分子晶体与原子晶体PPT课件

合集下载

离子晶体、分子晶体和原子晶体课件

离子晶体、分子晶体和原子晶体课件

分子晶体可以以不同的形态出现,如柱状、层状等。
分子晶体的制备方法
溶液挥发法
通过挥发溶液中的溶剂来 使分子晶体结晶。
熔融法
将物质熔化后再进行结晶, 得到分子晶体。
凝固法
通过控制溶液温度变化使 分子晶体在溶液中凝固成 形。
分子晶体的物理性质
功能团的影响
分子晶体的物理性质受分子中 不同的功能团的影响。
离子晶体、分子晶体和原 子晶体
在我们的课件中,我们将探讨离子晶体、分子晶体和原子晶体的性质、结构 以及制备方法。此外,我们还将介绍它们的物理性质和特点。
离子晶体的性质和结构
独特的化学组成
离子晶体由阳离子和阴离 子组成,形成稳定的晶格 结构。
高熔点
由于离子之间的强电荷相 互作用,离子晶体通常具 有较高的熔点。
极性分子
极性分子组成的分子晶体通常 具有特殊的电荷分布和化学性 质。
分子间力的影响
范德华力等分子间相互作用对 分子晶体的物理性质起着重要 的影响。
原子晶体的性质和类的原子组成,形成简单周期性排列。
2 高熔点
由于原子之间的强原子键作用,原子晶体通常具有较高的熔点。
3 晶体形状具规律性
原子晶体通常具有规则的几何形状,如立方体、六方晶等。
2 刚性和脆性
离子晶体的离子间相互作用较强,因此它们通常是刚性且易于破裂的。
3 光学性质
离子晶体对光的透射、反射和吸收呈现出特殊的光学性质。
分子晶体的性质和结构
1
复杂的分子结构
分子晶体由复杂的有机分子构成,形成稳定的晶格结构。
2
低熔点
由于分子之间的弱范德华力作用,分子晶体通常具有较低的熔点。
3
各种晶体形态

分子晶体与原子晶体PPT课件

分子晶体与原子晶体PPT课件
注:①分子间作用力越大,熔沸点越高(相对 分子质量,分子极性,氢键)
② 分子晶体熔化时一般只破坏分子间作 用力,不破坏化学键,也有例外,如S8
(2)较小的硬度;
(3)一般都是绝缘体,熔融状态也不导电。 有些在水溶液中可以导电.
➢原因:分子间作用力较弱
.
14
5、典型的分子晶体:
(1)所有非金属氢化物:H2O,H2S,NH3, CH4,HX
(1)范德华力
(2)分子间氢键
.
26
讨论
CO2和SiO2的一些物理性质如下所示,通过 比较,判断SiO2晶体是否属于分子晶体。
CO2 SiO2
熔点/oC -56.2 1723
状态(室温) 气态 固态
结论:SiO2不是分子晶体。 那么SiO2是什么晶体呢?
.
27
二、原子晶体
1、定义:原子间以共价键相结合而形成 的空间网状结构的晶体。
.
24
〖思考2〗为何干冰的熔沸点比冰低,密度却 比冰大?
由于冰中除了范德华力外还有氢键作用, 破坏分子间作用力较难,所以熔沸点比干冰 高。
由于分子间作用力特别是氢键的方向性, 导致晶体冰中有相当大的空隙,所以相同状 况下体积较大
由于CO2分子的相对分子质量>H2O,所 以干冰的密度大。
.
25
〖归纳要点〗分子的密度取决于晶体 的体积,取决于紧密堆积程度,分子 晶体的紧密堆积由以下两个因素决定:
7
一、分子晶体
一、概念
分子间以分子间作用力(范德华力,氢 键)相结合的晶体叫分子晶体。
构成分子晶体的粒子:分子,
粒子间的相互作用:分子间作用力。
分子晶体熔化时:
一般只破坏分子间作用力,

分子晶体与原子晶体

分子晶体与原子晶体

晶胞类型 观察同一种点,如观察空心圆点 Cl-,正
六面体的 8 个顶点和各面的中心,均有一个。所以为面心
立方晶胞。
整理课件
23
小结、晶体结构的基本单元 --晶胞
1、 晶胞是晶体的最小结构重复单元。
晶胞是从晶体结构中截取出来的大小、形状完 全 相同的平行六面体。
晶体是晶胞“无隙并置”而成 2、 晶胞必须符合两个条件: 一是代表晶体的化学组成;二是代表晶体的对称性, 即与晶体具有相同的对称元素 —— 对称轴,对称面 和对称中心 ) 。
3
Ti
8=1 Ca:1
整理课件
O
40
现有甲、乙、丙、丁四种晶胞(如图2-8所
示 比)为_,_1可_:_1推_;知乙:晶甲体晶的体化中学A与式B为的_C_离_2子_D_个;数丙 晶体的化学式为_E__F___;丁晶体的化学式 为_X__Y__2_Z。
整理课件
41
巩固练习:
某晶胞结 构如图所示, 晶胞中各微粒 个数分别为:
整理课件
14
干冰晶体结构
整理课件
碘晶体结构 15
二﹑晶胞 组成晶体的细胞 1. 晶胞:描述晶体结构的基本单元
蜂巢与蜂室
铜晶体
铜铜晶晶胞胞
晶体与晶胞的关系可用蜂巢与峰室的关系比 喻
整理课件16Fra bibliotek 晶体与晶胞整理课件
17
NaCl晶体结构和晶胞
整理课件
18
干冰的晶体结构图 将图中的CO2分子换成I2分子 即为碘晶体的结构图
二 氧 化 碳 分 子
整理课件
19
CsCl晶体
整理课件
20
1、体心——全部 2、面心——1/2 3、棱上的点——1/4 4、顶点(具体问题具体分析)

晶体结构(共78张PPT)

晶体结构(共78张PPT)
多为无色透明,折 射率较高
山东大学材料科学基础
共价键结合,有方 向性和饱和性,键 能约80kJ/mol
Si,InSb, PbTe
金属键结合, 无方向性,配 位数高,键能 约80kJ/mol
Fe,Cu,W
范得华力结合 ,键能低, 约 8-40 kJ /mol
Ar,H2,CO2
熔点高
强度和硬度由中到 高,质地脆
闪锌矿〔立方ZnS〕结构 S
Zn
属于闪锌矿结构的晶体有β-SiC,GaAs,AlP,InSb
山东大学材料科学基础




萤石〔CaF2〕型结构
立方晶系Fm3m空间群,
a0=0.545nm, Z=4。 AB2型化合物, rc/ra>0.732〔0.975〕 配位数:8:4
Ca2+作立方紧密堆积,
F-填入全部四面体 空隙中。 注意:所有八面 体空隙都未被占据。
山东大学材料科学基础
钙钛矿〔CaTiO3〕结构
Ti
ABO3型
立方晶系:以

一个Ca2+和3个
O2-作面心立方
Ca
密堆积,
Ti4+占1/4八面体C空aT隙iO3。晶胞 配位多面体连接与Ca2+配位数
Ti4+配位数6,rc/ra=0.436(0.414-0.732)
Ca2+配位数12,rc/ra=0.96
O2-配位数6;
取决温度、组成、掺杂等条件,钙钛矿结构呈现立方、
四方、正交等结构形式。
山东大学材料科学基础
许多化学式为ABO3型的化合物,其中A与B两种阳 离子的半径相差颇大时常取钙钛矿型结构。在钙钛矿 结构中实际上并不存在一个密堆积的亚格子,该结构 可以看成是面心立方密堆积的衍生结构。较小的B离 子占据面心立方点阵的八面体格位,其最近邻仅是氧 离子。

分子晶体与原子晶体

分子晶体与原子晶体

一、分子晶体
回顾:分子间作用力(分子与分子之间的相互作用),存在于分子之间。
分子间作用力
范德华力 氢键
分子间作用力大小的影响因素:
①相对分子质量:同类型分子,相对分子质量越大, 分子间作用力越大。
②分子的极性:分子的极性影响分子间作用力,极性>非极性。
分子通常指的是小分子,不是指高分子。
• 典型的分子晶体:
对于组成和结构相似、晶体中又不含氢键的物质来说,相对分子质量增大, 分子间作用力增强,熔沸点升高。
对于分子间不含氢键的物质来说,由于分子间的作用力无方向性也使得分子 在堆积时会尽可能利用空间并采取紧密堆积方式,这一点与金属晶体和离子晶体 相似,分子的形状、极性以及氢键的存在都会影响分子的堆积方式。
思考与交流
小结:怎么比较晶体的熔点呢?
三、晶体熔、沸点的比较 (1)不同类型晶体熔、沸点的比较: ①不同类型晶体的熔、沸点高低的一般规律:
原__子__晶__体_____>_离__子__晶__体____>_分__子__晶__体____。 ②金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点
很高,汞、铯等熔、沸点很低。
晶胞
金刚石中 每个C原子都以SP3杂化轨道与周围4个碳原子以共价键结合,构成正四面体。 C—C键间的夹角为109.5°。因为中心原子周围排列的原子的数目是有限的,所以这 种比较松散的排列与金属晶体和离子晶体中的紧密堆积排列有很大的不同。
(1)每个碳与①________以共价键结合,形成正四面体结构 (2)键角均为②________ (3)最小碳环由③____个C组成且六原子不在同一平面内 (4)每个C参与4条C—C键的形成,C原子数与C—C键之比为④______
阴离子,如金属晶体。 (4)易误认为金属晶体的熔点比分子晶体的熔点高,其实不一定,如Na

高中化学3.2分子晶体与原子晶体K1 K2优秀课件

高中化学3.2分子晶体与原子晶体K1 K2优秀课件

干冰晶体中,每个CO2分子周围,离该分子最近且距离相 等的CO2分子有12个CO2分子?
65
87
31
42
〔2〕冰 晶体的结构如以下图所示
构成冰晶体的结构微粒是H2O 分子,微粒间的相互作用力主要 是氢键〔也存在范德华力〕 在冰的晶体中,每个水分子与 四面体顶角方向的4个相邻水分 子相互吸引,这样的排列使冰晶 体中的水分子的空间利用率不高, 留有相当大的空隙。
〔2〕 SiO2
观察SiO2晶体结构
SiO2中每个Si与4个O结合构成 正四面体,同时每个O与2个Si结合。
SiO2晶体中, Si原子与O原子个数比为: 1﹕(4×1/2)=1﹕2 Si原子个数与Si—O键数之比为: 1﹕4 注意:原子晶体中不存在单个分子,它的化学式代表 晶体中各构成粒子的个数比,而不代表真实的分子组成。
二、原子晶体
1.结构特点: (1)构成晶体粒子:原子
晶体熔化 破坏它
(2)晶体里粒子间的作用:共价键。
2.定义:在晶体里,所有相邻原子都以共价键相结合而形成三 维网状结构的晶体。
3.原子晶体性质的共性: 熔点高,硬度大,难溶于一些常见的溶剂
4 .常见原子晶体 〔1〕金刚石 在金刚石晶体中,
每个C与多少个C成键? 4 C采取何种杂化方式? SP3杂化 形成怎样的空间结构? 正四面体的立体网状结构 键角? 109°28′
C. 金刚石和HCl
D. CCl4和KCl
例题2.C60、金刚石和石墨的结构模型如以下图所示〔石墨仅表 示出其中的一层〕
〔1〕C60、金刚石和石墨三者互为 A、同分异构体 C、同系物
B

B、同素异形体
D、同位素
〔2〕固态时,C60属于 分子 〔填“离子〞、“原子〞或 “分子〞〕晶体;

分子晶体和原子晶体

分子晶体和原子晶体

分子晶体和原子晶体
图2-15 金刚石原子晶体示意图
分子晶体和原子晶体
二氧化碳和方石英都是第Ⅳ A元素化合物, 由于前者是分子晶体,后者是原子晶体,导致 物理性质差别较大。CO2在-78.5 ℃时即升华, 而SiO2的熔点却高达1610 ℃,说明晶体结构 不同,微粒间的作用不同,物质的物理性质也 不同。
分子晶体和原子晶体
在原子晶体中,不存在独立的小分子,而只能把整个晶体看成是 一个大分子,没有确定的相对分子质量。由于共价键具有饱和性和方 向性,所以原子晶体的配位数一般不高。以典型的金刚石原子晶体为 例,每一个碳原子在成键时以sp3等性杂化形成4个sp3共价键,构成 正四面体,所以碳原子的配位数为4。无数的碳原子相互连接构成, 如图2-15所示晶体结构。原子晶体中,原子间以共价键相连,所以 表现出有较高的硬度和较高的熔点(金刚石硬度最大,熔点为3849 K)。 通常这类晶体不导电、不导热,熔化时也不导电,但硅、碳化硅等具 有半导体性质,可以有条件地导电。
分子晶体和原子晶体
图2-14 CO2分子晶体示意图
分子晶体和原子晶体
二、 原子晶体
在晶格结点上排列的微粒为原子,原子之间以 共价键结合构成的晶体称为原子晶体,如碳(金刚 石)、硅(单晶硅)、锗(半导体单晶)及第Ⅳ A族元素 的单质都属于原子晶体,化合物中的碳化硅(SiC)、 砷化镓(GaAs)、方石英(SiO2)等也属于原子晶体。
无机化学
分子晶体和原子晶体
一、 分子晶体
在晶格结点上排列着分子,通过分子间力而形成的晶体, 称为分子晶体,如非金属单质和非金属元素之间的固体化合物 CO2是分子晶体,其晶体结构如图2-14所示。分子晶体中存在 着独立的分子,分子晶体内是共价键,分子晶体间的作用力是 分子间力,由于分子间力很弱,因此分子晶体的熔点低,具有 较大的挥发性,硬度较小,易溶于非极性溶剂,通常是电的不 良导体。若干极性分子晶体在水中解离生成离子,则其水溶液 导电,如HCl溶液。

分子晶体与原子晶体第一课时精品课件

分子晶体与原子晶体第一课时精品课件

3.干冰的外观和冰相像,可由二氧化碳气体压缩成液 态后再急剧膨胀而制得。右图为干冰晶体结构示意 图。通过观察分析,可知每个CO2分子周围与之相邻 等距的CO2分子有_______个。在一定温度下,已测 得干冰晶胞(即图示)的边长a=5.72×10-8cm,则 该温度下干冰的密度为____________g/cm3。
第二节 分子晶体与原子晶体
第一课时 分子晶体
观察下列两种晶体的晶胞找出两种晶体的共同点?
碘晶胞
二氧化碳晶胞
结论:构成微粒都是分子。 都是面心立方晶胞。
分子晶体的定义、组成微粒和作用力 定义:分子间以分子间作用力相结合形成
的晶体。
分子晶体中存在的微粒: 分子
粒子间的作用力:分子间作用力
分子晶体的两种堆积方式:
①密堆积:如果分子间作用力只有范德华力,无分子间 氢键-分子采用密堆积,如:C60、干冰 、I2、O2。
思考:与CO2分子距离最近的CO2分子共有多少个?
重要结论:与CO2分子距离最近的CO2分子共有12个
②非密堆积:如果分子间作用力还有氢键,则采用非 密堆积(如:HF 、冰、NH3 )
冰的结构
2、为何分子晶体的硬度小,熔沸点低?
①构成晶体的微粒是分子 ②分子之间以分子间作用力(主要是范德华力)相结 合,范德华力远小于化学键的作用
3、为何干冰的熔沸点比冰低,密度却比冰大? 由于冰中除了范德华力外还有氢键作用,破坏分子 间作用力较难,所以熔沸点比干冰高。 在冰中由于氢键的方向性,导致晶体中有相当大的 空隙,所以相同状况下冰的体积较大,密度比干冰小。
5、如何比较分子晶体熔沸点的高低? ①一般来说,分子晶体中范德华力越大,物质的熔、 沸点越高。 ②分子间氢键的形成使物质的熔、沸点升高;分子内 氢键的形成使物质的熔、沸点降低。

分子晶体和原子晶体ppt

分子晶体和原子晶体ppt

4.下列物质的熔点高低顺序正确的是( ) A.HF < HCl < HBr B.金刚石 < 碳化硅 < 晶体硅 C.I2 > SiO2 D.H2O > H2S SO2 < SeO2
D
二、原子晶体
Si
O
Si
O
O
O
O
共价键
2. 二氧化硅晶体
分子晶体、原子晶体熔沸点的比较:
不同类型的晶体 原子晶体 > 分子晶体 相同类型的晶体 (1)分子晶体 分子间作用力越大,熔沸点越高 (2)原子晶体 原子间的共价键越强,熔沸点越高
思考 交流: 决定分子晶体及原子晶体熔沸点高低的因素各是什么?如何比较分子晶体与原子晶体的熔沸点高低?
类型 比较
分子晶体
原子晶体
构成晶体的微粒
微粒间的作用力
物理性质
熔沸点
硬度
导电性
溶解性
典型实例
分子晶体和原子晶体对比
归纳总结
B
课堂训练
1.下列各组物质属于分子晶体的是( ) A.SO2 SiO2 P2O5 B.PCl3 CO2 H2SO4 C.SiC H2O NH3 D.HF CO2 Si
A
2.下列说法正确的是 ( ) A.由原子构成的晶体不一定是原子晶体 B.分子晶体中的分子间可能含有共价键 C.分子晶体中一定有共价键 D.分子晶体中分子一定紧密堆积
D
下列晶体中,化学键类型相同,晶体类型也相同的是( ) SO2与SiO2 CO2与H2O HCl与金刚石 CCl4与SiC
冰晶体的结构特点
分子非密堆积
冰的结构
想一想
碳元素和硅元素处于同一主族,为什么CO2晶体的熔、沸点很低,SiO2晶体的熔、沸点很高?

分子晶体与原子晶体ppt课件演示文稿

分子晶体与原子晶体ppt课件演示文稿
1 1∶(4× )=1∶2。 2
典 型 例
(2)二氧化硅
①在晶体中每个硅原子 ②由于氢键的 和4个氧原子形成4个 存在迫使在 共价键;每个氧原子 典 四面体中心 与2个硅原子相结合。 型 的每个水分 故SiO2晶体中硅原子 例 子与四面体 与氧原子按1∶2的比 子 顶点的4个相 例组成。 邻的水分子 ②最小环上有12个原子 相互吸引。 。
较小 很大 固态和熔化时都 不导电,但某些 固态和熔化时 分子晶体溶于水 都不导电
晶体类 型
分子晶体 (1)干冰
原子晶体 (1)金刚石
典型例 子
①在晶体中每个碳原 ①每个晶胞中有4 子以4个共价键对 个CO 分子,12 称地与相邻的4个
晶 体 类 型
分子晶体
原子晶体 ③最小环上有6个碳原 子。 ④晶体中C原子个数 与C—C键数之比为
晶体类 •
分子晶体 原子晶体 型 分子晶体与原子晶体的比较 相邻原子间以共 分子间通过分子 价键结合而形 成的具有空间 立体网状结构 的晶体
定义
间作用力时需 克服的作 用力 熔、沸 点 硬度 物 理 性 导电性
分子晶体 原子晶体 分子间作用力(氢 共价键(极性键、 键、范德华力) 非极性键) 较弱的分子间作 用力 较低 很强的共价键 很高
• 2. 美国《科学》杂志曾报道:在40 GPa的高 压下,用激光加热到1 800 K,人们成功制得 了原子晶体CO2,下列对该物质的推断一定不 正确的是( ) • A.该原子晶体中含有极性键 • B.该原子晶体易汽化,可用作制冷材料 • C.该原子晶体有很高的熔点、沸点 • D.该原子晶体硬度大,可用作耐磨材料
• 2.属于分子晶体的物质 • (1)所有 非金属氢化物,如 H2O 、 NH3 、 CH4 等。 • (2)部分 非金属单质 ,如卤素(X2)、O2、N2、 白磷(P4)、硫(S8)、稀有气体等。 • (3)部分 非金属氧化物 , 如 CO2 、 P4O6 、 P4O10 、 SO2等。 • (4) 几乎所有的 酸,如 HNO3 、 H2SO4 、 H3PO4 、 有机物的晶体 H2SiO3等。 • (5)绝大多数 ,如苯、乙醇。

原子晶体与分子晶体

原子晶体与分子晶体

2NA 。 (4)12克金刚石中C—C键数为_______
(2)二氧化硅 若在硅晶体结构中的每个Si-Si键中“插入”一个 氧原子,便可得到以硅氧四面体为骨架的SiO2晶体的 结构
Si O
109º 28´
共价键
Байду номын сангаас
Si O
注意:
原子晶体的化学式并不表示其实际的组成,只 基本结构单元: 正四面体 表示原子的个数比。 1 个Si连接____ 4 个 ,___ 2 个Si, (1)___ 1 个 连接____ 1:2 的比例组成的立体空间网状结构。 SiO 是由Si和O按_____
练习:
1.下列晶体中不属于原子晶体的是 (A ) A.干冰 B.金刚砂 C.金刚石 D.水晶
2、下列叙述正确的是 (AD ) A.离子晶体都是化合物 B.原子晶体都是单质 C.分子晶体内部都存在共价键 D.金属单质形成的晶体都是金属晶体
3.在金刚石的网状结构中,含有共价键形 成的碳原子 环,其中最小的环上,碳原子 数是 ( D ) A.2个 B.3个 C.4个 D.6个 4,下列各物质中,按熔点由低到高排列 正确的是( B ) A.O2、I2、Hg B.CO2、KCl、SiO2 C.Na、K、Rb D.SiC、NaCl、SiO2
12

氢键具有方向性 和饱和性
(3)冰
冰晶体主要是水分子依靠氢 键形成的(亦有范德华力)。 由于氢键的方向性和饱和性, 分子间距比较大,有很多空 隙,结构比较松散。每个水 分子周周有4个水分子,故 配位数为4。
(4)其他分子晶体
①硫黄:硫的同素异形体最稳定的是S8,不溶于水, 微溶于酒精和乙醚,易溶于CS2。 试管壁上的硫如何洗涤?
③ 一般都是绝缘体,熔融状态不导电。

原子晶体、分子晶体、离子晶体的比较 PPT

原子晶体、分子晶体、离子晶体的比较 PPT

3.物理性质:①熔沸点低[破坏分子间的作用力],硬度小。
②一般不导电,在固态和熔融状态下也不导电
③溶解性一般符合“相似相溶规律”
二、常见的晶体结构分析:
(一)干冰: 1.分子堆积方式: 分子密堆积(只含范德华力) 2.均摊法计算CO2分子数:
顶角—— 8个 面心—— 6个 1个晶胞中CO2分子数= 8×18+6×12= 4 3.每个CO2分子周围离该分子距离最近且相等的 CO2分子有:12个 [同层+上层+下层]×4=12 (二)冰:
配位数: 8 配位空间构型:正六面体
离其最近的Cs+的个数为: 6
[上、下、左、右、前、后]
2.Cl-为中心:离其最近的Cs+的个数为: 8
配位数:8 配位空间构型:正六面体
离其最近的Cl-的个数为:6
3.均摊法计算1个晶胞中:
Cs+个数:8×18= 1
Cl-个数:1
二、三种常见的离子晶体的结构:
2.晶胞的结构:——均摊法 结合《课本》P64/图3-8
体心粒子—— 完全属于该晶胞
面心粒子—— 有12属于该晶胞
棱心粒子—— 有14该晶胞
顶角粒子—— 有18属于该晶胞
二、晶胞:
3.晶胞中微粒个数的计算:
1个金属铜晶胞
的原子数
=8×18+6×12= 4
X2Y
ACB3
DE
4.晶胞的基本类型:
简单立方
③熔点: ④能使X-
有固定的熔 射线产生衍
沸点

最科学的
鉴别依据
⑤均一性:组成和密度一致 ⑥对称性: ⑦稳定性: 晶格能
一、晶体:
5.形成途径: ①熔融状态物质凝固(注意凝固的速率适当)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P4O10 – 其它分子化合物:CCl4,BF3,Al2Cl6,XeF4 – 绝大多数有机物:乙醇,冰醋酸,蔗糖
典型的晶体结构
分子的密堆积
(与CO2分子距离最近的 CO2分子共有12 个 )
干冰的晶体结构图
分子的密堆积
氧(O2)的晶体结构
碳-60的晶胞
(与每个分子距离最近且等距离的分子有12个 )
一般性结论: (1)组成和结构相似的物质,相对分子质 量越大,范德华力越大,熔沸点越高。
如:O2>N2,HI>HBr>HCl。
(2)相对分子质量相等或相近时,极性分 子的范德华力大,熔沸点高, 如CO>N2
(3)含有氢键的,熔沸点较高。 如H2O>H2Te>H2Se>H2S
自由阅读课本:
P67 “资料卡片”和“科学视野”
共价键
二.原子晶体(共价晶体)
1、概念:
相邻原子间以共价键相结合而形成空间立体 网状结构的晶体。
(1)构成原子晶体的粒子是原子; ()原子晶体的粒子间以较强的共价键相结合; (3)原子晶体熔化破坏的是共价键。
观察·思考
• 对比分子晶体和原子晶体的数据,原子 晶体有何物理特性?
2.原子晶体的物理特性
4、原子晶体熔、沸点比较规律
对于结构相似的原子晶体,原子间键 长越短,键能越大,共价键越稳定,物 质的熔、沸点越高,硬度越大。
如:金刚石>碳化硅>晶体硅
(154pm 184pm 234pm)
当晶体结构不同时,要综合考虑: 如:碳化硅>二氧化硅(C > Si)
典型原子晶体的结构
金刚石的晶体结构示意图
0. 6克C形成金刚石中;六元环数是0.1NA个,C-C键数是0.1NA个
以金刚石晶体结构为基础,演变出单晶硅、 碳化硅的晶体结构: (1)将金刚石中的碳原子全部换成硅原子即 可,金刚石与单晶硅除了键长不同外,晶体 微观结构是相似形。
(2)将金刚石中的一半碳原子交替的换成硅 原子即可,每个碳原子为中心,四个硅原子 为顶点,构成正四面体单元;同时,每个硅 原子为中心,四个碳原子为顶点,构成正四 面体单元。晶体中,碳硅原子个数之比为1:1
每个O被6个环共有。每个环含Si:1/2,O:1 6g SiO2中含0.2NA个环。 ④6gSiO2中含0.4mol Si-O键
知识拓展-石墨
石 墨 晶 体 结 构
利用金刚石的结构来推断SiO2的空间结构
金刚石
二氧化硅
SiO2最小的环有几个原子组成?
12个(6个硅 6个氧)
二氧化硅晶体结构示意图
Si
O
<180º
109º28´
共价键
SiO2的结构特征:在SiO2晶体中
①SiO2晶体是由Si原子和O原子按1:2的比例所 组成的立体网状的晶体,没有单个分子 ②最小的环是十二元环(6个Si和6个O) ③每个Si被 12 个十二元环共有;
晶体的分类
按构成晶体的微粒种类把晶体分为以下四类
(晶胞中的质点:原子、分子、离子、金属)
晶体
离子晶体:食盐 原子晶体:水晶 分子晶体 :干冰 金属晶体 :铜
观察与思考:
下列两种晶胞有什么相同点、不同点?
干冰晶体结构
碘晶体结构
都是平行六面体,都是面心结构;构成晶胞的 微粒都是分子,且分子数相同。不同的是:~~~~
分子的非密堆积
氢键具有方向性
冰中1个水分子周围有4个水分子
冰的结构
冰中最小结构单元
1个水分子与 4 个水分子形成氢键; 1mol冰共有 2 mol氢键
正四面体
冰中1个水分子周围有4个水分子, 形成什么空间构型?
4、分子晶体结构特征
(1)只有范德华力,无分子间氢键—分子密堆积
如:C60、干冰 、I2、O2
作业
P61 《红对勾》--分子晶体
思考与交流
• CO2和SiO2的一些物理性质如下表所示,通过 比较试判断SiO2晶体是否属于分子晶体。
• 碳元素和硅元素处于元素周期表中同一主族, 为什么CO2晶体的熔、沸点很低,而SiO2晶体 的熔沸点很高?
二氧化硅晶体结构示意图
Si
O
120--180º
109º28´
(2)有分子间氢键—不具有分子密堆积特征
如:HF 、冰、NH3
5、分子晶体熔、沸点高低的比较规律
比较分子晶体的熔、沸点高低,实际上 就是比较分子间作用力(包括范力和氢键)
的大小。
分子内的共价键键能与它的熔沸点无关,与 分子热稳定性密切相关;因为熔化或气化只是分 子间距离增大,热稳定性则破坏分子结构。
1、熔点、沸点高,硬度大 2、一般不导电 3、难溶于一些常见的溶剂
原因:原子间以较强的共价键相结合
3、常见的原子晶体
部分非金属单质:
金刚石(C)、硅(Si)、晶体硼(B)
某些非金属化合物:
碳化硅(SiC)、氮化硼(BN)
某些氧化物:
二氧化硅( SiO2) 归纳:价电子数4个左右、半径较小的非金属单质或化合物。
109º28´
共价键
典型的原子晶体
金刚石的结构特征:在金刚石晶体里
①每个碳原子都采取SP3杂化,与一个碳原子最近且等距离的 碳原子4个,以共价键相结合,形成正四面体,1个碳原子处于正四 面体的中心,另4个处于顶点。 ②金刚石晶体中所有的C—C键键长都相等,键角相等(109°28’) ③每个碳原子被 12 个六元环共有;每个C平均形成2个C-C键 ④晶体中最小的碳环是6个碳组成的六元环,且不在同一平面内; 每个六碳环平均含有1/2个C原子.每个键被6个环共有,每个环平均 含有1个C-C键
一个晶胞平均含 4 个CO2分子
干冰晶体结构
一、分子晶体
1、概念(阅读课本P65前两段)
以分子间作用力(范德华力,氢键)相结合 的晶体叫分子晶体
(1)构成分子晶体的微粒是分子。 (2)微粒间的相互作用是分子间作用力。
分子晶体有哪些物理特性,为什么?
2、物理特性:
(1)较低的熔点和沸点,有些易升华; (2)较小的硬度; (3)一般都是绝缘体,熔融状态也不导电 (4)在水中可能导电(不电离、电离、反应生成物 电离)。
原因:分子间作用力较弱
3、典型的分子晶体:
– 非金属氢化物:H2O,H2S,NH3,CH4,HX – 无机含氧酸:H2SO4,HNO3,H3PO4 – 稀有气体单质:He,Ne,Ar,Kr,Xe,Rn.
– 部分非金属单质:X2,O2,H2, S8,P4, C60 – 部分非金属氧化物:CO2,SO2, NO2,P4O6,
相关文档
最新文档