应用和突破随着科技的进步,纳米技术在半导体领域得到了广泛应用。

通过制造纳米级结构和材料,可以进一步提升半导体器件的性能和功耗。

例如,纳米级材料可以实现更高的载流子浓度,从而提高电导率;纳米级结构可以实现更小的尺寸和更高的集成度,从而提高器件的速度和功能。

2. 多晶硅的发展与突破多晶硅是一种晶体结构较差的半导体材料,但由于其制造成本低廉、制程成熟等优势,仍然是半导体行业的主流材料之一。

随着半导体技术的不断发展,多晶硅材料的质量和性能也在不断提升。

例如,采用多晶硅材料制造的太阳能电池具有较高的转换效率和较低的成本,成为可持续能源领域的重要组成部分。

什么是半导体

什么是半导体

什么是半导体
在当今科技高速发展的时代,半导体作为一种基础材料在电子产业中扮演着至关重要的角色。

那么,什么是半导体呢?半导体是一种介于导体与绝缘体之间的物质,在固体物质中拥有非常特殊的电学特性。

半导体的电学特性
半导体的电学特性在于其电导率介于导体和绝缘体之间。

与导体相比,半导体的电导率要小很多;而与绝缘体相比,半导体的电导率又要大很多。

这种特殊性使得半导体在电子元件中得以应用,广泛用于晶体管、集成电路等电子产品中。

半导体的性质
半导体物质通常是由硅、锗、砷化镓等元素构成的化合物,具有晶体结构。

半导体的电导率可以通过控制杂质浓度或外加电场等方法来调节,这种调节性使半导体成为各种电子元器件的核心材料。

半导体的应用
半导体在电子领域有着广泛的应用。

晶体管是半导体应用最早、也最广泛的领域之一,它作为电子信号放大器和开关在各种电子设备中起着重要作用。

此外,集成电路(IC)是将大量的晶体管和其他元件集成在一起形成的电路,在计算机、通信、消费电子等领域也有着巨大的应用。

结语
总之,半导体作为一种特殊的电学材料,在现代电子产业中扮演着不可或缺的角色。

通过对半导体电导率的调控,人们能够实现各种电子元器件的制造和应用,推动着科技的发展和进步。

希望通过本文的介绍,读者能够对半导体有一个初步的认识,进一步了解其在电子产业中的重要性。

半导体科普

半导体科普

半导体科普什么是半导体?半导体是一种介于导体和绝缘体之间的材料,它的电导率介于这两者之间。

在半导体中,电子可以在晶体中运动,但运动速度较慢,这使得半导体具有很多独特的电学和光学性质。

半导体的特性1.掺杂:通过掺入少量其他元素,可以改变半导体的电导率,这是半导体器件工作的基础。

2.PN结:由P型半导体和N型半导体组成的结构,是常见的半导体器件的组成单元,如二极管和晶体管。

3.击穿电压:当半导体器件受到过高的电压时,可能会发生击穿现象,导致器件损坏。

半导体器件1.二极管:是最简单的半导体器件,它具有导通和截止两种状态,常用于整流和信号检测。

2.晶体管:是一种主动器件,可以放大和控制电流,是现代电子设备中应用最广泛的器件之一。

3.集成电路:将大量的晶体管集成到同一个芯片中,实现各种功能,包括微处理器、存储器等。

半导体产业1.制造工艺:半导体的制造工艺十分复杂,包括晶体生长、光刻、离子注入等步骤。

2.应用领域:半导体广泛应用于电子、通信、计算机、光学等领域,推动了现代科技的发展。

3.全球产业链:半导体产业涵盖了从原材料生产到设备制造、芯片设计等多个环节,形成了完整的产业链。

半导体的发展趋势1.技术进步:半导体技术不断创新,芯片制造工艺越来越精密,功耗越来越低。

2.应用拓展:随着物联网、人工智能等新技术的兴起,对半导体器件的需求不断增加。

3.国际竞争:半导体产业是国际竞争的焦点领域,各国纷纷加大投入,争夺技术领先地位。

总的来说,半导体作为现代电子技术的基石,对于推动科技进步和经济发展起着至关重要的作用,我们应该加深对半导体的了解,以更好地迎接未来的挑战。

半导体的基本知识

半导体的基本知识

+ P
- - -
_
N
外电场
内电场
R
E
(1-23)
二、PN 结反向偏置 变厚
- + + + + 内电场被被加强,多子 的扩散受抑制。少子漂 移加强,但少子数量有 限,只能形成较小的反 向电流。 +
_ P
- - -
N
内电场 外电场
R
E
(1-24)
2.1.3 半导体二极管
一、基本结构
PN 结加上管壳和引线,就成为半导体二极管。
(1-14)
二、P 型半导体
在硅或锗晶体中掺入少量的三价元素,如硼 (或铟),晶体点阵中的某些半导体原子被杂质 取代,硼原子的最外层有三个价电子,与相邻的 半导体原子形成共价键时, 空穴 产生一个空穴。这个空穴 +4 可能吸引束缚电子来填补, 使得硼原子成为不能移动 的带负电的离子。由于硼 +3 原子接受电子,所以称为 硼原子 受主原子。
(1-2)
半导体的导电机理不同于其它物质,所以它具有 不同于其它物质的特点。例如: • 当受外界热和光的作用时,它的导电能
力明显变化。
• 往纯净的半导体中掺入某些杂质,会使
它的导电能力明显改变。
(1-3)
1.1.2 本征半导体
一、本征半导体的结构特点
现代电子学中,用的最多的半导体是硅和锗,它们 的最外层电子(价电子)都是四个。
2. 反向击穿电压UBR
二极管反向击穿时的电压值。击穿时反向电 流剧增,二极管的单向导电性被破坏,甚至 过热而烧坏。手册上给出的最高反向工作电 压UWRM一般是UBR的一半。
(1-27)
3. 反向电流 IR
指二极管加反向峰值工作电压时的反向电 流。反向电流大,说明管子的单向导电性 差,因此反向电流越小越好。反向电流受 温度的影响,温度越高反向电流越大。硅 管的反向电流较小,锗管的反向电流要比 硅管大几十到几百倍。

半导体的基本知识

半导体的基本知识
(1)N型半导体
在本征半导体硅(或锗)中掺入微量五价元素磷,由于磷原子有5个价电 子,它与周围的硅原子组成共价键时,多余的一个价电子很容易摆脱原子核 的束缚成为自由电子。这种半导体导电主要靠电子,所以称为电子型半导体 或N型半导体,如下图所示。N型半导体中,自由电子是多子,空穴是少子。
第8页
半本
导征
电 工 电 子 技 术
过渡页
第2页
半导体的基本知识
• 1.1 半导体的基本特性 • 1.2 本征半导体和杂质半导体



的 基 本 知
半 导 体 的 基
识本
物质大体可分为导体、绝缘体和半导体 三大类。其中,容易导电、电阻率小于10-4Ω·cm的物质称为导体,如铜、铝、 银等金属材料;很难导电、电阻率大于104Ω·cm的物质称为绝缘体,如塑料、 橡胶、陶瓷等材料;导电能力介于导体和绝缘体之间的物质称为半导体,如 硅、锗、硒及大多数金属氧化物和硫化物等。
半导体之所以被作为制造电子器件的主要材料在于它具有热敏性、 光敏性和掺杂性。 ➢ 热敏性:是指半导体的导电能力随着温度的升高而迅速增加的特性。利 用这种特性可制成各种热敏元件,如热敏电阻等。 ➢ 光敏性:是指半导体的导电能力随光照的变化有显著改变的特性。利用 这种特性可制成光电二极管、光电三极管和光敏电阻等。 ➢ 掺杂性:是指半导体的导电能力因掺入微量杂质而发生很大变化的特性。 利用这种特性可制成二极管、三极管和场效应管等。
导 体 和 杂 质
识半


1.2
本征半导体在绝对温度T=0K和 没有外界影响的条件下,价电子全部 束缚在共价键中。当温度升高或受光 照时,半导体共价键中的价电子会从 外界获得一定能量,少数价电子将挣 脱共价键的束缚,成为自由电子,同 时在原来共价键的相应位置上留下一 个空位,这个空位称为空穴,如右图 所示。

半导体是什么工作

半导体是什么工作

半导体是什么工作
半导体是当今电子行业中至关重要的一种材料,它的作用和工作原理对于现代
社会的科技发展起着极为重要的作用。

本文将对半导体的基本概念、工作原理以及应用领域进行简要探讨。

半导体的基本概念
半导体是介于导体和绝缘体之间的一类物质,它具有介于导体和绝缘体之间的
导电性能。

半导体的电导率介于金属与绝缘体之间,它的导电性能可以通过外加电场、光照等手段进行调节和控制。

最常见的半导体材料包括硅、锗等。

半导体的工作原理
半导体的工作原理包括P型半导体、N型半导体和PN结等概念。

P型半导体
中夹有杂质元素,使其形成正电荷;N型半导体中夹有杂质元素,使其形成负电荷。

PN结则是将P型半导体与N型半导体通过特定工艺联系在一起,形成一个结界面。

在半导体器件中,通过控制PN结两侧的电荷分布,可以实现电流的控制和调节,
从而实现各种电子元器件的功能。

半导体的应用领域
半导体材料已经在众多领域得到广泛应用,例如微电子器件、光电器件、光伏
发电等。

在微电子领域中,半导体材料作为芯片的基础材料,构成了各类集成电路和微处理器,推动了现代信息技术的发展。

在光电器件领域,半导体激光器、LED
和太阳能电池等都离不开半导体材料的应用,为人类生活和工业生产带来了极大的便利与效益。

总的来说,半导体作为当今电子工业的基石之一,在不断推动着科技的发展和
社会的进步。

对半导体的深入研究和开发应用,将为我们的生活带来更多的变革和创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体词汇1. acceptance testing (WAT: wafer acceptance testing)2. acceptor: 受主,如B,掺入Si中需要接受电子3. ACCESS:一个EDA(Engineering Data Analysis)系统4. Acid:酸5. Active device:有源器件,如MOS FET(非线性,可以对信号放大)6. Align mark(key):对位标记7. Alloy:合金8. Aluminum:铝9. Ammonia:氨水10. Ammonium fluoride:NH4F11. Ammonium hydroxide:NH4OH12. Amorphous silicon:α-Si,非晶硅(不是多晶硅)13. Analog:模拟的14. Angstrom:A(1E-10m)埃15. Anisotropic:各向异性(如POLY ETCH)16. AQL(Acceptance Quality Level):接受质量标准,在一定采样下,可以95%置信度通过质量标准(不同于可靠性,可靠性要求一定时间后的失效率)17. ARC(Antireflective coating):抗反射层(用于METAL等层的光刻)18. Antimony(Sb)锑19. Argon(Ar)氩20. Arsenic(As)砷21. Arsenic trioxide(As2O3)三氧化二砷22. Arsine(AsH3)23. Asher:去胶机24. Aspect ration:形貌比(ETCH中的深度、宽度比)25. Autodoping:自搀杂(外延时SUB的浓度高,导致有杂质蒸发到环境中后,又回掺到外延层)26. Back end:后段(CONTACT以后、PCM测试前)27. Baseline:标准流程28. Benchmark:基准29. Bipolar:双极30. Boat:扩散用(石英)舟31. CD:(Critical Dimension)临界(关键)尺寸。

在工艺上通常指条宽,例如POLY CD 为多晶条宽。

32. Character window:特征窗口。

用文字或数字描述的包含工艺所有特性的一个方形区域。

33. Chemical-mechanical polish(CMP):化学机械抛光法。

一种去掉圆片表面某种物质的方法。

34. Chemical vapor deposition(CVD):化学汽相淀积。

一种通过化学反应生成一层薄膜的工艺。

35. Chip:碎片或芯片。

36. CIM:computer-integrated manufacturing的缩写。

用计算机控制和监控制造工艺的一种综合方式。

37. Circuit design :电路设计。

一种将各种元器件连接起来实现一定功能的技术。

38. Cleanroom:一种在温度,湿度和洁净度方面都需要满足某些特殊要求的特定区域。

39. Compensation doping:补偿掺杂。

向P型半导体掺入施主杂质或向N型掺入受主杂质。

40. CMOS:complementary metal oxide semiconductor的缩写。

一种将PMOS和NMOS在同一个硅衬底上混合制造的工艺。

41. Computer-aided design(CAD):计算机辅助设计。

42. Conductivity type:传导类型,由多数载流子决定。

在N型材料中多数载流子是电子,在P型材料中多数载流子是空穴。

43. Contact:孔。

在工艺中通常指孔1,即连接铝和硅的孔。

44. Control chart:控制图。

一种用统计数据描述的可以代表工艺某种性质的曲线图表。

45. Correlation:相关性。

46. Cp:工艺能力,详见process capability。

47. Cpk:工艺能力指数,详见process capability index。

48. Cycle time:圆片做完某段工艺或设定工艺段所需要的时间。

通常用来衡量流通速度的快慢。

49. Damage:损伤。

对于单晶体来说,有时晶格缺陷在表面处理后形成无法修复的变形也可以叫做损伤。

50. Defect density:缺陷密度。

单位面积内的缺陷数。

51. Depletion implant:耗尽注入。

一种在沟道中注入离子形成耗尽晶体管的注入工艺。

(耗尽晶体管指在栅压为零的情况下有电流流过的晶体管。

)52. Depletion layer:耗尽层。

可动载流子密度远低于施主和受主的固定电荷密度的区域。

53. Depletion width:耗尽宽度。

53中提到的耗尽层这个区域的宽度。

54. Deposition:淀积。

一种在圆片上淀积一定厚度的且不和下面层次发生化学反应的薄膜的一种方法。

55. Depth of focus(DOF):焦深。

56. design of experiments (DOE):为了达到费用最小化、降低试验错误、以及保证数据结果的统计合理性等目的,所设计的初始工程批试验计划。

57. develop:显影(通过化学处理除去曝光区域的光刻胶,形成所需图形的过程)58. developer:Ⅰ)显影设备;Ⅱ)显影液59. diborane (B2H6):乙硼烷,一种无色、易挥发、有毒的可燃气体,常用来作为半导体生产中的硼源60. dichloromethane (CH2CL2):二氯甲,一种无色,不可燃,不可爆的液体。

61. dichlorosilane (DSC):二氯甲硅烷,一种可燃,有腐蚀性,无色,在潮湿环境下易水解的物质,常用于硅外延或多晶硅的成长,以及用在沉积二氧化硅、氮化硅时的化学气氛中。

62. die:硅片中一个很小的单位,包括了设计完整的单个芯片以及芯片邻近水平和垂直方向上的部分划片槽区域。

63. dielectric:Ⅰ)介质,一种绝缘材料;Ⅱ)用于陶瓷或塑料封装的表面材料,可以提供电绝缘功能。

64. diffused layer:扩散层,即杂质离子通过固态扩散进入单晶硅中,在临近硅表面的区域形成与衬底材料反型的杂质离子层。

65. disilane (Si2H6):乙硅烷,一种无色、无腐蚀性、极易燃的气体,燃烧时能产生高火焰,暴露在空气中会自燃。

在生产光电单元时,乙硅烷常用于沉积多晶硅薄膜。

66. drive-in:推阱,指运用高温过程使杂质在硅片中分布扩散。

67. dry etch:干刻,指采用反应气体或电离气体除去硅片某一层次中未受保护区域的混合了物理腐蚀及化学腐蚀的工艺过程。

68. effective layer thickness:有效层厚,指在外延片制造中,载流子密度在规定范围内的硅锭前端的深度。

69. EM:electromigration,电子迁移,指由通过铝条的电流导致电子沿铝条连线进行的自扩散过程。

70. epitaxial layer:外延层。

半导体技术中,在决定晶向的基质衬底上生长一层单晶半导体材料,这一单晶半导体层即为外延层。

71. equipment downtime:设备状态异常以及不能完成预定功能的时间。

72. etch:腐蚀,运用物理或化学方法有选择的去除不需的区域。

73. exposure:曝光,使感光材料感光或受其他辐射材料照射的过程。

74. fab:常指半导体生产的制造工厂。

75. feature size:特征尺寸,指单个图形的最小物理尺寸。

76. field-effect transistor(FET):场效应管。

包含源、漏、栅、衬四端,由源经栅到漏的多子流驱动而工作,多子流由栅下的横向电场控制。

77. film:薄膜,圆片上的一层或多层迭加的物质。

78. flat:平边79. flatband capacitanse:平带电容80. flatband voltage:平带电压81. flow coefficicent:流动系数82. flow velocity:流速计83. flow volume:流量计84. flux:单位时间内流过给定面积的颗粒数85. forbidden energy gap:禁带86. four-point probe:四点探针台87. functional area:功能区88. gate oxide:栅氧89. glass transition temperature:玻璃态转换温度90. gowning:净化服91. gray area:灰区92. grazing incidence interferometer:切线入射干涉仪93. hard bake:后烘94. heteroepitaxy:单晶长在不同材料的衬底上的外延方法95. high-current implanter:束电流大于3ma的注入方式,用于批量生产96. hign-efficiency particulate air(HEPA) filter:高效率空气颗粒过滤器,去掉99.97%的大于0.3um的颗粒97. host:主机98. hot carriers:热载流子99. hydrophilic:亲水性100. hydrophobic:疏水性101. impurity:杂质102. inductive coupled plasma(ICP):感应等离子体103. inert gas:惰性气体104. initial oxide:一氧105. insulator:绝缘106. isolated line:隔离线107. implant : 注入108. impurity n : 掺杂109. junction : 结110. junction spiking n :铝穿刺111. kerf :划片槽112. landing pad n :PAD113. lithography n 制版114. maintainability, equipment : 设备产能115. maintenance n :保养116. majority carrier n :多数载流子117. masks, device series of n : 一成套光刻版118. material n :原料119. matrix n 1 :矩阵120. mean n : 平均值121. measured leak rate n :测得漏率122. median n :中间值123. memory n : 记忆体124. metal n :金属125. nanometer (nm) n :纳米126. nanosecond (ns) n :纳秒127. nitride etch n :氮化物刻蚀128. nitrogen (N2 ) n:氮气,一种双原子气体129. n-type adj :n型130. ohms per square n:欧姆每平方: 方块电阻131. orientation n:晶向,一组晶列所指的方向132. overlap n :交迭区133. oxidation n :氧化,高温下氧气或水蒸气与硅进行的化学反应134. phosphorus (P) n :磷,一种有毒的非金属元素135. photomask n :光刻版,用于光刻的版136. photomask, negative n:反刻137. images:去掉图形区域的版138. photomask, positive n:正刻139. pilot n :先行批,用以验证该工艺是否符合规格的片子140. plasma n :等离子体,用于去胶、刻蚀或淀积的电离气体141. plasma-enhanced chemical vapor deposition (PECVD) n:等离子体化学气相淀积,低温条件下的等离子淀积工艺142. plasma-enhanced TEOS oxide deposition n:TEOS淀积,淀积TEOS的一种工艺143. pn junction n:pn结144. pocked bead n:麻点,在20X下观察到的吸附在低压表面的水珠145. polarization n:偏振,描述电磁波下电场矢量方向的术语146. polycide n:多晶硅 /金属硅化物,解决高阻的复合栅结构147. polycrystalline silicon (poly) n:多晶硅,高浓度掺杂(>5E19)的硅,能导电。

相关文档
最新文档