高考数学必胜秘诀在哪4(精选课件)

合集下载

高考数学夺高分的五大秘笈分析

高考数学夺高分的五大秘笈分析

高考数学夺高分的五大秘笈分析
?高考数学特别强调是基本概念、基本计算方法、基本数学思想,以及解题的技巧、方法,这是很重要的。

因此,在解答高考数学题时要处置好如下五点:
一、处置好审题与解题的关系
有的考生对审题注重不够,匆匆一看急于下笔,致使标题的条件与要求都没有吃透,至于如何从标题中开掘隐含条件、启示解题思绪就更无从谈起,这样解题出错自然多。

只要耐烦细心肠审题,准确地掌握标题中的与量,如〝至少〞,〝a >0〞,自变量的取值范围等,从中获取尽能够多的信息,才干迅速找准解题方向。

二、处置好〝会做〞与〝得分〞的关系
要将你的解题战略转化为得分点,主要靠准确完整的数学言语表述,这一点往往被一些考生所无视,因此卷面上少量出现〝会而不对〞〝对而不全〞的状况,考生自己的估分与实践得分差之甚远。

如平面几何论证中的〝跳步〞和逻辑关系颠倒,使很多人丧失1/3以上得分,代数论证中〝以图代证〞,虽然解题思绪正确甚至很巧妙,但是由于不擅长把〝图形言语〞准确地转译为〝文字言语〞,得分少得不幸;再如去年第17题解斜三角形时的计算和推理不严谨,许多考生〝心中有数〞却表述不清楚,扣分者也不在少数。

三、处置好快与准的关系
只要〝准〞才干得分,只要〝准〞你才可不用思索再花时间反省,而〝快〞是往常训练的结果,不是考场上所能处置的效果,一味求快,只会落得错误百出。

如去年第20题为运用题,此题列出求概率的式子并不难,但是相当多的考生在匆忙中把数据都算错,虽然后继局部解题思绪正确又花时间去算,也简直得不到分,这与考生的实践水平是不相符的。

适外地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

2024年高考数学无敌答题技巧总结

2024年高考数学无敌答题技巧总结

2024年高考数学无敌答题技巧总结
2024年的高考数学无敌答题技巧总结如下:
1. 系统学习:高考数学的知识点庞大,要系统地学习各个知识点,理清每个知识点之间的联系和应用。

2. 理解概念:掌握数学的基本概念是打好基础的关键。

要能够理解并运用各种概念,例如函数、方程等。

3. 做足典型例题:通过做大量的典型例题,可以更好地理解、掌握各个知识点的运用方式,并能帮助培养解题的思维逻辑。

4. 掌握解题方法:熟悉并掌握各种解题方法,包括几何解题方法、代数解题方法等。

通过多种方法解题,可以提高解题的灵活性和准确性。

5. 强化题型:掌握各个题型的解题思路和解题技巧,例如选择题、填空题、解答题等。

在备考过程中,经常练习各个题型,增加对不同题型的熟悉度和应对能力。

6. 注重思维训练:高考数学注重思维能力的发展。

要注重培养逻辑思维、分析问题的能力,在解题过程中多动脑筋,提高解题的速度和正确率。

7. 勤于总结:在备考过程中,要及时总结解题的经验和技巧,形成自己的解题方法和思维模式。

同时,及时纠正自己在解题中的错误,不断提升解题能力。

8. 精确计算:高考数学中,计算的准确性至关重要。

要注意计算细节,减少粗心错误的发生。

可以通过多次练习来提高计算的准确性和速度。

总之,要在备考过程中注重系统学习、理解概念、做足典型例题、掌握解题方法、强化题型、思维训练、总结经验、精确计算等方面进行全面提升,才能在2024年的高考数学中发挥出无敌的答题技巧。

2020高考数学必胜秘诀(四)三角函数

2020高考数学必胜秘诀(四)三角函数

2020高考数学必胜秘诀(四)三角函数――概念、方法、题型、易误点及应试技巧总结四、三角函数1、 角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

按逆时针方 向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成 一个零角。

射线的起始位置称为始边,终止位置称为终边。

2、 象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与 X 轴的非负半轴重合,角 的终边在第几象限,就讲那个角是第几象限的角。

假如角的终边在坐标轴上,就认为那个角不属于任何象 限。

,合弧度。

〔答:25;36〔2〕 终边与 终边共线(的终边在终边所在直线上)k (k Z).〔3〕 终边与 终边关于x 轴对称 2k (k Z)〔4〕 终边与 终边关于y 轴对称 2k (k Z).〔5〕 终边与 终边关于原点对称 2k (k Z).〔6〕终边在x 轴上的角可表示为:k ,k Z; 终边在y 轴上的角可表示为:k-,k Z; 终边在坐标轴上的角可表示为:k ■ ,k Z .如 的终边与一的终边关于直线226x 对称,那么=。

〔答:2k,k Z 〕34、 与=的终边关系:由”两等分各象限、一二三四'’确定•如假设 是第二象限角,那么是第2 2_____ 象限角〔答:一、三〕5、弧长公式:I | |R ,扇形面积公式: S *IR 21 | R 2 , 1弧度(irad) 573.如扇形AOB的周长是6cm ,该扇形的中心角是 1弧度,求该扇形的面积。

〔答:2cm 2〕6、 任意角的三角函数的定义 :设 是任意一个角,P (x, y)是 的终边上的任意一点〔异于原点〕,xr r cot(y 0), sec x 0 , cscy 0。

三角函数值只与角的大小有关,而与终边上yxy点P 的位置无关。

女口〔 1〕角的终边通过点 P(5, - 12),那么sin cos 的值为 ____________ 。

高考数学必胜秘诀在哪

高考数学必胜秘诀在哪

高考数学必胜秘诀在哪?――概念、方法、题型、易误点及应试技巧总结§圆锥曲线1.圆锥曲线的定义:定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;b5E2RGbCAP 双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在.若去掉定义中的绝对值则轨迹仅表示双曲线的一支.p1EanqFDPw 如<1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是( > A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF<28=表示的曲线是_____ 2.圆锥曲线的标准方程<标准方程是指中心<顶点)在原点,坐标轴为对称轴时的标准位置的方程):<1)椭圆:焦点在x 轴上时12222=+by a x <0a b >>)⇔{cos sin xa yb ϕϕ==<参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1<0a b >>).方程22Ax By C +=表示椭圆的充要条件是什么?<ABC ≠0,且A ,B ,C 同号,A ≠B ).如<1)已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为____<2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___<2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1<0,0a b >>).方程22Ax By C +=表示双曲线的充要条件是什么?<ABC ≠0,且A ,B 异号).如<1)双曲线的焦距与实轴长之比等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______<2)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,焦距与实轴长之比2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______<3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->.3.圆锥曲线焦点位置的判断<首先化成标准方程,然后再判断): (1) 椭圆:由x 2,y 2分母的大小决定,焦点在分母大的坐标轴上.如已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__<2)双曲线:由x 2,y 2项系数的正负决定,焦点在系数为正的坐标轴上;<3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向.特别提醒:<1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;DXDiTa9E3d <2)在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+. 4.圆锥曲线的几何性质:<1)椭圆<以12222=+by a x <0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心<0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;RTCrpUDGiT 如<1)若椭圆1522=+my x 的焦距与长轴之比为510=e ,则m 的值是__(2) 以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值 为__<2)双曲线<以22221x y a b-=<0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心<0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为22,0x y k k -=≠;④两条渐近线:by x a=±.5PCzVD7HxA 如<1)双曲线的渐近线方程是023=±y x ,则该双曲线的焦距与实轴长之比等于______<2)双曲线221ax by -=,则:a b =<3)设双曲线12222=-by a x <a>0,b>0)中,焦距与实轴长之比e ∈[2,2],则两条渐近线夹角θ的取值范围是________jLBHrnAILg <3)抛物线<以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点<0,0);④准线:一条准线2px =-;xHAQX74J0X 如设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为________ 5、点00(,)P x y 和椭圆12222=+by a x <0a b >>)的关系:(1) 点00(,)P x y 在椭圆外⇔2200221x y a b +>;<2)点00(,)P x y 在椭圆上⇔220220by a x +=1;<3)点00(,)P x y 在椭圆内⇔2200221x y a b+< 6.直线与圆锥曲线的位置关系:<1)相交:0∆>⇔直线与椭圆相交;0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件;LDAYtRyKfE 0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件.Zzz6ZB2Ltk 如<1)若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k 的取值范围是_______dvzfvkwMI1<2)直线y ―kx ―1=0与椭圆2215x y m+=恒有公共点,则m 的取值范围是_______<3)过双曲线12122=-y x 的右焦点直线交双曲线于A 、B 两点,若│AB︱=4,则这样的直线有_____条<2)相切:0∆=⇔直线与椭圆相切;0∆=⇔直线与双曲线相切;0∆=⇔直线与抛物线相切;<3)相离:0∆<⇔直线与椭圆相离;0∆<⇔直线与双曲线相离;0∆<⇔直线与抛物线相离.特别提醒:<1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交.如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;rqyn14ZNXI <2)过双曲线2222by a x -=1外一点00(,)P x y 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;EmxvxOtOco ②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;SixE2yXPq5③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;<3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线.如<1)过点)4,2(作直线与抛物线x y 82=只有一个公共点,这样的直线有______<2)过点(0,2>与双曲线116922=-y x 有且仅有一个公共点的直线的斜率的取值范围为______<3)过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若=AB 4,则满足条件的直线l 有____条<4)对于抛物线C :x y 42=,我们称满足0204x y <的点),(00y x M 在抛物线的内部,若点),(00y x M 在抛物线的内部,则直线l :)(200x x y y +=与抛物线C 的位置关系是_______6ewMyirQFL <5)过抛物线x y 42=的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则=+qp11_______ <6)设双曲线191622=-y x 的右焦点为F ,右准线为l ,设某直线m 交其左支、右支和右准线分别于R Q P ,,,则PFR ∠和QFR ∠的大小关系为___________(填大于、小于或等于> kavU42VRUs <7)求椭圆284722=+y x 上的点到直线01623=--y x 的最短距离. <8)直线1+=ax y 与双曲线1322=-y x 交于A 、B 两点. ①当a 为何值时,A 、B 分别在双曲线的两支上? ②当a 为何值时,以AB 为直径的圆过坐标原点? 7、焦半径<圆锥曲线上的点P 到焦点F 的距离)如<1)已知抛物线方程为x y 82=,若抛物线上一点到y 轴的距离等于5,则它到抛物线的焦点的距离等于____;<2)若该抛物线上的点M 到焦点的距离是4,则点M 的坐标为_____<3)点P 在椭圆192522=+y x 上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标为_______<4)抛物线x y 22=上的两点A 、B 到焦点的距离和是5,则线段AB 的中点到y 轴的距离为______8、焦点三角形<椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解.设椭圆或双曲线上的一点00(,)P x y 到两焦点12,F F 的距离分别为12,r r ,焦点12F PF ∆的面积为S ,则在椭圆12222=+by a x 中, y6v3ALoS89①θ=)12arccos(212-r r b ,且当12r r =即P 为短轴端点时,θ最大为θm ax=222arccos a c b -;②20tan ||2S b c y θ==,当0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;对于双曲线22221x y a b -=的焦点三角形有:①⎪⎪⎭⎫ ⎝⎛-=21221arccos r r b θ;②2cot sin 21221θθb r r S ==. 如<1)短轴长为5,焦距与长轴之比为32=e 的椭圆的两焦点为1F 、2F ,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆的周长为________M2ub6vSTnP <2)设P 是等轴双曲线)0(222>=-a a y x 右支上一点,F1、F2是左右焦点,若0212=⋅F F PF ,|PF1|=6,则该双曲线的方程为<3)椭圆22194x y +=的焦点为F1、F2,点P 为椭圆上的动点,当错误!·错误!<0时,点P 的横坐标的取值范围是0YujCfmUCw <4)双曲线的虚轴长为4,焦距与实轴之比为26,F1、F2是它的左右焦点,若过F1的直线与双曲线的左支交于A 、B 两点,且AB 是2AF 与2BF 等差中项,则AB =__________eUts8ZQVRd <5)已知双曲线的焦距与实轴之比为2,F1、F2是左右焦点,P 为双曲线上一点,且 6021=∠PF F ,31221=∆F PF S .求该双曲线的标准方程.sQsAEJkW5T 9、抛物线中与焦点弦有关的一些几何图形的性质: <1)以过焦点的弦为直径的圆和准线相切;<2)设AB 为焦点弦, M 为准线与x 轴的交点,则∠AMF =∠BMF ;<3)设AB 为焦点弦,A 、B 在准线上的射影分别为A 1,B 1,若P 为A 1B 1的中点,则PA ⊥PB ;<4)若AO 的延长线交准线于C ,则BC 平行于x 轴,反之,若过B 点平行于x 轴的直线交准线于C 点,则A ,O ,C 三点共线. G MsIasNXkA 10、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB12x -,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+,TIrRGchYzg 若弦AB 所在直线方程设为x ky b =+,则AB12y y -.如<1)过抛物线y2=4x 的焦点作直线交抛物线于A<x1,y1),B<x2,y2)两点,若x1+x2=6,那么|AB|等于_______7EqZcWLZNX <2)过抛物线x y 22=焦点的直线交抛物线于A 、B 两点,已知|AB|=10,O 为坐标原点,则ΔABC 重心的横坐标为_______lzq7IGf02E 11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.在椭圆12222=+by a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-22y a x b ; 在双曲线22221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0202y a x b ;在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=py . 如<1)如果椭圆221369x y +=弦被点A<4,2)平分,那么这条弦所在的直线方程是<2)已知直线y=-x+1与椭圆22221(0)x y a b a b+=>>相交于A 、B 两点,且线段AB 的中点在直线L :x -2y=0上,则此椭圆的焦距与实轴之比为_______zvpgeqJ1hk<3)试确定m的取值范围,使得椭圆13422=+y x 上有不同的两点关于直线m x y +=4对称.特别提醒:因为0∆>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0∆>!12.你了解下列结论吗?<1)双曲线12222=-by ax 的渐近线方程为02222=-by a x ;<2)以x a b y ±=为渐近线<即与双曲线12222=-by a x 共渐近线)的双曲线方程为λλ(2222=-by a x 为参数,λ≠0).如与双曲线116922=-y x 有共同的渐近线,且过点)32,3(-的双曲线方程为_______<3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为221mx ny +=;<4)椭圆、双曲线的通径<过焦点且垂直于对称轴的弦)为22b a,焦准距<焦点到相应准线的距离)为2b c,抛物线的通径为2p ,焦准距为p ;NrpoJac3v1<5)通径是所有焦点弦<过焦点的弦)中最短的弦;<6)若抛物线22(0)y px p =>的焦点弦为AB ,1122(,),(,)A x y B x y ,则①12||AB x x p =++;②221212,4p x x y y p ==-<7)若OA 、OB 是过抛物线22(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p .13.动点轨迹方程:<1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围; <2)求轨迹方程的常用方法:①直接法:直接利用条件建立,x y 之间的关系(,)0F x y =;如已知动点P 到定点F(1,0>和直线3=x 的距离之和等于4,求P 的轨迹方程.②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数.1nowfTG4KI 如线段AB 过x 轴正半轴上一点M<m ,0))0(>m ,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为fjnFLDa5Zo ③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;如(1>由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,∠APB=600,则动点P 的轨迹方程为<2)点M 与点F(4,0>的距离比它到直线05=+x l :的距离小于1,则点M 的轨迹方程是_______(3> 一动圆与两圆⊙M :122=+y x 和⊙N :012822=+-+x y x 都外切,则动圆圆心的轨迹为④代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 代入已知曲线得要求的轨迹方程;tfnNhnE6e5如动点P 是抛物线122+=x y 上任一点,定点为)1,0(-A ,点M 分−→−PA 所成的比为2,则M 的轨迹方程为__________⑤参数法:当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将,x y 均用一中间变量<参数)表示,得参数方程,再消去参数得普通方程).HbmVN777sL 如<1)AB 是圆O 的直径,且|AB|=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹.V7l4jRB8Hs <2)若点),(11y x P 在圆122=+y x 上运动,则点),(1111y x y x Q +的轨迹方程是____<3)过抛物线y x 42=的焦点F 作直线l 交抛物线于A 、B 两点,则弦AB 的中点M 的轨迹方程是________注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.83lcPA59W9如已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F1<-c ,0)、F2<c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F1Q 与该椭圆的交点,点T 在线段F2Q 上,并且满足.0||,022≠=⋅TF TF mZkklkzaaP <1)设x 为点P 的横坐标,证明x ac a F +=||1;(2) 求点T 的轨迹C 的方程;<3)试问:在点T 的轨迹C 上,是否存在点M ,使△F1MF2的面积S=.2b 若存在,求∠F1MF2的正切值;若不存在,请说明理由.AVktR43bpw ②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.ORjBnOwcEd ③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份――对称性、利用到角公式>、“方程与函数性质”化解读几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.2MiJTy0dTT ④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率或向量”为桥梁转化.14、解读几何与向量综合时可能出现的向量内容:<1) 给出直线的方向向量()k u ,1= 或()n m u ,=;<2)给出+与AB 相交,等于已知+过AB 的中点。

高考复习指导:高考数学四大提分法宝

高考复习指导:高考数学四大提分法宝

高考复习指导:高考数学四大提分法宝法宝1打牢基础是前提很多先生惧怕数学,拿着试卷就犯晕,其实学习数学并不可怕,只需方法妥当,打破高分很容易。

马家林教员以为,无论是文科考生还是文科考生,预备高考数学时,首先要回归课本,回归基础,结实掌握课本上的数学原理、公式、符号等基础知识。

对高中数学的重点内容:函数、不等式、数列、向量与三角、导数等基础知识停止强化温习。

每一单元选一些典型的效果停止反思与点评。

法宝2打破难点是关键顺利打破数学难点,关于坚决先生学习决计,提高学习效果有着十分重要的意义。

难点局部是先生考分上下的分水岭,掌握了就轻松拥有高分,否那么就与高分无缘,因此先生应侧重针对难点重点强化训练,对知识点了然于胸。

同时,要剖析与解答典型例题,这些例题都具有一定的代表性、典型性和综合性,在剖析解答时,主要抓住解题的打破口和关键处,深化浅出,精析精解。

法宝3拓展思想来提高学数学必需要做题,但〝题海战术〞不可取,马教员以为应该留意选择效果,提高思想才干。

经过知识体系的建构,典型题型的拆分精讲,掌握一题而会做一类题,开拓发散式思想才干。

他建议先生多项选择择反映数学学科特点的标题,要针对自己的单薄环节,不做偏题、怪题,要重思想、重方法,务必做到每题弄懂弄透。

抓思想易错点,注重典型题型,有针对性地对出错缘由、习气性错误、心思要素等诸多方面停止剖析、评述,积聚阅历,彻底处置〝会而不对,对而不全,全而不美〞的效果。

法宝4吃透考点很重要针对考试,姜教员建议大家一定要研讨往年试题,研讨命题方向,预测考点。

先生要吃透考点,掌握温习难度。

留意命题变化,在前期温习阶段,所学过的主要知识点,重点、热点、考点都要仔细看待。

只要熟练掌握了这些主要考点,心中有数,笔头才干硬起来,答题也才干顺畅。

高考数学必胜秘诀在

高考数学必胜秘诀在

高考数学必胜秘诀在哪?概念、方法、题型、易误点及应试技巧总结十四、高考数学选择题的解题策略数学选择题在当今高考试卷中,不但题目多,而且占分比例高,即使今年江苏试 题的题量发生了一些变化,选择题由原来的 12题改为10题,但其分值仍占到试卷 总分的三分之一。

数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定 的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高 考成功的关键。

解答选择题的基本策略是准确、迅速。

准确是解答选择题的先决条件,选择题 不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确 推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的 答题时间,应该控制在不超过 40分钟左右,速度越快越好,高考要求每道选择题在 1〜3分钟内解完,要避免“超时失分”现象的发生。

高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多 数题的解答可用特殊的方法快速选择。

解选择题的基本思想是既要看到各类常规题 的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一 个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要 充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快 速地选择解法,以便快速智取,这是解选择题的基本策略。

A . 0B . 1C . 2D . 3解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得 都是正确的,故选 D o2 2例3、已知F 2是椭圆 —+ ^ =1的两焦点,经点F 2的的直线交椭圆于点 A 、169B,若 |AB|=5,则 |AF 1|+|BF 1| 等于( )(一)数学选择题的解题方法1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结 论再与选择支对照,从而作出选择的一种方法。

运用此种方法解题需要扎实的数学 基础。

高考数学必胜秘诀在哪4

高考数学必胜秘诀在哪4
5.等比数列的性质:
(1)各项均为正数的等比数列 中,若 ,则 (答:10)。
(2)若 是等比数列,则 、 、 成等比数列;若 成等比数列,则 、 成等比数列;若 是等比数列,且公比 ,则数列 ,…也是等比数列。当 ,且 为偶数时,数列 ,…是常数数列0,它不是等比数列.如(1)已知 且 ,设数列 满足 ,且 ,则 .(答: );(2)在等比数列 中, 为其前n项和,若 ,则 的值为______(答:40)
(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.注意:公共项仅是公共的项,其项数不一定相同,即研究 .
4.等比数列的有关概念:
(1)等比数列的判断方法:定义法 ,其中 或
。如(1)一个等比数列{ }共有 项,奇数项之积为100,偶数项之积为120,则 为____(答: );
(7)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列,故常数数列 仅是此数列既成等差数列又成等比数列的必要非充分条件。如设数列 的前 项和为 ( ),关于数列 有下列三个命题:①若 ,则 既是等差数列又是等比数列;②若 ,则 是等差数列;③若 ,则 是等比数列。这些命题中,真命题的序号是(答:②③)
(4)若 、 是等差数列,则 、 ( 、 是非零常数)、 、 ,…也成等差数列,而 成等比数列;若 是等比数列,且 ,则 是等差数列.
(5)在等差数列 中,当项数为偶数 时, ;项数为奇数 时, , (这里 即 ); 。如(1)在等差数列中,S11=22,则 =______(答:2);(2)项数为奇数的等差数列 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).
(2)等比数列的通项: 或 。

数学高考考试答题技巧.ppt

数学高考考试答题技巧.ppt

②跳步答题
❖ 解题过程卡在某一过渡环节上是常见的。这时,我们可以先 承认中间结论,往后推,看能否得到结论。如果不能,说明 这个途径不对,立即改变方向;如果能得出预期结论,就回 过头来,集中力量攻克这一“卡壳处”。
❖ 由于考试时间的限制,“卡壳处”的攻克来不及了,那么可 以把前面的写下来,再写出“证实某步之后,继续有……” 一直做到底,这就是跳步解答。
❖ 也许,后来中间步骤又想出来,这时不要乱七八糟插上去, 可补在后面,“事实上,某步可证明或演算如下”,以保持 卷面的工整。若题目有两问,第一问想不出来,可把第一问 作“已知”,“先做第二问”,这也是跳步解答。
③退步解答
❖ “以退求进”是一个重要的解题策略。如果你 不能解决所提出的问题,那么,你可以从一 般退到特殊,从抽象退到具体,从复杂退到 简单,从整体退到部分,从较强的结论退到 较弱的结论。总之,退到一个你能够解决的 问题。为了不产生“以偏概全”的误解,应 开门见山写上“本题分几种情况”。这样, 还会为寻找正确的、一般性的解法提供有意 义的启发。
❖ 5.注意上厕所。
三、浏览试卷,确定考试策略
❖ 一般提前5分钟发卷,涂卡、填密封线内 部分和座号后浏览试卷:试卷发下后,先利 用2—3分钟时间迅速把试卷浏览一遍,检查 试卷有无遗漏或差错,了解考题的难易程度、 分值等概况以及试题的数目、类型、结构、 占份比例、哪些是难题,同时根据考试时间 分配做题时间,做到心中有数,把握全局, 做题时心绪平定,得心应手。
掌握,随时巧变,不要墨守常规。
建议时间
基础较好的同学注意处理好速度和准确度的关系:
选择题30分钟,填空题15分钟,前两个解答题每题8分钟, 中间两个解答题每题10分钟,后两个解答题每题12分钟, 15分钟检查时间。

高考数学超常发挥的技巧

高考数学超常发挥的技巧

高考数学超常发挥的技巧
做”的有效措施,也从根本上防止了“漏做题”,从高考数学卷面上获取最多的信息,为实施正确的解题策略作准备,顺利解答那些一眼看得出结论的简单选择或填空题,这样可以使紧张的情绪立即稳定,使高考数学能够超常发挥。

四、信心要充足,暗示靠自己
高考数学答卷中,见到简单题,要细心,莫忘乎所以,谨防“大意失荆州”。

面对偏难的题,要耐心,不能急。

考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态。

五、数学答题有先有后
1、高考答题应先易后难,先做简单的数学题,再做复杂的数学题;根据自己的实际情况,跳过实在没有思路的高考数学题,从易到难。

2、先高分后低分,在高考数学考试的后半段时要特别注重时间,如两道题都会做,先做高分题,后做低分题,对那些拿不下来的数学难题也就是高分题应“分段得分”,以增加在时间不足前提下的得到更多的分,这样在高考中就会增加数学超常发挥的几率。

高考必胜高考数学必胜秘诀在哪――概念、方法、题型、易误点及应试

高考必胜高考数学必胜秘诀在哪――概念、方法、题型、易误点及应试
③型,通常用判别式法;如已知函数的定义域为R,值域为[0,2],求常数的值(答:)
④型,可用判别式法或均值不等式法,如求的值域(答:)
(7)不等式法――利用基本不等式求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。如设成等差数列,成等比数列,则的取值范围是____________.(答:)。
8.四种命题及其相互关系。若原命题是"若p则q",则逆命题为"若q则p";否命题为"若﹁p 则﹁q" ;逆否命题为"若﹁q 则﹁p"。提醒:(1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。但原命题与逆命题、否命题都不等价;(2)在写出一个含有"或"、"且"命题的否命题时,要注意"非或即且,非且即或";(3)要注意区别"否命题"与"命题的否定":否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定;(4)对于条件或结论是不等关系或否定式的命题,一般利用等价关系""判断其真假,这也是反证法的理论依据。(5)哪些命题宜用反证法?如(1)"在△ABC中,若∠C=900,则∠A、∠B都是锐角"的否命题为 (答:在中,若,则不都是锐角);(2)已知函数,证明方程没有负数根。
高考数学必胜秘诀在哪?
――概念、方法、题型、易误点及应试技巧总结
二、函 数
1.映射: AB的概念。在理解映射概念时要注意:⑴A中元素必须都有象且唯一;⑵B中元素不一定都有原象,但原象不一定唯一。如(1)设是集合到的映射,下列说法正确的是 A、中每一个元素在中必有象 B、中每一个元素在中必有原象 C、中每一个元素在中的原象是唯一的 D、是中所在元素的象的集合(答:A);(2)点在映射的作用下的象是,则在作用下点的原象为点________(答:(2,-1));(3)若,,,则到的映射有 个,到的映射有 个,到的函数有 个(答:81,64,81);(4)设集合,映射满足条件"对任意的,是奇数",这样的映射有____个(答:12);(5)设是集合A到集合B的映射,若B={1,2},则一定是_____(答:或{1}).

高考数学必胜秘诀在哪

高考数学必胜秘诀在哪

――概念、方法、题型、易误点及应试技巧总结二、函数1.映射f :A B 的概念。

在理解映射概念时要注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。

如(1)设f : M N 是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合(答:A );(2)点(a,b)在映射f 的作用下的象是(a b, a b),则在f 作用下点(3,1)的原象为点 _________________ (答:(2,— 1));(3)若 A {123,4} , B {a,b,c} , a,b,c R ,则 A 到 B 的映射有个,B 到A 的映射有个,A 到B 的函数有个(答:81,64,81 ); (4)设集合M { 1,0,1}, N {1,2,3,4,5},映射f : M N 满足条件“对任意的x M ,x f (x)是奇数”, 这样的映射f 有 个(答:⑵;(5)设f :x x 2是集合A 到集合B 的映射,若B={1,2},则A B 一定是 _____ (答: 或{1}).2•函数f :A B 是特殊的映射。

特殊在定义域A 和值域B 都是非空数集!据此可知函数 图像与x 轴的垂线至多有一个公共点,但与 y 轴垂线的公共点可能没有,也可能有任意个。

如(1)已知函数f(x),x F ,那么集合{( x, y) | y f (x), x F} I {( x, y) |x 1}中所含元素的 1个数有个(答:0或1);(2)若函数y -X 2 2x 4的定义域、值域都是闭区间[2,2b ],2则b =(答:2)3•同一函数的概念。

构成函数的三要素是定义域,值域和对应法则。

而值域可由定义域 和对应法则唯一确定,因此当两个函数的定义域和对应法则相同时,它们一定为同一函数 。

高考数学备考决胜八妙法

高考数学备考决胜八妙法

2019年高考数学备考决胜八妙法成也数学,败也数学。

数学、确实是不少高三考生心口的痛。

如何提高数学复习的针对性和实效性?教你一个门道,简称“三问法”:第一问自己:“学懂了没有?”—主要解决“是什么”的问题,即学了什么知识;第二问自己:“领悟了没有?”—主要解决“为什么”的问题,即用了什么方法;第三问自己:“会用了没有?”—主要解决“做什么”的问题,即解决了什么问题。

接下来再具体说说走进“门道”的八个诀窍吧。

1.认真研读《说明》《考纲》《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。

命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。

《考纲》明确指出“创新意识是理性思维的高层次表现”。

因此试题都比较新颖,活泼。

所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。

2.多维审视知识结构高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。

知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。

你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。

3.把答案盖住看例题参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。

所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

经过上面的训练,自己的思维空间扩展了,看问题也全面了。

如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。

高考数学制胜关键的六件事

高考数学制胜关键的六件事

高考数学制胜关键的六件事高考数学制胜关键的六件事数缺形时少直观,形缺数时难入微又说要打好数学基础有两个必经过程:先学习、接受由薄到厚;再消化、提炼由厚到薄。

下面课讲网的给你们带来了高考数学制胜关键的六件事供考生们参考。

高考数学制胜关键的六件事近期的心态调整和复习安排至关重要,下面从六个方面谈谈考生近期要做的工作。

1、明确方向,培养信心考前的时间非常宝贵,复习时要把重点放在对基本概念的理解和应用,坚决远离偏、难、怪题。

2、梳理知识,回归课本课本是高考试题之源,立足基础、回归课本是以不变应万变提高复习效率的基本策略。

3、查漏补缺,错题重做临近考试,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。

错题重做是查漏补缺的很好途径,这样做可以花较少的时间解决较多的问题。

4、关注综合,提炼方法数学综合题常常是高考试卷中的把关题和压轴题,目前的高考综合题已经由单纯的知识叠加型转化为知识、方法和能力的综合型,尤其是创新能力型试题是数学高考试题的精华。

5、限时训练,调整状态如果把高中三年比作一次长跑的话,那么考前几天的复习是真正的冲刺时间,这段时间千万不能消极懈怠,要有计划地进行限时训练,逐渐调整好临考状态。

限时训练的目的是总结考试时审题答题的技巧以及考场上心理的自我调节。

6、沉着应考,最佳发挥考试时可依据自己解题习惯和基本功,结合整套试题的结构,实施三先三后的战术原则:先易后难、先熟后生、先小后大。

高考数学制胜法宝揭秘对于现在进入高三复习的同学来说,高考数学仍是一个强大的障碍。

这就要求我们考生应该掌握一定的克敌制胜的法宝,其中提高效率,把握关键的要点是最重要的。

毫无目的性和效率性的复习方法不仅会浪费你的大量时间和精力还起不到很好的效果。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查,我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式,并形成记忆,形成技能,以不变应万变。

高考数学必胜秘诀 选讲系列

高考数学必胜秘诀   选讲系列

高考数学必胜秘诀(选讲系列)选修4---1 几何证明选讲一、主干知识1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

推理1 经过三角形一边的中点与另一边平行的直线必平分第三边。

推理2 经过梯形一腰的中点,且与底边平行的直线平分另一腰。

2.平分线分线段成比例定理平分线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。

推论平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3.相似三角形的判定及性质相似三角形的判定定义对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似三角形对应边的比值叫做相似比(或相似系数)。

由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。

所以我们曾经给出过如下几个判定两个三角形相似的简单方法:(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似。

预备定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。

判定定理1 对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

简述为:两角对应相等,两三角形相似。

判定定理2 对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。

简述为:两边对应成比例且夹角相等,两三角形相似。

判定定理3 对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。

简述为:三边对应成比例,两三角形相似。

引理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

定理(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。

高考数学:备考决胜八妙法

高考数学:备考决胜八妙法

2019年高考数学:备考决胜八妙法教你一个门道,简称“三问法”:第一问自己:“学懂了没有?”—主要解决“是什么”的问题,即学了什么知识;第二问自己:“领悟了没有?”—主要解决“为什么”的问题,即用了什么方法;第三问自己:“会用了没有?”—主要解决“做什么”的问题,即解决了什么问题。

接下来再具体说说走进“门道”的八个诀窍吧。

1.认真研读《说明》《考纲》《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。

命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。

《考纲》明确指出“创新意识是理性思维的高层次表现”。

因此试题都比较新颖,活泼。

所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。

2.多维审视知识结构高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。

知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。

你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。

3.把答案盖住看例题参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。

所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

经过上面的训练,自己的思维空间扩展了,看问题也全面了。

如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。

4.研究每题都考什么数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。

高三数学高考教案必胜秘诀(四)

高三数学高考教案必胜秘诀(四)

城东蜊市阳光实验学校立体几何1、三个公理和三条推论:〔1〕公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

这是判断直线在平面内的常用方法。

〔2〕公理2、假设两个平面有两个公一一共点,它们有无数个公一一共点,而且这无数个公一一共点都在同一条直线上。

这是判断几点一一共线〔证这几点是两个平面的公一一共点〕和三条直线一一共点〔证其中两条直线的交点在第三条直线上〕的方法之一。

〔3〕公理3:经过不在同一直线上的三点有且只有一个平面。

推论1:经过直线和直线外一点有且只有一个平面。

推论2:经过两条相交直线有且只有一个平面。

推论3:经过两条平行直线有且只有一个平面。

公理3和三个推论是确定平面的根据。

如〔1〕在空间四点中,三点一一共线是四点一一共面的_____条件〔答:充分非必要〕;〔2〕给出命题:①假设A∈l,A∈α,B∈l,B∈α,那么l ⊂α;②假设A∈α,A∈β,B∈α,B∈β,那么α∩β=AB ;③假设l ⊄α,A∈l,那么A ∉α④假设A 、B 、C∈α,A 、B 、C∈β,且A 、B 、C 不一一共线,那么α与β重合。

上述命题中,真命题是_____〔答:①②④〕;〔3〕长方体中ABCD-A1B1C1D1中,AB=8,BC=6,在线段BD ,A1C1上各有一点P 、Q ,在PQ 上有一点M ,且PM=MQ ,那么M 点的轨迹图形的面积为_______〔答:24〕2、直观图的画法〔斜二侧画法规那么〕:在画直观图时,要注意:〔1〕使0135x o y '''∠=,x o y '''所确定的平面表示程度平面。

〔2〕图形中平行于x 轴和z 轴的线段,在直观图中保持长度和平行性不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半。

如〔1〕用斜二测画法画一个程度放置的平面图形为如以下列图的一个正方形,那么原来图形的形状是〔〕〔答:A 〕〔2〕正ABC ∆的边长为a ,那么ABC ∆的平面直观图A B C '''∆的面积为_____2616〕 3、空间直线的位置关系:〔1〕相交直线――有且只有一个公一一共点。

四条捷径助你高考数学拿高分

四条捷径助你高考数学拿高分

四条捷径助你高考数学拿高分高分数学捷径之一少抄书多翻译文科数学的一大特色,就在于你可以通过有效的总结来代替无尽的习题。

总结并不代表一味地抄公式抄概念,而应该用自己的语言和做题经验归纳出针对自身的解题技巧,这也就是我所谓的翻译。

事实上,高三一年我花在总结上的工夫与做题相比有过之而无不及。

从总结中萃取出的一本针对性极强的翻译小册子最终成为我数学攻坚的不二法宝。

高分数学捷径之二少题海多精题偷懒的第一要任就在于减少复习的负荷量。

数学最大的负荷是永无止境的题海。

开学伊始,我便整理出一个大体的概念框架,并利用已有的做题经验对应框架进行知识点筛选,删除要求低的和已掌握的,突出重点和难点。

这样在第一轮复习大家都埋头做题之时,我便早早地跳出了题海。

省下时间只是手段,把精力花在研究精题上才是目的。

我最大限度地利用了两大类精题:一类是涵盖了多项考点的母题,一类是同一题型中频率较高的错题。

经验表明,对这两类题的反复研究和提炼大大提升了我学习数学的效率,为短期内成绩攀升打下坚实基础。

高分数学捷径之三少粗心多自信粗心大意是大家在数学学习中难以绕过的一大障碍,然而粗心只是表象,追本溯源仍是不够熟练。

不熟练并不意味一定要用题海来补救,惯于偷懒的我选择了用翻译来解决问题。

审题不细的现象背后,或许是忘了分母不能为零,或许是记不清反三角函数的定义域。

总之,导致粗心的原因无非几类,稍作总结便可悉数在握。

心态的调整亦无需花费额外的精力。

我所采取的措施是在临考一个月时找来近三年的高考试题,在规定的时间内细做一遍,并将答案写在卷上。

抄答案的过程有利于对格式和细节进行查缺补漏。

由于大多数的试题都在一轮轮复习中零星地遇到过,因而三套试卷整体感觉偏易,从而可以达到降低高考恐惧感,增强自信心的目的。

高分数学捷径之四少动手多动脑高三的任务很重,文科每天的作业量足以把手写到抽筋。

为了偷懒,我在动笔做题之前总先浏览一遍题干,遇到会做的题绝不浪费笔墨,遇到相同类型的题也只综合起来做个思路比较即可(当然前提是计算和格式能过关)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学必胜秘诀在哪4 高考数学必胜秘诀在哪?――概念、方法、题型、易误点及应试技巧总结三、数 列 1、数列的概念:数列是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应函数的解析式.如(1)已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125);(2)已知数列{}na 中,2nan n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);(3)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a nn ∈>+,则该函数的图象是ﻩ()(答:A)...文档交流 仅供参考...A BC D ...文档交流 仅供参考...2.等差数列的有关概念:(1)等差数列的判断方法:定义法1(n na a d d +-=为常数)或11(2)n nnn a a a a n +--=-≥。

(2)等差数列的通项:(1)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833d <≤)...文档交流 仅供参考...(3)等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+中,(4)等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。

提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。

只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )...文档交流 仅供参考...3.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)na a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0.如(1)等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____(答:27);(2)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则A、1210,S S S 都小于0,1112,S S 都大于0 B 、1219,S S S 都小于0,2021,S S 都大于0 C 、125,S S S 都小于0,67,S S 都大于0 D 、1220,S S S 都小于0,2122,S S 都大于0 (答:B )...文档交流 仅供参考...(4) 若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、232,,n n n n n S S S S S -- ,…也成等差数列,而{}na a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列....文档交流仅供参考...(5)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-⋅中(这里a 中即n a );:(1):奇偶S S k k =+。

如(1)在等差数列中,S 11=22,则6a =______(答:2);(2)项数为奇数的等差数列{}na 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31)....文档交流 仅供参考...(6)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()nnA f n B=,则2121(21)(21)(21)n n n n n n a n a A f n b n b B ---===--.如设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若3413-+=n n T S n n ,那么=n n b a ___________(答:6287n n --)...文档交流 仅供参考...(7)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负"的递增等差数列中,前n 项和的最小值是所有非正项之和。

法一:由不等式组⎪⎪⎭⎫ ⎝⎛⎩⎨⎧≥≤⎩⎨⎧≤≥++000011n nn na a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈.上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?(1)若{}na 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0nS >成立的最大正整数n 是 (答:4006)...文档交流 仅供参考...(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =。

...文档交流 仅供参考...4.等比数列的有关概念:(1)等比数列的判断方法:定义法1(n na q q a +=为常数),其中0,0n q a ≠≠或11n nnn aa a a +-=(2)n ≥。

如(1)一个等比数列{n a }共有21n +项,奇数项之积为100,偶数项之积为120,则1n a +为____(答:56);(2)等比数列的通项:11n naa q -=或n m n m a a q -=。

(3)等比数列的前n 和:当1q =时,1n S na =;当1q ≠时,1(1)1n n a q S q-=-11n a a q q -=-。

如(1))(1010∑∑==n nk k n C 的值为__________(答:2046);特别提醒:等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对q 分1q =和1q ≠两种情形讨论求解....文档交流 仅供参考...(4)等比中项:若,,a A b 成等比数列,那么A 叫做a 与b 的等比中项。

提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个ab ±.如已知两个正数,()a b a b ≠的等差中项为A ,等比中项为B ,则A 与B的大小关系为______(答:A 〉B)...文档交流 仅供参考...提醒:(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。

只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为…,22,,,,a a a aq aq qq…(公比为q );但偶数个数成等比时,不能设为…33,,,aq aq qa q a ,…,因公比不一定为正数,只有公比为正时才可如此设,且公比为2q 。

...文档交流 仅供参考...5。

等比数列的性质:(1)各项均为正数的等比数列{}na 中,若569a a ⋅=,则3132310log log log a a a +++= (答:10)。

(2) 若{}n a 是等比数列,则{||}n a 、*{}(,)p nq a p q N +∈、{}n ka 成等比数列;若{}{}n n a b 、成等比数列,则{}n n a b 、{}n nab成等比数列; 若{}n a 是等比数列,且公比1q ≠-,则数列232,,n n n n n S S S S S -- ,…也是等比数列。

当1q =-,且n 为偶数时,数列232,,n n n n n S S S S S -- ,…是常数数列0,它不是等比数列。

如(1)已知0a >且1a ≠,设数列{}nx 满足1log 1log an anx x +=+(*)n N ∈,且12100100x x x +++=,则101102200x x x +++= .(答:100100a );(2)在等比数列}{n a 中,n S 为其前n 项和,若140,1330101030=+=S S S S ,则20S 的值为______(答:40)...文档交流 仅供参考...(3)若10,1a q >>,则{}n a 为递增数列;若10,1a q <>, 则{}n a 为递减数列;若10,01a q ><< ,则{}n a 为递减数列;若10,01a q <<<, 则{}n a 为递增数列;若0q <,则{}n a 为摆动数列;若1q =,则{}n a 为常数列....文档交流 仅供参考...(4) 当1q ≠时,b aq qa q q a S n nn +=-+--=1111,这里0a b +=,但0,0a b ≠≠,这是等比数列前n 项和公式的一个特征,据此很容易根据n S ,判断数列{}n a 是否为等比数列。

如若{}n a 是等比数列,且3nnS r =+,则r = (答:-1)...文档交流 仅供参考...(6) 在等比数列{}n a 中,当项数为偶数2n 时,S qS =偶奇;项数为奇数21n -时,1S a qS =+奇偶。

(7)如果数列{}n a 既成等差数列又成等比数列,那么数列{}na 是非零常数数列,故常数数列{}na 仅是此数列既成等差数列又成等比数列的必要非充分条件.如设数列{}n a 的前n 项和为n S (N ∈n ), 关于数列{}n a 有下列三个命题:①若)(1N ∈=+n a a n n ,则{}n a 既是等差数列又是等比数列;②若()R ∈+=b a n b n a S n 、2,则{}n a 是等差数列;③若()nn S 11--=,则{}n a 是等比数列。

这些命题中,真命题的序号是(答:②③)...文档交流 仅供参考...6。

相关文档
最新文档