部分框支剪力墙结构汇总
框架结构、框架剪力墙结构、框支剪力墙结构、剪力墙结构和筒体结.
框架结构就是梁柱受力的体系,就是说完全由柱子来承受水平和竖向荷载; 框
架剪力墙结构就是在框架结构的基础上加入了部分剪力墙 ,使剪力墙和柱子共同
承受水平和竖向荷载,而且一般以剪力墙承受大部分水平力作用;框支剪力墙就是
下部是框架,通过转换层把剪力墙放在转换构件上的结构,一般都有部分剪力墙落地; 剪力墙结构就是存剪力墙受力,没有柱子(剪力墙暗柱不属于柱子,而是隶属于剪力墙的的结构; 筒体结构其实就是特殊的框架剪力墙结构, 一般是结构中间是一圈封闭的剪力墙,通过水平构件与外围的一圈柱子连接。
[名词解释] 框支剪力墙结构
[名词解释] 框支剪力墙结构正文:框支剪力墙结构是一种常用的抗震结构形式,主要由框架和剪力墙组成。
框架部分由柱、梁和节点构成,起到承载垂直荷载的作用。
剪力墙是通过墙体的剪切变形来吸收地震力,起到抗震的作用。
框支剪力墙结构具有结构刚性好、承载能力强、抗震性能好等优点,在建筑工程中得到广泛应用。
1. 框架部分1.1 柱- 是框架的主要承载构件之一,负责承受垂直荷载。
柱子通常由混凝土或钢筋混凝土材料制成,具有一定的抗压能力。
- 柱的截面形状多样,常见的有矩形截面、圆形截面等。
1.2 梁- 梁是框架的水平承载构件,连接柱子,并分担和传递荷载。
常见的梁有梁板和梁柱。
- 梁的截面形状常见的有矩形、圆形和T形等,根据实际需要选择适当的截面形状。
1.3 节点- 节点是连接柱和梁的重要部分,承担着传递荷载和保持整体结构稳定的作用。
- 节点有多种形式,常见的有刚性节点、铰接节点等。
2. 剪力墙2.1 剪力墙的作用- 剪力墙通过墙体的剪切变形来吸收地震力,起到抗震的作用。
- 剪力墙能够承受较大的剪力,提供结构的纵向和横向刚性。
2.2 剪力墙的种类- 剪力墙可分为剪力墙板和剪力墙柱两种类型。
- 剪力墙板是墙体的平面构件,常见于楼板和墙体之间的连接处。
- 剪力墙柱是墙体的立体构件,常见于建筑物的外墙或内部结构。
附件:本文档涉及的附件有:结构设计图纸、框支剪力墙构件规格表等。
法律名词及注释:1. 框架:指具有一定刚度和强度的结构系统,由柱、梁和节点等构件组成,用于承载和传递荷载。
2. 剪力墙:通过墙体的剪切变形来吸收地震力,并提供结构的稳定性和刚度。
---正文:框支剪力墙结构是一种常用的抗震结构形式,主要由框架和剪力墙组成。
框架部分由柱、梁和节点构成,起到承载垂直荷载的作用。
剪力墙是通过墙体的剪切变形来吸收地震力,起到抗震的作用。
框支剪力墙结构具有结构刚性好、承载能力强、抗震性能好等优点,在建筑工程中得到广泛应用。
1. 框架部分1.1 柱1.1.1 定义柱是框架结构的主要承载构件,负责承受垂直荷载,并将荷载传递到地基。
剪力墙结构和框架结构的区别- 剪力墙分类-
剪力墙结构和框架结构的区别? 剪力墙分类?导读:本文介绍在房屋装修,主材选购的一些知识事项,如果觉得很不错,欢迎点评和分享。
随着近几年来自然灾害的频频发生,人们在购买房子的时候,对于房子的墙体结构也有了更高的要求,剪力墙结构和框架结构逐渐代替了传统的砖混结构,但是很多人对于剪力墙和框架墙的结构区别并不是的清楚,本文我们将为大家介绍:剪力墙结构和框架结构的区别? 剪力墙分类?剪力墙结构和框架结构的区别?1、受力体系不同:框架结构是利用梁、柱组成的纵、横两个方向的框架形成的结构体系,它同时承受竖向荷载和水平荷载。
而剪力墙体系是利用建筑物的墙体(内墙或外墙)做成剪力墙来抵抗水平力,同时它也承受垂直荷载,所以它既受剪力又受弯,所以称为剪力墙。
2、各自缺点:框架结构侧向刚度较小,当层数较多时,会产生较大的侧移,易引起非结构性构件(如隔墙、装饰等)破坏,而影响使用。
而剪力墙结构的间距小,结构建筑平面布置不灵活,不适用于大空间的公共建筑,另外结构自重也较大。
3、适应的建筑高度:框架结构在非地震区,一般不超过15层。
而剪力墙一般在30m高度范围内都适用。
4、各自优点:框架结构的主要优点是建筑平面布置灵活,可形成较大的建筑空间,建筑立面处理也比较方便。
而剪力墙结构的优点是侧向刚度大,水平荷载作用下侧移小。
剪力墙分类?1、整体墙,整体墙是指没有门窗洞口或只有少量很小并可以忽略不计的洞口的墙体。
2、小开口整体墙,门窗洞口尺寸比整体墙要大一些,此时墙肢中已出现局部弯矩,这种墙称为小开口整体墙。
3、连肢墙,剪力墙上开有一列或多列洞口,且洞口尺寸相对较大,此时剪力墙的受力相当于通过洞口之间的连梁连在一起的一系列墙肢,故称连肢墙。
4、框支剪力墙,当底层需要大空间时,采用框架结构支撑上部剪力墙,就形成框支剪力墙。
在地震区,不容许采用纯粹的框支剪力墙结构。
5、壁式框架,在连肢墙中,如果洞口开的再大一些,使得墙肢刚度较弱、连梁刚度相对较强时,剪力墙的受力特性已接近框架。
框支-剪力墙结构
框支-剪力墙结构最新最全的模板范本:框支-剪力墙结构一:引言本旨在介绍框支-剪力墙结构的设计与施工要点,以及相关技术指导,旨在提供详细和全面的信息,以便工程师和相关从业人员能够正确理解和应用框支-剪力墙结构。
二:框支-剪力墙结构的概述1. 框支-剪力墙结构的定义和特点框支-剪力墙结构是一种广泛应用于建造工程的结构形式,它通过设置钢筋混凝土或者预制混凝土剪力墙作为主体承载结构,与框架结构相结合,在承载和抗震性能方面具有良好的优势。
2. 框支-剪力墙结构的构成要素框支-剪力墙结构由框架结构和剪力墙组成,其中框架结构负责承担垂直荷载,剪力墙负责承担水平荷载,两者相互协调工作,共同保证建造结构的整体稳定性和安全性。
三:框支-剪力墙结构的设计要点1. 结构的布置和几何形态设计在设计框支-剪力墙结构时,应根据建造属性、功能需求、地震要求等因素确定结构的布置和几何形态,充分考虑建造整体的均匀性和稳定性。
2. 剪力墙的布置和尺寸设计剪力墙的布置和尺寸设计是框支-剪力墙结构设计的重要环节,在确定剪力墙位置和数量时应考虑荷载传递路径、结构布局、构造条件和施工等因素,并根据规范要求进行合理的尺寸设计。
3. 框架结构的设计框架结构的设计应满足建造的承载要求和抗震要求,确定框架的布置和尺寸,合理配置剪力墙和框架的位置,并通过分析和计算确定结构的稳定性和耐震性。
四:框支-剪力墙结构的施工要点1. 施工准备工作施工前应充分了解设计图纸和施工方案,准备好所需材料和设备,并按照像关施工规范进行合理布置和准备工作。
2. 剪力墙的施工剪力墙的施工包括混凝土浇筑、钢筋布置和模板安装等步骤,应按照设计要求和施工规范进行施工,保证墙体的质量和稳定性。
3. 框架结构的施工框架结构的施工包括钢柱、梁等构件的连接和安装,应采用合理的施工方法和工艺,在保证结构安全性的同时提高施工效率。
五:附件清单:1. 设计图纸- 建造平面布置图- 结构剖面图- 剪力墙布置图- 框架结构布置图2. 施工工艺与方法- 剪力墙浇筑工艺- 框架结构安装工艺3. 施工材料清单- 钢筋- 混凝土- 模板六:法律名词及注释:1. 建造法:指国家对建造工程进行管理和监督的法规和规范。
框支剪力墙结构规范的一些摘抄要点
框⽀剪⼒墙结构规范的⼀些摘抄要点抗规6 多层和⾼层钢筋混凝⼟房屋6.1 ⼀般规定6.1.1 本章适⽤的现浇钢筋混凝⼟房屋的结构类型和最⼤⾼度应符合表6.1.1的要求。
平⾯和竖向均不规则的结构,适⽤的最⼤⾼度宜适当降低。
依据表6.1.1 现浇钢筋混凝⼟房屋适⽤的最⼤⾼度(m)。
部分框⽀抗震墙100m(注1:部分框⽀抗震墙结构指⾸层或底部两层为框⽀层的结构,不包括仅个别框⽀墙的情况)6.1.3钢筋混凝⼟房屋抗震等级的确定,尚应符合下列要求:1 设置少量抗震墙的框架结构,在规定的⽔平⼒作⽤下,底层框架部分所承担的地震倾覆⼒矩⼤于结构总地震倾覆⼒矩的50%时,其框架的抗震等级应按框架结构确定,抗震墙的抗震等级可与其框架的抗震等级相同。
注:底层指计算嵌固端所在的层。
2 裙房与主楼相连,除应按裙房本⾝确定抗震等级外,相关范围不应低于主楼的抗震等级;主楼结构在裙房顶板对应的相邻上下各⼀层应适当加强抗震构造措施。
裙房与主楼分离时,应按裙房本⾝确定抗震等级。
4 当甲⼄类建筑按规定提⾼⼀度确定其抗震等级⽽房屋的⾼度超过本规范表6.1.2相应规定的上界时,应采取⽐⼀级更有效的抗震构造措施。
注:本章“⼀、⼆、三、四级”即“抗震等级为⼀、⼆、三、四级”的简称。
表6.1.2抗震等级设防烈度7度时部分框⽀抗震墙结构在25~80m间,框架层框架⼆级,抗震墙⼀般部位三级、加强部位⼆级。
6.1.9 抗震墙结构和部分框⽀抗震墙结构中的抗震墙设置,应符合下列要求: 1 抗震墙的两端(不包括洞⼝两侧)宜设置端柱或与另⼀⽅向的抗震墙相连;框⽀部分落地墙的两端(不包括洞⼝两侧)应设置端柱或与另⼀⽅向的抗震墙相连。
2 较长的抗震墙宜设置跨⾼⽐⼤于6的连梁形成洞⼝,将⼀道抗震墙分成长度较均匀的若⼲墙段,各墙段的⾼宽⽐不宜⼩于3。
3 墙肢的长度沿结构全⾼不宜有突变;抗震墙有较⼤洞⼝时,以及⼀、⼆级抗震墙的底部加强部位,洞⼝宜上下对齐。
4 矩形平⾯的部分框⽀抗震墙结构,其框⽀层的楼层侧向刚度不应⼩于相邻⾮框⽀层楼层侧向刚度的50%;框⽀层落地抗震墙间距不宜⼤于24m,框⽀层的平⾯布置宜对称,且宜设抗震筒体;底层框架部分承担的地震倾覆⼒矩,不应⼤于结构总地震倾覆⼒矩的50%。
框架剪力墙结构设计要点
框架剪力墙结构设计要点整体规定◆A级高度乙类、丙类高层建筑的剪力墙结构最大适用高度:全部落地剪力墙——非抗震、6度、7度、8度、9度抗震时,分别为150、140、120、100、60m部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为130、120、100、80m,9度抗震时不宜采用A级高度甲类高层建筑的剪力墙结构最大适用高度:6度、7度、8度抗震时,将本地区设防烈度提高一级后,按乙类、丙类建筑采用9度抗震时,应专门研究(说明:房屋高度指室外地面至主要屋面高度,不包括局部突出屋面的电梯机房、水箱、构架等高度)◆B级高度乙类、丙类高层建筑的剪力墙结构最大适用高度:全部落地剪力墙——非抗震、6度、7度、8度抗震时,分别为180、170、150、130m部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为150、140、120、100mB级高度甲类高层建筑的剪力墙结构最大适用高度:6度、7度抗震时,按本地区设防烈度提高一级后,按乙类、丙类建筑采用8度抗震时,应专门研究◆结构的最大高宽比:A级高度——非抗震、6度、7度、8度、9度抗震时,分别为6、6、6、5、4B级高度——非抗震、6度、7度、8度抗震时,分别为8、7、7、6◆质量与刚度分布明显不对称、不均匀的结构,应计算双向水平地震作用下的扭转影响;其他情况,应计算单向水平地震作用的扭转影响◆考虑非承重墙的刚度影响,结构自振周期折减系数取值0.9~1.0◆平面规则检查,需满足:扭转:A级高度——B级高度、混合结构高层、复杂高层——楼板:有效楼板宽≥该层楼板典型宽度的50%开洞面积≤该层楼面面积的30%无较大的楼层错层凹凸:平面凹进的一侧尺寸≤相应投影方向总尺寸的30%◆竖向规则检查,需满足:侧向刚度:除顶层外,局部收进的水平向尺寸≤相邻下一层的25%楼层承载力:A级高度——抗侧力结构的层间受剪承载力(宜)≥相邻上一层的80%薄弱层抗侧力结构的受剪承载力(应)≥相邻上一层的65%B级高度——抗侧力结构的层间受剪承载力(应)≥相邻上一层的75%(说明:楼层层间抗侧力结构受剪承载力指在所考虑的水平地震作用方向,该层全部柱及剪力墙的受剪承载力之和)竖向连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力不得由水平转换构件(梁等)向下传递◆水平位移验算:多遇地震作用下的最大层间位移角≤罕遇地震作用下的薄弱层层间弹塑性位移角≤1/120◆舒适度要求:高度超过150m的高层建筑,按10年一遇的风荷载取值计算的顺风向与横风向结构顶点的最大加速度限值为:住宅、公寓0.15 m/s2,办公、旅馆0.25 m/s2◆伸缩缝 1. 最大间距:现浇45m,装配65m2. 可适当放宽最大间距的条件:①顶层、底层、山墙和纵墙端开间等温度变化影响较大的部位提高配筋率②顶层加强保温隔热措施,外墙设置外保温层③每隔30~40m留出后浇带,带宽800~1000mm,钢筋采用搭接接头,后浇带砼两个月之后浇灌④顶部楼层改用刚度较小的结构形式,或顶部设局部温度缝,将结构划分为长度较短的区段⑤采用收缩较小的水泥,减少水泥用量,砼中加入适宜的外加剂⑥提高每层楼板的构造配筋率,或采用部分预应力混凝土◆防震缝1. 最小宽度:按框架结构的50%取用,但不宜小于70mm。
框架剪力墙和框支剪力墙
框架剪力墙和框支剪力墙,还有纯剪力墙结构、框架结构,这些都是设计上为了表现不同的建筑形式而灵活采用的结构。
一般来说,是由于抗侧向力的不同而采用不同的形式,抗侧向力由大到小一般为剪力墙结构、框支剪力墙、框架剪力墙、框架结构。
从另一方面来说,即从房间分割的灵活布置方面,框架结构更灵活,而剪力墙结构不好分割房间,框架剪力墙和框支剪力墙正处于两者之间。
框支剪力墙就是为了利用下部几层的空间,能够灵活分割,或者是采用大空间,而采用框架的形式,然后采用转换层将框架结构转换成剪力墙结构,以使建筑能够抵抗水平侧向力,从而突破高度的限制;而框架剪力墙从下到上都是框架和剪力墙两种形式的结合,一般是利用电梯井或楼梯井作为剪力墙,外部采用框架形式。
如果再变换一下,外墙也采用剪力墙的形式,就成了筒体结构了。
框架结构:以混凝土梁柱组成的框架来作为抗侧力体系并承担竖向荷载的结构。
剪力墙结构:以混凝土剪力墙来作为抗侧力体系并承担竖向荷载的结构。
框架-剪力墙结构:以混凝土梁柱组成的框架及剪力墙共同工作来作为抗侧力体系并承担竖向荷载的结构。
框架-核心筒结构:以内部设置混凝土筒体,外围周圈设置框架,来作为抗侧力体系并承担竖向荷载的结构。
(筒体其实是剪力墙的一种特殊形式)筒中筒结构:以内部外部设置双重混凝土筒体,来作为抗侧力体系并承担竖向荷载的结构。
板柱-剪力墙结构:以混凝土柱和楼板(即无梁楼盖体系)组成的框架及剪力墙共同工作来作为抗侧力体系并承担竖向荷载的结构。
部分框支剪力墙结构:剪力墙结构的一种。
其中部分剪力墙不落地,通过转换梁(也叫框支梁)把荷载传至框支柱(框架柱的一种特殊形式)。
“汶川5.12”地震灾后重建之建筑物结构形式浅析 2009年9月(上)89期犹爽黄明恨邓正清李天和 (四川大学水电学院)“汶川5.12·特大地震造成了灾区相当一部分建筑物的破坏与倒塌。
为了避免重建的建筑物在再次遭受地震时不至因建筑物结构形式设计不合理等种种原因而遭受严重破坏,对重建建筑物的结构型式等方面进行相关的探究和改进是很有必要的。
高层建筑部分框支剪力墙结构布置方法
高层建筑部分框支剪力墙结构布置方法高层建筑的结构设计是现代建筑技术的重要标志,其结构类型和布置方法在建筑的强度、稳定性、经济性等方面起着至关重要的作用。
其中,框支剪力墙结构是当前建筑结构设计中广泛应用的一种方法,其优良的受力性能和适应性能使之成为高层建筑结构设计中的佼佼者。
框支剪力墙结构的布置方法是建立在框架结构的基础上,其核心是墙体结构的布置。
具体而言,高层建筑框支剪力墙结构的墙体一般分为外墙、内墙和隔墙三种类型。
外墙是建筑的外立面,需要考虑视觉效果和采光等因素,在布置上在尽可能的减少墙体厚度的前提下,要保持一定的强度和刚度。
内墙一般是室内隔断墙,需要兼顾隔声、隔热等因素,其厚度一般较小。
隔墙是用于分隔不同功能区域的,其布置一般和内墙相似。
框支剪力墙结构的墙体布置需要考虑许多因素。
首先,它需要根据建筑的不同功能和重要性来进行合理的布置,以保证建筑的稳定性和安全性。
其次,需要根据墙的位置和面积确定墙的材料选用,以及需要的承载能力和刚度等因素。
同时,还需要考虑墙面的装修和防火隔离等问题。
在框支剪力墙结构中,墙体的布置和连接也是至关重要的。
如何增强墙体连接和支撑,防止结构破坏和坍塌,是整个结构设计和施工阶段的重中之重。
因此,在墙体布置时,需要考虑墙与桥架的连接方式和墙体的角部设计,以确保墙体能够承担好力学的作用,同时还能够满足建筑的外观效果和美观性。
除了墙体的布置和连接问题,框支剪力墙结构的另一个关键问题是框架结构的选用。
框架结构需要根据建筑的使用性质、高度、输电线路等因素综合考虑。
在框架结构的选用和布置上,需要注意三个方面:首先,需要追求更为严谨的计算和设计方法,以确保框架结构的稳定性和安全性。
其次,需要考虑框架结构的材料和质量,选用合适的质量和规格的建材。
最后,需要注重建筑的外观效果和采光效果,使框架结构与墙体结构相协调。
总体来说,高层建筑框支剪力墙结构的布置方法需要综合考虑许多因素。
在建筑结构设计过程中,需要注重从理论上和实践上精确、合理地计算和设计,以使成品建筑的稳定性和安全性得到充分的保证。
部分框支剪力墙结构汇总
部分框支剪力墙结构汇总在建筑结构领域,部分框支剪力墙结构是一种较为常见且具有独特特点的结构形式。
它融合了框架结构和剪力墙结构的优点,为建筑设计提供了更多的可能性。
接下来,让我们详细了解一下部分框支剪力墙结构。
部分框支剪力墙结构,顾名思义,是在建筑的下部采用框架结构,上部采用剪力墙结构。
这种结构形式的出现,主要是为了满足建筑底部大空间的使用需求,如商场、餐厅、会议室等,而上部则可以通过剪力墙结构来提供较好的抗侧力性能,保证建筑的整体稳定性。
从受力特点来看,下部的框架部分主要承受竖向荷载,同时也承担一定的水平荷载。
而上部的剪力墙则主要承担水平荷载,如风荷载和地震作用。
在水平荷载作用下,剪力墙如同坚固的屏障,有效地抵抗侧向变形,保护建筑的安全。
在设计部分框支剪力墙结构时,有许多关键的要点需要考虑。
首先是转换层的设置。
转换层是上下不同结构形式的过渡区域,其设计的合理性直接影响到结构的整体性能。
转换层的高度、刚度、构件的布置等都需要经过精心计算和分析,以确保结构在竖向和水平方向的传力顺畅。
其次是剪力墙的布置。
剪力墙的数量、位置和长度等都需要根据建筑的功能和受力要求进行合理规划。
一般来说,剪力墙应均匀分布,避免出现局部薄弱区域。
同时,为了提高结构的抗震性能,剪力墙的边缘构件也需要按照规范进行加强设计。
再者,框架部分的梁柱节点设计也至关重要。
节点是框架结构中力的传递关键部位,其强度和延性必须得到保证。
通过合理的配筋和构造措施,可以有效地提高节点的承载能力和抗震性能。
在施工过程中,部分框支剪力墙结构也面临着一些挑战。
例如,转换层的施工难度较大,需要严格控制施工质量和工艺。
由于转换层的构件尺寸较大,钢筋密集,混凝土浇筑和振捣的质量控制尤为重要。
另外,部分框支剪力墙结构的抗震性能也是设计和施工中需要重点关注的问题。
在地震多发地区,必须采取有效的抗震措施,如增加剪力墙的数量、提高结构的延性等,以确保建筑在地震作用下的安全性。
框架剪力墙结构
5.3结构的受力特点
框架-剪力墙结构是由框架和剪力墙两类抗 侧力单元组成,这两类抗侧力单元的变形 和受力特点不同。剪力墙的变形以弯曲型 为主,框架的变形以剪切型为主。在框-剪 结构中,框架和剪力墙由楼盖连接起来而
剪力墙负担大部分水平力;另外,框架和 剪力墙分担水平力的比例,房屋上部、下 部是变化的。
8度
9度
现浇
≤5B、且≤60m ≤4B、且≤50m ≤3B、且≤40m ≤2B、≤30m
装配整体 ≤3.5B、≤50m ≤3B、且≤40m ≤2.5B、≤30m
_
注:1表中B为楼盖的宽度;
2.装配整体式楼盖指装配式楼盖上做配筋现浇层;
3.现浇部分厚度大于60mm的预应力或非预应力叠合楼板可作为 现浇楼板考虑。
在房屋下部,由于剪力墙变形增大,框架变形减 小,使得下部剪力墙担负更多剪力,而框架下部 担负的剪力较少。
在上部,情况恰好相反,剪力墙担负外载减小, 而框架担负剪力增大。
这样,就使框架上部和下部所受剪力均匀化。从 协同变形曲线可以看出,框架结构的层间变形在 下部小于纯框架,在上部小于纯剪力墙,因此各 层的层间变形也将趋于均匀化。
5.4结构的抗震性能
1.框剪结构体系变形能力优于剪力墙结构体系
框架具有很好的延性,而剪力墙的延性较差,它们结合在一 起延性就比较好。
框剪结构体系的抗震性能也优于框架结构
框架的抗侧移刚度小,侧向位移大。
2.框剪结构体系具有良好的抗震性能主要表现在该体系有多 道抗震防线
小震作用,主要是剪力墙承受水平荷载;
中震作用下,框架与剪力墙共同工作;
在大震作用下,刚度较大的剪力墙充当第一道抗震防线,随 着剪力墙的开裂,刚度退化,框架才开始在保持结构稳定及 防止结构倒塌上发挥作用。
高层建筑的四大结构体系
高层建筑的四大结构体系目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。
一、框架结构体系:框架结构体系是由楼板、梁、柱及基础四种承重构件组成。
由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。
一般用于钢结构和钢筋混凝土结构中,由梁和柱通过节点构成承载结构,框架形成可灵活布置的建筑空间,使用较方便。
钢筋混凝土框架按施工方法的不同。
又可分为:①梁、板、柱全部现场浇筑的全现浇框架;②楼板预制,梁、柱现场浇筑的部分现浇框架;③梁、板预制,柱现场浇筑的半装配式框架;④梁、板、柱全部预制的全装配式框架。
优点:建筑平面布置灵活,能获得大空间,建筑立面也容易处理,结构自重轻,计算理论也比较成熟,在一定高度范围内造价较低。
缺点:框架结构本身柔性较大,抗侧力能力较差,在风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。
适用范围:框架结构的合理层数一般是6到15层,最经济的层数是10层左右。
由于框架结构能提供较大的建筑空间,平面布置灵活,可适合多种工艺与使用的要求,已广泛应用于办公、住宅、商店、医院、旅馆、学校及多层工业厂房和仓库中。
二、剪力墙结构体系在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要作用在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分隔构件。
优点:由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它刚度大,空间整体性好,用钢量省。
历史地震中,剪力墙结构表现了良好的抗震性能,震害较少发生,而且程度也较轻微,在住宅和旅馆客房中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特点,而且可以使房间不露梁柱,整齐美观。
缺点:剪力墙结构墙体较多,不容易布置面积较大的房间,为了满足旅馆布置门厅、餐厅、会议室等大面积公共用房的要求,以及在住宅楼底层布置商店和公共设施的要求,可以将部分底层或部分层取消剪力墙代之以框架,形成框支剪力墙结构。
框支剪力墙结构名词解释
框支剪力墙结构名词解释框支剪力墙结构是一种常用的建筑结构形式,广泛应用于高层建筑、桥梁、水利工程等领域。
它由框架、支撑和剪力墙三部分组成,具有承载能力强、刚度好、抗震性能优良等优点。
本文将对框支剪力墙结构中的一些重要名词进行解释。
一、框架框架是框支剪力墙结构的主要承载构件,通常由钢筋混凝土构成。
框架主要分为柱和梁两种类型,柱负责承受垂直荷载,梁则负责承受水平荷载。
框架的截面形状和尺寸根据设计要求和荷载大小进行选择,一般采用矩形或圆形截面。
二、支撑支撑是框支剪力墙结构中的辅助构件,主要用于提高框架的稳定性和抗侧移能力。
支撑通常由斜撑和水平支撑组成。
斜撑一般安装在框架的两端或中间,用于防止框架因侧移而失稳;水平支撑则安装在框架的底部,用于防止框架因扭转而失稳。
三、剪力墙剪力墙是框支剪力墙结构中的重要组成部分,它是承受水平荷载的主要构件。
剪力墙通常由混凝土或砖石砌成,其主要作用是将水平荷载转化为竖向荷载,从而通过框架和支撑传递到地基。
剪力墙的位置和数量根据设计要求和荷载大小进行选择,一般安装在框架的两端或中间。
四、刚度刚度是框支剪力墙结构的重要性能指标,它反映了结构的抗变形能力。
刚度一般分为弹性刚度和塑性刚度两种,弹性刚度指结构在弹性阶段的抗变形能力,塑性刚度指结构在塑性阶段的抗变形能力。
框支剪力墙结构的刚度主要受框架和剪力墙的影响,设计时需要根据荷载大小和变形要求进行合理的选择。
五、抗震性能抗震性能是框支剪力墙结构的重要性能指标,它反映了结构在地震荷载下的承载能力和稳定性。
框支剪力墙结构的抗震性能主要受框架和剪力墙的影响,设计时需要根据地震烈度和建筑高度进行合理的选择。
同时,还需要采取一些增强结构抗震性能的措施,如加强柱和梁的连接、增加支撑和剪力墙的数量等。
六、结构优化结构优化是指在保证结构安全和稳定的前提下,通过合理的设计和材料选择来提高结构的经济性和可靠性。
框支剪力墙结构的结构优化主要包括以下几个方面:合理选择框架和剪力墙的位置和数量,采用适当的材料和截面形状,减少结构的自重和材料消耗,提高结构的施工效率和运输便利性。
部分框支剪力墙结构设计
引言概述:在建筑结构设计中,框支剪力墙作为一种重要的结构形式,广泛应用于高层建筑和工业厂房等领域。
本文将对部分框支剪力墙结构设计进行详细的阐述。
本文将介绍框支剪力墙的基本概念和作用原理。
将介绍框支剪力墙结构的材料选择和设计要点。
然后,将详细解析框支剪力墙的结构分析方法和计算原理。
接着,将介绍框支剪力墙的节点设计和构造要求。
将总结本文的主要观点并提出未来研究的方向。
正文内容:一、框支剪力墙的基本概念和作用原理1.1框支剪力墙的定义和分类1.2框支剪力墙的作用原理1.3框支剪力墙与其他结构形式的比较二、框支剪力墙结构的材料选择和设计要点2.1混凝土材料的选择和性能要求2.2钢筋的选用和布置要求2.3剪力墙的布置和尺寸设计要点三、框支剪力墙的结构分析方法和计算原理3.1静力弹性分析方法3.2框支剪力墙的屈曲分析3.3框支剪力墙的地震响应分析四、框支剪力墙的节点设计和构造要求4.1节点的功能和分类4.2节点设计的基本原则4.3框支剪力墙节点的构造要求五、总结本文通过对部分框支剪力墙结构设计的详细阐述,介绍了框支剪力墙的基本概念和作用原理,以及框支剪力墙结构的材料选择和设计要点。
同时,对框支剪力墙的结构分析方法和计算原理进行了论述,包括静力弹性分析、屈曲分析和地震响应分析。
还对框支剪力墙的节点设计和构造要求进行了详细说明。
总结了本文的主要观点,并指出了未来研究的方向。
总结:框支剪力墙作为一种重要的结构形式,其设计涉及到框支剪力墙的基本概念和作用原理、材料选择和设计要点、结构分析方法和计算原理、节点设计和构造要求等方面。
通过本文的详细阐述,读者可以对部分框支剪力墙结构设计有更深入的理解。
未来的研究可以进一步探讨框支剪力墙在不同工程背景下的应用和优化设计方法,以提高结构的安全性和经济性。
【结构设计知识】最全(框架、剪力墙)结构设计要点N条归纳
我们只分享有价值的知识点,本文由李雪梅老师精心收编,大家能够下载学习!此行文字能够删除。
【精选结构设计知识】最全(框架、剪力墙)结构设计重点N条概括剪力墙结构设计中碰到的纠结问题8条概括(解答版)问题一:对于短肢剪力墙抗震等级需要提升一级采纳的疑问问题描绘:《高层建筑混凝土结构技术规程》(JGJ3-2002 )中第3条提到抗震设计时,短肢剪力墙的抗震等级应比本规程表规定的剪力墙的抗震等级提升一级采纳,可是我翻遍了《高层建筑混凝土结构技术规程》(JGJ3-2010)中没有提到对于短肢剪力墙需要提升抗震等级的条文?是不是新规范撤消了这条规定?同事也说送审的短肢剪力墙计算数据中没有提升抗震等级,送审答复也没要求改。
解答:条则说明短肢剪力墙的抗震等级不再提升,但在第2款中降低了轴压比限值这个跟老版的高规不一样。
问题二:设计上剪力墙连梁能否与有梁板的梁表示在一同解答:连梁的定义连梁:是指在剪力墙结构和框剪结构中,连结墙肢与墙肢、墙肢与框架柱的梁。
连梁拥有一般跨度较小(往常跨高比小于5)、截面大,且与连梁相连的墙体刚度又很大等特色。
一般在风荷载和地震荷载的作用下,连梁的内力常常很大。
连梁、次梁、框架梁的划分:往常状况框架梁是框架结构中柱与柱之间的梁;次梁就是指两头搭在框架梁上的梁;连梁是剪力墙结构中墙与墙之间的梁,框架梁是以曲折变形为主的构件;连梁是以剪切变形为主的构件。
框架梁是由柱子支撑梁来承重的构件,上部荷载直接由梁承重,再由梁将荷载传达到柱子上;连梁是将荷载由连梁传达至墙体。
从外形上来说,一般框架梁的跨高比大于5;而连梁的跨高比小于5。
问题三:剪力墙钢筋能否要求抗震,可否联合有关规范说一下?解答:剪力墙结构是有抗震等级区其余,可是,建筑抗震设计规范从GB50011-2001到更新了的GB50011-2010上,素来没有条则规定剪力墙的钢筋一定知足代E字的钢筋指标(对于屈屈比、屈强比、最大拉力下伸长率)。
框剪结构经验总结
框剪结构1.两个方向刚度宜相近。
答:《高规》8.1.7.7,抗震设计时剪力墙的布置宜使结构各主轴方向的侧向刚度接近。
2.剪力墙占的地震倾覆力矩比。
答:《高规》8.1.3,抗震设计的框架-剪力墙结构,应根据在规定的水平力作用下结构底层框架部分承受的地震倾覆力矩与结构总地震倾覆力矩的比值,确定相应的设计方法,并应符合下列规定:1.框架部分承受的地震倾覆力矩不大于结构总地震倾覆力矩的10%时,按剪力墙结构进行设计,其中框架部分应按框架-剪力墙结构的框架进行设计。
2.当框架部分承受地震倾覆力矩大于结构总地震倾覆力矩的10%但不大于50%时,按框架-剪力墙结构进行设计。
3.当框架部分承受地震倾覆力矩大于结构总地震倾覆力矩的50%但不大于80%时,,按框架-剪力墙结构进行设计,其最大适用高度可比框架结构适当增加,框架部分的抗震等级和轴压比限值宜按框架结构规定采用。
4.当框架部分承受地震倾覆力矩大于结构总地震倾覆力矩的80%时,按框架-剪力墙进行设计,但其最大适用高度宜按框架结构采用,框架部分的抗震等级和轴压比限值应按框架结构规定采用。
当结构的层间位移角不满足框架-剪力墙结构的规定时,可按本规程第3.11节的有关规定进行结构抗震性能分析和论证。
3.剪力墙布置的间距要求。
答:《高规》8.1.8,长矩形平面或平面有一部分较长的建筑中,其剪力墙布置尚宜符合下列规定:楼盖形式非抗震设计(取较小值)抗震设防烈度(取较小值)6度、7度8度9度现浇 5.0B、60m 4.0B、50m 3.0B、40m 2.0B、30m 装配整体 3.5B、50m 3.0B、40m 2.5B、30m —注:表中的B为剪力墙之间的楼盖宽度。
4.7度0.15g。
8度0.3g,三类土抗震构造措施提一级。
答:《高规》3.9.2,当建筑场地为Ⅲ,Ⅳ类时,对设计基本地震加速度为0.15g和0.30g的地区,宜分别按抗震设防烈度8度(0.20g)和9度(0..40g)时各类建筑的要求采取抗震构造措施。
框架—剪力墙分析解析
.
第二节 框剪结构内力计算
刚接体系计算步骤:
.
第三节 框剪结构内力、位移特征
刚度特征值,反映了框架抗侧刚度(包括连 梁约束刚度)与剪力墙抗弯刚度的比值影响。
当=0时即为纯剪力墙结构,当=∞时即为 纯框架结构。
.
第三节 框剪结构内力、位移特征 一、位移曲线
<1时,变形曲线呈弯曲形 >6时,变形曲线呈剪切形 =1~6时,变形曲线呈弯剪型
.
第三节 框剪结构内力、位移特征
剪力墙及框架顶部剪力不为0的原因是由协调变形 相互作用产生的。
协同工作使得框架各层剪力趋于均匀,有利于框架 柱的设计。梁、柱尺寸从上到下可以比较均匀。
框架的剪力最大值在结构中部某层,相对座标大约 在0.3~0.6之间,随刚度特征值的增大,最大剪力层向下 移动。可以根据最大剪力值控制柱断面配筋。
位剪切变形所需的水平剪力
CF h Dj
.
第二节 框剪结构内力计算
在工程实际中,总框架各层抗侧移刚度Cf及总剪力墙各 层等效抗弯刚度EIeq沿结构高度不一定完全相同,而是有变 化的,如果变化不大,其平均值可采用加权平均法算得:
hiC fi
Cf
m
H
hiEIwi
EIw m H
.
第二节 框剪结构内力计算 四、按铰接体系框剪结构的内力计算
.
第二节 框剪结构内力计算
总剪力墙内力与弯曲变形的关系
EIwd dx4y 4 p(x)pf(x)pm(x)
E Iwd dx 4y 4p(x)Cf .d dx 2y 2i n1m h abi d dx 2y 2
第二节 框剪结构内力计算
整理后可得:
d4y(Cf
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
部分框支剪力墙结构一、结构布置1. 底部转换层的设置高度研究得出,底部转换层位置越高,转换层上、下刚度突变越大,转换层上、下内力传递途径的突变越加剧,落地剪力墙或筒体易出现受弯裂缝,而使框支柱内力增大,转换层上部附近墙体易破坏,因此,转换层越高,对抗震越不利,因此规定9度区不应采用此结构。
“高规”第10.2.2条规定:对部分框支剪力墙结构,转换层设置高度8度时不宜超过3层,7度时不宜超过5层,6度时可适当提高。
对于底部带核心筒的转换层框架核心筒结构和外框为密柱框架的筒中筒结构,由于其转换层上、下的刚度突变不明显,转换层上、下层内力传递途径突变的程度也小于框支剪力墙结构,转换层的高度对这两种结构影响不如框支剪力墙结构严重,因此,对这两种结构的转换层位置,可比框支剪力墙结构适当提高。
但当底部带转换层的筒中筒结构外筒由剪力墙组成的壁式框架时,其转换层上、下层的刚度突变及内力传递途径程度与框支剪力墙结构相近,因此,其设置高度限制同框支剪力墙结构。
2. 转换层上、下刚度突变的控制带转换层结构应使转换层下部结构的抗侧刚度接近转换层上部邻近结构的抗侧刚度,不发生明显的刚度突变,不应使转换层下部结构成为柔软层,因底部柔软层房屋在大地震中的倒塌十分普遍。
转换层上部结构的侧向刚度与下部结构的侧向刚度比应符合下列规定:1) 底部大空间为1层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示,γ宜接近1,非抗震设计时γ不应大于3,抗震设计时γ不应大于2,γ可按下列公式计算 211122h h A G A G ⨯=γ……………………………………(1) ci i wi i A C A A += (i=1.2)……………………(2) 2)(5.2ici i h h C = (i=1.2)……………………(3) 式中:1G 、2G ——底层和转换层上层的混凝土剪变模量1A 、2A ——底层和转换层上层的折算抗剪截面面积,可按(2)式计算。
wi A ——第i 层全部剪力墙在计算方向的有效截面面积(不包括翼缘面积)ci A ——第i 层全部柱的截面面积i h ——第i 层的层高ci h ——第i 层柱沿计算方向的截面高度当第i 层各柱沿计算方向的截面高度不相等时,可分别计算各柱的折算抗剪截面面积2)底部大空间层数大于1层时,其转换层上部与下部结构的等效侧向刚度比e γ可采用下图所示的计算模型按公式(4)计算。
e γ宜接近1,非抗震设计时e γ不应大于2,抗震设计时e γ不应大于1.3。
1221H H e ∆∆=γ………………………………(4) 式中:e γ——换层上、下结构的等效侧向刚度比;1H ——转换层及其下部结构(计算模型1)的高度;1∆——转换层及其下部结构(计算模型1)的顶部在单位水平力作用下的侧向位移; 2H ——转换层上部若干层结构(计算模型2)的高度,其值应等于或接近模型1的高度1H ,且不大于1H ;2∆——转换层上部若干层结构(计算模型2)的顶部在单位水平力作用下的侧向位移。
当转换层设在3层及3层以上时,其楼层侧向刚度尚不应小于相邻上部楼层侧向刚度的60% 。
当转换层位置大于1层抗震设计时,应同时满足转换层上、下层的等效剪切刚度比e γ不应小于0.6。
对于1层转换层上、下层侧向刚度可近似只考虑剪切变形的影响;当转换层位置大于1层时,转换层上部与下部结构的等效刚度比e γ计算中考虑了结构的剪切变形和弯曲变形。
为防止转换层上、下层刚度突变和内力传递途径突变“高规”附录E.0.2限制了e γ不应大于1.3。
另外,在采用公式(4)时,要注意使转换层上部部分结构(计算模型2)的高度2H 接近或等于转换层下部结构(计算模型1)的高度1H ,且2H 不能大于1H ,若2H 大于1H ,则刚度比e γ的计算结果偏小,是偏于不安全的。
对于转换层设置在3层及3层以上时,还须满足本层(转换层)的侧向刚度不应小于相邻上一层侧向刚度的60%,这是为了防止出现转换层的下层楼层刚度大,而转换层本层侧向刚度小,出现竖向刚度严重不规则结构“高规”4.4.2条规定,楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%,但未规定下限。
对于位于3层以上的带转换层的高层建筑结构,规定60%作为下限值是必要的。
3. 转换构件的形式及布置1) 转换构件的形式按现有的工程经验和研究成果,转换构件可采用:转换大梁、桁架、空腹桁架、斜撑、箱形结构以及厚板等形式。
由于厚板在地震区使用经验较少,因而规定厚板用于非地震区和6度抗震设计时采用,对于大空间地下室,因周围外墙土的约束作用,地震反应小于地面以上的框支结构,所以7、8度抗震设计时的地下室可采用厚板转换层。
2) 转换层的布置转换层上部的竖向抗侧力构件(墙、柱)宜直接落在转换层的主结构上,当结构竖向布置复杂,框支主梁承托剪力墙并承托转换次梁及其上剪力墙时,应进行应力分析,按应力校核配筋,并加强配筋构造措施,因这种多次转换传力路径长,且次梁传给的剪力、扭矩和弯矩,框支梁易受剪破坏,因而B 级高度框支剪力墙结构不宜采用框支主、次梁方案。
A 级高度框支结构条件许可可采用箱形转换层。
(高规10.6.10)。
4. 剪力墙(筒体)和框支柱的布置落地剪力墙(筒体)和框支柱的布置对防止转换层下部在地震中倒塌起十分重要作用。
震害经验得出下部框架柱或有少量剪力墙而上部为刚性墙体结构,地震作用下底部造成严重破坏,甚至倒塌,因此“高规”对落地剪力墙作了如下规定:1) 平面布置应力求简单规则,均衡对称尽量使水平荷载合力中心与结构刚度中心重合,墙肢的长度沿结构全高不宜有突变;2) 落地剪力墙和筒体底部墙体应加厚,满足转换层上、下层侧向刚度比;3) 框支层周围楼板不应错层布置;4) 落地剪力墙和筒体的洞口宜布置在墙体的中部;5) 框支剪力墙转换梁上一层墙体内不宜设边门洞,不宜在中柱上方设门洞,剪力墙内洞口宜上、下对齐,以形成明确的墙肢,小墙肢截面高度不得小于3w b ;6) 长矩形平面建筑中落地剪力墙的间距l 宜符合以下规定:非抗震设计: B l 3≤ 且m l 36≤抗震设计:底部为1~2层框支层时:B l 2≤ 且m l 24≤底部为3层及3层以上框支层时:B l 5.1≤ 且m l 20≤其中B ——楼盖宽度7) 落地剪力墙与相邻框支柱的距离,1~2层框支层时不宜大于12m ,3层及3层以上框支层时不宜大于10m 。
8) 平面为长矩形、横向剪力墙的片数较多时,落地的横向剪力墙数目与横向剪力墙总数目之比,非抗震设计时不宜小于30%,抗震设计时不宜少于50%。
(该条摘自全国民用建筑工程设计技术措施“结构”)9) 较长的抗震墙宜开设洞口,将一道剪力墙分成长度较均匀的若干墙段,洞口连梁的跨高比宜大于6,多墙段的高宽比不应小于2。
目的是避免剪切破坏,提高变形能力。
二、框支剪力墙结构构件的混凝土强度等级、部分框支剪力墙结构的最大适用高度(m )、结构抗震等级1. 框支剪力墙结构构件的混凝土强度等级按下列规定选用1) 框支梁、框支柱、转换层楼板不应低于C30;2) 框支梁上的墙体不应低于20;3) 落地剪力墙在转换层以下的墙体不应低于C30。
2. A 级高层部分框支剪力墙结构适用高度、结构抗震等级 表13.B 级高层部分框支剪力墙结构最大适用高度(m )、结构抗震等级 表2三、部分框支剪力墙结构最大层间位移角限值及层间弹性位移角限值1. 层间最大位移角限值框支层 10001/≤∆h u 框支层(底层) 25001/≤∆h ue 上海市标准“建筑抗震设计规程” 框支层(二层) 20001/≤∆h ue 上海市标准“建筑抗震设计规程” 因底层剪力墙的层间位移主要是以剪切变形为主,弯曲变形成分很少,类似于单层剪力墙变形,为防止框支剪力墙结构底层墙的过早开裂,限制其层间位移角为1/2500。
注:楼层最大位移u ∆(ue ∆)以楼层最大的水平位移差计算,不扣除整体弯曲变形,抗震设计时,本条规定的楼层位移计算不考虑偶然偏心的影响。
2. 结构薄弱层(部位)层间弹塑性位移角限值框支层 1/120四、底部加强部位结构1. 底部加强部位范围试验表明,底部带转换层的高层建筑结构中,当转换层位置较高时,落地剪力墙往往从墙底部到转换层以上1~2层范围内,剪力墙出现裂缝或局部破坏,因此带转换层的结构底部加强部位范围应适当增大,高规10.2.4条规定,框支层加上框支层以上二层及墙肢总高度的1/8二者的较大值。
本条所指剪力墙底部加强部位包括落地剪力墙和转换构件上部2层的剪力墙。
2.薄弱层底部带转换层的高层建筑,由于转换层上部楼层的部分竖向构件不能连续贯通至下部楼层,因此转换层是薄弱层,其地震剪力需乘1.15的增大系数,设计时,不要误认为只要楼层侧向刚度满足规程要求,该层就不是薄弱层了。
转换层的转换构件在水平地震作用下所产生的内力需调整增大,特一、一、二级分别乘以1.8、1.5、1.25系数,8度抗震设计时,转换构件尚应考虑竖向地震的影响(高规10.2.6条)转换构件的竖向地震作用,可采用反应谱法或动力时程分析法;近似计算,可将转换构件在重力荷载标准值作用下的内力乘以增大系数1.1。
3.转换层在3层及3层以上的结构抗震等级抗震设计时,高位转换对结构受力十分不利,在水平地震作用下,在转换层下部落地剪力墙所分配的倾覆力矩往下递增较快,而支承框架的倾覆力矩递增量很少,此外,在转换层处,框支剪力墙的大量剪力通过楼板传递给落地剪力墙。
当转换层较高时,剪力分配和传力途径发生急剧的突变,落地剪力墙更易产生裂缝转换层上部墙体所受内力也大,也易破坏,转换层下部的框架也易屈服,形成几个薄弱层,为保证结构安全,《高规》10.2.5条规定,对部分框支剪力墙结构,当转换层位置设置在3层及3层以上时,其框支柱、剪力墙底部加强部位的抗震等级尚宜按第二节表1、表2的规定提高一级采用,已经为特一级时,可不再提高。
对于底部带转换层的框架—核心筒结构和外围为密柱框架的筒中筒结构的抗震等级可不必提高。
4.框支柱及落地墙的内力底部带转换层的高层建筑,结构较复杂,本规程从经济和安全合理考虑,采用增大内力和加强构造措施并重方法。
框支柱内力增大,幅度较高,因为在计算时,楼面作为无穷大,在地震力作用下,水平力按刚度进行分配,框支柱刚度往往是落地剪力墙的1%以下,框支柱分配到的剪力很小,但实际上,通过试验,转换层楼面在平面内受力很大,楼板有显著变形,大空间部分框支柱的位移增大,另外,落地剪力墙开裂,刚度降低,从而使框支柱的剪力比计算值大3~5倍,甚至更多。
对于转换位置在3层及3层以上结构,其内力增大幅度也适当提高。
高规10.2.7规定:带转换层的高层建筑结构,其框支柱承受的地震力标准值应按下列规定采用:1) 每层框支柱的数目不多于10根的场合,当框支层为1~2层时,每根柱所受的剪力至少取基底剪力的2%;当框支层为3层及3层以上时,每根柱所受的剪力至少取基底剪力的3%;2) 每层框支柱的数目多于10根的场合,当框支层为1~2层时,每层框支柱承受剪力之和应取基底剪力的20%;当框支层为3层及3层以上时,每层框支柱承受剪力之和应取基底剪力的30%。