第四章-刚体的转动-问题与习题解答上课讲义
大学物理第四章 刚体的转动部分的习题及答案
![大学物理第四章 刚体的转动部分的习题及答案](https://img.taocdn.com/s3/m/89f14d2d974bcf84b9d528ea81c758f5f61f29a3.png)
第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
刚体的转动复习ppt课件
![刚体的转动复习ppt课件](https://img.taocdn.com/s3/m/3115fcd8aef8941ea76e0531.png)
刚体的转动复 习
第四章 刚体的转动 习题课
[例2] 一个质量为M、半径为R的定滑轮 (当作均匀圆盘)上面绕有细绳,绳的一端 固定在滑轮边上,另一端挂一质量为m的物 体而下垂。忽略轴处摩擦,求物体m由静止 下落高度h时的速度和此时滑轮的角速度。
1 2 解: 对 M : TR = J J = MR
解
m ( R r ) a g r A 2 2 m ( R r ) J
FT
FTA
r
R
m ( R r ) a g R B 2 2 m ( R r ) J
J mR ( 2 R r ) F m g T 2 2 A J mR ( r) J mr ( 2 R r ) F m g T 2 2 B J mR ( r)
F TB
G F a A T A'
mg
A
F TB'
aB
mg
8/37
B
求(1)定滑轮的角加速度; (2)定滑轮的角速度变化到 物体上升的高度;
0时,
m0
R
(3)当物体回到原来位置时,定滑轮的
角速度。
m
第四章 刚体的转动 习题课 解: 由题意,列出方程组如下
m0
R
(1)
mg T ma 1 2 TR m 0R 2
m
aR
81 . 7 rad s 解得: a 方向是垂直纸面向外。
物体上升的高度
m
2
h R 6 . 12 10 m
2
(3)当物体回到原来位置时,定滑轮的角速度:
2
2 10 . 0 red s
第四部分刚体的转动教学-
![第四部分刚体的转动教学-](https://img.taocdn.com/s3/m/8462646ea8956bec0975e3cd.png)
y
y
dA
x
dy
hy
x
O
Q
O
解 设水深h,坝长L,在坝面上取面积元 dA Ldy
作用在此面积元上的力
dFpdApLdy
h100m
L1000m
y
令大气压为 p 0 ,则
pp0g(hy) h y
d F [p 0 g (h y)]L d y O
dA dy
x
F 0 h [p 0g (h y )]L d yp 0 L h 1 2g L h 2
解 (1)0 5πrads1, t = 30 s 时, 0.
设 t = 0 s 时, 0 0 .飞轮做匀减速运动
0 0 5 π ra d s 1 π ra d s 2
t 3 0
6
飞轮 30 s 内转过的角度
22 0 22 ((5 π π)26)75πrad
mB B
FT1
FT2
mAmBg mA mB
(2) B由静止出发作匀加速直线运动,下落的速率
v 2ay
2mBgy
mAmBmC/2
(3) 考虑滑轮与轴承间的摩
擦力矩 M f ,转动定律
RF T2RF T1M f J
F T1
结合(1)中其它方程
Mf
F T2
FT 1mAa
m BgF T2 m Ba
NmR 784N
0
解:飞轮匀减速制动时有角加速度
0
t
01000r/m in2000/60104.7rad/s
0 t5s 0020.9rad/s2
t
fr
N
外力矩是摩擦阻力矩,
角加速度为负值。
刚体的转动习题课解读
![刚体的转动习题课解读](https://img.taocdn.com/s3/m/c34d2609453610661ed9f492.png)
L J 常量
合外力矩为零的两种常见情况: 力通过转轴; 力平行于转轴。
第四章 习题课
4
物理学
第五版
4、刚体转动的动能原理
1 2 1 2 W M d J2 J1 2 2
力矩的功
W M d
刚体定轴转动动能
1 2 J 2
第四章 习题课
J1 J 2 m1R 2 m1Rr FT2 m2 g 2 2 J1 J 2 m1R m2 r
第四章 习题课
13
物理学
第五版
例4 A与B两飞轮的轴杆可由摩擦啮合器使之连 接,A轮的转动惯量J1=10.0kg.m2,开始时B轮静止,A 轮以n1=600r.min-1的转速转动,然后使A与B连接,因 而B轮得到加速而A轮减速,直到两轮的转速都等于 n=200r.min-1为止.求(1)B轮的转动惯量;(2)在啮合过 程中损失的机械能.
l l0 m
v
v0
m′
第四章 习题课
23
物理学
第五版
解:子弹射入滑块瞬间,属完全非弹性碰撞,由 动量守恒得 v l
mv0 m mv1
l0 m
滑块、子弹、弹簧组成的 系统机械能守恒
m′ v0
1 1 1 2 2 2 m m v1 m m v k l l0 2 2 2
以环和小球组成的系统ab过程中对轴的角动量守以环小球和地球组成的系统ab过程中机械能守恒mgrmvmr第四章习题课物理学第五版18由于总的转动惯量不变用同样的方法可得环的角速度和小球相对于环的速度分别为gr第四章习题课物理学第五版19为使运行中飞船停止绕中心轴转动一种可能方案是将质量均为m的两质点ab用长为的两根轻线系于圆盘状飞船的直径两端开始时轻线拉紧两质点靠在圆盘的边缘圆盘与质点一起以角速度转动割断质点与飞船的连线为使此时的飞船正好停止转动连线应取何长度
第四章_刚体的转动部分习题分析与解答
![第四章_刚体的转动部分习题分析与解答](https://img.taocdn.com/s3/m/ed781795eefdc8d376ee32f8.png)
h 1 at2
(4)
2
联合式(1)、(2)、(3)、(4)可解得飞轮的转动惯量为
J mR 2 ( gt2 1) 2h
解2 设根据系统的机械能守恒定律,有
mgh 1 mv2 1 J2 0
(1' )
2
2
线速度和角速度的关系为
v R
(2' )
根据重物作匀加速运动时,有
v at
(3' )
v2 2ah
a1 a2
J1 J1
m1R m2r Jm2 1Rm1Rm22r m2r 2 J2 m1R 2 m2r 2
gR gr
FT1
J1 J1
J2 J2
m2r2 m2Rr m1R 2 m2r2
m1g
FT 2
J1 J2 m1r2 m1Rr J1 J2 m1R 2 m2r2
m2g
4-12 如图示装置,定滑轮半径为r,绕转轴的转动惯量为J,滑 轮两边分别悬挂质量为m1和m2的物体A、B。A置于倾角为θ斜 面上,它和斜面间的摩擦因数为μ。若B向下作加速运动时,求 (1)其下落加速度的大小;(2)滑轮两边绳子的张力。(设 绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑)
整个矩形板对该轴的转动惯量为
J
a/2
dJ
b / 2 (x 2 y2 )dxdy
a / 2 b / 2
1 ab(a 2 b2 ) 12
4-11 质量为m1和m2的两物体A、B分别悬挂在如图所示的组合 轮两端。设两轮的半径分别为R和r,两轮ab的(转a 2动惯b量2分) 别为J1 和J2,轮与轴承间、绳索与轮间的摩1擦2力均略去不计,绳的质 量也略去不计。试求两物体的加速度和强绳的张力。
第四章 刚体转动 fhfdtgj解析
![第四章 刚体转动 fhfdtgj解析](https://img.taocdn.com/s3/m/940570b6856a561252d36f87.png)
过多少转?
解:(1) 先求 ~ t 关系 由题意,令 ct,即 d ct,积分
dt
t
d c tdt
得 1 ct 2
0
0
2
当t=300s 时
18000 r min 1 600 π rad s1
所以
c
2
t2
2 600π 3002
0.105 m s2
an r2 0.2 (4 )2 m s2 31.6m s1
4 – 1 刚例体2 的在定高轴速转旋动转的微型电机里,有第一四章圆刚柱体形的转转子动可
绕垂直其横截面通过中心的轴转动 . 开始时,它的角速
度 0 0,经300s 后,其转速达到 18000r·min-1 . 已知转
解 (1)0 5π rad s1, t = 30 s 时, 0.
设 t = 0 s 时,0 0 .飞轮做匀减速运动
0 0 5π rad s1 π rad s2
t
30
6
飞轮 30 s 内转过的角度
2
2 0
(5π )2
75π rad
2 2 (π 6)
4 – 1 刚体的定轴转动
z (t)
x
角位移
(t t) (t)
角速度矢量
lim d
t t0 dt
方向: 右手螺旋方向
转动平面
参考方向
4 刚– 1体刚定体轴的转定动轴(转一动维转动)
的转动方向可以用角速度的
正负来表示 . 角加速度
d
dt
第z四章 z 刚体的转动
>0 <0
定轴转动的特点
1) 2)
每一质点均作圆周运动,圆面为转动平面;
第四章 刚体转动解析
![第四章 刚体转动解析](https://img.taocdn.com/s3/m/3528cb32ec3a87c24028c4d8.png)
第四章 刚体的转动
4-1 刚体的定轴转动
4 §– 14.刚1体刚的体定定轴轴转转动动
第四章 刚体的转动
刚体:a. 在外力作用下,形状和大小都不发生变化的 物体(考虑大小、形状,忽略形变)
b. 任意两质点间距离保持不变的质点组
说明:⑴ 刚体是理想模型 ⑵ 刚体模型是为简化问题引进的.
v,
a
不同;
3) 运动描述仅需一个坐标 .
4 ➢–
1 刚刚体体的定定轴轴转转动动的角量描述:
角坐标 (t)
角位移 (t t)
(t)
第四章
刚体的转动
角速度 lim d
t t0 dt
角加速度 d
dt
方向:沿转轴,右手螺旋法则,习惯上取为正方向
方向:沿转轴, 与 同向为正,反之为负
质量为体分布时, dm dV
、、分别为质量的线密度、面密度和体密度。
4 – 1 刚体的定轴转动
第四章 刚体的转动
例1 长 l、质量m 的均匀细棒绕垂直轴的转动惯量。
解: 取一小段 dx ,则 dm dx m dx J r 2dm l
轴位于端点A:
JA
l x2 m dx 1 ml2
0l
J mi ri2 m1r12 m2r22
i
(2)质量连续分布刚体的转动惯量
r
dm
O
J miri2 r2dm i
r 质量元:dm 转动半径:
4
–➢1
刚体的定轴转动
连续分布刚体转动惯量的计算:J
第四r章2dm刚体的转动
dl
ds
线分布
面分布
体分布
质量为线分布时,dm dl
大学物理 第四章 刚体转动习题课教案
![大学物理 第四章 刚体转动习题课教案](https://img.taocdn.com/s3/m/c2f8a7b969dc5022aaea000e.png)
m 2 2 J 2 mR xR 2 πR
O
R
x
2、图示系统,弹簧劲度系数K,质量m1的物体置于光 滑水平面上,定滑轮半径为r,转动惯量为J,开始 时系统静止,弹簧无伸长,求物体m2由静止开始到下 降距离为h时的速度大小。
解 方法一 用牛顿定律和刚体转动定律求解
由牛顿定律
FT1 ky m1 a
(A) 增大 √ (B) 减小 (C) 不变 (D) 不能确定。
4、一匀质细棒长为L ,质量为m1可绕通过端点与棒垂 直的轴在水平面上转动,如图所示棒与桌面之间的摩 擦因数为μ,转轴摩擦不计,今有一子弹质量为m2, 以速率v沿水平路径垂直射穿棒的一端,子弹穿出棒 时的速率为v/2,求在棒和桌面之间的摩擦力作用下, 棒经多长时间停止转动?这段时间内棒的角位移是多 少?
思考题
2 如图所示一匀质细杆质量为m 、长为l,绕通 过杆一端并与杆成θ 角的轴的转动惯量为( )
(A)
1 2 ml 3
1 2 (B) ml 12
(D)
1 2 (C) ml sin 2 √ 3
1 2 ml cos2 2
3 一个绕固定水平轴O作匀速转动的转盘,如图所示,在同 一水平直线上,从相反方向射入两颗质量相同、速率相同的 子弹。 且子弹留在圆盘中,则子弹入射后,转盘的角速度 为( )
m2 v t m1 gFra bibliotek21 J 2 2
③
Mdt J J
2 3m 2 v 2
4m12 gl
作业
预习 第五章
讨论
(1)系统动量不守恒 (2)系统对定轴O的角动量守恒
三条守恒定律小结: 1)动量守恒: 条件: F 0 结果: P1 P2 2)机械能守恒:条件:A A 0 结果: E1 E2
大学物理习题册及解答(第二版)第四章 刚体的定轴转动[优质ppt]
![大学物理习题册及解答(第二版)第四章 刚体的定轴转动[优质ppt]](https://img.taocdn.com/s3/m/5019158969dc5022abea0019.png)
2
4.一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端 分别悬有质量为m1和m2的物体(m1 >m2).绳与轮之间无相对滑 动.若某时刻滑轮沿逆时针方向转动,则绳中的张力
(A) 处处相等.
(B) 左边大于右边.
(C) 右边大于左边. (D) 哪边大无法判断.
5.将细绳绕在一个具有水平光滑轴的飞轮边缘上,在绳端挂一质 量为m的重物,飞轮的角加速度为.如果以拉力2mg代替重物拉 绳时,飞轮的角加速度将
(B)取决于刚体的质量和质量的空间分布,与轴的位置
(C)取决于刚体的质量、质量的空间分布和轴的位置. (D)只取决于转轴的位置,与刚体的质量和质量的空间
3. 一根绳子绕在半径为30 cm的轮子上.当轮子由初速度2.0 rad/s 匀减速到静止,绳子在轮上的长度为25 m.轮子的加速度和轮子 转过的周数为
一.选择题 章刚体定轴转动(一)
1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几 个力的矢量和为零,则此刚体 2(.A关)必于然刚不体会对转轴动的.转(动B)惯转量速,必下然列不说变法.中正确的是 ((CA))转只速取必决然于改刚变体.的(D质)转量速,可与能质不量变的,空也间可分能布改和变轴.的位
上环可以自由在纸面内外摆动。求此时圆环摆的转动惯量。 O
(*)(3)求两种小摆动的周期。哪种摆动的周期较长?
R C
解:(1)圆环放在刀口上O,以环中 心的平衡位置C点的为坐标原点。Z轴
Jzc MR2
O
P
ŷ
P΄
x
指向读者。圆环绕Z轴的转动惯量为
J
J0
.
动量矩守恒的条件是 刚体所受对轴的合外力矩等于零. .
5.一均匀细直棒,可绕通过其一端的光滑固定轴在竖直平面内转 动.使棒从水平位置自由下摆,棒是否作匀角加速转动? __否__.理由是在棒的自由下摆过程中,转动惯量不变,但使棒下摆
大学物理第四章-刚体的转动-习题及答案
![大学物理第四章-刚体的转动-习题及答案](https://img.taocdn.com/s3/m/672e8030580216fc700afdbf.png)
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩
为
dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I
而
I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24
第四章-刚体的转动-问题与习题解答
![第四章-刚体的转动-问题与习题解答](https://img.taocdn.com/s3/m/a199989728ea81c758f5785a.png)
第四章 刚体的转动 问题与习题解答问题:4-2、4-5、4-94-2如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零? 答:一个刚体所受合外力为零,其合力矩不一定为零,如图a 所示。
刚体所受合外力矩为零,其合外力不一定为零,例如图b 所示情形。
4-5为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能的改变只与外力矩有关,而与内力矩无关? 答:因为合外力对质点所作的功,等于质点动能的增量;而质点系中内力一般也做功,故内力对质点系的动能的增量有贡献。
而在刚体作定轴转动时,任何一对内力对转轴的力矩皆为一对大小相等、方向相反的力矩,且因定轴转动时刚体转过的角度d θ都一样,故其一对内力矩所作的功()0inij ij ji ij ji W M d M d M M d θθθ=+=+=,其内力功总和也为零,因而根据刚体定轴转动的动能定理可知:内力矩对其转动动能的增量无贡献。
4-9一人坐在角速度为0ω的转台上,手持一个旋转的飞轮,其转轴垂直地面,角速度为ω'。
如果突然使飞轮的转轴倒转,将会发生什么情况?设转台和人的转动惯量为J ,飞轮的转动惯量为J '。
答:(假设人坐在转台中央,且飞轮的转轴与转台的转轴重合)视转台、人和飞轮为同一系统。
(1)如开始时飞轮的转向与转台相同,则系统相对于中心轴的角动量为:10L J J ωω''=+飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的角动量为:21L J J ωω''=-在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''-=+即 102J Jωωω''=+,转台的转速变大了。
(2)如开始时飞轮的转向与转台相反,则系统相对于中心轴的角动量为:10L J J ωω''=-飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的F 1F 3ab角动量为:21L J J ωω''=+在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''+=-即 102J Jωωω''=-,转台的转速变慢了。
大学物理第四章习题及答案
![大学物理第四章习题及答案](https://img.taocdn.com/s3/m/99bfab200a4c2e3f5727a5e9856a561252d321e7.png)
第四章 刚体的转动4-1 一汽车发动机曲轴的转速在12s 内由3102.1⨯r.min -1增加到3107.2⨯r.min -1。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转? 解:曲轴做匀变速转动。
(1)角速度n πω2=,根据角速度的定义dtd ωα=,则有:()=-=-=tn n t002πωωα13.1rad.s -2 (2)发动机曲轴转过的角度为t t t 221020ωωαωθ+=+=()t n n 0+=π在12秒内曲轴转过的圈数为 N 390220=+==t n n πθ圈。
4-2 一半径为0.25米的砂轮在电动机驱动下,以每分钟1800转的转速绕定轴作逆时针转动,现关闭电源,砂轮均匀地减速,15秒钟后停止转动.求(1)砂轮的角加速度;(2)关闭电源后10=t s 时砂轮的角速度,以及此时砂轮边缘上一点的速度和加速度大小.解:(1)4.1886060180020==⨯=ππω rad.s 1- 57.12415600=-=-=πα rad.s 2- (2)7.621057.124.1880=⨯-=+=t αωω rad.s 1-7.1525.07.62=⨯==r v ω m.s 1-14.3-==αr a t m.s 2- , 9872==ωr a n m. s 2-98822=+=n t a a a m. s 2-.4-3如图,质量201=m kg 的实心圆柱体A 其半径为20=r cm ,可以绕其固定水平轴转动,阻力忽略不计,一条轻绳绕在圆柱体上,另一端系一个质量102=m kg 的物体B ,求:(1)物体B 下落的加速度;(2)绳的张力T F 。
解: (1) 对实心圆柱体A ,利用转动定律αα2121r m J r F T == ——①对物体B ,利用牛顿定律a m F g m T 22=- ——② 有角量与线量之间的关系 αr a = 解得:9.422212=+=m m g m a m ·s -2(2)由②得 492)(2121=+=-=g m m m m a g m F T N4—3题图4-4如图,一定滑轮两端分别悬挂质量都是m 的物块A 和B ,图中R 和r ,已知滑轮的转动惯量为J ,求A 、B 两物体的加速度及滑轮的角加速度(列出方程即可)。
《物理学基本教程》课后答案_第四章__刚体的转动
![《物理学基本教程》课后答案_第四章__刚体的转动](https://img.taocdn.com/s3/m/6a73ebf526fff705cc170a70.png)
第五章 刚体的转动5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律T1aF ’T1m m g(a) (b)图5-13ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 、5-1 一个匀质圆盘由静止开始以恒定角加速度绕过中心而垂直于盘面的定轴转动.在某一时刻,转速为10 r/s ,再转60转后,转速变为15 r/s ,试计算:(1)角加速度;(2)由静止达到10 r/s 所需时间;(3)由静止到10 r/s 时圆盘所转的圈数.分析 绕定轴转动的刚体中所有质点都绕轴线作圆周运动,并具有相同的角位移、角速度和角加速度,因此描述运动状态的物理量与作圆周运动的质点的相似.当角加速度恒定时,绕定轴转动的刚体用角量表示的运动学公式与匀加速直线运动的公式类似.解 (1) 根据题意,转速由rad/s 1021⨯=πω变为rad/s 1522⨯=πω期间的角位移rad 260πθ⨯=,则角加速度为22222122rad/s 54.6rad/s 2602)102()152(2=⨯⨯⨯-⨯=-=πππθωωα (2) 从静止到转速为rad/s 1021⨯=πω所需时间为s 9.61s 54.61021=⨯==παωt (3) t 时间内转的圈数为48261.91022122121=⨯⨯⨯===ππωππθt N 5-2 唱片在转盘上匀速转动,转速为78 r/min ,由开始到结束唱针距转轴分别为15 cm 和7.5 cm ,(1)求这两处的线速度和法向加速度;(2)在电动机断电以后,转盘在15 s 内停止转动,求它的角加速度及转过的圈数.分析 绕定轴转动的刚体中所有质点具有相同的角位移、角速度和角加速度,但是线速度、切向加速度和法向加速度等线量则与各质点到转轴的距离有关.角量与线量的关系与质点圆周运动的相似.解 (1) 转盘角速度为rad/s 8.17rad/s 60278=⨯=πω,唱片上m 15.01=r 和m 075.02=r 处的线速度和法向加速度分别为m/s 1.23m/s 15.017.811=⨯==r ωv222121n m/s 10.0m/s 15.017.8=⨯==r ωam/s .6130m/s 075.017.822=⨯==r ωv222222n m/s .015m/s 075.017.8=⨯==r ωa(2) 电动机断电后,角加速度为22rad/s 545.0rad/s 1517.800-=-=-=t ωα 转的圈数为 75.921517.8212212=⨯⨯===πωππθt N 5-3 如图5-3所示,半径r 1 = 30 cm 的A 轮通过皮带被半径为r 2 = 75 cm 的B 轮带动,B 轮以π rad/s 的匀角加速度由静止起动,轮与皮带间无滑动发生,试求A 轮达到3000 r/min 所需要的时间. 分析 轮与皮带间无滑动,则同一时刻,两轮边缘的线速度相同,均等于皮带的传送速度;两轮边缘的切向加速度也相同,均等于皮带的加速度.解 设A 、B 轮的角加速度分别为A α、B α,由于两轮边缘与皮带连动,切向加速度相同,即2B 1A r r αα=则 B 12A ααr r = A 轮角速度达到rad/s 6030002⨯=πω所需要的时间为 s 40s 75.06030.0300022B 1A =⨯⨯⨯⨯===ππαωαωr r tB A r 1 r 2图5-35-4 在边长为b 的正方形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中一质点A ,平行于对角线BD 的转轴,如图5-4所示.(2)通过A 垂直于质点所在平面的转轴.分析 由若干质点组成的质点系对某转轴的转动惯量等于各质点对该转轴转动惯量的叠加.每一质点对转轴的转动惯量等于它的质量与其到转轴的垂直距离平方的乘积. 解 (1)因质点B 和D 到转轴的垂直距离A 2B 和A 1D 为a 22,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 点平行于BD 的转轴的转动惯量为()222132222ma am a m J =+⎪⎪⎭⎫ ⎝⎛=(2) 因质点B 和D 到转轴的垂直距离AB 和AD 为a ,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 垂于质点所在平面转轴的转动惯量为()2222422ma a m ma J =+=5-5 求半径为R ,质量为m 的均匀半圆环相对于图5-5中所示轴线的转动惯量.分析 如果刚体的质量连续分布在一细线上,可用质量线密度描述其分布情况,如果分布是均匀的,则质量线密度λ为常量.在刚体上取一小段线元l d ,质量为l d λ,对转轴的转动惯量为l r d 2λ,其中该线元AA 2B图5-4R图5-5到转轴的距离r 与线元在刚体上的位置有关.整个刚体的转动惯量就是刚体上所有线元转动惯量的总和,即所取线元的转动惯量对刚体分布的整个区域积分的结果.解 均匀半圆环的质量线密度为Rm πλ=,在半圆环上取一小段圆弧作为线元θd d R l =,质量为 θπθπλd d d d m R R m l m === 此线元到转轴的距离为θsin R r =,对轴线的转动惯量为m r d 2,则整个半圆环的转动惯量为2022221d sin d mR m R m r J =⋅==⎰⎰θπθπ 5-6 一轻绳跨过滑轮悬有质量不等的二物体A 、B ,如图5-6(a)所示,滑轮半径为20 cm ,转动惯量等于2m kg 50⋅,滑轮与轴间的摩擦力矩为m N 198⋅.,绳与滑轮间无相对滑动,若滑轮的角加速度为2rad/s 362.,求滑轮两边绳中张力之差. 分析 由于定轴转动的刚体的运动规律遵从转动定律,因此对于一个定轴转动的滑轮来说,仅当其质量可以忽略,转动惯量为零,滑轮加速转动时跨越滑轮的轻绳两边的张力才相等.这就是在质点动力学问题中通常采用的简化假设.在掌握了转动定律后,不应该再忽略滑轮质量,通常将滑轮考虑为质量均匀分布的圆盘,则跨越滑轮的轻绳两边的张力对转轴的合力矩是滑轮产生角加速度的原因.解 滑轮所受力和力矩如图5-6(b)所示,其中跨越滑轮的轻绳两边的张力分别为F T1和F T2,轴的支承力F N 不产生力矩,由转动定律可得fF T1 F T2(a) (b)图5-6αJ M R F F =--f T2T1)()(1f T2T1M J RF F +=-α N 101.08N )1.9836.250(2.01 3⨯=+⨯⨯= 5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7由于物体的加速度等于滑轮边缘的线速度,则αR a =,与以上各式联立解得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 5-8 飞轮质量为60 kg ,半径为0.25 m ,当转速为1000 r/min 时,要在5 s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图5-8所示.分析 制动力F 作用在闸杆上,闸杆在制动力和飞轮的正压力的力矩作用下达到平衡,转动轴在墙上,这是刚体在力矩作用下的平衡问题.由于二力的力臂已知,应该求出闸杆与飞轮之间的正压力.飞轮受到闸杆的正压力、闸瓦与飞轮间摩擦力和轴的支承力作用,其中闸杆的正压力和轴的支承力的力矩为零,在闸瓦与飞轮间摩擦力的力矩作用下制动,应用转动定律可以求出摩擦力矩,然后由摩擦力与正压力关系可以求出闸杆与飞轮之间的正压力.F图5-8解 以飞轮为研究对象,飞轮的转动惯量为221mR J =,制动前角速度为rad/s 6010002⨯=πω,制动时角加速度为tωα-=.制动时闸瓦对飞轮的压力为F N ,闸瓦与飞轮间的摩擦力N f F F μ=,应用转动定律,得αα2f 21mR J R F ==- 则 t mR F μω2N =以闸杆为研究对象.在制动力F 和飞轮对闸瓦的压力-F N 的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为m )75.050.0(+=l 和m 50.01=l ,则有01N =-l F FlN 157N 6054.021000225.06075.050.050.021N 1=⨯⨯⨯⨯⨯⨯⨯+===πμωt mR l l F l l F 5-9 一风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力作的功为44.4 J ,求风扇的转动惯量和摩擦力矩.分析 合外力矩对刚体所作的功等于刚体的转动动能的增量.制动过程中风扇只受摩擦力矩作用,而且由于风扇均匀减速,表明摩擦力矩为恒定值,与风扇角位移的乘积就是所作的功.解 设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移N πθ2=,摩擦力矩所作的功为N M M W πθ2⋅-=-=摩擦力矩所作的功应等于风扇转动动能的增量,即2210ωJ W -= 则 2222m kg 01.0m kg )60/2900()4.44(22⋅=⋅⨯-⨯-=-=πωWJ m N 0.0942m N 7524.442⋅=⋅⨯--=-=ππN W M5-10 如图5-10(a )所示,质量为24 kg 的鼓形轮,可绕水平轴转动,一绳缠绕于轮上,另一端通过质量为5 kg 的圆盘形滑轮悬有10 kg 的物体,当重物由静止开始下降了0.5 m 时,求:(1)物体的速度;(2)绳中张力.设绳与滑轮间无相对滑动.分析 这也是一个质点动力学和刚体动力学的综合问题,鼓形轮和滑轮都视为圆盘形定轴转动的刚体,应该采用隔离物体法,分别对运动物体作受力分析,对刚体作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 各物体受力情况如图5-10(b )所示,其中F T1= F ’T1,F T2= F ’T2,鼓形轮的转动惯量为2121R m ,圆盘形滑轮的转动惯量为2221r m ,分别应用牛顿第二定律和转动定律,可得ma F mg =-T2222T1T221)(αr m r F F =- 121T121αR m R F = (1) 绳与滑轮间无相对滑动,物体的加速度等于鼓形轮和滑轮边缘的切向加速度,即12ααR r a ==.重物由静止开始下降了h = 0.5 m 时,速度ah 2=v ,由以上各式得αT1 F 2α ’T2 a F T2m g(a ) (b )图5-10m/s 2m/s )524(21105.08.9102)(212221=+⨯+⨯⨯⨯=++==m m m mgh ah v (2)绳中张力为N 48N 5241028.924102211T1=++⨯⨯⨯=++=m m m g mm F N 85N 5241028.9)524(102)(2121T2=++⨯⨯+⨯=+++=m m m g m m m F 5-11 一蒸汽机的圆盘形飞轮质量为200 kg ,半径为1 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5 min 内停下来,求在此期间飞轮轴上的平均摩擦力矩及此力矩所作的功.分析 制动过程中飞轮只受摩擦力矩作用,该摩擦力矩不一定为恒定值,但是由于只需求平均摩擦力矩,因此可以假设飞轮均匀减速,由已知条件求出平均角加速度,再应用转动定律求出平均摩擦力矩.解 飞轮转动惯量为221mR J =,关闭蒸汽阀门后t = 5 min 内的平均角加速度为t00ωα-=,应用转动定律,平均摩擦力矩 m N 194m N 60560/212012002121202⋅-=⋅⨯⨯⨯⨯⨯-=-==.t mR J M πωα 在此期间平均摩擦力矩所作的功等于飞轮转动动能的增量J 7896J )60/2120(12002121 21212102220220-=⨯⨯⨯⨯⨯-=⋅-=-=πωωm R J W 负号表示平均摩擦力矩作负功,方向与飞轮旋转方向相反.5-12 长为85 cm 的均匀细杆,放在倾角为45°的光滑斜面上,可以绕过上端点的轴在斜面上转动,如图5-12(a)所示,要使此杆实现绕轴转动一周,至少应给予它的下端多大的初速度?分析 细杆在斜面上转动,斜面的支承力与转轴平行,转轴的支承力通过转轴,它们的力矩都为零,只有重力在转动平面内分量的力矩作功.解 如图5-12(b)所示,杆所受重力在转动平面内的分量为︒45sin mg ,当杆与初始位置的夹角为θ时,重力分量对转轴的力矩为θsin 2145sin l mg ⋅︒,此时若杆有角位移θd ,则重力矩所作的元功为θθd sin 2145sin d ⋅⋅︒=l mg W 杆从最低位置到最高位置重力矩所作的功为︒-=⋅⋅︒-==⎰⎰45sin d sin 2145sin d 0mgl l mg W W πθθ 重力矩所作的功等于此期间杆的转动动能的增量2021045sin ωJ mgl -=︒- 其中231ml J =,t00v =ω,则 m/s 5.94m/s 45sin 85.08.9645sin 60=︒⨯⨯⨯=︒=gl v5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.v 0 ︒45 (a) (b) 图5-12分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能T1aF ’T1m m g(a) (b)图5-13的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-14 圆盘形飞轮A 质量为m ,半径为r ,最初以角速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静止,如图5-14所示,两飞轮啮合后,以同一角速度ω转动,求ω及啮合过程中机械能的损失.分析 当物体系统所受的合外力矩为零时,系统的角动量守恒,在此过程中,由于相互作用的内力作功,机械能一般不守恒.解 以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有ωωω2202)2(4212121r m mr mr += 得 0171ωω= 初始机械能为2022021412121ωωmr mr W =⋅= 啮合后机械能为2022222241171)2(421212121ωωωmr r m mr W =⋅+⋅= 则机械能损失为1202211716411716W mr W W W ==-=∆ω 5-15 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略A图5-14不计,人的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.分析 应用角动量守恒定律,必须考虑定律的适用条件,即合外力矩为零.此外还应该注意到,定律表达式中的角动量和角速度都必须是对同一惯性参考系选取的,而转动参考系不是惯性参考系.解 以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0=+v mR J ω 人和转台的转动惯量为221021R m R m J '+'=,代入上式后得 Rm m '-=6v ω 人的线速度 mm R '-=='6v v ω 其中负号表示转台角速度转向和人的线速度方向与假设方向相反.5-16 一人站立在转台上,两臂平举,两手各握一个m = 4 kg 的哑铃,哑铃距转台轴r 0 = 0.8 m ,起初,转台以ω0 = 2π rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r = 0.2 m ,设人与转台的转动惯量不变,且J = 52m kg ⋅,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?分析 角动量守恒定律是从定轴转动的刚体导出的,却不但适用与刚体,而且适用于绕定轴转动的任意物体和物体系统.解 以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有ωω)2()2(2020mr J mr J +=+rad/s 12.0rad/s 22.04258.042522220220=⨯⨯⨯+⨯⨯+=++=πωωmr J mr J 动能的增量为J183 J )2()8.0425(21J 12)2.0425(21 )2(21)2(2122222020220=⨯⨯⨯+⨯-⨯⨯⨯+⨯=+-+=-=∆πωωmr J mr J W W W 5-17 证明刚体中任意两质点相互作用力所作之功的和为零.如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,试证明它的机械能守恒.分析 在刚体动力学中有很多涉及重力矩作功的问题,如果能证明当只有重力矩作功时刚体和地球组成的系统机械能守恒,就能应用机械能守恒定律,而且还可以用刚体的质心的势能代替整个刚体中所有质点势能的总和,使求解过程大大简化. 证 刚体中任意两质点相互作用力沿转轴方向的分量对定轴转动不起作用,而在垂直于转轴的平面内的分量F 和-F 大小相等,方向相反,作用在一条直线上,如图5-17所示.设F 与转轴的垂直距离为ϕsin r ,则当刚体有微小角位移θd 时,力F 所作的功为θϕd sin Fr ,而其反作用力-F 所作的功为θϕd sin Fr -,二者之和为零,即刚体中任意两质点相互作用力所作之功的和为零.绕定轴转动的刚体除受到轴的支承力外仅受重力作用,刚体中任意质点则受到内力和重力作用,当刚体转动时,因为已经证明了任意两质点相互作用内力所作之功的和为零,则刚体中各质点相互作用力所作的总功为零,而且轴的支承力-F图5-17也不作功,就只有重力作功,因此机械能守恒.5-18 一块长m 50.0=L ,质量为m '=3.0 kg 的均匀薄木板竖直悬挂,可绕通过其上端的水平轴无摩擦地自由转动,质量m =0.1kg 的球以水平速度m/s 500=v 击中木板中心后又以速度m/s 10=v 反弹回去,求木板摆动可达到的最大角度.木板对于通过其上端轴的转动惯量为231L m J '= . 分析 质点的碰撞问题通常应用动量守恒定律求解,有刚体参与的碰撞问题则通常应用角动量守恒定律求解.质点对一点的角动量在第四章中已经讨论过,当质点作直线运动时,其角动量的大小是质点动量和该点到质点运动直线的垂直距离的乘积.解 对球和木板组成的系统,在碰撞瞬间,重力对转轴的力矩为零,且无其他外力矩作用,系统角动量守恒,碰撞前后球对转轴的角动量分别为021v mL 和v mL 21-,设碰后木板角速度为ω,则有 ωJ mL mL +-=v v 21210 设木板摆动可达到的最大角度为θ,如图5-18所示,木板摆动过程中只有重力矩作功,重力矩所作的功应等于木板转动动能的增量,即)1(cos 21d sin 2121002-'=⋅'-=-⎰θθθωθgL m L g m J (1) 由以上两式得388.050.08.90.34)1050(1.0314)(31cos 2222202=⨯⨯⨯+⨯⨯-='+-=gL m m v v θ ︒==19.67)388.0arccos(θ根据5-17的结果,由于木板在碰撞后除受到轴的支承力外仅受重力作用,v mm ’g图5-18它的机械能守恒,取木板最低位置为重力势能零点,达到最高位置时它的重力势能应等于碰撞后瞬间的转动动能,也可以得到(1)式.5-19 半径为R 质量为m '的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿二轨道反向运行,相对于圆盘的线速度值同为v .若圆盘最初静止,求二小车开始转动后圆盘的角速度.分析 当合外力矩为零时,应用角动量守恒定律应该注意到表达式中的角动量和角速度都是对同一惯性参考系选取的.转动参考系不是惯性参考系,所以小车对圆盘的速度和角动量必须应用相对运动速度合成定理转换为对地面的速度和角动量.解 设两小车和圆盘的运动方向如图5-19所示,以圆盘的转动方向为正向,外轨道上小车相对于地面的角动量为)(v -ωR mR ,内轨道上小车相对于地面的角动量为)21(21v +ωR R m ,圆盘的角动量为ωω221R m J '=.对于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得ωωω221)21(21)(R m R R m R mR '+++-v v R m m m )25(2'+=v ω vωv图5-19。
大学物理-刚体的定轴转动-习题和答案
![大学物理-刚体的定轴转动-习题和答案](https://img.taocdn.com/s3/m/ea57d1796c175f0e7dd13747.png)
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
第四章 刚体的转动
![第四章 刚体的转动](https://img.taocdn.com/s3/m/81be7cd9b14e852458fb577c.png)
四、角量与线量的关系
v r 2 an r
11
例1 在高速旋转的微型电动机里,有一圆柱形转子可 绕垂直其横截面并通过中心的转轴旋转。开始起动时, 角速度为零。起动后其转速随时间变化关系为:
m (1 e
t /
1 式中 : 540 r s , 2.0 s ) m
平动与转动的叠加
5
随质心的平动
+
绕质心的转动
合成
6
5.刚体定轴转动的特点
(1)任一质点都是在某个垂直 转轴的平面内作圆周运动。 (2)各质点的轨迹是半径大小 不一的圆周。在同一时间内, 各质点转过的圆弧长度不相 同。
A
A
z
r1
O1B rFra bibliotek2 O2 B
(3)各质点半径所扫过的角度
z
0
z
0
8
2.角加速度
d lim dt t 0 t
1
O
2 1
0
2
O
1 1
O
2
2 1
0
2
O
1
2
9
3.角速度矢量和线速度矢量的关系
v r
v
O
O
v
10
三、匀变速转动公式
1 1 2 3 p0 Lh gLh 2 6
y
2.14 10 N m
12
h dF
O
dy
y
Q
22
二、转动定律
1.受力分析
Fi、Fi 均在与Oz轴相垂直 的平面内。 2.运动方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 刚体的转动 问题与习题解答问题:4-2、4-5、4-94-2如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零?答: 一个刚体所受合外力为零,其合力矩不一定为零,如图a 所示。
刚体所受合外力矩为零,其合外力不一定为零,例如图b 所示情形。
4-5为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能的改变只与外力矩有关,而与内力矩无关? 答:因为合外力对质点所作的功,等于质点动能的增量;而质点系中内力一般也做功,故内力对质点系的动能的增量有贡献。
而在刚体作定轴转动时,任何一对内力对转轴的力矩皆为一对大小相等、方向相反的力矩,且因定轴转动时刚体转过的角度d θ都一样,故其一对内力矩所作的功()0inij ij ji ij ji W M d M d M M d θθθ=+=+=,其内力功总和也为零,因而根据刚体定轴转动的动能定理可知:内力矩对其转动动能的增量无贡献。
4-9一人坐在角速度为0ω的转台上,手持一个旋转的飞轮,其转轴垂直地面,角速度为ω'。
如果突然使飞轮的转轴倒转,将会发生什么情况?设转台和人的转动惯量为J ,飞轮的转动惯量为J '。
答:(假设人坐在转台中央,且飞轮的转轴与转台的转轴重合)视转台、人和飞轮为同一系统。
(1)如开始时飞轮的转向与转台相同,则系统相对于中心轴的角动量为:10L J J ωω''=+飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的角动量为:21L J J ωω''=-在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''-=+即102J Jωωω''=+,转台的转速变大了。
(2)如开始时飞轮的转向与转台相反,则系统相对于中心轴的角动量为:10L J J ωω''=-飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的F 1F 3ab角动量为:21L J J ωω''=+在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''+=-即 102J Jωωω''=-,转台的转速变慢了。
习题:4-1、4-2、4-3、4-4、4-5、(选择题)4-11、4-14、4-15、4-17、4-27、4-30、4-344-1有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零。
对上述说法,下述判断正确的是( B )(A )只有(1)是正确的 (B )(1)、(2)正确,(3)、(4)错误 (C )(1)、(2)、(3)都正确,(4)错误 (D )(1)、(2)、(3)、(4)都正确 4-2关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。
对上述说法,下述判断正确的是( B )(A )只有(2)是正确的 (B )(1)、(2)是正确的 (C )(2)、(3)是正确的 (D )(1)、(2)、(3)都是正确的 4-3均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( C )(A )角速度从小到大,角加速度不变 (B )角速度从小到大,角加速度从小到大 (C )角速度从小到大,角加速度从大到小 (D )角速度不变,角加速度为零 4-4一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计。
如图射来两个质量相同、速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L 以及圆盘的角速度ω则有( C ) 4-3图 4-4图 (A )L 不变,ω增大 (B )两者均不变mmoA(C )L 不变,ω减小 (D )两者均不确定 4-5假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( B ) (A )角动量守恒,动能守恒 (B )角动量守恒,机械能守恒(C )角动量不守恒,机械能守恒 (D )角动量不守恒,动量也不守恒 (E )角动量守恒,动量也守恒 4-11用落体观测法测定飞轮的转动惯量,是将半径为R 的飞轮支承在点O 上,然后在绕过飞轮的绳子的一端挂一质量为m 的重物,令重物以初速度为零下落,带动飞轮转动(如图)。
记下重物下落的距离和时间,就可算出飞轮的转动惯量。
试写出它的计算式。
(假设轴承间无摩擦) 解:(方法一)如图,设绳子张力为T F ,则根据转动定律,有: T F R J α=而对m 来说,根据牛顿定律,有:T mg F ma -=另有: a R α= 由上三式解出:22mgR a mR J=+,m 作匀加速直线运动,故下落的时间t 和距离h 的关系为:2/2h at =,即: 22212mgR h t mR J=⋅⋅+ 所以,飞轮的转动惯量为:2212gt J mR h ⎛⎫=- ⎪⎝⎭(方法二)根据能量守恒定律,将地球、飞轮和m 视为同一系统,且设m 开始下落的位置为重力势能的零势能点, 则有:2211022mgh mv J ω-++= 另有: v R ω=,v at =,22v ah =, 故解出:2212gt J mR h ⎛⎫=- ⎪⎝⎭4-14质量为1m 和2m 的两物体A 、B 分别悬挂在如图所示的组合轮两端。
设两轮的半径分别为R 和r ,两轮的转动惯量分别为1J 和2J ,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计。
试求两物体的加速度和绳的张力。
解: A 、B 及组合轮的受力情况如右图所示,根据牛顿运动定律及刚体的转动定律,得:1111T m g F m a -= 2222T F m g m a -= 1212()T T F R F r J J α-=+又因为:12,a R a r αα== 联立求解,得:121221212()m R m r gR a J J m R m r -=+++, 122221212()m R m r gra J J m R m r -=+++ 2122211221212()T J J m Rr m r m g F J J m R m r +++=+++, 2121121221212()T J J m R m Rr m gF J J m R m r +++=+++4-15如图所示装置,定滑轮的半径为r ,绕转轴的转动惯量为J ,滑轮两边分别悬挂质量为1m 和2m 的物体A 、B 。
A 置于倾角为θ的斜面上,它和斜面间的摩擦因数为μ,若B 向下作加速运动时,求:(1)其下落的加速度大小;(2)滑轮两边绳子的张力。
(设绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑) 解:用隔离法分析A 、B 和定滑轮的受力,如图(b )所示。
由牛顿定律和刚体的定轴转动定律,得:1111sin cos T F m g m g m a θμθ--=, 222T m g F m a -=,m 2(a)AB F T2F T2F F T1m 2gm 1gF Nm 1gsin θ(b)T1'T1a 1F F 'a 221T T F r F r J α-=,而由于绳子不可伸长,故有:a r α=,联立上几式,可得:211212sin cos m g m g m g a Jm m rθμθ--=++,11221212(1sin cos )(sin cos )T m gJ m m g r F J m m r θμθθμθ++++=++21222212(1sin cos )T m gJm m g r F Jm m rθμθ+++=++ 4-17一半径为R 、质量为m 的匀质圆盘,以角速度ω绕其中心轴转动,现将它平放在一水平板上,盘与板表面的摩擦因数为μ。
(1)求圆盘所受的摩擦力矩;(2)问经多少时间后,圆盘转动才停止? 解:(1)取面元dS 为细圆环,2dS rdr π=, 所受摩擦力矩的大小为2222m gm dM r gdm r gdS r dr R Rμμμπ=⋅=⋅⋅=⋅, 所以, 220223R gm gmRM dM r dr R μμ==⋅=⎰⎰ (2)由角动量定理,得:0M t J ω-∆=-, 而 22J mR =,所以,有:34J Rt M gωωμ∆== 4-27一质量为1.12kg ,长为1.0m 的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
当以100N 的力打击它的下端点,打击时间为0.02s 时,(1)若打击前棒是静止的,求打击时其角动量的变化;(2)求棒的最大偏转角。
解:(1)设打击后细棒获得的初角速度为0ω,由角动量定理,得:rω200013L Mdt Fl t ml ω∆==⋅∆=⎰,求得 003F t ml ω=⋅∆所以, 210100 1.00.02 2.0()L Fl t kg m s -∆=⋅∆=⨯⨯=⋅⋅;(2)细棒的上摆过程,机械能守恒:2200011(1cos )232l ml mg ωθ⋅⋅=-, 解得:22023()arccos[1]8838F t m gl θ⋅∆'=-= 4-30如图所示,一质量为m 的小球由一绳索系着,以角速度0ω在无摩擦的水平面上,绕以半径为0r 的圆周运动。
如果在绳的另一端作用一竖直向下的拉力,小球则以半径为0/2r 的圆周运动。
试求:(1)小球新的角速度;(2)拉力所作的功。
解:(1)因为F r指向转轴O 点,故其力不产生力矩,则根据角动量守恒定律,有:0011J J ωω=,即 220001()2r mr m ωω=,解得: 104ωω=;(2)由刚体转动的动能定理,得其拉力所作的功为:2222110000113222W J J mr ωωω=-= 4-34如图所示,有一空心圆环可绕竖直轴OO '自由转动,转动惯量为0J ,环的半径为R ,初始的角速度为0ω,今有一质量为m 的小球静止在环内A 点,由于微小扰动使小球向下滑动。