材料科学基础重要概念
材料科学基础之材料的凝固
材料科学基础之材料的凝固引言材料的凝固过程是材料科学中的重要基础知识之一。
凝固是将液态物质转变为固态物质的过程,在材料制备和性能控制中起着至关重要的作用。
本文将介绍材料的凝固过程及其在实际应用中的影响。
1. 凝固的概念凝固是物质从液态向固态转变的过程。
在凝固过程中,原子、分子或离子进入有序排列的结构,形成固态晶体。
凝固过程通常伴随着能量的释放,因为凝固过程降低了分子之间的自由度。
2. 凝固的类型材料的凝固可以分为两类:晶体凝固和非晶体凝固。
2.1 晶体凝固晶体凝固是指原子、分子或离子按照一定的方式排列,形成有序的凝固体。
晶体凝固过程中,物质的结构和性质与晶体的结构密切相关。
晶体凝固常见的类型包括共晶凝固、细小晶粒凝固和晶体生长等。
2.2 非晶体凝固非晶体凝固是指物质形成无序而没有周期性的凝固体。
非晶体凝固的材料通常具有高度的无定形性和非晶性。
非晶体凝固过程中,由于缺乏有序结构,凝固速率较高。
3. 凝固过程的影响因素凝固过程受许多因素的影响,包括温度、压力、成分和凝固速率等。
3.1 温度温度是影响材料凝固的重要因素之一。
温度的改变会导致凝固过程的快慢和凝固体的结构特征的变化。
通常情况下,较高的温度会加快凝固过程,而较低的温度则会延缓凝固。
3.2 压力在一定温度下,增加压力可以使凝固过程的速率加快。
这是因为增加压力可以提高原子、分子或离子之间的相互作用力,促进有序凝固结构的形成。
3.3 成分凝固过程的成分也对凝固行为产生重要影响。
不同成分的物质由于其分子结构和相互作用的差异,会表现出不同的凝固特点。
例如,共晶物质的凝固温度会比单一组分物质的凝固温度低一些。
3.4 凝固速率凝固速率是指物质由液态向固态转变的速度。
凝固速率受到温度、成分和凝固体的结构特征等因素的影响。
通常情况下,快速冷却会增加凝固速率,而慢速冷却则会降低凝固速率。
4. 凝固在实际应用中的重要性材料的凝固在实际应用中具有重要作用。
凝固过程直接影响材料的结构和性能。
800材料科学基础参考书目
800材料科学基础参考书目【原创实用版】目录1.引言2.材料科学的基本概念3.材料科学的研究方法4.材料科学的应用领域5.参考书目正文1.引言材料科学是研究材料的性质、结构和制备的学科,是现代科技领域中的重要组成部分。
材料科学的研究对象包括金属、陶瓷、聚合物和复合材料等各种材料,其研究目标是为了提高材料的性能,开发新的材料和优化材料的制备工艺。
为了更好地了解材料科学,学习者需要掌握材料科学的基础知识。
本文将介绍一些关于材料科学基础的参考书目,以帮助学习者深入学习这一领域。
2.材料科学的基本概念材料科学的基本概念包括材料的结构、性能、制备和表征等方面。
学习者需要了解材料的晶体结构、缺陷、相图等基本概念,同时还要掌握材料的力学性能、热学性能、电学性能等性能指标。
3.材料科学的研究方法材料科学的研究方法包括实验、理论和计算模拟等。
实验是材料科学研究的基础,学习者需要掌握各种实验技术,如 X 射线衍射、电子显微镜等。
理论研究是理解材料性质的重要手段,学习者需要掌握固体物理、量子力学等理论知识。
计算模拟是近年来发展迅速的研究方法,学习者需要掌握相关软件和编程技能。
4.材料科学的应用领域材料科学在许多领域都有广泛的应用,如航空航天、电子信息、能源环保等。
学习者需要了解材料在不同领域的应用需求,以便为实际问题提供解决方案。
5.参考书目以下是一些建议的关于材料科学基础的参考书目:1) 《材料科学基础》(第 2 版),作者:胡赓祥、蔡伟,出版社:化学工业出版社。
2) 《材料科学导论》(第 3 版),作者:周玉,出版社:科学出版社。
3) 《材料科学实验教程》,作者:李晓光,出版社:化学工业出版社。
4) 《现代材料科学实验技术》,作者:赵明辉,出版社:科学出版社。
5) 《固体物理学》(第 2 版),作者:黄昆,出版社:高等教育出版社。
6) 《量子力学》(第 4 版),作者:周世勋,出版社:高等教育出版社。
材料科学基础基本概念和名词解释
晶体缺陷单晶体:是指在整个晶体内部原子都按照周期性的规则排列。
多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。
在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。
包括空位vacancies、间隙原子interstitial atoms、杂质impurities、溶质原子solutes 等。
线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。
主要为位错dislocations。
面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。
包括晶界grain boundaries、相界phase boundaries、孪晶界twin boundaries、堆垛层错stacking faults等。
晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位vacancies肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。
弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。
晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。
从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。
热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷(thermal equilibrium defects),这是晶体内原子的热运动的内部条件决定的。
过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷(supersaturated point defects) 。
材料科学基础_概念中英文
材料科学基础重要概念(中英文)晶体学基础晶体学(crystallography)布喇菲点阵(Bravais lattice)晶体生成学(crystallogeny)体心化(body centering)晶体结构学(crytallogy)底心化(base centering)晶体化学(crystallochemistry)特殊心化(special centering)晶体结构(crystal structure)晶面(crystal plane)点阵平移矢量(lattice translation vector)晶(平)面指数(crystal – plane indice)初级单胞(primitive cell)晶带(zone)点阵常数(lattice parameter)倒易空间(reciprocal space)对称变换(symmetry translation)参考球(reference sphere)主动操作(active operation)经线(longitude)国际符号(international notation)赤道平面(equator plane)点对称操作(point symmetry operation)极网(pole net)旋转操作(rotation operation)结构基元(motif)二次旋转轴(two - fold axe, diad)晶体几何学(geometrical crystallography)四次旋转轴(four – fold axe, tetrad)晶体物理学(crystallographysics)镜像(mirror image)等同点(equivalent point)对形关系(enantiomorphic relation)点阵(lattice)反演(inversion)初基矢量(primitive translation vector)晶系(crystal system)复式初基单胞(multiple – primitive cell)单斜晶系(monoclinic system)对称元素(symmetry element)四方晶系(正方晶系)(tetragonal system)对称群(symmetry group)六方晶系(hexagonal system)被动操作(passive operation)熊夫利斯符号(Schoenflies notation)点阵有心化(centering of lattice)恒等操作(单位操作)(identity)面心化(face centering)旋转轴(rotation axe)单面心化(one – face centering)三次旋转轴(three – fold axe, triad)晶向(crystal direction)六次旋转轴(six – fold axe, hexad)晶向(方向)指数(crystal – direction indice)镜面(mirror plane)晶面族(form of crystal - plane)同宇(congruent)倒易点阵(reciprocal lattice)旋转反演(rotation - inversion)极射赤面投影(stereographic projection)三斜晶系(triclinic system)参考网络(reference grid)正交晶系(斜方晶系)(orthogonal system)纬线(latitude)立方晶系(cubic system)吴氏网(Wulff net)菱方晶系(rhombohedral system)标准投影网(standard projection)晶体结构晶体结构(crystal structure)鲍林规则(Pauling’s rule)结构符号(structure symbol)氧化物结构(oxide structure)致密度(空间填充效率)(efficiency of space 岩盐结构(rock structure)filling)纤维锌矿结构(wurtzite structure)配位数(coordination number)闪锌矿结构(zinc blende structure)配位多面体(coordination polyhedra)尖晶石结构(spinel structure)拓扑密堆相(topologically close – packed α-Al2O3型结构(corundum structure)phase)金红石结构(rutile structure)金属晶体(metal crystal)萤石结构(fluorite structure)离子晶体(ionic crystal)钙钛矿结构(perovskite structure)共价晶体(covalent crystal)钛铁矿结构(ilmenite structure)分子晶体(molecular crystal)氯化铯结构(cesium chloride structure)原子半径和离子半径(atomic radius and ionic 硅酸盐(silicate)radius)链状硅酸盐(chain silicate)原子结构体积(volume of structure per atom)层状硅酸盐(phyllo silicate)体密度(volumetric density,ρV)岛状硅酸盐(island silicate)面密度(planar density, ρP)骨架结构(framework structure)线密度(linear density, ρL)镁橄榄石结构(forsterite structure)金刚石结构(diamond structure)辉石(picrite)纳米碳管(carbon nano tube)粘土矿(clay mineral)置换固溶体(substitutional solid solution)高岭石(kaolinite)填隙固溶体(interstitial solid solution)云母(mica)尺寸因素(size factor)石英(quartz)价电子浓度(valance electron concentration)鳞石英(tridymite)电子化合物(electron compound)方石英(cristobalite)间隙化合物(interstitial compound)钙长石(anorthite)尺寸因素化合物(size–factor compound)分子筛(molecule sift)Laves相(Laves phase) 同素异构性(allotropy)σ相(σphase)多形性(polymorphism)有序固溶体(超结构)[ordered solid solution 准晶(quasicrystal)(super lattice) ] 彭罗斯拼砌(Penrose tiling)长程有序参数(long-range order parameter)短程有序参数(shot-range order parameter)晶体缺陷不完整性(imperfection)向错(disclination)点缺陷(point imperfection)沃特拉过程(V olterra’s process)空位(vacancy)刃型位错(edge dislocation)自间隙原子(self-interstitial)螺型位错(screw dislocation)构型熵(configuration entropy)混合型位错(mixed dislocation)肖脱基缺陷(Schottky defect)柏氏回路(Burgers circuit)弗兰克缺陷(Frenkel defect)柏氏矢量(Burgers vector)内禀点缺陷(intrinsic point defect)位错环(dislocation loop)非禀点缺陷(extrinsic point defect)位错密度(dislocation density)线缺陷(line imperfection)位错的弹性能(elastic energy of dislocation)位错(dislocation)位错线张力(tension of dislocation)位错宽度(width of dislocation)层错矢量(fault vector)保守运动(conservative motion)外延层错(extrinsic fault)非保守运动(nonconservative motion)层错能(stacking fault energy)滑移(slip)肖克莱部分为错(Shockley partial dislocation)滑动(glissile)铃木气团(Suzuki atmosphere)攀移(climb)弗兰克位错(Frank partial dislocation)自力(self-force)扩展位错(extended dislocation)渗透力(osmotic force)压杆位错(stair-rod partial dislocation)映像力(image force)Lomer-Cottrell 位错(Lomer-Cottrell弯结(kink)dislocation)割阶(jog)L-C阻塞(L-C Lock)柯垂尔气体(Cottrell atmosphere)赫斯阻塞(Hirth lock)史诺克气体(Snoek atmosphere)分位错(fractional dislocation)弗兰克-瑞德位错源(Frank-Read source)超点阵(superlattice)B-H位错源(Bardeen-Herring source)反相畴(Antiphase domain)位错塞积群(dislocation pile-up group)反相畴界(Antiphase boundary, APB)全位错(perfect dislocation)超位错(super-dislocation)堆垛层错(stacking fault)弗兰克-纳巴罗回路(Frank-Nabarro circuit)部分为错或不全位错(partial dislocation)向错强度(disclination strength)内禀层错(intrinsic fault)条纹织构(schlieren texture)表面能(surface energy) 适配(matching)晶界(grain boundary) 共格晶界(coherent boundary)小角度晶界(low angle grain boundary)非共格晶界(incoherent boundary)大角度晶界(high angle grain boundary 晶界迁移率(grain boundary mobility)倾转晶界(tilt boundary)取向关系(orientation relationship)扭转晶界(twist boundary)气泡(gas babble)相界(phase boundary) 空洞(void)扩散不可逆过程(irreversible process)传质过程(mass transport)扩散(diffusion)扩散距离(diffusion distance)唯象系数(phenomenological coefficient)间隙机制(interstitial mechanism)挤列结构(crowdion configuration)哑铃结构(dumbbell split configuration)空位机制(vacancy mechanism)换位机制(exchange mechanism)扩散流量(flux)参考系(reference frame)实验参考系(laboratory reference frame)点阵参考系(lattice reference frame)菲克第一定律(Fick’s first law)菲克第二定律(Fick’s second law)扩散系数(diffusion coefficient)禀性扩散系数(intrinsic diffusion coefficient)互扩散系数(mutual diffusion coefficient)自扩散系数(self-diffusion coefficient)稳态扩散(steady state diffusion)Kirkendall 效应(Kirkendall effect)Matano 平面(Matano interface)热力学因子(thermodynamic factor)同位素(isotope)示踪物(tracer)扩散偶(diffusion couple)误差函数(error function)哑变量(dummy)数值方法(numerical method)有限差分(finite-difference)收敛性(convergence)截断误差(truncation error)舍入误差(round-off error)相关系数(correlation factor)高扩散率通道(high-diffusivity path)体扩散(volume diffusion)晶界扩散(grain boundary diffusion)位错扩散(dislocation diffusion)表面扩散(surface diffusion)迁移率(mobility)渗透率(permeability)凝固分配系数(partition coefficient)枝晶偏析(dendrite segregation)区域提纯(zone-refining)亚共晶合金(hypoeutectic alloy)胞晶的形成(cell formation)过共晶合金(hypereutectic alloy)胞状树枝晶(cellular dendrite)片状(lamellar)柱状树枝晶(columnar dendrite)棒状(rod-like)共晶凝固(eutectic solidification)共晶领域(eutectic colony)包晶凝固(peritectic solidification)伪共晶(pseudo-eutectic)偏析(segregation)离异共晶(divorced eutectic)熔焊(fusion welding)激冷区(chill zone)快速凝固(rapid solidification process)柱状晶区(columnar zone)连续铸造(continuous casting)等轴晶区(equiaxed zone)树枝状显微偏析(dendritic microsegregation)收缩晶区(shrinkage cavity)非平衡杠杆定律(non-equilibrium lever rule)疏松(porosity)组分过冷(constitutional supercooling)非金属夹杂物(non-metallic inclusion)胞状组织(cellular structure)熔池(weld pool)二次枝晶(secondary dendrite)混合区(composite region)一次支晶(primary dendrite)热影响区(heat-affected zone)。
800材料科学基础参考书目
800材料科学基础参考书目摘要:一、引言二、材料科学基础的重要性三、推荐的参考书目概述1.《材料科学基础》2.《材料科学基础与应用》3.《材料科学导论》4.《材料科学》5.《材料科学及工程基础》6.《材料科学与工程》四、结论正文:【引言】材料科学是研究材料的设计、制备、性能和应用的一门学科,它在现代科技和工程领域中具有重要的地位。
随着科技的发展,材料科学也在不断拓展和深化,为人们提供了丰富的知识资源。
本文将向您推荐一些在材料科学领域颇具影响力的参考书目,以帮助您更好地学习和理解这门学科。
【材料科学基础的重要性】材料科学基础是材料科学领域中的基石,它涵盖了材料的基本概念、性质、结构和制备方法等方面。
掌握材料科学基础对于学习材料科学的其他分支和实际应用具有重要意义。
【推荐的参考书目概述】以下是一些关于材料科学基础的推荐参考书目:1.《材料科学基础》该书系统地介绍了材料科学的基本概念、性质、结构和制备方法,内容全面,适合初学者入门。
2.《材料科学基础与应用》该书在材料科学基础知识的介绍上,更加注重实际应用,提供了丰富的实例分析,有助于读者将理论知识与实际应用相结合。
3.《材料科学导论》该书以材料科学的发展历程为线索,介绍了材料科学的基本概念、原理和方法,以及各种材料的性能与应用,适合具有一定基础的读者深入学习。
4.《材料科学》该书详细阐述了材料科学的基本原理,包括材料的结构、性能、制备和应用等方面,内容丰富,适合作为教材或参考书。
5.《材料科学及工程基础》该书以材料科学为基础,介绍了材料工程的基本原理和方法,以及各种材料的应用技术,具有很强的实用性。
6.《材料科学与工程》该书全面阐述了材料科学与工程的理论和实践,包括材料设计、制备、性能和应用等方面,适合作为研究生教材或参考书。
【结论】总之,材料科学基础是学习材料科学领域其他知识的重要基石。
以上推荐的书目涵盖了材料科学基础的各个方面,相信对您的学习和研究会有所帮助。
《材料科学基础》总复习(完整版)
《材料科学基础》上半学期内容重点第一章固体材料的结构基础知识键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念;晶体的特性(5个);晶体的结构特征(空间格子构造)、晶体的分类;晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子;第二章晶体结构与缺陷晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体;典型金属晶体结构;离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例);晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例);第三章材料的相结构及相图相的定义相结构合金的概念:固溶体置换固溶体(1)晶体结构无限互溶的必要条件—晶体结构相同比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明)(2)原子尺寸:原子半径差及晶格畸变;(3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体(一)间隙固溶体定义(二)形成间隙固溶体的原子尺寸因素(三)间隙固溶体的点阵畸变性中间相中间相的定义中间相的基本类型:正常价化合物:正常价化合物、正常价化合物表示方法电子化合物:电子化合物、电子化合物种类原子尺寸因素有关的化合物:间隙相、间隙化合物二元系相图:杠杆规则的作用和应用;匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点;三元相图:三元相图成分表示方法;了解三元相图中的直线法则、杠杆定律、重心定律的定义;第四章材料的相变相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类);按结构分类:重构型相变和位移型相变的异同点;马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、陶瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、陶瓷马氏体相变性能的不同――作为题目)有序-无序相变的定义玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变;按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变第5章 金属材料的显微结构特征一、纯金属的凝固及结晶1、结晶的热力学条件结晶后系统自由能下降。
材料科学基础教案
材料科学基础(Foundations of Materials Science)材料工程系材料成型与控制工程专业任课教师-张敬尧绪论(Introduction)一.什么是《材料科学基础》二. 材料科学的重要地位三.学习《材料科学基础》的必要性四.《材料科学基础》涵盖的主要内容五.怎样学好《材料科学基础》一.什么是《材料科学基础》什么是材料科学?什么是材料科学基础?材料科学是研究材料的成分、组织结构、制备工艺、材料的性能与应用之间的相互关系的科学。
其核心为研究材料组织结构与性能的关系。
它是当代科技发展的基础、工业生产的支柱,是当今世界的带头学科之一。
作为分支之一的新兴的纳米材料科学与技术是20世纪80年代发展起来的新兴学科,成为21世纪新技术的主导中心。
材料科学基础是进行材料科学研究的基础理论,它将各种材料(包括金属、陶瓷、高分子材料)的微观特性和宏观规律建立在共同的理论基础上,用于指导材料的研究、生产、应用和发展。
它涵盖了材料科学和材料工程的基础理论。
二、材料科学的重要地位●人类社会发展的历史阶段常常根据当时使用的主要材料来划分。
从古代到现在人类使用材料的历史共经历了6个时代:石器时代→青铜器时代→铁器时代→钢时代→半导体时代→新材料时代●20世纪70年代,人们把信息、材料和能源称为当代文明的三大支柱;80年代,又把新材料、信息技术和生物技术并列为新技术革命的重要标志;90年代以来,把材料、信息、能源和生物技术作为国民经济发展的四大支柱产业。
●1986年《科学的美国人》杂志指出“先进材料对未来的宇航、电子设备、汽车以及其他工业的发展是必要的,材料科学的进步决定了经济关键部门增长速率的极限范围。
” 1990年美国总统的科学顾问Allany.Bromley明确指出“材料科学在美国是最重要的学科”。
1991年日本为未来工业规划技术列举的11项主要项目中有7项是基于先进材料基础之上。
故材料科学是科技发展的基础、技术进步和工业化生产的支柱。
965 材料科学基础-概述说明以及解释
965 材料科学基础-概述说明以及解释1.引言1.1 概述概述部分是对文章的前言进行简要介绍,主要包括对材料科学基础的重要性和研究意义进行说明。
下面是一种可能的写作方式:在当今科技高速发展的时代,材料科学作为一门跨学科的研究领域,正扮演着越来越重要的角色。
随着技术的进步和社会的发展,对于材料的需求越来越多样化和复杂化,材料的性能与特性更成为技术创新和产业发展的关键。
因此,深入了解和掌握材料科学基础,对于培养人才、提高科技创新能力以及推动产业升级具有重要意义。
材料科学基础作为材料科学领域的基石,研究着材料的结构、性质和组织等方面的特征,旨在揭示材料的内在规律和微观机理。
在这个领域中,人们通过对材料的研究和分析,逐渐发展建立了一套系统的理论体系和分析方法,为我们认识材料的本质、改善材料的质量和性能,提供了基本的思路和方法。
本文将从材料科学基础的重要性和研究意义出发,介绍材料科学基础的相关理论和方法,探讨其在实际应用中的价值和应用前景。
通过对材料的结构、性能和应用等方面的深入研究,我们能够更好地满足人们对材料的需求,推动科技和产业的发展。
总之,材料科学基础是一门重要的学科,它不仅为我们认识和改善材料提供了理论和方法,也为推动科技和产业发展提供了坚实的基础。
通过深入了解和研究材料科学基础,我们将迎来更多材料领域的创新和突破,为推动社会进步和经济发展做出更大的贡献。
1.2 文章结构文章结构部分的内容应包括对整篇文章的组织和安排进行说明。
可以简要介绍各个章节的主题和内容,并解释它们之间的逻辑关系和相互联系。
文章结构如下:文章结构部分应该对整篇文章的组织和安排进行说明。
本文分为引言、正文和结论三个部分。
引言部分将首先概述本文的主题和背景,并介绍材料科学基础的重要性。
接着介绍本文的结构,包括引言、正文和结论三个部分的主要内容以及它们之间的逻辑顺序和关系。
正文部分将分为第一个要点和第二个要点两个部分来讨论材料科学基础的相关内容。
860材料科学基础
860材料科学基础材料科学是一门研究材料的结构、性能、制备和应用的学科,它涉及到物理学、化学、工程学等多个学科的知识。
在现代科技发展的背景下,材料科学的重要性日益凸显,它不仅对于新材料的研发具有重要意义,也对于现有材料的改良和应用具有重要意义。
本文将从材料科学的基础知识入手,介绍材料科学的相关概念和基本原理。
首先,材料科学的基础是研究材料的结构。
材料的结构决定了其性能和应用。
材料的结构可以从微观和宏观两个层面进行研究。
微观结构包括原子、分子、晶粒等,而宏观结构则包括晶体结构、晶粒大小和形状、晶界等。
不同的结构会导致材料具有不同的性能,因此对材料结构的研究是材料科学的基础之一。
其次,材料科学的基础还包括材料的性能。
材料的性能是指材料在特定条件下所表现出的特征,包括力学性能、热学性能、电学性能、光学性能等。
力学性能包括强度、硬度、韧性等,热学性能包括导热性能、膨胀性能等,电学性能包括导电性能、介电性能等,光学性能包括透光性、折射率等。
不同的材料具有不同的性能,这些性能是由材料的结构和成分决定的,因此对材料性能的研究也是材料科学的基础之一。
此外,材料科学的基础还包括材料的制备和加工。
材料的制备和加工是指将原材料通过一定的方法和工艺加工成具有一定形状和性能的材料。
制备方法包括物理方法、化学方法、机械方法等,加工方法包括铸造、锻造、轧制、焊接等。
不同的制备和加工方法会影响材料的结构和性能,因此对材料的制备和加工也是材料科学的基础之一。
最后,材料科学的基础还包括材料的应用。
材料的应用是指根据材料的性能和特点将其应用于特定的领域和行业。
材料的应用领域非常广泛,包括航空航天、汽车制造、电子电气、建筑材料、生物医药等。
不同的应用领域对材料的性能和要求不同,因此对材料的应用也是材料科学的基础之一。
综上所述,材料科学的基础包括材料的结构、性能、制备和应用。
这些基础知识对于材料科学的发展和应用具有重要意义,也为我们理解和掌握材料科学提供了基础。
材料科学基础相变
材料科学基础相变相变是材料科学基础中重要的概念之一、相变指的是物质在一定的温度和压力下由一种物态转变为另一种物态的过程。
在相变过程中,物质的分子结构和物性发生了根本性的改变。
相变不仅在常见的物质如水和冰中发生,也在各种材料中都是普遍存在的。
相变的分类主要有几种,包括:一级相变和二级相变、固相变、液相变和气相变、晶体相变和非晶态相变等。
一级相变和二级相变是相变的基本分类之一、一级相变是指物质在相变过程中,在一定温度下会出现物质的两种形态共存的情况,例如水在0°C时同时存在液态水和固态冰。
在一级相变过程中,物质的温度保持不变,而吸收或释放的热量用于改变物质的物态。
二级相变则是指物质在相变过程中,直接从一种物态转变为另一种物态,没有物质两种形态共存的情况。
例如,水从液态直接转变为气态的过程。
固相变包括固固相变和固液相变。
固固相变指的是物质在固态下由一种结构转变为另一种结构。
这种相变在金属材料中尤为常见,例如铁的铁素体和奥氏体的相互转变。
固液相变是指物质在固态和液态之间的相变过程,例如冰的熔化就是固液相变的例子。
液相变通常指的是液体变为气体的相变过程,也就是蒸发过程。
在蒸发过程中,液体吸收外界的热量,分子动能增加,逐渐脱离液体表面,形成气体。
相反地,气体变为液体的过程称为凝结。
晶体相变是指物质晶体结构发生变化的相变过程。
晶体相变可以是由于温度的改变而引起,也可以是由于压力的改变而引起。
晶体相变的一个重要特点是在相变过程中结构的对称性发生了改变。
晶体相变的代表性例子之一是冰的六方晶相变为立方晶。
非晶态相变是指物质的非晶态结构发生变化的相变过程。
非晶态相变通常与玻璃态的形成有关,例如液态金属迅速冷却后变为非晶态。
非晶态相变在材料科学中的研究具有重要的理论和应用价值。
相变现象是材料科学基础中非常常见的现象。
通过对相变的深入研究,我们可以更好地理解材料的结构和性质变化规律,为材料设计和制备提供理论基础。
材料科学基础_概念中英文
材料科学基础_概念中英文材料科学基础重要概念(中英文)晶体学基础晶体学(crystallography)布喇菲点阵(Bravais lattice)晶体生成学(crystallogeny)体心化(body centering)晶体结构学(crytallogy)底心化(base centering)晶体化学(crystallochemistry)特殊心化(special centering)晶体结构(crystal structure)晶面(crystal plane)点阵平移矢量(lattice translation vector)晶(平)面指数(crystal – plane indice)初级单胞(primitive cell)晶带(zone)点阵常数(lattice parameter)倒易空间(reciprocal space)对称变换(symmetry translation)参考球(reference sphere)主动操作(active operation)经线(longitude)国际符号(international notation)赤道平面(equator plane)点对称操作(point symmetry operation)极网(pole net)旋转操作(rotation operation)结构基元(motif)二次旋转轴(two - fold axe, diad)晶体几何学(geometrical crystallography)四次旋转轴(four –fold axe, tetrad)晶体物理学(crystallographysics)镜像(mirror image)等同点(equivalent point)对形关系(enantiomorphic relation)点阵(lattice)反演(inversion)初基矢量(primitive translation vector)晶系(crystal system)复式初基单胞(multiple – primitive cell)单斜晶系(monoclinic system)对称元素(symmetry element)四方晶系(正方晶系)(tetragonal system)对称群(symmetry group)六方晶系(hexagonal system)被动操作(passive operation)熊夫利斯符号(Schoenflies notation)点阵有心化(centering of lattice)恒等操作(单位操作)(identity)面心化(face centering)旋转轴(rotation axe)单面心化(one – face centering)三次旋转轴(three – fold axe, triad)晶向(crystal direction)六次旋转轴(six – fold axe, hexad)晶向(方向)指数(crystal – direction indice)镜面(mirror plane)晶面族(form of crystal - plane)同宇(congruent)倒易点阵(reciprocal lattice)旋转反演(rotation - inversion)极射赤面投影(stereographic projection)三斜晶系(triclinic system)参考网络(reference grid)正交晶系(斜方晶系)(orthogonal system)纬线(latitude)立方晶系(cubic system)吴氏网(Wulff net)菱方晶系(rhombohedral system)标准投影网(standard projection)晶体结构晶体结构(crystal structure)鲍林规则(Pauling’s rule)结构符号(structure symbol)氧化物结构(oxide structure)致密度(空间填充效率)(efficiency of space 岩盐结构(rock structure)filling)纤维锌矿结构(wurtzite structure)配位数(coordination number)闪锌矿结构(zinc blende structure)配位多面体(coordination polyhedra)尖晶石结构(spinel structure)拓扑密堆相(topologically close –packed α-Al2O3型结构(corundum structure)phase)金红石结构(rutile structure)金属晶体(metal crystal)萤石结构(fluorite structure)离子晶体(ionic crystal)钙钛矿结构(perovskite structure)共价晶体(covalent crystal)钛铁矿结构(ilmenite structure)分子晶体(molecular crystal)氯化铯结构(cesium chloride structure)原子半径和离子半径(atomic radius and ionic 硅酸盐(silicate)radius)链状硅酸盐(chain silicate)原子结构体积(volume of structure per atom)层状硅酸盐(phyllo silicate)体密度(volumetric density,ρV)岛状硅酸盐(island silicate)面密度(planar density, ρP)骨架结构(framework structure)线密度(linear density, ρL)镁橄榄石结构(forsterite structure)金刚石结构(diamond structure)辉石(picrite)纳米碳管(carbon nano tube)粘土矿(clay mineral)置换固溶体(substitutional solid solution)高岭石(kaolinite)填隙固溶体(interstitial solid solution)云母(mica)尺寸因素(size factor)石英(quartz)价电子浓度(valance electron concentration)鳞石英(tridymite)电子化合物(electron compound)方石英(cristobalite)间隙化合物(interstitial compound)钙长石(anorthite)尺寸因素化合物(size–factor compound)分子筛(molecule sift)Laves相(Laves phase) 同素异构性(allotropy)σ相(σphase)多形性(polymorphism)有序固溶体(超结构)[ordered solid solution 准晶(quasicrystal)(super lattice) ] 彭罗斯拼砌(Penrose tiling)长程有序参数(long-range order parameter)短程有序参数(shot-range order parameter)晶体缺陷不完整性(imperfection)向错(disclination)点缺陷(point imperfection)沃特拉过程(V olterra’s process)空位(vacancy)刃型位错(edge dislocation)自间隙原子(self-interstitial)螺型位错(screw dislocation)构型熵(configuration entropy)混合型位错(mixed dislocation)肖脱基缺陷(Schottky defect)柏氏回路(Burgers circuit)弗兰克缺陷(Frenkel defect)柏氏矢量(Burgers vector)内禀点缺陷(intrinsic point defect)位错环(dislocation loop)非禀点缺陷(extrinsic point defect)位错密度(dislocation density)线缺陷(line imperfection)位错的弹性能(elastic energy of dislocation)位错(dislocation)位错线张力(tension of dislocation)位错宽度(width of dislocation)层错矢量(fault vector)保守运动(conservative motion)外延层错(extrinsic fault)非保守运动(nonconservative motion)层错能(stacking fault energy)滑移(slip)肖克莱部分为错(Shockley partial dislocation)滑动(glissile)铃木气团(Suzuki atmosphere)攀移(climb)弗兰克位错(Frank partial dislocation)自力(self-force)扩展位错(extended dislocation)渗透力(osmotic force)压杆位错(stair-rod partial dislocation)映像力(image force)Lomer-Cottrell 位错(Lomer-Cottrell弯结(kink)dislocation)割阶(jog)L-C阻塞(L-C Lock)柯垂尔气体(Cottrell atmosphere)赫斯阻塞(Hirth lock)史诺克气体(Snoek atmosphere)分位错(fractional dislocation)弗兰克-瑞德位错源(Frank-Read source)超点阵(superlattice)B-H位错源(Bardeen-Herring source)反相畴(Antiphase domain)位错塞积群(dislocation pile-up group)反相畴界(Antiphase boundary, APB)全位错(perfect dislocation)超位错(super-dislocation)堆垛层错(stacking fault)弗兰克-纳巴罗回路(Frank-Nabarro circuit)部分为错或不全位错(partial dislocation)向错强度(disclination strength)内禀层错(intrinsic fault)条纹织构(schlieren texture)表面能(surface energy) 适配(matching)晶界(grain boundary) 共格晶界(coherent boundary)小角度晶界(low angle grain boundary)非共格晶界(incoherent boundary)大角度晶界(high angle grain boundary 晶界迁移率(grain boundary mobility)倾转晶界(tilt boundary)取向关系(orientation relationship)扭转晶界(twist boundary)气泡(gas babble)相界(phase boundary) 空洞(void)扩散不可逆过程(irreversible process)传质过程(mass transport)扩散(diffusion)扩散距离(diffusion distance)唯象系数(phenomenological coefficient)间隙机制(interstitial mechanism)挤列结构(crowdion configuration)哑铃结构(dumbbell split configuration)空位机制(vacancy mechanism)换位机制(exchange mechanism)扩散流量(flux)参考系(reference frame)实验参考系(laboratory reference frame)点阵参考系(latticereference frame)菲克第一定律(Fick’s first law)菲克第二定律(Fick’s second law)扩散系数(diffusion coefficient)禀性扩散系数(intrinsic diffusion coefficient)互扩散系数(mutual diffusion coefficient)自扩散系数(self-diffusion coefficient)稳态扩散(steady state diffusion)Kirkendall 效应(Kirkendall effect)Matano 平面(Matano interface)热力学因子(thermodynamic factor)同位素(isotope)示踪物(tracer)扩散偶(diffusion couple)误差函数(error function)哑变量(dummy)数值方法(numerical method)有限差分(finite-difference)收敛性(convergence)截断误差(truncation error)舍入误差(round-off error)相关系数(correlation factor)高扩散率通道(high-diffusivity path)体扩散(volume diffusion)晶界扩散(grain boundary diffusion)位错扩散(dislocation diffusion)表面扩散(surface diffusion)迁移率(mobility)渗透率(permeability)凝固分配系数(partition coefficient)枝晶偏析(dendrite segregation)区域提纯(zone-refining)亚共晶合金(hypoeutectic alloy)胞晶的形成(cell formation)过共晶合金(hypereutectic alloy)胞状树枝晶(cellular dendrite)片状(lamellar)柱状树枝晶(columnar dendrite)棒状(rod-like)共晶凝固(eutectic solidification)共晶领域(eutectic colony)包晶凝固(peritectic solidification)伪共晶(pseudo-eutectic)偏析(segregation)离异共晶(divorced eutectic)熔焊(fusion welding)激冷区(chill zone)快速凝固(rapid solidification process)柱状晶区(columnar zone)连续铸造(continuous casting)等轴晶区(equiaxed zone)树枝状显微偏析(dendritic microsegregation)收缩晶区(shrinkage cavity)非平衡杠杆定律(non-equilibrium lever rule)疏松(porosity)组分过冷(constitutional supercooling)非金属夹杂物(non-metallic inclusion)胞状组织(cellular structure)熔池(weld pool)二次枝晶(secondary dendrite)混合区(composite region)一次支晶(primary dendrite)热影响区(heat-affected zone)。
816材料科学基础参考书目
816材料科学基础参考书目摘要:一、引言二、材料科学基础的重要性三、816 材料科学基础参考书目概述1.《材料科学基础》2.《材料科学基础与应用》3.《材料科学与工程基础》4.《材料科学导论》5.《材料科学基础实验教程》四、结论正文:材料科学是一门研究材料的设计、制备、性能及其应用的基础学科,涉及金属、陶瓷、聚合物等多种材料。
在我国,材料科学基础课程是材料科学与工程专业的重要课程之一。
本文将介绍几本关于816 材料科学基础的参考书目,以帮助大家更好地学习这门课程。
一、引言材料科学基础课程是材料科学与工程专业的基础课程,涉及材料的基本概念、性质、结构和制备方法等方面。
为了更好地掌握这门课程,选择合适的参考书目至关重要。
二、材料科学基础的重要性材料科学基础是材料科学与工程专业的基础课程,对于学生理解和掌握材料科学的基本概念、原理和方法具有重要意义。
通过学习这门课程,学生可以了解材料的组成、结构、性能和制备方法等方面的知识,为以后的专业课程学习和实际工程应用打下坚实的基础。
三、816 材料科学基础参考书目概述以下是对816 材料科学基础的几本参考书目的简要介绍:1.《材料科学基础》该书详细介绍了材料科学的基本概念、原理和方法,内容涵盖材料的组成、结构、性能和制备等方面。
书中配有丰富的实例和习题,适合材料科学与工程专业的学生学习。
2.《材料科学基础与应用》该书注重理论与实际应用的结合,介绍了材料科学的基本原理在实际应用中的最新进展。
书中包含许多实际案例,有助于学生了解材料科学在实际工程中的应用。
3.《材料科学与工程基础》该书系统地阐述了材料科学与工程专业的基础知识,包括材料的组成、结构、性能和制备等方面的内容。
书中还提供了丰富的实例和习题,有助于学生巩固所学知识。
4.《材料科学导论》该书以材料的组成、结构、性能和制备为主线,介绍了材料科学的基本概念和原理。
书中内容简明扼要,适合初学者入门学习。
5.《材料科学基础实验教程》该书以实验为主线,介绍了材料科学基础实验的原理、方法和技巧。
第三版胡赓祥材料科学基础的知识点总结及课后答案
第三版胡赓祥材料科学基础的知识点总结及课后答案第一章材料科学基础概念知识点总结1. 材料的定义与分类:材料是制造各种结构和器件的物质基础,可分为金属材料、无机非金属材料、有机高分子材料和复合材料等。
2. 材料的性能:包括力学性能、热性能、电性能、磁性能等,是评价材料性能好坏的重要指标。
3. 晶体结构:晶体是由原子、离子或分子按照一定的空间点阵排列成的周期性结构,常见的晶体结构有金属晶体、离子晶体、共价晶体和分子晶体等。
4. 材料的制备方法:包括合成、加工、处理等,如熔炼、铸造、轧制、挤压、拉伸、热处理、腐蚀等。
5. 材料的设计与性能调控:根据材料的使用性能要求,进行结构、组成和制备工艺的设计,以实现性能的优化。
课后答案1. 材料是什么?请举例说明。
答案:材料是制造各种结构和器件的物质基础,如钢铁、水泥、塑料、玻璃等。
2. 材料的性能有哪些?它们对材料的用途有何影响?答案:材料的性能包括力学性能、热性能、电性能、磁性能等,不同的性能影响材料在不同领域的应用。
例如,塑料的具有良好的柔韧性和耐腐蚀性,广泛应用于包装、建筑等领域;金属材料具有良好的导电性和导热性,广泛应用于电子、能源等领域。
3. 晶体结构有哪些类型?请简要介绍。
答案:晶体结构有金属晶体、离子晶体、共价晶体和分子晶体等类型。
金属晶体是由金属原子按照一定的空间点阵排列成的结构,具有较高的强度和韧性;离子晶体是由正负离子按照一定的空间点阵排列成的结构,具有较高的熔点和硬度;共价晶体是由共价键连接的原子按照一定的空间点阵排列成的结构,具有较高的硬度和脆性;分子晶体是由分子按照一定的空间点阵排列成的结构,具有较低的熔点和脆性。
4. 材料的制备方法有哪些?它们对材料性能有何影响?答案:材料的制备方法包括合成、加工、处理等,如熔炼、铸造、轧制、挤压、拉伸、热处理、腐蚀等。
不同的制备方法对材料的性能有不同的影响。
例如,熔炼法制备的金属材料具有较高的纯度和均匀性;热处理工艺可以改变金属材料的组织结构和性能,如提高硬度和强度等。
材料与科学基础
材料与科学基础1. 材料科学是研究材料的性质、结构、制备和性能之间关系的学科。
它涉及到不同类型的材料,包括金属、陶瓷、聚合物和复合材料等。
材料科学基础是指在理解和应用材料科学原理时所需的基本知识和概念。
2. 材料的性质包括物理性质、化学性质和力学性质等。
物理性质涉及到材料的热导性、电导性、磁性和光学性质等。
化学性质涉及到材料与其他物质之间的反应和变化。
力学性质涉及到材料的强度、刚度和韧性等。
3. 材料的结构是指材料的组织和排列方式。
不同类型的材料具有不同的结构,例如金属具有晶体结构,聚合物具有链状结构,陶瓷具有非晶体或晶体结构等。
材料的结构直接影响其性能和行为。
4. 材料的制备是指将原材料转化为最终的成品的过程。
制备方法包括合金化、熔融、溶液处理、沉积、固相反应等。
选择合适的制备方法可以控制材料的组成、结构和性能。
5. 材料的性能是指材料在特定条件下的表现。
性能可以通过物理测试和化学测试来评估,例如拉伸测试、硬度测试、热处理等。
了解材料的性能有助于选择合适的材料用于特定的应用。
6. 科学基础是指材料科学的理论基础和实验方法。
材料科学的理论基础包括物理学、化学、凝聚态物理学和力学等学科的知识。
实验方法包括材料制备、材料性能测试和材料结构分析等。
7. 在材料科学基础中,重要的概念包括晶体结构、晶格常数、晶体缺陷、相变、纳米材料等。
晶体结构是指晶体中原子的排列方式,晶格常数是指晶体中晶格的尺寸。
晶体缺陷是指晶体中的缺陷或错误,如点缺陷、线缺陷和面缺陷。
相变是指材料在温度、压力或成分变化时发生的结构或性质的突变。
纳米材料是指具有纳米尺度尺寸的材料。
8. 材料科学基础的应用包括材料选择、材料设计和材料改性等。
材料选择是指根据特定要求和条件选择最适合的材料。
材料设计是指通过调整材料的组成和结构来实现特定的性能。
材料改性是指通过添加其他物质或处理方式来改变材料的性能。
总结:材料与科学基础是研究材料性质、结构、制备和性能之间关系的学科。
829材料科学基础
829材料科学基础材料科学基础是材料科学与工程学科体系的重要组成部分,是材料科学研究的基础。
829材料科学基础课程是一门初级课程,旨在培养学生对材料科学基本概念、基本理论和基本方法的了解和应用能力。
本文将从材料的组成、结构与性能、材料制备和材料表征四个方面介绍829材料科学基础的相关内容。
一、材料的组成材料的组成是指材料的基本构成元素。
材料可以分为金属材料、聚合物材料和无机非金属材料等。
金属材料主要由金属元素组成,具有良好的导电、导热和机械性能;聚合物材料由有机高分子化合物构成,具有良好的可塑性和绝缘性能;无机非金属材料主要由无机化合物组成,具有高温耐磨、耐腐蚀等特性。
不同材料的组成决定了其性能和用途。
二、材料的结构与性能材料的结构与性能是指材料的内部结构与外部性能之间的关系。
材料的结构包括晶体结构和非晶态结构。
晶体结构是指材料的原子、离子或分子按照一定的规则排列而成的有序结构,具有明确的晶体面和晶体轴;非晶态结构是指材料的原子、离子或分子无规则地排列而成的无序结构。
材料的性能包括力学性能、热学性能、电学性能和光学性能等。
不同材料的结构与性能决定了其在不同应用领域的适用性。
三、材料的制备材料的制备是指将原材料加工、改性或合成成为具有一定形状和性能的材料的过程。
常见的材料制备方法包括熔融法、溶液法、气相法和固相法等。
熔融法是将原材料加热至熔点后冷却固化,形成固态材料;溶液法是将原材料溶解在溶剂中,通过溶剂的挥发或沉淀等方式得到固态材料;气相法是将原材料蒸发或分解后在气相中沉积成固态材料;固相法是将原材料以固态形式进行反应或烧结得到固态材料。
不同的制备方法能够得到不同形状和性能的材料。
四、材料的表征材料的表征是指通过实验和测试等手段对材料的性能进行评估和分析。
常见的材料表征方法包括显微镜观察、X射线衍射、电子显微镜、热分析和力学测试等。
显微镜观察能够直观地观察材料的形貌和结构;X射线衍射可以确定材料的晶体结构;电子显微镜可以观察材料的微观结构和成分;热分析可以测量材料的热学性能;力学测试可以评估材料的力学性能。
第三版胡赓祥材料科学基础课后答案与知识点总结
第三版胡赓祥材料科学基础课后答案与知识点总结本文档总结了第三版胡赓祥《材料科学基础》教材中的课后答案和知识点。
以下是各章节的内容概述:第一章:材料科学基本概念- 知识点1:材料的定义和分类,包括金属材料、无机非金属材料和有机高分子材料。
- 知识点2:材料的性能和性质,如力学性能、物理性能、化学性能等。
- 知识点3:材料的结构,包括晶体结构和非晶体结构。
- 知识点4:材料的制备和加工方法,如熔融法、溶液法、固相反应法等。
第二章:金属材料- 知识点1:金属的晶体结构,如面心立方结构、体心立方结构等。
- 知识点2:金属的晶体缺陷,如点缺陷、线缺陷和面缺陷。
- 知识点3:金属的力学性能,包括弹性模量、屈服强度、延展性等。
- 知识点4:金属的热处理,如退火、淬火和时效处理等。
第三章:无机非金属材料- 知识点1:陶瓷材料的分类,如氧化物陶瓷、非氧化物陶瓷等。
- 知识点2:陶瓷材料的晶体结构,如离子晶体结构、共价晶体结构等。
- 知识点3:陶瓷材料的力学性能,包括硬度、脆性、抗拉强度等。
- 知识点4:陶瓷材料的制备和加工方法,如烧结法、凝胶法和溶胶-凝胶法等。
第四章:高分子材料- 知识点1:高分子材料的分类,如线性高分子、交联高分子等。
- 知识点2:高分子材料的分子结构,如线性结构、支化结构等。
- 知识点3:高分子材料的物理性能,包括玻璃化转变温度、熔融温度等。
- 知识点4:高分子材料的制备和加工方法,如聚合法、拉伸法和挤出法等。
第五章:复合材料- 知识点1:复合材料的分类,如纤维增强复合材料、颗粒增强复合材料等。
- 知识点2:复合材料的基体材料和增强材料,如树脂基体、碳纤维增强材料等。
- 知识点3:复合材料的力学性能,包括弯曲强度、拉伸强度等。
- 知识点4:复合材料的制备和加工方法,如层压法、注射法和浸渍法等。
以上是《材料科学基础》教材第三版的课后答案和知识点总结。
希望对您的学习有所帮助。
材料科学基础考研
材料科学基础考研
材料科学基础是考研复试中的重要科目之一,也是材料科学与工程专业学生必须掌握的基础知识。
本文将从材料科学基础的概念、主要内容、考研复试中的重要性以及备考方法等方面进行介绍和分析。
首先,材料科学基础是指材料科学与工程专业学生在学习过程中必须掌握的基础知识和理论基础。
这包括材料结构、材料性能、材料加工和材料表征等方面的知识,是学生们进一步学习和研究材料科学与工程的基础。
其次,材料科学基础的主要内容包括晶体结构、缺陷理论、相变原理、固溶体理论、析出与沉淀等。
这些内容是材料科学与工程的基础,也是考研复试中的重要考点。
学生们在备考过程中需要重点掌握这些内容,深入理解其原理和应用。
同时,材料科学基础在考研复试中具有重要性。
考研复试中的材料科学基础考试是检验学生对基础知识的掌握程度和理解能力的重要手段。
学生们需要通过考试来展示自己的学习成果,从而获得进一步学习和研究的机会。
针对材料科学基础的考研复试,学生们需要制定科学的备考方法。
首先,要充分理解和掌握教材内容,建立扎实的基础知识。
其次,要注重实际应用,通过做题和实验来加深对知识点的理解和记忆。
最后,要注重总结和归纳,形成系统的知识结构,提高解决问题的能力。
总之,材料科学基础是考研复试中的重要科目,学生们需要通过深入学习和理解,掌握其基础知识和理论基础。
只有这样,才能在考试中取得好成绩,从而为今后的学习和研究打下坚实的基础。
希望学生们在备考过程中能够认真对待,取得优异的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体,非晶体;晶体结构,空间点阵,晶胞,7 个晶系,14 种布拉菲点阵;
晶向指数,晶面指数,晶向族,晶面族,晶带轴,晶面间距;多晶型性,同素异构体;
点阵常数,晶胞原子数,配位数,致密度,四面体间隙,八面体间隙;
合金,相,固溶体,中间相,短程有序参数a ,长程有序参数S ;
置换固溶体,间隙固溶体,有限固溶体,无限固溶体,无序固溶体,有序固溶体;
正常价化合物,电子化合物,电子浓度,间隙相,间隙化合物,拓扑密堆相;
离子晶体,NaCl 型结构,闪锌矿型结构,纤锌矿型结构
共价晶体,金刚石结构;
玻璃,玻璃化转变温度
点缺陷,线缺陷,面缺陷;
空位,间隙原子,肖脱基空位,弗兰克尔空位;
点缺陷的平衡浓度;
刃型位错,螺型位错,混合位错,全位错,不全位错;
柏氏回路,柏氏矢量,柏氏矢量的物理意义(3种),柏氏矢量的守恒性;
位错的滑移,位错的交滑移,位错的攀移,位错的交割,割阶,扭折;
位错的应力场(滑移面上),位错的应变能,线张力,滑移力,攀移力;
位错密度,位错增殖,弗兰克—瑞德位错源,L-C位错,位错塞积;
堆垛层错,肖克莱不全位错,弗兰克不全位错;
位错反应,几何条件,能量条件;
可动位错,固定位错,汤普森四面体;
扩展位错,层错能,扩展位错束集,扩展位错交滑移;
Cottrell气团, Snock 气团
晶界,亚晶界,小角度晶界,对称倾斜晶界,不对称倾斜晶界,扭转晶界;
大角度晶界,“重合位置点阵”模型;
晶界能,孪晶界,相界,共格相界,半共格相界,错配度,非共格相界。
质量浓度,密度,扩散,自扩散,互扩散,间隙扩散,空位扩散,下坡扩散,上坡扩散,稳态扩散,非稳态扩散,扩散系数,互扩散系数,扩散通量,柯肯达尔效应,体扩散,表面扩散,晶界扩散
凝固,结晶,近程有序,结构起伏,能量起伏,过冷度,均匀形核,非均匀形核,晶胚,晶核,亚稳相,临界晶粒,临界形核功,光滑界面,粗糙界面,温度梯度,平面状,树枝状。