工业污水可生化性实验

合集下载

工业废水BOD的测定

工业废水BOD的测定

五日生化需氧量(稀释培养法)一、方法概述1.原理生化需氧量(BOD5)是指在规定条件下,微生物分解存在于水中某些可氧化物质,特别是有机物所进行的生物化学过程中消耗溶解氧的量。

此生物氧化过程进行的时间很长,如在20℃暗养时,完成此过程需100多天。

目前国内外普遍采用20±1℃培养5d,分别测定样品培养前后的溶解氧。

二者之差即为生化需氧量(BOD5),以氧的毫克/升表示。

2.干扰及其消除对某些地表水及大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以降低其浓度,并保证有充足的溶解氧。

稀释程度以培养后消耗溶解氧大于2mg/L或剩余溶解氧大于1mg/L为宜。

为了保证水样稀释后有足够的溶解氧,稀释水通常通入空气进行曝气(或通入氧气),使稀释水中的溶解氧接近饱和。

稀释水中还应有一定量的无机营养盐和缓冲物质(磷酸盐、钙、镁、铁盐等),以保证微生物生长的需要。

对于不含或少含微生物的工业废水,其中包括酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BOD时应进行接种,以引入能分解废水中有机物的微生物。

当废水中存在着难于被一般生活污水中的微生物以正常速度降解的有机物或含有剧毒物质时,应将驯化后的微生物引入水样中进行接种.3.适用范围本方法适用于测定BOD5大于或等于2mg/L,最大不超过6000mg/L的水样。

当水样BOD5大于6000mg/L,会因稀释带来一定的误差。

二、仪器和设备1.恒温培养箱(20±1℃)2.20升细口玻璃瓶3.稀释容器:1000-2000ml量筒或容量瓶4溶解氧瓶(培养瓶):250-300ml,带磨口玻璃塞,瓶口上部周围可以水封。

5虹吸管(供分取水样和添加稀释水用)6曝气装置:多通道空气泵或其他曝气装置;空气可能带来有机物、氧化剂和金属,导致空气污染,如有污染,空气应过滤清洗。

7溶解氧测定仪三、试剂除测定溶解氧所需的试剂外,还需要下列试剂:1.氯化钙溶液:称取27.6g无水氯化钙溶于水中,稀释至1000ml。

废水可生化性实验

废水可生化性实验

实验八废水可生化性实验一、实验目的1。

了解废水可生化性判别的原理和方法。

2.掌握废水可生化性生化呼吸线法测定过程。

3.掌握废水可生化性测定的应用。

二.实验原理及方案2.1实验原理1)废水生化处理的机理及要素:可生化废水生化处理主要是通过活性污泥微生物的新陈代谢作用实现的。

活性污泥中微生物是由细菌、真菌、原生动物、后生动物等组成的生态系。

细菌是这个生态系中最主要的组成部分。

利用微生物对废水中有机、有毒物质进行吸附和氧化分解。

其过程有物理化学作用和生物化学作用。

污水中有机物向活性污泥表面附聚。

由于活性污泥为松软的絮状体,表面积大,有较强的吸附力,所以活性污泥能对有机物或有毒物质进行吸附,其中可溶性有机物直接被细菌所吸附,而不溶性有机物通过细菌分泌的酸作用,将其降解为可溶性有机物后,再被细菌吸收,吸收到细菌体内的有机物,在有氧的条件下,将其中一部分有机物进行分解代谢,即氧化分解,以获得合成新细胞所需要的能量,并最终形成二氧化碳和水等稳定物质,再通过凝聚沉淀分离,使污水净化无害。

2)生化处理过程中保证微生物生命的基本要素:a)水温保持20~30℃最为适宜;b)pH值7~9:活性污泥中微生物适宜中性或偏碱性环境中;c)营养物质与活性污泥的结构、处理废水中的有机杂质等密切相关。

除以生物需氧量BOD表示的碳源外,还需要N、P和其它微量元素。

2.2实验方案1)本实验是通过测定活性污泥的呼吸速度来考察有机废水生物处理的可能性。

生物对氧的消耗称之为呼吸,通过连续测定活性污泥微生物的呼吸,即连续测定水样中溶解氧的变化,来研究活性污泥进行生化反应的可能性。

当活性污泥处于内呼吸阶段(微生物取得生命活动的能量,仅仅利用体内贮藏的物质),呼吸速度是恒定的,即耗氧量相对稳定,所以耗氧量与时间成一直线关系,此直线称为内呼吸线。

当活性污泥接触含有有机物或污水后,由于分解水中的有机物,其耗氧速度要加快,耗氧量随时间的变化是一条特征曲线,称之为生化呼吸曲线。

五日生化需氧量BOD5测定综合实验

五日生化需氧量BOD5测定综合实验

生化需氧量(BOD5)测定综合实验生活污水与工业废水中含有大量各类有机物.当其污染水域后,这些有机物在水体中分解时要消耗大量溶解氧,从而破坏水体中氧的平衡,使水质恶化.水体因缺氧造成鱼类及其它水生生物的死亡。

水体中含有的有机物成分复杂,难以一一测定其成分。

人们常常利用水中有机物在一定条件下所消耗的氧,来间接表示水体中有机物的含量,生化需氧量即属于这类的一个重要指标。

生化需氧量的经典测定方法,是稀释接种法。

测定生化需氧量的水样,采集时应充满并密封于瓶中。

在0—4℃下进行保存。

一般应在6小时内进行分析。

若需要远距离转运,在任何情况下,贮存时间不应超过24小时。

概述1.方法原理生化需氧量是指在规定条件下,微生物分解存在水中的某些可氧化物质、特别是有机物所进行的生物化学过程中消耗溶解氧的量。

此生物氧化全过程进行的时间很长,如在20℃培养时,完成此过程需100多天。

目前国内外普遍规定于20±1℃培养5d,分别测定样品培养前后的溶解氧,二者之差即为BOD5值,以氧的毫克/升(mg/L)表示.对某些地面水及大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以降低其浓度和保证有充足的溶解氧.稀释的程度应使培养中所消耗的溶解氧大于2mg/L,而剩余溶解氧在1 mg/L以上。

为了保证水样稀释后有足够的溶解氧,稀释水通常要通入空气进行曝气(或通入氧气),以便稀释水中溶解氧接近饱和。

稀释水中还应加入一定量的无机营养盐和缓冲物质(磷酸盐、钙、镁和铁盐等),以保证微生物生长的需要.对于不含或少含微生物的工业废水,其中包括酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BOD5时应进行接种,以引入能分解废水中有机物的微生物.当废水中存在着难于被一般生活污水中的微生物以正常速度降解的有机物或含有剧毒物质时,应将驯化后的微生物引入水样中进行接种.本方法适用于测定BOD5大于或等于2mg/L,最大不超过6000 mg/L的水样。

污水好氧生物处理实验

污水好氧生物处理实验

熟悉实验注意事项
实验目的:探究好氧生物处理方法对污水的处理效果 实验原理:利用好氧微生物的代谢作用,将污水中的有机物转化为无害物质 实验步骤:准备实验材料、接种微生物、调节曝气量、测定指标 实验结果:通过对比不同处理方法的处理效果,评估好氧生物处理方法的优缺点
PART THREE
原理:利用好氧微生物在有氧环境下进行生物代谢,将污水中的有机物转化为稳 定的无机物
讨论:实验结果受到多种因素的影响,如微生物种类、曝气量、温度等,需要进一步探讨优 化实验条件。
改进建议:针对实验中存在的问题,提出改进措施,提高污水处理效果。
PART SIX
实验目的:验证好氧生物处理方法 在污水治理中的效果
实验步骤:详细描述实验的操作过 程
添加标题
添加标题
添加标题
添加标题
实验原理:介绍好氧生物处理的基 本原理和流程
微生物:好氧微生物,如细菌、真菌和原生动物
条件:有氧环境,适当的温度和pH值
过程:微生物吸附、降解、转化有机物,最终将其转化为无害的物质
原理定义:利用好氧微生物在有氧环境下进行生物代谢,将污水中的有机物转化为无害物质
微生物种类:好氧细菌、真菌、原生动物等 生物代谢过程:通过细胞呼吸将有机物氧化分解为二氧化碳和水 影响因素:温度、pH值、溶解氧浓度、有机负荷等
实验结果:分析实验数据,评估好 氧生物处理方法的优缺点
实验操作过程不够 规范,需要加强培 训和指导
实验数据分析和处 理能力有待提高, 建议加强数据处理 和分析方面的培训
实验设备不够先进 ,影响实验结果的 准确性和可靠性, 建议升级实验设备
实验周期较长,需 要优化实验方案, 缩短实验时间
实验应用:好氧生 物处理技术在污水 处理中的实际应用 案例

污水可生化性判断

污水可生化性判断

污水可生化性判断用BOD/COD的比值来判断。

BOD/COD大于0.3时,一般认为该废水具有可生化性。

判定废水可生化性能有B/C值法:B/C>0.58 完全可生物降解;B/C=0.45~0.58 生物降解良好;B/C=0.30-0.45 可生物降解;B/C<0.3 难生物降解;BOD测定方法使用五日生物需氧量测定法,COD测定使用重铬酸钾法。

还有一种是好氧呼吸参量法。

通过测定COD、BOD等水质指标的变化以及呼吸代谢过程中的O2或CO₂含量(或消耗、生成速率)的变化来确定某种有机污染物(或废水)可生化性的判定方法。

根据所采用的水质指标,主要可以分为:水质指标评价法、微生物呼吸曲线法、CO₂生成量测定法。

向左转|向右转扩展资料:传统观点认为BOD5/CODCr,即B/C比值体现了废水中可生物降解的有机污染物占有机污染物总量的比例,从而可以用该值来评价废水在好氧条件下的微生物可降解性。

在一般情况下,BOD5/COD值愈大,说明废水可生物处理性愈好。

在各种有机污染指标中,总有机碳(TOC)、总需氧量(TOD)等指标与COD相比,能够更为快速地通过仪器测定,且测定过程更加可靠,可以更加准确地反映出废水中有机污染物的含量。

无论BOD/COD、BOD/TOD或者BOD/TOC,方法的主要原理都是通过测定可生物降解的有机物(BOD)占总有机物(COD、TOD或TOC)的比例来判定废水可生化性的。

微生物在降解污染物的过程中,在消耗废水中O2的同时会生成相应数量的CO2。

因此,通过测定生化反应过程CO2的生成量,就可以判断污染物的可生物降解性。

常用的方法为斯特姆测定法,反应时间为28d,可以比较CO2的实际产量和理论产量来判定废水的可生化性,也可以利用CO2/DOC值来判定废水的可生化性。

由于该种判定实验需采用特殊的仪器和方法,操作复杂,仅限于实验室研究使用,在实际生产中的应用还未见报道。

污泥培养实验报告

污泥培养实验报告

一、实验目的1. 了解污泥培养的基本原理和操作步骤。

2. 掌握污泥活化和驯化的方法。

3. 通过实验,观察污泥的生长情况,分析污泥处理效果。

二、实验材料与仪器1. 实验材料:- 干污泥- 清水或河水- 废水(可生化性能较好的废水或化工废水)- 营养物质(氮、磷、碳源)- pH试纸- 溶解氧仪- 烧杯- 玻璃棒- 电子天平- 恒温水浴箱- 酶联免疫检测仪2. 实验仪器:- 曝气池- 静置沉淀池- 离心机- 培养箱- 生物显微镜三、实验方法与步骤1. 污泥活化:- 将干污泥加入曝气池内,加入清水或河水,进行曝气,使污泥充分溶解。

- 继续曝气2-4小时,使污泥中的微生物充分活化。

- 静置2小时后,放掉上清液,重复此过程2-3次,直至上清液清澈透明。

2. 污泥驯化:- 使用有营养的水或低浓度的废水开始驯化污泥。

- 按照废水的水温和水质,确定生化培菌的周期。

- 对于可生化性能较好的废水,可以直接用废水驯化微生物。

- 对于化工废水或可生化性能比较差的废水,应采取分步培菌法。

3. 污泥增殖:- 将活化后的污泥加入曝气池,开始快速增殖。

- 在增殖过程中,注意控制好氧池溶解氧,一般保持在2-4之间。

- 持续增殖一段时间,使污泥在填料上生长。

4. 污泥处理效果检测:- 使用pH试纸检测污泥的pH值。

- 使用溶解氧仪检测污泥的溶解氧含量。

- 使用酶联免疫检测仪检测污泥的BOD、COD等指标。

- 使用生物显微镜观察污泥的微生物形态和数量。

四、实验结果与分析1. 污泥活化:- 经过活化后,污泥上清液清澈透明,无混浊,说明污泥中的微生物已充分活化。

2. 污泥驯化:- 经过驯化后,污泥对废水的处理效果良好,BOD、COD等指标明显下降。

3. 污泥增殖:- 经过增殖后,污泥在填料上生长良好,微生物数量增加,溶解氧含量稳定。

4. 污泥处理效果:- 通过检测,污泥的pH值、溶解氧含量、BOD、COD等指标均达到预期目标,说明污泥处理效果良好。

污水水质分析实验报告(3篇)

污水水质分析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过一系列的化学和物理分析方法,对某地区生活污水的各项水质指标进行检测,了解其水质状况,为后续污水处理工艺的选择和优化提供依据。

二、实验原理污水水质分析主要包括物理性质分析、化学分析、生物分析等方面。

本实验主要采用化学分析方法,通过测定污水中COD、BOD5、SS、氨氮、总磷等指标,评估污水的污染程度。

三、实验材料与仪器1. 实验材料:生活污水样品氢氧化钠、硫酸、硫酸铜、重铬酸钾、碘化钾、淀粉溶液等化学试剂滤纸、玻璃棒、烧杯、锥形瓶、滴定管、比色皿等实验器材2. 实验仪器:pH计恒温水浴锅紫外可见分光光度计721分光光度计精密电子天平四、实验步骤1. 物理性质分析:pH值测定:用pH计测定污水样品的pH值。

悬浮物含量测定:将污水样品过滤,用滤纸称重,计算悬浮物含量。

2. 化学分析:化学需氧量(COD)测定:采用重铬酸钾法测定污水样品的COD。

生化需氧量(BOD5)测定:采用稀释与培养法测定污水样品的BOD5。

氨氮测定:采用纳氏试剂法测定污水样品的氨氮含量。

总磷测定:采用钼锑抗比色法测定污水样品的总磷含量。

3. 生物分析:微生物活性测定:采用BOD5测定方法,评估污水样品的微生物活性。

五、实验结果与分析1. 物理性质分析结果:pH值:某地区生活污水的pH值为6.5。

悬浮物含量:某地区生活污水的悬浮物含量为200 mg/L。

2. 化学分析结果:COD:某地区生活污水的COD值为300 mg/L。

BOD5:某地区生活污水的BOD5值为150 mg/L。

氨氮:某地区生活污水的氨氮含量为50 mg/L。

总磷:某地区生活污水的总磷含量为5 mg/L。

3. 生物分析结果:微生物活性:某地区生活污水的微生物活性较好,BOD5/COD值为0.5。

六、结论通过本次实验,我们了解了某地区生活污水的各项水质指标,发现其主要污染物为COD、BOD5、氨氮和总磷。

针对这些污染物,可以采取以下措施进行治理:物理处理:对污水进行预处理,如格栅除杂、沉淀等,去除悬浮物和部分有机物。

废水可生化性实验实验报告

废水可生化性实验实验报告

废水可生化性实验
实验分析:
1. 由dO/dt —t 曲线可以看出,耗氧速率葡萄糖>内源呼吸>间甲酚,葡萄糖和间甲酚组实验的微生物耗氧速率均呈随时间的增加而逐渐减小的趋势,且葡萄糖的耗氧曲线下降程度更大。

这是因为微生物耗氧速率与底物浓度有关,随着呼吸作用进行,溶液中底物浓度逐渐降低;而间甲酚对微生物具有毒性,抑制其降解分解有机物的速率。

而内源呼吸组的耗氧速率并未呈理论的较恒定趋势,这可能是由于污水中还存在一些有机物可被生物降解,因此呈现耗氧速率减慢的趋势,也有可能是实验测量溶解氧误差导致。

2. 葡萄糖可为微生物提供生存所需能量,自然可被微生物降解,微生物快速分解有机物消耗水中溶解氧,因此其耗氧曲线应在内源呼吸线上方;而间甲酚对微生物具有毒性,抑制其降解分解有机物的速率,其耗氧曲线应在内源呼吸线之下。

实验结果基本符合此情况。

3. 溶解氧测量误差分析:
①实验中只有1台溶解氧测定仪,3组基质溶液分开进行溶解氧测定,每次实验之间存在测量误差、条件变化误差等。

②因为微生物呼吸作用一直在进行,溶解氧浓度测定过程中,仪器显示值总在不停波动,最后记录的溶解氧浓度数值与真实值有一定误差;
③溶解氧测定仪本身的准确度与灵敏度等导致的误差。

4. 根据实验结果,可得出结论:葡萄糖可进行生化降解,而间甲酚不能。

葡萄糖溶液 间甲酚溶液 内源呼吸线。

污水处理实验

污水处理实验

污水处理实验引言概述:污水处理是一项重要的环保工作,对于保护水资源和维护生态环境具有重要意义。

为了探索有效的污水处理方法,进行污水处理实验是必不可少的。

本文将介绍污水处理实验的五个部份,分别为污水处理原理、实验设备与材料、实验步骤、实验结果与分析以及实验的意义。

一、污水处理原理1.1 生物处理原理:介绍生物处理污水的基本原理,包括好氧处理和厌氧处理的工作原理。

1.2 物理处理原理:介绍物理处理污水的基本原理,包括沉淀、过滤和吸附等处理方法的原理。

1.3 化学处理原理:介绍化学处理污水的基本原理,包括氧化、还原和中和等化学反应的原理。

二、实验设备与材料2.1 实验设备:列举实验中所需的设备,如搅拌器、反应釜、离心机等。

2.2 实验材料:列举实验中所需的材料,如污水样品、生物菌种、吸附剂等。

三、实验步骤3.1 样品采集与处理:详细描述如何采集污水样品,并进行预处理工作,如去除悬浮物和调节pH值等。

3.2 实验操作:详细描述实验中的操作步骤,包括投加生物菌种、添加化学试剂和调节反应条件等。

3.3 实验监测与记录:介绍实验中的监测方法,如测定COD、BOD和悬浮物等指标,并记录实验数据。

四、实验结果与分析4.1 污水处理效果:分析实验结果,比较处理先后的水质指标变化,如COD和BOD的去除率等。

4.2 不同处理方法比较:对照不同处理方法的效果,如生物处理、物理处理和化学处理的差异。

4.3 实验数据分析:对实验数据进行统计和分析,探讨污水处理的优化方法和改进方向。

五、实验的意义5.1 环保意义:阐述污水处理实验对保护环境和水资源的重要性。

5.2 应用价值:介绍污水处理实验在实际应用中的价值,如工业废水处理和城市污水处理等。

5.3 科学研究价值:探讨污水处理实验在科学研究中的意义,如对新材料和新技术的验证和评估。

总结:通过污水处理实验,我们可以深入了解不同处理方法对污水的处理效果,为环境保护和水资源管理提供科学依据。

污水可生化性对污水处理效果影响的分析

污水可生化性对污水处理效果影响的分析

污水可生化性对污水处理效果影响的分析好氧呼吸参量法中的水质指标评价法是评价污水可生化性较为普遍的方法,In(BOD5)/In(CoDCr)比值是最常用,也是较为经典的评价污水可生化性的水质指标评价法目前普遍认为m(B0D5)/m(CODCr)值小于0.3的废水属于难生物降解废水;m(B0D5)∕m(CODCr)大于0.3的废水属于可生物降解的废水,而且比值越高,说明废水采用好氧生物处理所到达的效果越好,同时进水中m(TP)Zm(CODCr)比值也是判断生物除磷效果的评价方法。

虽然此方法有些缺陷之处,但对于污水处理厂,利用m(B0D5)∕m(CODCr)比值研究进水的可生化性对于其日常运行和工艺改造都有一定的实际作用。

进水中有些有机物易于被微生物分解、利用;还有一些不易被微生物降解,甚至对微生物生理活动产生抑制作用,这些差异就导致了进水可生化性的不同。

本试验研究在2个污水处理厂中开展,主要考察了污水厂进水可生化性对污水处理效果的影响。

1材料与方法Ll污水处理厂服务区概况污水处理厂1(以下简称1#厂的服务范围内)有3个工业产业园区、1个试验区和2个生活区。

工业主要以印刷、制造业、食品加工、电器、橡胶塑料和服装业等为主;生活区内商贸业较为发达,区内住宅较多,且住宅密度较大。

1#厂的服务面积约为33.8km2o污水处理厂2(以下简称2#厂)的服务范围内有3个科技工业产业园区、3个市区。

科技工业产业园区主要以生物制药、电子信息、新材料、现代制造业、食品加工等为主;市区主要为居住区域,产生污水以生活污水为主。

2#厂的服务面积约为30.9km2o1.2污水处理工艺1#厂和2#厂的设计处理规模都为5×104m3∕d,主要处理工艺均为氧化沟工艺,工艺流程总体上一样,见图1所示。

2#厂在二级处理后,增加了三级处理工艺。

L3试验方法水样的采集地点对1#厂、2#厂均一样,进水在细格栅的格栅后面开展采集,出水在二沉池后开展采集。

排水实验报告精选全文

排水实验报告精选全文
(2)取100ml活性污泥与150ml生活污水混合均匀,置于仪器内充氧反应,每30s读一次数记录与表2中。
(3)取100ml活性污泥与150ml工业废水混合均匀,置于仪器内充氧反应,每30s读一次数记录与表3中。
注意:
(1)应先向中央小杯加入10%KOH溶液,并将折成皱褶状的滤纸放于杯口,以扩大对CO2的吸收面积,但不得使KOH溢出中央小杯。
转移速度可以由下式表示次实验将采用间歇非稳态实验方法,即在相同条件下按照对清水实验的方法,分别对清水和污水进行充氧实验,利用实验得出的数据应用公式计算出α,β值。应当指出的是,由于是对比实验,所以,应严格控制清水实验和污水实验的基本实验条件,如水温、氧分压、水量、供气量等,以保证数据可靠。
小于内源呼吸时的耗氧速率,表明废水中的有机污染物不能被微生物降解,而且对微生物具有抑制或毒害作用。微生物呼吸曲线一旦与横坐标重合,则说明微生物的呼吸已停止。将微生物呼吸曲线图的横坐标改为基质浓度,则变为另一种可生化性判定方法——耗氧曲线法。
该种判定方法与其他方法相比。操作简单、实验周期短。可以满足大批量数据的测定。但必须指出,用此种方法来评价废水的可生化性,必须对微生物的来源、浓度、驯化和有机污染物的浓度及反应时间等条件作严格的规定,加之测定所需的仪器在国内的普及率不高。
1
2
3
4
5
6
7
8
9
10
11
12
由图像斜率得KLa=,KLa’=
(2)应用公式计算α
所以α=
(3)应用公式计算β
所以β=
七、思考题
(1)简述α,β的意义。
答:修正系数α的物理意义是KLa(废水)与KLa(清洁水)之比,即α与废水气液膜之间的阻力呈反比。由于待曝气充氧的污水中含有各种各样杂质,如表面活性剂、油脂、悬浮固体等,它们会对氧的转移产生一定的影响,特别是在两活性物质这类两亲分子会集结在气、液接触面上,阻碍氧的转移。相对于清水,污水曝气充氧得到的氧转移系数 会比清水中的氧总转移系数KLa低,为此引入修正系数α。

工业污水可生化性实验实验报告

工业污水可生化性实验实验报告

工业污水可生化性实验实验报告实验目的:了解工业污水处理前后的生化性质变化,探究工业污水的可生化性。

实验原理:工业污水中含有大量的有机物,这些有机物可作为微生物的营养物质,被生物降解利用。

因此,工业污水具有很高的可生化性。

实验材料及仪器:工业污水样品、pH计、试剂(NaOH、HCl、甲基橙指示剂、硝酸银溶液、氯化钡溶液、氯化铁溶液、硝酸汞溶液、氯化亚铁溶液、氯化银溶液)。

实验步骤:1. 取一定量的工业污水样品,用pH计测定其pH值。

2. 用甲基橙指示剂滴定污水样品,记录滴定体积,计算出pH值。

3. 测定工业污水中COD、BOD、SS、NH3-N、TP、TN的含量,记录数据。

4. 用硝酸银溶液滴定污水样品中的Cl-含量,计算出Cl-的含量。

5. 用氯化钡溶液滴定污水样品中的SO42-含量,计算出SO42-的含量。

6. 用氯化铁溶液滴定污水样品中的Fe2+含量,计算出Fe2+的含量。

7. 用硝酸汞溶液滴定污水样品中的Hg2+含量,计算出Hg2+的含量。

8. 用氯化亚铁溶液滴定污水样品中的Cr6+含量,计算出Cr6+的含量。

9. 用氯化银溶液滴定污水样品中的CN-含量,计算出CN-的含量。

10. 将测定结果填入实验报告中,并分析实验结果。

实验结果:1. 工业污水的pH值为6.5。

2. COD、BOD、SS、NH3-N、TP和TN的含量分别为100mg/L、30mg/L、50mg/L、10mg/L、5mg/L和20mg/L。

3. Cl-的含量为50mg/L,SO42-的含量为20mg/L,Fe2+的含量为0.5mg/L,Hg2+的含量为0.01mg/L,Cr6+的含量为0.05mg/L,CN-的含量为0.1mg/L。

实验分析:1. 工业污水的pH值处于中性偏酸性,适合细菌生长。

2. COD、BOD、SS、NH3-N、TP和TN的含量都比较高,说明工业污水中有大量的有机物和氮、磷等污染物。

3. Cl-、SO42-、Fe2+、Hg2+、Cr6+和CN-等物质的含量也比较高,说明工业污水中还存在一定的重金属和有毒物质。

污水可生化性对污水处理效果的影响分析

污水可生化性对污水处理效果的影响分析

污水可生化性对污水处理效果的影响分析1. 引言1.1 污水可生化性概念污水可生化性是指污水中所含的有机物质对生物降解的能力。

在污水处理过程中,污水中的有机物质可以通过微生物的作用被分解成简单无害的物质,从而达到净化水质的目的。

污水可生化性的好坏直接影响着污水处理的效果,影响着处理后水质的好坏。

污水可生化性的好坏受到多种因素的影响,比如污水中有机物质的种类和浓度、微生物种类和数量等因素均会影响污水的生化性。

环境条件如温度、pH值等也会对污水的生化性产生影响。

要想达到较好的污水处理效果,首先需要关注污水的生化性。

只有污水具有较好的生化性,才能更好地被微生物降解,达到净化水质的目的。

在污水处理的过程中,要对污水的生化性进行充分考虑,采取相应的措施来提高污水的生化性,从而提高污水处理的效果。

1.2 污水处理效果的重要性污水处理效果的重要性可以从多个方面进行分析。

污水处理是保护环境和人类健康的重要手段。

随着工业化和城市化的加速发展,污水排放量不断增加,如果不进行有效处理就会对周围环境造成严重污染,危害水质和生态系统的稳定。

对污水进行有效处理不仅可以减轻环境污染的程度,还可以保障水资源的可持续利用。

优质的污水处理效果能够提高水质标准。

经过处理的污水能够达到国家和地方政府规定的排放标准,避免对地下水、河流和湖泊等水体造成二次污染。

这对于维护生态平衡和保护水资源至关重要。

优良的污水处理效果还可以促进经济发展。

从长远来看,污水处理工程不仅是环保投资,还是提高城市形象和人居环境的必要手段。

只有保证水质清洁,才能吸引更多的投资和人口流入,促进当地经济的繁荣发展。

污水处理效果的重要性不仅关乎环境保护和公共卫生,还涉及到经济发展和社会稳定。

加强对污水处理效果的重视,提升处理技术水平,是当前和未来污水处理工作的重要任务。

2. 正文2.1 污水可生化性的影响因素污水可生化性的影响因素包括多种因素,其中包括污水中的有机物质含量、微生物种类和数量、溶解氧浓度、温度、PH值等。

活性污泥耗氧速率、废水可生化性及毒性测定

活性污泥耗氧速率、废水可生化性及毒性测定

活性污泥耗氧速率、废水可生化性及毒性的测定活性污泥的耗氧速率(OUR)是评价污泥微生物代谢活性的一个重要指标。

在日常运行中,污泥OUR的大小及其变化趋势可指示处理系统负荷的变化情况,并可以此来控制剩余污泥的排放。

污泥的OUR值若大大高于正常值,往往提示污泥负荷过高,这时出水水质较差,残留有机物较多,处理效果亦差。

污泥OUR 值长期低于正常值,这种情况往往在活性污泥负荷低下的延时曝气处理系统中可见,这时出水中残存有机物数量较少,处理完全,但若长期运行,也会使污泥因缺乏营养而解絮。

处理系统在遭受毒物冲击,而导致污泥中毒时,污泥OUR值的突然下降常是最为灵敏的早期警报。

此外,还可通过测定污泥在不同工业废水中OUR值的高低,来判断该废水的可生化性及废水毒性的极限程度。

实验目的1.了解活性污泥耗氧速率测定的意义。

2.掌握溶解氧测定仪测定活性污泥耗氧速率的方法和原理。

并利用该方法进行废水可生化性及毒性的测定。

一、实验原理活性污泥中微生物需要消耗溶解氧,利用溶解氧测定仪测出一定量活性污泥在一定的时间内所消耗的溶解氧即为活性污泥的内源呼吸耗氧速率。

OUR:单位体积溶液在单位时间内消耗氧量称为耗氧速率(摄氧率)。

SOUR:即比耗氧速率。

在污水处理中评价活性污泥稳定的定量指标,是指单位质量的活性污泥在单位时间内的耗氧量。

什么叫混合液悬浮固体(MLSS)?混合液悬浮固体(MLSS)亦要称为污泥浓度,它是指单位体积混合液所含干污泥的重量,单位为毫克/升,用来表征活性污泥浓度。

它包括有机物和无机物两部分。

什么叫混合液挥发性悬浮固体(MLVSS)?混合液挥发性悬浮固体(MLVSS)是指单位体积混合液所含干污泥中可挥发性物质的重量,单位也是毫克/升,由于它不包括活性污泥中的无机物,因此能较确切地代表活性污泥中微生物的数量。

二、仪器和试剂1.溶解氧测定仪2.0.025mol·L-1、pH值为7的磷酸盐缓冲液3.活性污泥4.250ml广口瓶5.磁力搅拌器6.10%CuS04三、实验步骤1.测定活性污泥的耗氧速率方法一:(1)取曝气池活性污泥混合液迅即置于烧杯中,由于曝气池不同部位的活性污泥浓度和活性有所不同,取样时可取不同部位的混合样。

判断废水处理工艺可生化性四种方法

判断废水处理工艺可生化性四种方法

判断废水处理工艺可生化性四种方法目前,生化处理是污水处理的主流工艺。

废水的可生化性(生物可降解性),也称为废水的生物可降解性,即废水中有机污染物生物降解的难度,是废水的重要特征之一。

造成废水生物降解性差异的主要原因是废水中含有的有机物除易被微生物分解和利用外,还含有一些不易被微生物降解甚至抑制微生物生长的可生物降解物质。

废水的性质和相对含量决定了该废水的生物处理的可行性和简易性(通常称为好氧生物处理)。

在某些情况下,废水的生物降解性除了反映废水中有机污染物的利用和利用程度外,还反映了加工过程中微生物对有机污染物的利用率:一旦分解和利用微生物的速度太慢,导致处理时间过长,在实际的废水工程中难以实现,因此,通常认为废水不可生物降解。

污水生物降解性的测定对污水处理方法的选择、生化处理工段进水量和有机负荷的确定具有重要意义。

国内外生物降解性判断方法大致可分为有氧呼吸参数法、微生物生理指标法、摹拟实验法和综合模型法。

一、好氧呼吸参量法微生物对有机污染物的需氧降解,以及诸如鳄鱼 (化学需氧量)和bod (生化需氧量) 等水质指标的变化,都伴有着 o2 的消耗和 co2 代。

好氧呼吸参数法是通过测定水中COD、BOD 等水质指标的变化以及呼吸代谢过程中02 或者 CO2 含量(或者消耗、形成率)的变化来确定有机污染物(或者废水)的生物可降解性的方法。

根据水质指标可分为:水质指标评价法、微生物呼吸曲线法、 C02产生法。

1、水质指标评价法BOD5/CODCr 比率法是评估废水生物降解性的最经典且目前最常用的水质指数评价 方法。

BOD 是指在有氧条件下, 好氧微生物分解利用废水中有机污染物进行代谢所消耗的 氧气量。

我们通常使用 BOD5 (五天生化需氧量) 来直接表示废水中有机物的可生 物降解部份。

CODCr 是指化学氧化剂 (K2Cr2O7) 对废水中有机污染物进行彻底氧 化过程中消耗的氧气量。

CODcr 通常用来表示废水中有机污染物的总量。

实验九 废水可生化性实验

实验九 废水可生化性实验

实验九 工业污水可生化性实验一、实验目的对某些工业废水进行生物处理时,由于废水中含有生物难将解的有机物、抑制或毒害微生物生长的物质、或者缺少微生物所需要的营养物质和环境条件,使得生物处理不能正常进行。

因此需要通过实验来考察这些污水生物处理的可能性,研究某些组分可能产生的影响,确定进入生物处理设施的允许浓度。

通过本实验希望达到下述目的: 1. 理解废水可生化性的含义;2. 掌握测定废水可生化性实验的方法;3. 理解内源呼吸线及生化呼吸线的基本含义;二、实验原理微生物降解有机污染物的物质代谢过程中所消耗的氧包括两部分:①氧化分解有机污染物,使其分解为CO 2、H 2O 、NH 3(存在含氮有机物)等,为合成新细胞提供能量;②供微生物进行内源呼吸,使细胞物质氧化分解。

下列式子可说明物质代谢过程中的这一关系。

合成:223572228336CH O O NH C H NO CO H O++→++2222235722333333CH O O CO H O CH O NH C H NO H O +→++⎛⎫⎪+→+⎝⎭能量从上反应式可以看到约1/3的CH 2O(酪蛋白)被微生物氧化分解为CO 2、H 2O ,同时产生能量供微生物合成新细胞,这一过程要耗氧。

内源呼吸:5722223552C H NO O CO H O NH +→++微生物进行物质代谢过程的需氧速率可以用下式表示总的需氧速率=合成细胞的需氧速率+内源呼吸的需氧速率,即T F dO dO dO dt dt dt σ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭式中:T dO dt ⎛⎫ ⎪⎝⎭为总的需氧速率,mg/(L·min);F dO dt ⎛⎫ ⎪⎝⎭为降解有机物,合成新细胞的耗氧速率,mg/(L·min); dO dt σ⎛⎫⎪⎝⎭为微生物内源呼吸需氧速率,mg/(L·min)。

活性污泥的耗氧速率(OUR )是评价污泥代谢活性的一个重要指标,它是指单位质量的活性污泥在单位时间内的耗氧量,其单位为 mg(O 2)/g(MLVSS)·h 。

实验九 废水可生化性实验

实验九 废水可生化性实验

实验九 工业污水可生化性实验一、实验目的某些工业污水在进行生物处理时,由于含有生物难将解的有机物、抑制或毒害微生物生长的物质、或者缺少微生物所需要的营养物质和环境条件,使得生物处理不能正常进行。

因此需要通过实验来考察这些污水生物处理的可能性,研究某些组分可能产生的影响,确定进入生物处理设施的允许浓度。

通过本实验希望达到下述目的: (1)理解废水可生化性的含义;(2)掌握测定废水可生化性实验的方法; (3)理解内源呼吸线及生化呼吸线的基本含义;二、实验原理微生物降解有机污染物的物质代谢过程中所消耗的氧包括两部分:①氧化分解有机污染物,使其分解为CO 2、H 2O 、NH 3(存在含氮有机物)等,为合成新细胞提供能量;②供微生物进行内源呼吸,使细胞物质氧化分解。

下列式子可说明物质代谢过程中的这一关系。

合成:223572228336CH O O NH C H NO CO H O++→++2222235722333333CH O O CO H O CH O NH C H NO H O +→++⎛⎫⎪+→+⎝⎭能量从上反应式可以看到约1/3的CH 2O(酪蛋白)被微生物氧化分解为CO 2、H 2O ,同时产生能量供微生物合成新细胞,这一过程要耗氧。

内源呼吸:5722223552C H NO O CO H O NH +→++微生物进行物质代谢过程的需氧速率可以用下式表示总的需氧速率=合成细胞的需氧速率+内源呼吸的需氧速率,即T F dO dO dO dt dt dt σ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭式中:T dO dt ⎛⎫ ⎪⎝⎭为总的需氧速率,mg/(L·min);F dO dt ⎛⎫ ⎪⎝⎭为降解有机物,合成新细胞的耗氧速率,mg/(L·min); dO dt σ⎛⎫⎪⎝⎭为微生物内源呼吸需氧速率,mg/(L·min)。

活性污泥的耗氧速率(OUR )是评价污泥代谢活性的一个重要指标,它是指单位质量的活性污泥在单位时间内的耗氧量,其单位为 mg(O 2)/g(MLVSS)·h 。

废水可生化行实验

废水可生化行实验

实验七 废水可生化实验一、实验目的由于生物处理方法较为经济,在研究废水的处理方案时,一般首先考虑采用生物处理的可能性。

但是,有些废水在进行生物处理时,因为含有难降解的有机污染物质而不能正常运行。

因此,在没有现成的科研成果或生产运行资料可以借鉴时,需要通过实验来考察这些废水生物处理的可能性,研究它们进入生物处理系统后可能产生的影响等。

通过本实验希望达到下述目的(1)理解废水可生化性的含义;(2)掌握测定废水可生化性实验的方法;(3)理解内源呼吸线及生化呼吸线的基本含义;二、实验原理微生物降解有机污染物的物质代谢过程中所消耗的氧包括两部分:①氧化分解有机污染物,使其分解为CO 2、H 2O 、NH 3(存在含氮有机物)等,为合成新细胞提供能量;②供微生物进行内源呼吸,使细胞物质氧化分解。

下列式子可说明物质代谢过程中的这一关系。

合成:223572228336CH O O NH C H NO CO H O ++→++2222235722333333CH O O CO H O CH O NH C H NO H O +→++⎛⎫ ⎪+→+⎝⎭能量 从上反应式可以看到约1/3的CH 2O(酪蛋白)被微生物氧化分解为CO 2、H 2O ,同时产生能量供微生物合成新细胞,这一过程要耗氧。

内源呼吸:5722223552C H NO O CO H O NH +→++微生物进行物质代谢过程的需氧速率可以用下式表示总的需氧速率=合成细胞的需氧速率+内源呼吸的需氧速率,即T F dO dO dO dt dt dt σ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 式中:T dO dt ⎛⎫ ⎪⎝⎭为总的需氧速率,mg/(L ·min);FdO dt ⎛⎫ ⎪⎝⎭为降解有机物,合成新细胞的耗氧速率,mg/(L ·min); dO dt σ⎛⎫⎪⎝⎭为微生物内源呼吸需氧速率,mg/(L ·min)。

活性污泥的耗氧速率(OUR )是评价污泥代谢活性的一个重要指标,它是指单位质量的活性污泥在单位时间内的耗氧量,其单位为 mg(O 2)/g(MLVSS)·h 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西民族大学水污染控制工程实验报告
2013年5月24日
e dt
dO
)(
——微生物能内源呼吸需氧速率,min)./(L mg 。

这两部分氧化过程所需要的氧量可由下式计算:
v r VX b QL a O ''+=
式中:O ——混合液需氧量,d O kg /)2(;
'a ——活性污泥微生物降解1kg 有机物的需氧量,)(/)2(5BOD kg O kg ;
Q ——污水流量,d m /3;
r L ——被活性污泥微生物降解的有机物浓度,3
/m kg ;
'b ——活性污泥微生物自身氧化需氧量,]).(/[)2(d MLSS kg O kg ; V ——曝气池水容积,3m ;
v X ——挥发性污泥浓度(MLVSS ),3/m kg 。

式(9-2)中的系数'a 、'b 是活性污泥法处理系统的重要设计与运行参数。

对生活污水,'a 为0.42~0.53,'b 为0.188~0.11。

式(9-1)中e dt dO )(
=-'b ,基本上为一常量;F dt dO )(=r N a ',r N 为有机负荷,这说明F dt
dO
)(不仅与微生物性能有关,还与有机负荷、有机物总量有关。

当污水中的底物主要为可生物降解的有机物时,微生物的氧吸收量累计值为一条犹如BOD 测定的耗氧过程线(下图中曲线1)。

溶解氧的吸收量(即消耗量)与污水中的有机物浓度有关。

实验开始时,间歇反应器中有机物浓度较高,微生物吸收氧的速率也较快,以后随着反应器中有机物浓度的减少,氧吸收速率也逐渐减慢,直至最后等于内源呼吸速率(下图中的曲线2)。

如污水中无底物,微生物直接进入内源呼吸,其氧吸收(累计)过程为一通过原点的直线(曲线3)。

如果污水中某一种或几种组分对微生物的生长有毒害抑制作用,那么氧的吸收将会受到毒物的限制,而低于内源呼吸量(曲线4)。

如果新投入微生物于废水中,则微生物需要一个驯化过程(曲线2)。

实验装置图及步骤:
溶解氧测定仪:
测定水中溶解氧的装置。

其工作原理是氧透过隔膜被工作
电极还原,产生与氧浓度成正比的扩散电流,通过测量此
电流,得到水中溶解氧的浓度。

根据浓度不同,隔膜电极
分为极谱式和原电池式两种类型。

极谱式隔膜电极以银-氯
化银作为对电极,电极内部电解液为氯化钾,电极外部为
厚度25-50μm的聚乙烯和聚四氟乙烯薄膜,薄膜挡住了电
极内外液体交流,使水中溶解氧渗入电极内部,两电极间
的电压控制在0.5-0.8V,通过外部电路测得扩散电流可知溶
解氧浓度。

原电池式用银作阳电极,铅作阴电极。

阳电极
和银电极浸入氢氧化钾电解池中,形成两个半电池,外层
同样用薄膜封住。

溶解氧在阳极被还原,产生扩散电流,
通过测定扩散电流可得溶解氧浓度。

实验步骤:
用250 mL的广口瓶取反应器内混合液1瓶,迅速用装有溶
解氧探头的橡皮塞塞紧瓶口(不能有气泡或漏气),将瓶子放在电磁搅拌器,启动搅拌器,定期测定溶解氧浓度P(O.5~1 min),并做记录,测定10 min。

然后以测定值对t作图,所得直线的斜率即微生物的呼吸速率。

相关文档
最新文档