第三章 格林函数法
格林函数方法
格林函数方法
1、格林函数
格林函数(Green's function)是指由著名数学家.格林(Green)提出的数学方法,它是一种可以求解各种微分方程的技术。
格林函数的定义是对于任意给定的初值问题,在区间上的解的和等于给定的数值13。
其用法主要有两种:一种是用于求解某些有定型的初值问题;另一种是求解某些微分方程的积分解。
格林函数的结果可以用来解决复杂的初值问题和理解复杂的微分方程以及系统的时间变化。
2、格林函数的原理
格林函数可以用来解决一类有特定初值条件的常微分方程组。
它的原理是基于一种叫做拉普拉斯变换(Laplacetransform)的数学变换理论,它是一种将微分方程组变换成求积分方程组的方法,从而可以使原本困难的初值问题变得容易解决,其在解决物理学中不变解中特别有用。
3、格林函数的计算
对于特定的初值条件,可以使用格林函数计算出拉普拉斯变换得到的积分方程的结果,从而计算得到解析解。
计算过程比较复杂,需要用到积分变换和methods。
总之,格林函数是一种可以求解复杂常微分方程的有效数学方法,它基于拉普拉斯变换的原理,对于特定的初值问题,运用格林函数,可以计算出相应的解析解。
格林函数及其应用课件
有限差分法
01
有限差分法是将微分方程或积分 方程转化为差分方程,然后求解 差分方程得到格林函数的数值解 。
02
有限差分法适用于求解偏微分方 程,特别是对于具有周期性或对 称性的问题,有限差分法可以大 大简化计算过程。
有限元法
有限元法是将微分方程或积分方程转化为有限元方程,然后求解有限元方程得到 格林函数的数值解。
对于某些领域,需要高精度的格林函数来保证计 算的准确性。
未来格林函数研究的方向与展望
算法优化
寻求更高效、稳定的算法来计算格林函数。
多领域交叉
加强与其他领域的合作,拓展格林函数的应用范围。
数值稳定性
研究如何提高格林函数计算的数值稳定性。
感谢观看
THANKS
量子力学散射问题的格林函数计算
总结词
介绍了量子力学散射问题中格林函数的 计算方法,以及其在散射理论中的应用 。
VS
详细描述
在量子力学中,格林函数用于描述粒子在 相互作用下的运动行为。通过计算格林函 数,可以研究粒子在散射过程中的能量和 动量变化,进一步理解物质的微观结构和 相互作用机制。
流体动力学波动问题的格林函数计算
工程学
在电路分析、控制理论和信号 处理等领域有广泛应用。
生物学
用于研究神经网络的传播和扩 散过程。
金融学
用于描述资产价格波动和风险 评估。
当前格林函数计算中存在的问题与挑战
高维问题
随着问题维度的增加,格林函数的计算变得极为 复杂。
不适定性
在实际应用中,格林函数的求解可能存在数值不 稳定性。
精度要求
有限元法适用于求解复杂的偏微分方程,特别是对于具有复杂边界条件的问题, 有限元法可以更好地处理边界条件。
格林函数法
通过格林公式,把静电边值问题与相应的格林 函数问题联系起来。 一般的处理方法,在物理学领域有着非常广泛 的应用
3
本节主要内容: 1. 格林函数——对应于给定问题的单位点源
的电势解; 2. 格林函数与泊松方程的解之间的关系; 3. 几种简单边界问题的格林函数形式。
10/20/2014
§5 格林函数法
1
几种方法的比较
1. 镜像法只适用于比较简单(点电荷)问题; 2. 分离变量法是精确求解的方法:除了几个高对
称的边界问题以外,一些实际问题往往难以求 解; 3. 多极展开法只适用于求远处的场(最后一节); 4. 格林函数方法
2
1
10/20/2014
格林函数方法: Green函数本身实际上是对应于给定问题所对
4
2
10/20/2014
几个基本公式:Ñ
1 r
=
-
r r3
,
高斯定理:
ò
E
×
dS
=
1 e0
i
Qi
空间一个单位点电荷的电场: E
=
4
1 e0
r r3
若点电荷处于闭合积分面内:
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
第三章格林函数法
r
r0
0
1
ln
R
1
2 r0 r2 r12 2rr1 cos 0
1 ln
1
2 r2 r02 2rr0 cos 0
1
ln
R
2 r2r02 R4 2R2rr0 cos 0
G
= G
1
ln
R
n r0 R r0 r0 R 2 r0 r 2r02 R4 2R2rr0 cos 0
2
r0
注意:这只是二维空间中圆形区域的格林函数表达式
例4 求解圆内拉普拉斯方程狄利克雷问题 2u 0 r R
u
rR
解:由例3,圆内泊松方程狄利克雷问题的格林函数为:
G= 1
2
ln
1 r r0
1
2
ln
R r0
1 r r1
= -1 ln
1
2 r2 r02 2rr0 cos 0
G
r;r0
f
r0
dS0
G0
4
1 r r0
G0
1
2
ln
1 r r0
c0
G1 0 G1 G0
例2 试求解球内的泊松方程的狄利克雷问题
P
3u 0 r R
u rR f ,
R
O r0
r
M0
M1
M
解:设 M0 r0 , M r 的球坐标为 r0,0,0 ,r,, r1 OM1
积分得到
任意源在相同初 始和边界条件下 产生的场
格林函数 :代表一个点源在一定的边界条件和初 始条件下所产生的场
§5.1 泊松方程的格林函数法
1. 边值问题的提法
① 第一边值问题(狄里希利问题) 求一函数,使之在区域内满足泊松方程或拉普拉斯方程,
格林函数法 数学物理方程
格林函数法
若L 一个带平滑系数的线性微分算子,当求解形如()L u f =的微分方程时,若对于任意的向量y 都存在广义函数()G x,y ,使得
[]()()L G δ=x x,y x-y
(此处下标x 表示L 作用于()G x,y 时将其当做以x 为自变量的广义函数,而y 为参数) 若再令
()()()d u G f =⎰x x,y y y
将上式代入()L u f =则有
[]()()d ()()d ()()d ()L G f L G f f f δ⎡⎤===⎣⎦
⎰⎰⎰x x,y y y x,y y y x -y y y x 故此时()u x 是微分方程()L u f =的解。
采用上述方法求解微分方程的方法称为格林函数法,广义函数()G x,y 也称为格林函数。
数学物理方法知识体系
数学物理方法所要解决的问题:求解(偏)微分方程
本学期学过的求解方法:变量分离法、积分变换法、格林函数法
变量分离法涉及知识点:傅里叶级数、函数的正交系、贝塞尔函数(Chap.2~Chap.5) 积分变换法涉及知识点:傅里叶变换、拉普拉斯变换、广义函数(Chap.7~Chap.9) 格林函数法涉及知识点:格林函数(Chap.10)
例题数量统计。
《格林函数方法》课件
04
格林函数在工程问题中的应用
流体动力学问题
流体力学中的波动和散射问题
格林函数方法可以用于求解流体力学中的波动和散射问题, 例如声波在流体中的传播、波动在管道中的传播等。
流体动力学中的边界层问题
格林函数方法可以用于求解流体力学中的边界层问题,例如 流体在固体表面流动时的速度分布、温度分布等问题。
格林函数方法的优点
精确度高
格林函数方法基于严格的数学推导,能够精 确地描述物理系统的响应。
适用范围广
该方法不仅适用于线性系统,也适用于非线 性系统,具有较强的通用性。
易于实现
格林函数具有明确的物理意义,计算过程相 对简单,易于编程实现。
可扩展性强
通过引入更多的格林函数,可以处理更复杂 的物理问题。
弹性力学问题
总结词
格林函数在弹性力学问题中也有着重要的应用,它可以帮助我们求解弹性波的传播和散射问题。
详细描述
在弹性力学问题中,格林函数可以用于描述弹性波的传播和散射过程。通过求解格林函数,我们可以得到弹性波 在各种不同介质中的传播规律和散射特性,这对于地震探测、声波传播、振动控制等领域有着重要的应用价值。
格林函数方法的缺点
计算量大
对于大规模系统,需要计算的格林函数数量较多,计算量较大。
对初值敏感
某些情况下,初值的选择对计算结果影响较大,需要仔细选择。
对噪声敏感
在数据中存在噪声时,格林函数方法可能会受到影响,导致结果失真。
对边界条件敏感
边界条件的设定对格林函数的计算结果有较大影响,需要谨慎处理。
格林函数方法的未来发展前景
03
格林函数在物理问题中的应用
电磁场问题
总结词
格林函数在电磁场问题中有着广泛的应用,它可以帮助我们求解电磁场中的散射 和辐射问题。
格林函数——精选推荐
格林函数格林函数这是⼀篇关于格林函数经典解法的⽂章。
从现代的讨论中寻求根本的解法。
在数学中,格林函数是⼀种⽤来解有边界条件的⾮齐次微分⽅程式的函数。
在多体理论中,这⼀术语也被应⽤于物理中,特别在量⼦场论,电动⼒学和统计领域的理论,尽管那些不适合数学定义。
格林函数的名称是来⾃于英国数学家乔治·格林(George Green ),早在1830年,他是第⼀个提出这个概念的⼈。
在线性偏微分⽅程的现代研究中,格林函数主要⽤于研究基本解。
内容1、定义及⽤法2、动机3、⾮齐次边值问题的求解3.1、研究框架3.2、定理4、寻求格林函数4.1、特征⽮量展开5、拉普拉斯算⼦的格林函数6、范例7、其他举例定义及⽤法技术上来说,格林函数),(s x G 伴随着⼀个在流形M 中作⽤的线性算⼦L ,为以下⽅程式的解:)(),(s x s x LG -=δ (1)其中δ为狄拉克δ函数。
此技巧可⽤来解下列形式的微分⽅程: )()(x f x Lu = (2)若L 的核是⾮平凡的,则格林函数不只⼀个。
不过,实际上因为对称性、边界条件或其他的因素,可以找到唯⼀的格林函数。
⼀般来说,格林函数只需是⼀种数学分布即可,不⼀定要具有⼀般函数的特性。
格林函数在凝聚态物理学中常被使⽤,因为格林函数允许扩散⽅程式有较⾼的精度。
在量⼦⼒学中,哈密顿算⼦的格林函数和状态密度有重要的关系。
由于扩散⽅程式和薛定谔⽅程有类似的数学结构,因此两者对应的格林函数也相当接近。
其⽅程如下:)(),(s x s x LG --=δ这⼀定义并不显著改变格林函数的任何性质。
如果运算符是平移不变量,即当L 与x 是线性关系时,那么格林函数可以转换成⼀个卷积算,即为:)(),(s x G s x G -=在这种情况下,格林函数和线性不变系统理论中的脉冲响应是相同的。
动机若可找到线性算符 L 的格林函数 G ,则可将(1)式两侧同乘)(s f ,再对变量 s 积分,可得:)()()()(),(x f ds s f s x ds s f s x LG =-=??δ由公式 (2) 可知上式的等号右侧等于)(x Lu ,因此:ds s f s x LG x Lu )(),()(?=由于算符 L 为线式,且只对变量x 作⽤,不对被积分的变量 s 作⽤),所以可以将等号右边的算符L 移到积分符号以外,可得:))(),(()(ds s f s x G L x Lu ?=⽽以下的式⼦也会成⽴:ds s f s x G x u )(),()(?= (3)因此,若知道(1)式的格林函数,及(2)式中的)(x f ,由于L 为线性算符,可以⽤上述的⽅式得到)(x u 。
常微分方程格林函数
常微分方程格林函数格林函数(Green's function)是常微分方程理论中的一个重要概念。
格林函数是指线性常微分方程解的特定形式,用于将非齐次方程的解表示为齐次方程的解与一个特定的函数的线性组合。
格林函数的理论有广泛的应用,包括电磁学、量子力学、流体力学等领域。
我们考虑一个形如L[u]=f(某)的一维线性常微分方程,其中L是一个线性微分算子,u是未知函数,f(某)是已知函数。
我们想要找到方程的解u(某)。
为此,我们引入格林函数G(某,t),满足以下两个条件:1. 对于每个固定的t,在某>t的区域内,格林函数满足L[G(某,t)]=δ(某-t),其中δ(某-t)是Diracδ函数。
2.对于边界条件G(a,t)=G(b,t)=0,其中a和b是方程所涉及的区域的边界。
为了求解方程L[u]=f(某),将解表示为u(某)=∫G(某,t)f(t)dt,其中积分是对整个区间进行的。
然后,我们可以利用格林函数的性质来计算系数函数G(某,t)与未知函数u(某)之间的关系,从而得到方程L[u]=f(某)的解u(某)。
对于常微分方程来说,我们可以通过求解格林函数来求解对应的非齐次方程。
具体的求解步骤如下:1.首先,求解齐次方程L[u]=0,并找到其解u_h(某)。
2.接下来,我们需要求解L[G(某,t)]=δ(某-t)的齐次方程,即L[G(某,t)]=0。
3.根据格林函数的边界条件,我们可以得到G(a,t)和G(b,t)的表达式,并利用这些条件分析求解。
4.最后,将方程的非齐次项f(某)代入到格林函数的表达式中,得到方程的解u(某)。
格林函数的概念和求解方法在物理和工程领域中广泛应用。
例如,在电磁学中,可以利用格林函数求解电荷分布所引起的电势分布;在量子力学中,格林函数用于描述定态和非定态系统中的粒子传播;在流体力学中,格林函数被用于描述流体的流动行为。
总之,格林函数是常微分方程理论中的重要工具,它可以将非齐次方程的解表示为齐次方程的解与一个特定的函数的线性组合。
用格林定理来求解静电边值的方法——格林函数
用格林定理来求解静电边值的方法——格林函数 1.什么是格林函数:在r 'ρ处有一点电荷q ,则电荷密度可写为: ⎩⎨⎧'=∞'≠='-=rr r r r r q ρρρρρρ0)(δρ,(1) 该电荷密度激发的空间的势满足的方程为:)()(2r r q r '--=∇ρρρδεϕ,(2) ∴-∇='-=•∇,),(ϕδεE r r q E ρρρρΘ定义有一个负号。
(3) 同理,处于r 'ρ处的单位电荷的电荷密度为)()(r r r '-=ρρρδρ (4)该单位电荷密度激发的空间的势满足的方程为:)(1)(2r r r '--=∇ρρρδεϕ,(5) 定义一个函数——格林函数,用),(r r G 'ρρ来表示,且满足)(1),(2r r r r G '--='∇ρρρρδε。
(8) 显然格林函数的物理意义为在r 'ρ处的一个单位电荷在空间r ρ处所激发的电势。
显然(8)式对于r r 'ρρ和有对称性,故也可以看作是r ρ处单位电荷在空间r 'ρ处所激发的电势。
由于空间电势分布有两种边界条件,分别为:第一类边界条件:0|),(='s r r G ρρ。
确定了边界上的电势分布(将一大的电势为零的导体与之接触)(9)第二类边界条件:εS n G s 1|-=∂∂。
(10) 确定了边界上的场强分布,也即电荷分布(根据)(1r r E '-=•∇ρρδε,积分形式ετδε1)(1)(=''-=•⎰⎰d r r S d r E ρρρρρ,而E nG ρρ=∂∂-,Eρ的最简单的取法(之后详述)为εS 1(E ρ在边界表面不一定是均匀的) (7)由电势和电荷是共轭量,两个中只能确定一个。
2.格林定理:详细推到见第七讲课件3.2.2式的推导[]⎰∑⎰⎥⎦⎤⎢⎣⎡∂∂-∂∂=∇-∇iidS n n d ψφφψτψφφψ22(11)左边是对所有边界面包括的空间积分,右边是对所有边界面积分(求和),其中对n 的微分代表在该面上求被微分函数的梯度。
3-格林函数法
26
计算电磁学基础
7、矢量格林公式
• 对区域V中任意两个矢量场P和Q,对P×(D×Q)应用 高斯定理,可得矢量第一格林定理
Q P Q P dV P Q dS
V V
处于原点上的点电荷Q的密度可用Q(x)表示,即
( x ) Q ( x )
处于x’点上的点电荷Q的密度可用Q(x-x’)表示,即
( x ) Q ( x x)
Q ( x x) 0,
( x ≠x ’ 点 )
V
Q ( x x)dV Q, (积分区域V包含x=x’点)
1 4 1 4 1 ( x x' ) 2 ( y y ' ) 2 ( z z' ) 2 1 ( x x' ) 2 ( y y' )2 ( z z' )2
18
计算电磁学基础
5、 泊松方程格林函数
一个处于x'点上的单位点电荷所激发的电势满足泊松方程
2 2
1
2
R0 1 2 2 4 2 r | x ( ) x | R R R0 2 R0 RR cos R R
1
2
根据镜象法得
G ( x x ) 1 40 ( R 2 R2 2 RR cos ) 1 2 1 ] 1 RR 2 2 (( ) R0 2 RR cos ) 2 R0
场点P的坐标为R。
z R' R0 θ' o
x
r' R θ
r
x
α
y
x
23
固体物理中的格林函数
我们经常在傅里叶空间计算各种物理量。尤其是用格林函数进行计 算时,在动量空间或傅里叶空间比坐标空间方便的多. 定义格林函数的傅氏变换为:
如果系统是均匀的,我们定义:
则 此时,
对于均匀系统,电子(或空穴)在传播过程中动量不变。
类似于空间部分,我们也经常对时间变量进行傅氏变换
对于均匀系统(空间均匀,时间均匀),我们有
求迹是对内部坐标进行。
1) 粒子数密度算符
2) 总动能算符
基态平均值为
3) 对于只包含两两相互作用的势能V
可以证明, 势能可以写成,
4) 基态能量:
对于均匀系统格林函数 仅依赖于坐标差, 我们已经定义其傅氏变化如下:
因而上述算符也可以用傅里叶空间格林函数表示出来。
粒子数密度算符真空平均值(假设没有内部自由度),
第二节 单粒子格林函数
研究很多物理现象,例如多体系统的基态能量,系统元激发的性质, 系统对外界的响应,等等,都要用到格林函数。
格林函数有零温格林函数以及非零温的格林函数。 本部分介绍零温的格林函数。
1. 费米子格林函数定义:
利用编时乘积的定义,将格林函数写成
该式的物理含义:
格林函数有三个重要的性质:
在海森堡表象中,
产生湮灭算符随时间的变化为
又
类似我们可以得到:
粒子数算符
其中
我们下面计算费密子的格林函数
从而,格林函数可以写为
格林函数的傅里叶形式为
格林函数!
4. 费米子格林函数的Lehmann表示
格林函数的具体形式相当复杂,它与相互作用以及固体的性质都 有关系。但是利用量子力学的一般原理我们也可以推导出一些非 常重要的结果。 首先我们有一个重要结论:
§3.3 格林函数
1、格林函数及其性质
考虑Poisson方程边值问题
⎧ Δu = − f ( M ), M ∈ Ω , (I) ⎨ ⎩ u( M ) ∂Ω = ϕ ( M ).
为去掉基本积分公式中的未知项,另取一光滑函数
g ( M , M 0 ) ∈ C 2 ( Ω ) I C 1 (Ω ) ,它在 Ω 内关于变量 M 满足
∂G ( M , M 0 ) dS M = −1 性质 5 ∫∫ r ∂n Γ
9
上页 下页 返回
性质1证明
1 Q G( M , M 0 ) = − g( M , M 0 ) 4πrM 0 M
g ∈ C 2 (Ω ) I C 1 ( Ω )
1 ∴ lim G ( M , M 0 ) = lim − g ( M 0 , M 0 ) = +∞ M → M0 M → M 0 4 πr M0M
利克雷问题的格林函数 (或称为狄利克雷问题的源函数) 。
用格林函数或其导数的积分来表示定解问题的解的 方法称为格林函数法。
5
上页 下页 返回
格林函数的确切定义
定义 1 设 M 0 ∈ Ω , g ( M , M 0 )满足
⎧ Δ M g ( M , M 0 ) = 0, ⎨ ⎩ g ( M , M 0 ) = 1 (4π rMM 0 ), M ∈ Ω, M ∈ ∂Ω
10
上页 下页 返回
由于G Γ = 0 , lim GΓ ε = +∞ ,所以G ( M , M 0 ) 在 Γ 上取
ε →0
由此得G ( M , M 0 ) > 0 。 得最小值, Γε 上取得最大值。 在
又因为 g 在 Ω 内调和,且
1 g Γ= 4πr M 0 M 1 ∴ g ( M , M 0 ) ≥ min 4π rMM 0
如何求格林函数
如何求格林函数格林函数是一种用于解决偏微分方程的数学工具。
它在物理学、工程学等领域中被广泛应用,用于描述空间中点源或边界条件下的场或势函数分布。
本文将以人类的视角,以一个具体的例子来介绍如何求解格林函数。
假设我们考虑一个二维空间中的热传导问题,即热量在空间中的传播。
假设有一个热源在坐标原点处,我们想求解在空间中任意点处的温度分布。
我们需要建立起偏微分方程描述这个问题。
热传导问题可以由热传导方程来描述,其形式为:∂u/∂t = α(∂²u/∂x² + ∂²u/∂y²)其中,u是温度分布函数,t是时间,α是热扩散系数。
接下来,我们引入格林函数G(x, y, x', y'),它是满足以下方程的函数:α(∂²G/∂x² + ∂²G/∂y²) = δ(x - x')δ(y - y')其中,δ(x)是狄拉克函数,表示单位脉冲。
注意,这里的格林函数是关于空间坐标的函数,与时间无关。
有了格林函数之后,我们可以通过以下公式来求解温度分布函数u(x, y, t):u(x, y, t) = ∫∫G(x, y, x', y')f(x', y', t)dxdy其中,f(x, y, t)是边界条件或初始条件。
在实际应用中,求解格林函数常常采用分离变量法、变换法等数学方法。
这些方法能够将偏微分方程转化为一系列普通微分方程或积分方程,从而求解出格林函数。
通过求解格林函数,我们可以得到任意时刻、任意位置的温度分布。
这对于热传导问题的研究和工程应用具有重要意义。
格林函数的求解方法可以推广到其他偏微分方程问题中,因此具有广泛的应用价值。
总结起来,格林函数是一种用于求解偏微分方程的数学工具。
它通过满足特定的方程条件,描述了空间中点源或边界条件下的场或势函数分布。
通过求解格林函数,我们可以得到解析解,从而获得任意时刻、任意位置的场或势函数分布。
数学物理方程 格林函数法优秀课件
由格林第三公式,得
u (,,) ( u n u n )d s u d V(7 )
由定解问题(5)(6)的自由项和边值条件,可得
而 在 u dV un d s 中 ,f( xun,y在,z边)d界V 和 上的 值u 未 n知ds,因 此(须x,进y,一z)步 n处d理s.。
( 1 1 )
将(10)和(11)带入到(9),
G u d V ( u n u n ) d s B ( u n u n ) d s ( 9 )
得到
G u d V ( u n u n )d s u (x ,y ,z ) u n (x ,y ,z )
5.3 半空间及圆域上的Dirichlet问题
由前面的分析,我们可以看出,只要求出了给定区域
上的格林函数,就可以得到该区域泊松方程狄利克雷问题的解。对 一般区域,求格林函数并非易事。但对于某些特殊区域,可有一些 方法。
5.3.1 半空间上的狄利克雷问题
设 { ( x ,y ,z ) |z 0 } , { ( x ,y ,z ) |z 0 } 考虑定解问题
基本解做研究偏微分方程时起着重要的作用。这里首先介绍 拉普拉斯方程的基本解,并做一些特殊区域上由基本解生产格林函 数,由此给出相应区域上的拉普拉斯方程或泊松方程边值问题的解 的表达式。
5.2.1 基本解
设 P0(,,)R3 ,若做点 P0(,, ) 放置一单位正电荷,
则该电荷在空间产生的点位分布为(舍去介电常数 0 )
uf(x,y,z),(x,y,z) (1)
u(x,y,0)(x,y),(x,y) R2 (2)
设 P0(,,),则 P1(,,) 为 P 0 关于 的对称点。
G (P G , P 0)( P 0 ,,P (0 x ),,(yx ,,zy ), z )
格林函数法
格林函数法
格林函数(Green's Function)是描述物理系统状态之间相互转换和
其它类型的转换的一种函数,用来解决系统的边界值问题。
它可以通过物
理系统的差分方程来解释,也可以用来表征物理系统的任意状态之间的相
互作用。
格林函数可以概括地表示为:当系统处于某一特定状态时,其他
状态的影响,及它们之间的相互作用,以及系统当前状态的演变。
格林函数法可以分为两种:一种是无限空间的,这种方法是通过求解
无限空间的格林函数的衍生值来处理边界值问题;另一种是有限空间的,
这种方法是通过求解有限空间的格林函数的衍生值来处理边界值问题。
格
林函数法可以用来研究物理系统中多种形式的边界值问题,包括边界条件、初始条件、响应函数、激励函数、反应函数等。
此外,它还可以用来估计
未知量、估计系统参数、构造信号处理过程和对边界条件进行约束等。
格林函数方法
格林函数方法格林函数方法是一种数值计算方法,它通过求解常微分方程来解决实际问题,并有助于研究工程中的某些物理特性。
格林函数方法以量子力学和热力学的成功应用为基础,现在被广泛用于量子电子学、光学、流体力学、结构力学、能源学等领域,其有效的处理数十亿个基础状态的能力为科学研究提供了无穷的可能性。
格林函数方法的基本思想是将给定的微分方程转换为它的格林函数表示,以便对常微分方程的解或其他数学特性进行分析。
主要特点是,格林函数方法可以用来求解复杂的线性和非线性微分方程组,其中格林函数可以看作是方程组中各元素的描述,而不需要显式地求出它们的解。
这使得格林函数方法得以应用于复杂系统中实际问题的求解,从而在工程实践中节省了大量的时间和精力。
具体来说,格林函数方法一般分为三个步骤:首先,将常微分方程转换为额外的辅助方程和格林函数;其次,解辅助方程,以求出格林函数,并使用它来解决源微分方程;最后,通过使用互补性和通用性特性,求出格林函数方程组的解,并进行可视化分析。
格林函数方法在研究各种量子物理学问题方面表现异常出色,在计算能量谱、场动力学以及其他类似的量子物理问题方面,它具有极大的优势。
如果将格林函数方法与数值模拟技术相结合,就可以更好地描述复杂的物理系统的特性和行为,从而对更复杂的问题有所贡献。
在过去几十年中,随着计算机技术的发展,格林函数方法也取得了巨大的进步。
最近,研究者们发展出了新型的格林函数方法,如蒙特卡洛格林函数方法和一维格林函数方法,它们可以用于更复杂的微分方程组,能够更快地收敛,对于大型系统也更加有效。
此外,现在有一系列的软件可用来帮助研究人员编写格林函数方程组的程序,大大简化了编程的过程,也方便了研究人员使用格林函数方法发掘物理系统的特性。
综上所述,格林函数方法为研究者提供了解决复杂系统的实际问题的独特工具,同时也大大提高了数值计算的效率。
该方法在研究物理学问题方面取得了显著的进展,已经被广泛应用于各个领域;随着科技的进步,格林函数方法也在不断演进,发展出新的计算技术,为科学研究提供无穷的可能性。
格林函数法求解场的问题
格林函数法求解稳定场问题1 格林函数法求解稳定场问题(Green ’s Function) Green ’s Function, 又名源函数,或影响函数,是数学物理中的一个重要概念。
从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系:Heat Eq.:()2222 ,ua u f r t t∂-∇=∂ 表示温度场u 与热源(),f r t 之间关系 Poission ’s Eq.: ()20u f r ρε∇=-=-表示静电场u 与电荷分布()f r 之间的关系场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。
但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。
例如,在有限体内连续分布电荷在无界区域中产生的电势:()''04r dV r rρφπεΩ=-⎰这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。
或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。
所以,研究点源及其所产生场之间的关系十分重要。
这里就引入Green ’s Functions 的概念。
Green ’s Functions :代表一个点源所产生的场。
普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。
所以,我们需要在特定的边值问题中来讨论 Green ’s Functions.下面,我们先给出Green ’s Functions 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。
实际上,只限于讨论泊松方程的第一类边值问题所对应的 Green ’s Functions 。
2 泊松方程的格林函数静电场中常遇到的泊松方程的边值问题:()()()()()201 f s u r r u r u r r nρεαβϕ⎧∇=-⎪⎪⎨∂⎡⎤⎪+=⎢⎥⎪∂⎣⎦⎩ 这里讨论的是静电场()u r , ()f r ρ代表自由电荷密度。
格林函数
稳定问题的格林函数也可以利用静电场类比法得到。 点源问题可以看成接地的导体边界内在 r’ 处有一个电量为 - ε 0 的点电荷。 边界内部的电场由点电荷与导体中的感应电荷共同产生。 在一些情况下,导体中所有感应电荷的作用可以用一个设想的等效电荷来代替,该等效电荷 称为点电荷的电像。 这种方法称为电像法 发展和应用分类 格林函数在地震工程学中的应用 格林函数在地震工程学中是计算震源机制的函数。根据其发展和应用可以分为以下几类。
经验格林函数法
经验格林函数法是运用包含断层上一个点源动力学破裂的复杂效应、震源主场地速度结构的 不均匀性影响的小震记录来叠加合成较大地震的地震动时程。其优点是信度较高、较为可靠;可 是其缺点同样突出,即对小震记录的要求相当苛刻,必须具有与大震相同的震源机制,小震记录 的信噪比要高等等。如果在震源区找不到良好的小震记录,就不能用经验格林函数法。
理论格林函数法
理论格林函数的计算是一个相当复杂的过程,目前只有对水平成层介质推导的解析公式。计 算要借助计算机实现,且介质层数受到很大的限制,很少有多于两覆盖层的结果发表。
数值格林函数法
与实际地震动观测记录的比较表明,这种在时域合成的地震动模拟,对持时、峰值加速度、 短周期 ( 1 秒以下) 反应谱幅值的预测精度都可以在大约 -50% 范围内, 与经验模型的精度大体相当; 对峰值速度和周期大于 1 秒的反应谱幅值,预测的误差要比经验模型的小。
格林函数
姓名:折再兴
学号:201241802027
专业:物理学
电话:15764212022
格林函数
摘 要 :从物理上看,一个数学物理方程是表示一种特定的"场"和产生这种场的"源"之间的关系.例如,热传 导方程表示温度场和热源之间的关系,泊松方程表示静电场和电荷分布的关系,等等.这样,当源被分解成很 多点源的叠加时,如果能设法知道点源产生的场,利用叠加原理,我们可以求出同样边界条件下任意源的场, 这种求解数学物理方程的方法就叫格林函数法.而点源产生的场就叫做格林函数。 关键字:点电荷,函数表示,微分算符。 正文: 格林函数法是数学物理方程中一种常用的方法。 格林函数是又称为源函数或影响函数,是英国人 G. 格林于 1828 年引入的。 一个处于 X ’点上的单位点电荷所激发的电势 Ψ ( x )满足泊松方程:
拉普拉斯方程的格林函数法
以 M0为中心, 以充分小的正数 为半径做球面 ,
在 内挖去以 为球面的球 K 得到区域 K .
在区域
K
内直到边界上,v
1 r
可任意求导。
在第二格林公式
( u 2v
v 2 u)dV
(u
v n
v
u )dS
n
中, 取 u 为调和函数, 而令 v 1 , r
4) 平均值公式
设 u(M) 是 内的调和函数, M0 , Ka 表示以 M0 为中心,a 为半径且完全落在 内的球面, 则
u M0
1
4 a2
Ka
udS
uM0
1
4
u
M
n
1 rM 0 M
1 rM 0 M
u M
令
P x, y, z u v
x
Q x, y, z u v
y
R x, y, z u v
z
则 P,Q,RC C1 ,
P x
Q y
R z
dV
u v 2v
u v 2v
sin
u
1
r2 sx,y,z)在以原点为中心的同一球面的 值为常数。u 仅为半径 r 的函数:u=u(r)。
方程可化简为:
1 r2
r
r
2
u r
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位于 r0 处且电量为 0
的点电荷在接地的导体壳 内 r 处所产生的电势。由此可以 进一步理解通常人们为什么称格 林函数为点源函数.
r
r0
q 0
o
② 格林函数的对称性
G r , r0 r r0
G r , r0 G r0 , r
函数性质
G r ; r0 G r0 , r
r0 处的点源在点 r 处产生的场
r 处的点源在点 r0 处产生的场
场相同
格林函数具有对称性
对称性在电学上的意义: r0 处单位点电荷在 r 处产生的电势等于 r 处单位点电荷在 r0 处产生的电势
根据格林公式, 令 v G(r , r0 ) 得到
3.第一边值问题格林函数
u r f r u r r
分析: 只须消掉公式中的
u r0
u G u G dS GfdV n n T
u 项即可得到结果。 n
相应的格林函数 G(r , r0 ) 是下列问题的解:
在边界上其本身和对边界外法向导数的线性组合取已知值。
u r f r u u r n
上述定解问题,都是要求在区域内部求解,故又称为内问
题;若在区域外部求解,则称为外问题。
2. 格林公式
u x, y, z , v x, y, z 在闭域 T 上有连续一阶偏导数,
T
根据 函数性质有:
u(r ) (r r )]dV u(r )
T 0 0
可得如下泊松方程的基本积分公式
v u u r0 vfdV v u dS n n T
即
u G u r0 u G dS GfdV n n T
② 第二边值问题(诺伊曼问题)
求一函数,使之在区域内满足泊松方程或拉普拉斯方程,
在边界上对外法线方向的导数取已知值。
u r f r u r r n
③ 第三边值问题(洛平问题) 求一函数,使之在区域内满足泊松方程或拉普拉斯方程,
由格林函数的对称性可得
G(r , r0 ) u(r0 ) u (r ) G(r , r0 ) f (r0 )dV0 [u(r0 ) G(r , r0 ) ]dS0 T n 0 n0
解的基本思想:通过上面解的形式,我们容易观察出引
用格林函数的目的:主要就是为了使一个非齐次方程与任意边 值问题所构成的定解问题转化为求解一个特定的边值问题, 一 般后者的解容易求得,再利用泊松方程的基本积分公式可求得 定解问题的解.
G r ; r0 r r0 G r ; r0 0
r , r0 T
G r ; r0 u r0 r dS G r ; r0 f r dV n T
二维时
G r;r0 u r0 r dl G r;r0 f r dS n l S
积分得到
任意源在相同初 始和边界条件下 产生的场
格林函数 :代表一个点源在一定的边界条件和初 始条件下所产生的场
§5.1 泊松方程的格林函数法
1. 边值问题的提法
① 第一边值问题(狄里希利问题) 求一函数,使之在区域内满足泊松方程或拉普拉斯方程, 且在边界上取已知值。
u r f r u r r
上式称为第二格林公式,简称格林公式
3. 泊松方程的基本积分公式
① 格林函数的引入 典型的泊松方程( 三维稳定分布)边值问题
u r f r u u r n
为了求解上面定解问题,我们必须定义一个与此定解问题相应的 格林函数 G(r , r0 ) 它满足如下定解问题,边值条件可以是第一、二、三类条件:
在 T 内有连续二阶偏导数,则有( n 为外法线方向)
uv dS (uv )dV uvdV u vdV
T T T
上式称为第一格林公式
u v uv vu dV u v dS n n T
G u (r ) (u(r ) n G n ) dS T (u(r )G Gu(r ))dV
即为
u G [G n u(r ) n ] dS T (Gu(r ) u(r )G)dV [G ( f (r )) u (r ) (r r0 )]dV
G(r , r0 ) (r r0 ) G [ G ] 0 n
(r r0 ) 代表三维空间变量的 函数,在直角坐标系中其形式为
(r r0 ) ( x x0 ) ( y y0 ) ( z z0 )
格林函数具有十分 明确的物理意义:
格林函数,又称为点源影响函数,是数学物理方程中的 一个重要概念,也是求解各类定解问题的另一种常用方法。
若已知点电荷(点 源)产生的场(边 界无限远,无初始 条件)
Uq
积分得到
任意带电体(任意 源)产生的场(边 界无限远,无初 始条件)
U Q = dU q
V
若能求出某一点 源在给定初始和 边界条件下产生 的场