小学五年级奥数试题:简单抽屉原理(附例题分析

合集下载

抽屉原理例题解析

抽屉原理例题解析

抽屉原理1:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果概念解析1、把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢.一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.2、如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.3、我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。

等十二种生肖)相同.怎样证明这个结论是正确的呢.只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。

应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。

例题讲解例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

解析(首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

)例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的.解析(扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。

小学奥数:抽屉原理(含答案)

小学奥数:抽屉原理(含答案)

小学奥数:抽屉原理(含答案)教案抽屉原理1、概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要XXX的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。

如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。

比如,我们从街上随便找来13人,便可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证实这个结论是正确的呢?只要利用抽屉原理就很简单把道理讲清楚.事实上,因为人数(13)比属相数(12)多,因而至少有两个人属相相同(在这里,把13人算作13个“苹果”,把12种属相算作12个“抽屉”)。

应用抽屉原理要注意识别“抽屉”和“苹果”,XXX的数目一定要大于抽屉的个数。

2、例题讲解例1有5个小朋友,每人都从装有许多是非围棋子的布袋中随便摸出3枚棋子.请你证实,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

例2一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

例4从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

小学奥数抽屉原理问题例题

小学奥数抽屉原理问题例题

1.在200位学生中,在同一个月过生日的最少有多少人?[分析与解]因为有12个不同的月份,200÷12=16……8,所以在同一月过生日的最少有16+1=17人.2.学校买来历史、文艺、科普3种图书若干本,每名学生从中任意借2本,那么最少在多少名学生中才一定有两人所借图书的种类完全相同?[分析与解]注意到,6名学生可以将所有的可能借一遍:(历史,历史),(文艺,文艺),(科普,科普),(历史,文艺),(历史,科普),(文艺,科普).所以第7名同学不管他怎么借,都在这6种情况之列.所以最少在7名学生中才一定有两人所借图书的种类完全相同.3.一次智力竞赛,试卷上出了10道选择题,评分标准为:每人有10分基础分,每答对一题加4分,答错一题扣1分,不答的题不加分也不扣分.为了要保证至少有3人得分相同,则最少有多少人参加竞赛?[分析与解]如果全部做对可以得到10+10×4=50分,全部做错将得到10-10×1=0分,那么是不是50~0分之间所有的分数都能得到呢?注意到49,48,47,44,43,39这6种分数得不到,于是共有51-6=45种不同的得分.如果每种分数都有2个人得到,则需90人,那么第91个人的分数一定在45种分数之列,这样就一定有3人得到的分数相同.所以,为了保证至少有3人得分相同,则最少有91人参加竞赛.4.盒子中有10个红球、10个白球和10个绿球,它们的大小都相同.如果闭上眼睛,一次最少要取出多少个才能保证其中必有3个颜色相同的球?[分析与解]闭上眼睛,最不利的情况,前6个,将3种颜色的球各取了2个,那么第7个取出的球不管是何种颜色,一定和某两个球的颜色相同.所以一次最少要取出7个才能保证其中必有3个颜色相同的球.5.一个布袋里有大小相同颜色不同l的一些木球,其中红色的有10个,白色的有9个,黄色的有8个,蓝色的有3个,绿色的有1个.那么一次最少要取出多少个球,才能保证有4个颜色相同的球?[分析与解]我们知道取出3个红球,3个白球,3个黄球,3个蓝球,1个绿球,此时仍然没有4个相同颜色的球,取出了3+3+3+3+1=13个球.但是取出第14个球时,不管这个球是红色、白色还是黄色的,都有3个球的颜色与其相同.所以一次最少要取出14个球,才能保证有4个颜色相同的球.6.暗室里有红、绿、蓝、黄、白5种颜色的袜子各50只,为确保从室内取出l0双袜子(两只袜子颜色相同即为一双),那么应从室内取出袜子的最少只数是多少?[分析与解]我们知道取出红色5只,绿色5只,蓝色5只,黄色5只,白色3只,此时只有9双袜子,此时有5+5+5+5+3=23只袜子.但是第24只袜子不管取的是颜色,都能与上面的袜子在拼成一双.所以,最少应从暗室中取出24只袜子,保证其中必有10双袜子.7.黑色、白色、黄色、红色的筷子各有8根,混杂放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子.问最少要取多少根才能保证达到要求?[分析与解]我们知道如果有黑色8根,白色1根,黄色1根,红色1根,其中没有两双颜色不同的筷子.此时取出了8+1+1+1=11根筷子.但是第12根筷子不管是何种颜色,都能凑出另一种颜色不同的筷子.所以要保证取出的筷子中有颜色不同的两双,最少要取12根筷子.8.口袋内装有4个红球、6个黑球和8个白球,一次最少取出多少个球,才能保证至少有1个白球和1个黑球?[分析与解]如果开始取出8个白球,4个红色,此时有12个球,但是没有黑球,但是再取一个球一定是黑色的,满足题意.所以,一次最少取出13个球,才能保证至少有1个白球和1个黑球.9.口袋中有红、黄、蓝3种颜色的玻璃球各50个,闭着眼睛最少要摸出多少个球,才能保证红球数与黄球数的和比蓝球数多,黄球数与蓝球数的和比红球数多,红球数与蓝球数的和比黄球数多?[分析与解]将一种颜色与另两种颜色作为两个抽屉,为了使另两种颜色球数多于第一种颜色,至少放入50×2+1=101个苹果(球),才能使有一个抽屉有多于50个苹果,这个抽屉只能是两种颜色的抽屉.那么,至少要取出101个球才能保证任何一种颜色的小球都会小另两种颜色的数量和.10.圆桌周围恰好有90把椅子,现已有一些人在桌边就坐,当再有一人入座时,就必须和已就坐的某个人相邻,则已就坐的最少有多少人?[分析与解]我们知道每隔2个人坐1个人,这样就会造成上面的情况,这时已经坐入90÷3=30人,并且易知少于30人时,不能保证题中的情况出现.所以,已就坐的最少有30人.11.有1999个数,每个数为0或1,如果要求当把这些数以任意的方式排列在圆周上时,总能找到37个l连排在一起.那么其中最少有多少个数是1?[分析与解]1999÷(37+1)=52……23,至少有54个0,那么可将1分成53段,这样必定有1段有37个连续的1.此时,有1999-54=1945个1.所以,要保证题中叙述的成立,最少有1945个1.12.有64只乒乓球放在18个盒子中,每个盒子最多放6只乒乓球.那么最少有几个盒子里的乒乓球数目相同?(每个盒子必须放入球,不可以存在空盒情况)[分析与解]最多可以使得6个盒子的乒乓球的只数不等,依次为1,2,3,4,5,6只,这6个盒子共有21只乒乓球,64÷21=3……1,这样18个盒子放入了21×3=63只球,剩下的1只不管放到那个盒中,如果这只盒子放有k个球,那么现在就有4个盒子中的球是k+1个.所以最少有4个盒子里的乒乓球数目相同.13.在笔直的马路上,从某点起,每隔1米种有1棵树.如果把3块“爱护树林”的小牌分别挂在3棵树上,请说明:不管怎么挂,总有2棵挂牌的树,它们之间的距离以米为单位度量是偶数.[分析与解]设3棵挂排的树距离同一点O的距离分别为a,b,c.这3个数中至少有两个同是奇数或同是偶数.因为奇数-奇数=偶数,偶数-偶数=偶数.所以这3个数中至少有两个数之差是偶数.这就说明不管怎么挂,至少有两棵挂牌的树之间的距离是偶数.14.数学教师带领30名学生做游戏,师生每人都各自在一张纸上把自然数1至30写成一行,顺序由自己决定.然同学们将自己的纸条与老师所写的纸条相比,有几个数与师所写的位置相同,就可得几分.现在知道30名学生所得分数各不相同,请说明其中必有1名学生所写的纸条与老师自顺序完全相同.[分析与解]我们注意到,学生写出的数最少没有1个和老师的相同,最多30个数的顺序完全相同,那么这就要31种不同的分值,但是这31种分值都能取到吗?注意到,29分这个分值是取不到的,因为不可能正好有29个数与老师所写数的顺序相同,有29个数的顺序相同,那么第30个数的顺序一定也相同.所以只有30种分值,并且每个学生各不相同,那么这30个分值每种都有人得到,即一定有得到30分的学生,这名学生所写的纸条与老师自己的顺序完全相同.15.图20-1是一个l0×10的方格表,能否在方格表的每个格中填入l,2,3这3个数之一,使得每行、每列及两条对角线上的各数之和互不相同?[分析与解]不可能,因为每列每行每对角线上的和最小为10,最大为30.10到30之间只有21个互不相同的整数值.而10行、10列及两条对角线上的各个数的和共有22个,所以这22条线上的各个数的和至少有两个是相等的。

小学奥数抽屉原理习题及答案【三篇】

小学奥数抽屉原理习题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是⽆忧考为⼤家整理的《⼩学奥数抽屉原理习题及答案【三篇】》供您查阅。

【篇⼀】【例 1】向阳⼩学有730个学⽣,问:⾄少有⼏个学⽣的⽣⽇是同⼀天? 【解析】⼀年最多有366天,可看做366个抽屉,730个学⽣看做730个苹果.因为,所以,⾄少有1+1=2(个)学⽣的⽣⽇是同⼀天. 【巩固】试说明400⼈中⾄少有两个⼈的⽣⽇相同. 【解析】将⼀年中的366天或天视为366个或个抽屉,400个⼈看作400个苹果,从最极端的情况考虑,即每个抽屉都放⼀个苹果,还有个或个苹果必然要放到有⼀个苹果的抽屉⾥,所以⾄少有⼀个抽屉有⾄少两个苹果,即⾄少有两⼈的⽣⽇相同.【篇⼆】【例 2】三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩. 【解析】⽅法⼀: 情况⼀:这三个⼩朋友,可能全部是男,那么必有两个⼩朋友都是男孩的说法是正确的; 情况⼆:这三个⼩朋友,可能全部是⼥,那么必有两个⼩朋友都是⼥孩的说法是正确的; 情况三:这三个⼩朋友,可能其中男⼥那么必有两个⼩朋友都是⼥孩说法是正确的; 情况四:这三个⼩朋友,可能其中男⼥,那么必有两个⼩朋友都是男孩的说法是正确的.所以,三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩的说法是正确的; ⽅法⼆:三个⼩朋友只有两种性别,所以⾄少有两个⼈的性别是相同的,所以必有两个⼩朋友都是男孩或者都是⼥孩.【篇三】【例 3】“六⼀”⼉童节,很多⼩朋友到公园游玩,在公园⾥他们各⾃遇到了许多熟⼈.试说明:在游园的⼩朋友中,⾄少有两个⼩朋友遇到的熟⼈数⽬相等. 【解析】假设共有个⼩朋友到公园游玩,我们把他们看作个“苹果”,再把每个⼩朋友遇到的熟⼈数⽬看作“抽屉”,那么,个⼩朋友每⼈遇到的熟⼈数⽬共有以下种可能:0,1,2,……,.其中0的意思是指这位⼩朋友没有遇到熟⼈;⽽每位⼩朋友最多遇见个熟⼈,所以共有个“抽屉”.下⾯分两种情况来讨论: (1)如果在这个⼩朋友中,有⼀些⼩朋友没有遇到任何熟⼈,这时其他⼩朋友最多只能遇上个熟⼈,这样熟⼈数⽬只有种可能:0,1,2,……,.这样,“苹果”数(个⼩朋友)超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. (2)如果在这个⼩朋友中,每位⼩朋友都⾄少遇到⼀个熟⼈,这样熟⼈数⽬只有种可能:1,2,3,……,.这时,“苹果”数(个⼩朋友)仍然超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. 总之,不管这个⼩朋友各遇到多少熟⼈(包括没遇到熟⼈),必有两个⼩朋友遇到的熟⼈数⽬相等.。

抽屉原理十个例题

抽屉原理十个例题

抽屉原理十个例题1.有5个红球和7个蓝球放在一个抽屉里,如果随机取出3个球,那么至少会拿到两个是同色球的概率是多少?解析:使用反面计算。

首先,计算取出3个球都是不同色球的概率。

当第一个球被取出后,有5个红球和7个蓝球剩下。

那么取出第二个球时就只剩下4个红球和7个蓝球,概率为(5/12)*(7/11)。

同理,取出第三个球时只剩下3个红球和7个蓝球,概率为(5/12)*(4/11)。

因此,取出3个球都是不同色球的概率为(5/12)*(7/11)*(4/11)。

所以,至少会拿到两个是同色球的概率为1-(5/12)*(7/11)*(4/11)。

2.一组音乐会有10个乐手,其中3个会弹钢琴,4个会吹号,2个会弹吉他,1个会敲鼓。

从中随机选出4个人组成一个小号乐队,求至少会有一位会弹钢琴和一位会吹号的概率是多少?解析:首先,计算四个人都不弹钢琴的概率。

在10个乐手中,只能选出7个人(除去3个弹钢琴的乐手),然后从这7个人中选出4个组成小号乐队,概率为(7选择4)/(10选择4)。

同理,计算四个人都不会吹号的概率为(6选择4)/(10选择4)。

然后计算四个人都不弹钢琴且不会吹号的概率为(4选择4)/(10选择4)。

所以,至少会有一位会弹钢琴和一位会吹号的概率为1-[(7选择4)/(10选择4)+(6选择4)/(10选择4)-(4选择4)/(10选择4)]。

3.有一个箱子里有10双袜子,其中5双是黑色的,3双是蓝色的,2双是灰色的。

如果从箱子中随机取出3只袜子,那么至少会拿到一双是蓝色的概率是多少?解析:计算没有蓝色袜子的概率。

当从箱子中取出第一只袜子后,有10只袜子剩下,其中3只是蓝色的。

所以,没有蓝色袜子的概率为(7/10)*(6/9)*(5/8)。

所以,至少会拿到一双是蓝色的概率为1-(7/10)*(6/9)*(5/8)。

4.一个袋子里有20个糖果,其中3个是巧克力的,7个是草莓味的,10个是薄荷味的。

如果从袋子中随机取出5个糖果,那么至少会拿到两个是草莓味的概率是多少?解析:计算没有草莓味糖果的概率。

小学奥数抽屉原理

小学奥数抽屉原理

小学奥数抽屉原理小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是一个非常有趣且实用的数学概念。

抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。

这个简单的原理在解决一些实际问题时非常有用,下面我们就来详细了解一下小学奥数中的抽屉原理。

首先,我们来看一个简单的例子。

假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮子里会有至少两个苹果。

这是因为5个苹果分别放入4个篮子,必然会有至少一个篮子里有两个或以上的苹果。

抽屉原理在解决实际问题时非常有用。

比如,在一个班级里,学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉原理,至少有两个学生会有相同的生日。

这是因为一年有365天,而学生的数量只有31个,必然会有至少两个学生生日在同一天。

除了生日问题,抽屉原理还可以应用在许多其它实际问题中。

比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至少会有一种花色的牌有两张或以上。

这是因为一副扑克牌只有4种花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。

在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。

通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。

同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。

总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。

通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。

希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。

五年级奥数题及答案:抽屉原理问题3

五年级奥数题及答案:抽屉原理问题3

五年级奥数题及答案:抽屉原理问题3 编者小语:奥数题往往从结构到解法都充满着神奇的魅力 ,易于小学生尝到探索的乐趣 ,而在探索解题方法的过程中 ,小学生又亲身体验到数学思想的博大精深和数学方法的创造力 ,因此对学习数学产生进一步的向往。

查字典数学网为大家准备了小学五年级奥数题 ,希望小编整理的五年级奥数题及参考答案:列方程问题 ,可以帮助到你们 ,助您快速通往高分之路!!例5 从1、2、3、4、…、19、20这20个自然数中 ,至少任选几个数 ,就可以保证其中一定包括两个数 ,它们的差是12。

分析与解答在这20个自然数中 ,差是12的有以下8对:{20 ,8} ,{19 ,7} ,{18 ,6} ,{17 ,5} ,{16 ,4} ,{15 ,3} ,{14 ,2} ,{13 ,1}。

从这10个数组的20个数中任取11个数 ,根据抽屉原理 ,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系 ,所以这两个数中 ,其中一个数一定是另一个数的倍数。

另外还有4个不能配对的数{9} ,{10} ,{11} ,{12} ,共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉 ,那么它们的差就等于12 ,根据抽屉原理至少任选13个数 ,即可办到(取12个数:从12个抽屉中各取一个数(例如取1 ,2 ,3 ,… ,12) ,那么这12个数中任意两个数的差必不等于12)。

例6 从1到20这20个数中 ,任取11个数 ,必有两个数 ,其中一个数是另一个数的倍数。

分析与解答根据题目所要求证的问题 ,应考虑按照同一抽屉中 ,任意两数都具有倍数关系的原那么制造抽屉.把这20个数按奇数及其倍数分成以下十组 ,看成10个抽屉(显然 ,它们具有上述性质):{1 ,2 ,4 ,8 ,16} ,{3 ,6 ,12} ,{5 ,10 ,20} ,{7 ,14} ,{9 ,18} ,{11} ,{13} ,{15} ,{17} ,{19}。

小学奥数--抽屉原理

小学奥数--抽屉原理

⼩学奥数--抽屉原理⼩学奥数--抽屉原理抽屉原理(⼀)解题要点:要从最不利情况考虑,准确地建⽴抽屉和确定元素的总个数(如果将5个苹果放到3个抽屉中去,那么不管怎么放,⾄少有⼀个抽屉中放的苹果不少于2个。

道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相⽭盾,因此⾄少有⼀个抽屉中放的苹果不少于2个。

同样,有5只鸽⼦飞进4个鸽笼⾥,那么⼀定有⼀个鸽笼⾄少飞进了2只鸽⼦。

以上两个简单的例⼦所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么⾄少有⼀个抽屉中的物品不少于2件。

说明这个原理是不难的。

假定这n个抽屉中,每⼀个抽屉内的物品都不到2件,那么每⼀个抽屉中的物品或者是⼀件,或者没有。

这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相⽭盾,所以前⾯假定“这n 个抽屉中,每⼀个抽屉内的物品都不到2件”不能成⽴,从⽽抽屉原理1成⽴。

从最不利原则也可以说明抽屉原理1。

为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放⼊1件物品,共放⼊n 件物品,此时再放⼊1件物品,⽆论放⼊哪个抽屉,都⾄少有1个抽屉不少于2件物品。

这就说明了抽屉原理1。

例1 某幼⼉园有367名1996年出⽣的⼩朋友,是否有⽣⽇相同的⼩朋友,分析与解:1996年是闰年,这年应有366天。

把366天看作366个抽屉,将367名⼩朋友看作367个物品。

这样,把367个物品放进366个抽屉⾥,⾄少有⼀个抽屉⾥不⽌放⼀个物品。

因此⾄少有2名⼩朋友的⽣⽇相同。

例2在任意的四个⾃然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。

我们将余数的这三种情形看成是三个“抽屉”。

⼀个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”⾥。

抽屉原理(小学)

抽屉原理(小学)

练习二
(1)任意的37人中,至少有几人的属相相同? (2)某班有个小书架,40个同学可以任意借阅, 试问小书架上至少要有多少本书,才能保证至 少有1个同学能借到2本或2本以上的书 ? 1 2 2 (3)一个袋内有100个球,其中红球28个、绿 球20个、黄球12个、蓝球20个、白球10个、 黑球10个。现在从袋中任意摸球出来,若要使 摸出的球中,至少有15个球的颜色相同,问至 少要摸出几个球才能保证上述要求?
例题分析
(1)某班共有13个同学,那么至少有几人是同月 出生? 13÷12=1(商)….1(余数) 1+1=2 答:至少2人是同月出生。 (2)把4封信投进2个邮筒,则总有1个邮筒至少投 进了几封信? 4÷2=2 答:总有1个邮筒至少投进2封信。
例题分析(续一)
(3)某班参加一次数学竞赛,试卷满分是30 分。为保证有2人的得分一样,该班至少得 有几人参赛?() A. 30 B. 31 C. 32 D. 33 抽屉数:(30-0)÷1+1=31 31×(2-1)+1=32 所以选C
绪论
奥数竞赛中有一类比较典型的题—— 抽屉问题。对许多学生来说,这个题 型有一定的难度,因为很难通过算式 的方式来将其量化 。
抽屉原理
抽屉原理:把3个苹果放到2个抽屉 里,则至少有一个抽屉里有2个或多 于2个的苹果。 运气最差时:平均分散
运用方法
解此类问题的重点是二个方面。
第一个方面:就是要找准“抽屉”,只有“抽 屉”找准了,“苹果”才好放。 第二个方面:确定各个量之间存在的关系。
例题分析(续三)
(5)从一副完整的扑克牌中,至少抽出多少 张牌,才能保证至少6张牌的花色相同。() A.21 B.22 C.23 D.24 6×1+4×(5-1)+1=23 所以选C 当抽屉容量不一样时,需要根据抽屉的容 量分组进行讨论。

抽屉原理例题解析

抽屉原理例题解析

抽屉原理1:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果概念解析1、把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.2、如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个〔也就是至多有1个〕,那么所有抽屉里的苹果数的和就比总数少了.3、我们从街上随便找来13人,就可以断定他们中至少有两个人属相〔指鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。

等十二种生肖〕一样.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数〔13〕比属相数〔12〕多,因此至少有两个人属相一样〔在这里,把13人看成13个“苹果〞,把12种属相看成12个“抽屉〞〕。

应用抽屉原理要注意识别“抽屉〞和“苹果〞,苹果的数目一定要大于抽屉的个数。

例题讲解例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

例2 一副扑克牌〔去掉两王牌〕,每人随意摸两牌,至少有多少人才能保证他们当中一定有两人所摸两牌的花况是一样的?解析〔扑克牌中有方块、梅花、黑桃、红桃4种花色,2牌的花色可以有:2方块,2梅花,2红桃,2黑桃,1方块1梅花,1方块1黑桃,1方块1红桃,1梅花1黑桃,1梅花1红桃,1黑桃1红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。

〕例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

五年级奥数抽屉原理

五年级奥数抽屉原理

在上一篇文章中,我们介绍了抽屉原理的基本概念和一些相关例题。

在这篇文章中,我们将进一步讨论抽屉原理,并通过更多的例题来加深对这一概念的理解。

我们先回顾一下抽屉原理的表述:如果有n+1个物体被放进n个抽屉,那么至少有一个抽屉里面至少有两个物体。

现在,我们通过一些例题来具体说明抽屉原理的应用。

例题1:有一袋子里装着10只红球和15只蓝球,现在我们从袋子里任意取出3个球。

证明:至少有两个球颜色相同。

解析:这道题目可以通过排除法来解决。

我们假设取出的3个球的颜色都不相同,即一个球是红色,一个球是蓝色,还有一个是其他非红、蓝的颜色。

那么根据抽屉原理,至少有两个球是同一种颜色,与我们的假设矛盾。

因此,我们可以得出结论:至少有两个球的颜色相同。

例题2:20日,小明去书店买了15本书,其中包含3本数学书,4本英语书,8本科普书。

现在我们需要证明,如果随机取出其中的3本书,那么至少有两本是同一科目的书。

解析:我们可以使用类似于例题1的方法来解决这个问题。

先假设取出的3本书中没有任意两本是同一科目的,即每个科目都有且仅有一本书被取出。

根据抽屉原理,我们可以推断至少有两个科目的书被取出,与假设矛盾。

因此,我们可以得出结论:至少有两本是同一科目的书。

例题3:小明有10个板块,每个板块上的数字都是从1到5的整数。

现在小明需要从这些板块中任意取出6个。

证明:至少有两个板块上的数字相同。

解析:我们可以使用与前两个例题相似的思路来解决这个问题。

设想将6个板块放进5个抽屉,将每个板块上的数字当作抽屉的标号。

根据抽屉原理,至少有一个抽屉里面有两个板块。

而在这个问题中,抽屉就是指板块上的数字。

因此,我们可以得出结论:至少有两个板块上的数字相同。

通过以上三个例题,我们可以看到抽屉原理的应用非常广泛。

它不仅用于奥数问题,同时也可以应用于生活中的诸多场景中。

对于学生们来说,理解抽屉原理可以帮助他们在解决问题时更加灵活和深入地思考。

除了以上的例题外,还有许多与抽屉原理相关的问题等待我们去发现和解决。

小学奥数—抽屉原理

小学奥数—抽屉原理

小学奥数-抽屉原理(一) 先了解一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。

抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。

理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。

已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。

问:至少有几名学生的成绩相同?分析与解:关键是构造合适的抽屉。

既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。

除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。

例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。

规定每人必须参加一项或两项活动。

那么至少有几名营员参加的活动项目完全相同?分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。

营员数已经有了,现在的问题是应当搞清有多少个抽屉。

例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?分析与解:这道题一下子不容易理解,我们将它变变形式。

小学奥数趣味学习《抽屉问题》典型例题及解答

小学奥数趣味学习《抽屉问题》典型例题及解答

小学奥数趣味学习《抽屉问题》典型例题及解答抽屉问题是一类与“存在性”有关的数学问题。

如367个人中至少有两个人是同一天过生日,这类问题在生活中非常常见,它所依据的理论,我们称之为“抽屉原理”。

抽屉原理是符合某种条件的对象存在性问题有力工具。

数量关系:基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。

抽屉原则可以推广为:如果有m个抽屉,元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。

解题思路和方法:目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。

例题1:不透明的箱子中有红、黄、蓝、绿四种颜色的球各20个,一次至少摸出多少个球才能保证摸出两个相同颜色的球?解:解决这个问题要考虑最不利的情况,因为有4种颜色,想要摸出两个相同颜色的球。

那么最不利的情况就是,每种颜色的各摸出一个,这时再摸一个球,一定与前几个球有颜色相同的。

因此至少要摸4+1=5(个)球。

例题2:袋子中有2个红球,3个黄球,4个蓝球,5个绿球,一次至少摸出多少个球就能保证摸到两种颜色的球?解:解决这个问题要考虑最不利情况,想要摸出两种颜色的球,最不利的情况应该是将一种颜色的球都拿出来时,不论接下来摸的球是什么颜色都与之前颜色不同。

因为4种球的个数各不相同,所以最不利的情况应该是先将个数最多的球都拿出来,接下来摸的球都一定与之前颜色不同。

因此至少摸出5+1=6(个)球。

例题3:一次数学竞赛共5道选择题,评分标准为:基础分5分,答对一题得3分,答错扣1分,不答不得分。

要保证至少有4人得分相同,最少需要多少人参加竞赛?解:1、本题考察的是抽屉原理的相关知识,解决本题的关键是要知道得分一共有多少种不同的情况,进而从最坏的情况开始考虑解决问题。

2、一共有5题,且有5分的基础分,那么每道题就有1分的基础分。

也就相当于答对一题得4分,答错不得分,不答得1分。

小学奥数专题训练五年级之抽屉原理

小学奥数专题训练五年级之抽屉原理

小学奥数专题训练部分之抽屉原理1、有红、黄、蓝、绿四种颜色小旗各一面,取其中一面小旗,或者多面小旗由上而下挂在旗杆上作为信号(挂多面小旗时,不同顺序表示不同信号,如:挂出红、黄颜色小旗时,顺序为红黄与顺序为黄红表示不同的信号)。

问:一共有()多少种信号?如果某天一共发出信号323次,那么这一天必定出现某种相同的信号至少有()次?2、一副扑克牌一共有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?3、自制的一副玩具牌一共计52张(含有四种颜色的牌:红桃、红方、黑桃、黑梅。

每种牌都有1点、2点….13点)。

洗好后背面朝上放好,一次至少抽取几张牌,才能保证其中必定有2张牌点数和颜色都相同。

如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色的),那么至少需要取多少张牌?4、在8*8的方格纸中,每个方格内可以填上1-4四个自然数中的任意一个,填满以后,对每个2%2的田字形内的4个自然数求和。

在这些和中,相同的和至少有()多少个?(*在此代表乘号)5、用数字1、2、3、4、5、6填满一个6*6的方格表,如图所示,每个小方格中只填写其中的一个数字。

将其中2*2正方形内的四个数字的和称为这个2*2正方形的标示数。

问能否给出一种填法,使得任意两个标示数均不相同?如果能,请举出一个例子?不能则请说明理由?(*在此代表乘号)(图请根据题意自己画,不是太难。

)6、两条直线相交,四个交角中的一个锐角或一个直角称为这两条直线的夹角。

现在平面上有若干条直线,他们两两相交,并且夹角只能是30度、60度或者90度。

问:至少有多少条直线?7、某学校有55个学生参加数学竞赛,已知将参赛人任意分成四组,则必有一组女生多于2人,又知道参赛者中任何10人中必有男生。

则参赛男生的人数为()人?8、王跃老师带着若干个小朋友去购买单价为3元和5元的两种商品,每个小朋友至少买一件,但是每个人购买商品的总金额不得超过15元,王跃老师说,小朋友中一定至少有三人购买的两种商品的数量是完全相同的。

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析一、抽屉原理解释抽屉原理,也被称为鸽巢原理,是组合数学中的一个重要原理。

这个原理的基本含义是:如果n+1个物体被放到n个抽屉里,那么至少有一个抽屉中会放有2个或更多的物体。

这个原理可以用来解决很多看似复杂的问题。

原理解释:假设有3个抽屉和4个苹果,我们要把这4个苹果放进3个抽屉里。

无论我们怎么放,总会有至少一个抽屉里放了2个或更多的苹果。

这是因为每个抽屉最多只能放1个苹果的话,3个抽屉只能放3个苹果,但我们有4个苹果,所以至少有一个抽屉里会有2个苹果。

同样的,如果有n个抽屉和n+1个物体,无论我们怎么分配这些物体到抽屉里,至少会有一个抽屉里会有2个或更多的物体。

二、抽屉原理应用举例属相问题:中国有12个属相,如果问任意37个人中,至少有几个人属相相同?我们可以把12个属相看作12个抽屉,37个人看作37个物体。

根据抽屉原理,至少有一个抽屉里有4个或更多的物体,也就是说,至少有4个人的属相是相同的。

自然数问题:在任意的100个自然数中,是否可以找到一些数(可以是一个数),它们的和能被100整除?这个问题也可以通过抽屉原理来解决。

如果我们把这100个自然数对100取余,那么余数只能是0到99之间的数,也就是有100个“抽屉”。

根据抽屉原理,至少有一个“抽屉”里有多于一个的数,这两个数的差就是100的倍数,因此它们的和也能被100整除。

三、抽屉原理解题思路和方法首先,需要理解抽屉原理的基本含义,即如果把n+1个物体放在n个抽屉里,那么至少有一个抽屉中至少放有2个物体。

这是解题的基础。

其次,在解题过程中,需要找出隐藏的抽屉数和物体数,并将问题转化为抽屉问题。

这通常需要对问题进行仔细分析,找出其中的规律和特点。

接下来,可以利用平均分的方法来确定每个抽屉中的物体数。

如果物体数不能被抽屉数整除,那么至少有一个抽屉中的物体数会多于平均值。

这有助于确定至少有多少个物体是相同或满足某种条件的。

小学抽屉原理公式

小学抽屉原理公式

小学奥数抽屉原理公式及经典例题解答分析第一抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。

原理1 、2 、3都是第一抽屉原理的表述。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

第二抽屉原理把(mn——1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

例:①k=[n/m]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

抽屉原理经典例题:1、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有______人。

答案:30-(10-1)=30-9,=21(人)。

答:男生至少有21人。

2、一副扑克牌有54张,至少抽取______张扑克牌,方能使其中至少有两张牌有相同的点数。

(大小鬼不相同)答案:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数。

小学奥数五年级抽屉原理练习题及答案【三篇】

小学奥数五年级抽屉原理练习题及答案【三篇】

小学奥数五年级抽屉原理练习题及答案【三篇】【第一篇】夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。

规定每人必须参加一项或两项活动。

那么至少有几名营员参加的活动项目完全相同?把活动项目当成抽屉,营员当成物品。

营员数已经有了,现在的问题是应当搞清有多少个抽屉。

因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的有3种情况,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。

2000÷6=333......2,根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是相同的。

【第二篇】把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?这道题一下子不容易理解,我们将它变变形式。

因为是把书分给学生,所以学生是抽屉,书是物品。

本题可以变为:125件物品放入若干个抽屉,无论怎样放,至少有一个抽屉中放有4件物品,求最多有几个抽屉。

这个问题的条件与结论与抽屉原理2正好相反,所以反着用抽屉原理2即可。

由125÷(4-1)=41......2知,125件物品放入41个抽屉,至少有一个抽屉有不少于4件物品。

也就是说这个班最多有41人。

【第三篇】从1,3,5,7,...,47,49这25个奇数中至少任意取出多少个数,才能保证有两个数的和是52。

首先要根据题意构造合适的抽屉。

在这25个奇数中,两两之和是52的有12种搭配:{3,49},{5,47},{7,45},{9,43},{11,41},{13,39},{15,37},{17,35},{19,33},{21,31},{23,29},{25,27}。

将这12种搭配看成12个抽屉,每个抽屉中有两个数,还剩下一个数1,单独作为一个抽屉。

这样就把25个奇数分别放在13个抽屉中了。

因为一共有13个抽屉,所以任意取出14个数,无论怎样取,至少有一个抽屉被取出2个数,这两个数的和是52。

小学奥数—抽屉原理

小学奥数—抽屉原理

小学奥数—抽屉原理小学奥数-抽屉原理(一)先了解一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。

抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。

理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b 是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。

已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。

问:至少有几名学生的成绩相同?分析与解:关键是构造合适的抽屉。

既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。

除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。

例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。

规定每人必须参加一项或两项活动。

那么至少有几名营员参加的活动项目完全相同?分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。

营员数已经有了,现在的问题是应当搞清有多少个抽屉。

例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?分析与解:这道题一下子不容易理解,我们将它变变形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级奥数试题:简单抽屉原理(附例题分析)
例题:某小学有366位1995年出生的学生,那么至少有几个同学的生日是在同一天?
分析:1995年有365天,把365天看作365个抽屉,把366个同学看作苹果,366个苹果放进365个抽屉中,一定有一个抽屉里至少有两个苹果。

这就说明,至少有两个同学是同一天出生的。

解题的关键是根据抽屉少,苹果多的特点,利用抽屉原理,构造合适的抽屉来解答。

1.某小学有369位1996年出生的学生,那么至少有几个同学的生日是在同一天?
2.3A奥数五年级某班有学员13人,请说明在这13名同学中一定有两个同学是同一星座。

3.有3个不同的自然数,至少有两个数的和是偶数,为什么?
4.4个连续自然数分别被3除后,必有两个余数相同。

为什么?
5.在1米长的直尺上标出任意5个点,请你说明这5个点钟至少有两个点的距离不大于25厘米。

6.班上有38个人,老师至少要拿几本书,随意分给大家,才能保证一定有至少一名同学得到两本或两本以上的书?
7.黑、白、黄三种颜色的袜子各有很多只,在黑暗处至少拿出几只袜子袜子就能保证有一双是同一颜色的?
8.某小学五一班有48名同学,至少有几个同学在同一月过生日?
9.有4个运动员练习投篮,一共投进50个球,一定有一个运动员至少投进几个球?
10.布袋中有60块大小、形状都相同的木块,每15块涂上相同的颜色,一次至少取出多少块,才能保证其中至少有3块颜色相同?。

相关文档
最新文档