二元一次方程组的应用教案
二元一次方程组教案精选3篇
二元一次方程组教案精选3篇元一次方程组教学设计篇一了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
二元一次方程组的含义判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
一、引入、实物投影1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?2、请每个学习小组讨论(讨论2分钟,然后发言)这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x 个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次练习(投影)下列方程有哪些是二元一次方程+2y=1 xy+x=1 3x-=5 x2-2=3xxy=1 2x(y+1)=c 2x-y=1 x+y=0二、议一议、师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成x-y=2x+1=2(y-1)像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
七年级数学下册《二元一次方程组的应用》教案、教学设计
5.反思总结:要求学生撰写一篇关于二元一次方程组学习的心得体会,内容包括学习过程中的收获、遇到的困难、解题技巧等,旨在让学生进行自我反思,提升学习效果。
作业布置要求:
(三)情感态度与价值观
1.培养学生对数学的热爱,使其认识到数学在生活中的重要作用,增强学习数学的积极性。
2.引导学生树立正确的价值观,认识到解决问题的重要性,培养敢于面对困难、勇于挑战的精神。
3.鼓励学生积极参与课堂讨论,充分表达自己的观点,培养学生的表达能力和沟通能力。
在教学过程中,教师应关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,注重启发式教学,激发学生的学习兴趣,培养学生的自主学习能力。通过本章节的学习,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
3.团队合作与沟通:在小组合作过程中,学生需要学会倾听、表达、讨论,这对部分学生来说可能存在一定难度。
针对以上学情,教师在教学过程中应关注以下几点:
1.注重启发引导,帮助学生建立实际问题与二元一次方程组之间的联系。
2.强化解题策略的训练,让学生在实践中掌握不同解题方法。
3.创设良好的合作氛围,引导学生积极参与,提高团队合作能力。
3.教师对学生的总结进行补充,强调重点和难点,梳理知识结构。
4.鼓励学生将所学知识运用到实际生活中,培养学生的数学应用意识。
五、作业布置
为了巩固学生对二元一次方程组知识的掌握,提高学生的解题能力和应用意识,特布置以下作业:
1.课本习题:完成课本中关于二元一次方程组的练习题,包括选择题、填空题和解答题,旨在让学生熟悉基本的二元一次方程组题型和解题方法。
二元一次方程组的应用教案
二元一次方程组的应用一、教学目的:(1)认知目的:1.使学生会借助二元一次方程组解决简单的实际问题,让学生体会二元一次方程组与现实生活的联系和作用。
2.通过应用题的教学使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性,体会列方程组往往比列一元一次方程容易。
3.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力。
(2)能力目的:通过从实际问题到建立数学模型,注重渗透数学建模思想;从数学模型的解释和应用中培养学生运用数学知识解决实际问题的能力;在学习和探索过程中,通过自主学习提高学习能力,增强合作意识;培养学生类比、化归、归纳等思想方法。
(3)情感目的:营造亲切和谐的教学氛围,以趣激学;培养学生良好的学习习惯和思维品质;培养学生实践和探索的数学素养。
二、教材分析:1、教学重点:学生在对实际问题的实践和探索过程中体会数学建模思想,即:根据题意列出二元一次方程组求解实际问题,培养学生应用数学知识解决实际问题的能力。
2、教学难点:用二元一次方程组解决实际问题时,学会灵活设未知数(直接设未知数和间接设未知数),正确地找出应用题中的等量关系,并列出方程组。
3、教学关键:正确地找出应用题中的两个等量关系,并把它们列成方程。
三、教学过程:(一)、复习引入:1、我们已学习了列一元一次方程解决实际问题,请大家回忆列方程解应用题的步骤,其中关键步骤是什么?【审题;设未知数;找等量关系;列方程;解方程;检验并作答。
关键步骤是审题,寻找出等量关系】2、求解二元一次方程组的基本思想和基本方法是什么?【基本思想:消元;基本方法:代入消元法、加减消元法】在本节开头我们已借助列二元一次方程组解决了含有两个未知数的实际问题。
大家已初步体会到:对两个未知数的应用题列一次方程组往往比列一元一次方程要容易一些。
本节课我们将详细探讨列二元一次方程组求解实际问题。
(二)新课讲解:例l:某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?分析:解决这个问题的关键是先解答前一个问题,即先求出安排精加和粗加工的天数,再求出出售这些加工后的蔬菜共可获利多少元。
二元一次方程组教学设计
二元一次方程组教学设计二元一次方程组教学设计(精选5篇)作为一名老师,时常要开展教学设计的准备工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
我们应该怎么写教学设计呢?下面是店铺为大家收集的二元一次方程组教学设计(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
二元一次方程组教学设计1教学目标1.认识二元一次方程和二元一次方程组。
2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。
重点、难点重点:理解二元一次方程组的解的意义难点:求二元一次方程的正整数解教学过程一、复习导入什么是一元一次方程?“元”指什么?“次”指什么?什么是方程的解?设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。
二、观看视频观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。
视频内容设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
三、探究新知根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.把两个二元一次方程合在一起,就组成了一个二元一次方程组.提问:对比两个方程,你能发现它们之间的关系吗?师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.探究二元一次方程组的解:满足x+y=10的值有哪些?请填入表中:使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作。
满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。
二元一次方程组教案3 篇
二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
初中二元一次方程数学教案三篇
【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。
©⽆忧考⽹准备了以下内容,供⼤家参考!篇⼀:应⽤⼆元⼀次⽅程组——鸡兔同笼 教学⽬标: 知识与技能⽬标: 通过对实际问题的分析,使学⽣进⼀步体会⽅程组是刻画现实世界的有效数学模型,初步掌握列⼆元⼀次⽅程组解应⽤题.初步体会解⼆元⼀次⽅程组的基本思想“消元”。
培养学⽣列⽅程组解决实际问题的意识,增强学⽣的数学应⽤能⼒。
过程与⽅法⽬标: 经历和体验列⽅程组解决实际问题的过程,进⼀步体会⽅程(组)是刻画现实世界的有效数学模型。
情感态度与价值观⽬标: 1.进⼀步丰富学⽣数学学习的成功体验,激发学⽣对数学学习的好奇⼼,进⼀步形成积极参与数学活动、主动与他⼈合作交流的意识. 2.通过"鸡兔同笼",把同学们带⼊古代的数学问题情景,学⽣体会到数学中的"趣";进⼀步强调课堂与⽣活的联系,突出显⽰数学教学的实际价值,培养学⽣的⼈⽂精神。
重点: 经历和体验列⽅程组解决实际问题的过程;增强学⽣的数学应⽤能⼒。
难点: 确⽴等量关系,列出正确的⼆元⼀次⽅程组。
教学流程: 课前回顾 复习:列⼀元⼀次⽅程解应⽤题的⼀般步骤 情境引⼊ 探究1:今有鸡兔同笼, 上有三⼗五头, 下有九⼗四⾜, 问鸡兔各⼏何? “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94⾜,问雉兔各⼏何? (1)画图法 ⽤表⽰头,先画35个头 将所有头都看作鸡的,⽤表⽰腿,画出了70只腿 还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿 四条腿的是兔⼦(12只),两条腿的是鸡(23只) (2)⼀元⼀次⽅程法: 鸡头+兔头=35 鸡脚+兔脚=94 设鸡有x只,则兔有(35-x)只,据题意得: 2x+4(35-x)=94 ⽐算术法容易理解 想⼀想:那我们能不能⽤更简单的⽅法来解决这些问题呢? 回顾上节课学习过的⼆元⼀次⽅程,能不能解决这⼀问题? (3)⼆元⼀次⽅程法 今有鸡兔同笼,上有三⼗五头,下有九⼗四⾜,问鸡兔各⼏何? (1)上有三⼗五头的意思是鸡、兔共有头35个, 下有九⼗四⾜的意思是鸡、兔共有脚94只. (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只; 鸡⾜有2x只;兔⾜有4y只. 解:设笼中有鸡x只,有兔y只,由题意可得: 鸡兔合计头xy35⾜2x4y94 解此⽅程组得: 练习1: 1.设甲数为x,⼄数为y,则“甲数的⼆倍与⼄数的⼀半的和是15”,列出⽅程为_2x+05y=15 2.⼩刚有5⾓硬币和1元硬币各若⼲枚,币值共有六元五⾓,设5⾓有x枚,1元有y枚,列出⽅程为05x+y=65. 三、合作探究 探究2:以绳测井。
第五章二元一次方程组-二元一次方程组的应用(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二元一次方程组相关的实际问题,如购物时如何根据预算和单价计算购买数量等。
五、教学反思
在今天的课堂上,我们探讨了第五章“二元一次方程组-二元一次方程组的应用”。回顾整个教学过程,我认为有几个方面值得反思。
首先,我发现同学们在理解二元一次方程组的应用时,普遍对如何从实际问题中抽象出方程组感到困惑。在今后的教学中,我需要更加注重引导学生学会从问题中提取关键信息,培养他们的数学建模能力。
第五章二元一次方程组-二元一次方程组的应用(教案)
一、教学内容
第五章二元一次方程组-二元一次方程组的应用
1.教材章节:本节课主要基于第五章“二元一次方程组”中的第三节“二元一次方程组的应用”进行教学设计。
2.内容列举:
(1)理解并掌握二元一次方程组在现实生活中的应用;
(2)学会利用二元一次方程组解决实际问题,如速度与时间、成本与数量、面积与周长等问题;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二元一次方程组的基本概念。二元一次方程组是由两个含有两个未知数的一次方程组成的,它能够描述许多现实生活中的问题。掌握二元一次方程组不仅可以帮助我们解决实际问题,还能提高我们的逻辑思维能力。
2.案例分析:接下来,我们来看一个具体的案例。假设小明和小华同时从A、B两地出发,相向而行,经过2小时相遇。我们可以通过建立二元一次方程组来求解他们各自的速度和行驶的距离。
三、教学难点与重点
1.教学重点
二元一次方程组的应用优秀教案
二元一次方程组的应用【课时安排】2课时【第一课时】【教学目标】1.会列二元一次方程组解决实际问题。
2.通过对列二元一次方程组解决应用题,培养学生灵活解决数学问题的能力。
【教学重难点】1.理解列二元一次方程组解应用题的一般步骤。
2.会灵活运用列方程组解决实际问题。
【教学过程】一、导入新课我们学习了列一元一次方程解应用题的一般步骤,那么列方程分为哪几个基本步骤?学生积极回答:(一)审题设未知数;(二)找相等关系;(三)列方程;(四)解方程;(五)检验,写出答案。
这一节我们来学习用二元一次方程组解决实际问题(板书课题)。
二、推进新课(一)问题:某市举办中学生足球赛,规定胜一场得3分,平一场得1分。
一球队共比赛11场,没输过一场,一共得27分。
问该队胜几场,平几场?分析题意(方法一):1.该队共进行比赛多少场,有没有输?(没有)2.若假设胜了x场,则平多少场?(11-x)3.胜一场得3分,胜x场得了多少分?(3x)4.平一场得1分,平局共得多少分?(11-x )5.该队共得27分。
6.你找到等量关系了吗?(胜场得分+平局得分=总分)通过以上分析你有信心独立列出方程吗?解:设该队胜x 场,则平了(11-x )场。
由题意可得:3x +(11-x)=27;解得x =8。
11-x =11-8=3;答:该队胜8场,平3场。
分析题意(方法二):1.若假设胜利了x 场,平局为y 场,共进行11场比赛。
你能找到它们三者之间的等量关系吗?(胜利场数+平局场数=总场数)2.胜利一场得3分,胜利x 场共得了3x 分,平一场得1分,平局y 场共得y 分,一共得27分,这3个得分间有什么等量关系呢?(胜利得分+平局得分=总分)设两个未知数,就需要列二元一次方程组来解决,你能列出这个方程组吗?解:设胜利x 场,平局为y 场,得方程组⎩⎨⎧x +y =11,3x +y =27。
教学策略:学生独立求解,并与方法一的结果做比较,进一步体会列一次方程(组)解应用题的方法。
二元一次方程组的应用教案
二元一次方程组的应用教案一、教学目标1. 了解二元一次方程组的概念及其解法;2. 掌握二元一次方程组在实际问题中的应用方法;3. 训练学生的反思和解决问题的能力。
二、教学重点和难点本课的教学重点为:掌握解二元一次方程组的方法,并能够运用二元一次方程组解决实际问题。
本课的教学难点为:如何帮助学生理解并概括实际问题,并能够运用二元一次方程组将实际问题转换成数学问题并求解。
三、教学方法和手段1. 采用案例教学,从实际问题出发,帮助学生找到解决问题的方法;2. 采用讨论教学,引导学生参与讨论,激发学生的思维和求解能力;3. 通过课堂互动,加强师生之间的沟通和互动。
四、教学过程1. 以实际问题为切入点,引导学生思考和解决问题的能力。
下面以一个实际问题为例:甲、乙两条铁路相距700千米,甲车头与乙车头同时开出,甲车每小时行70千米,乙车每小时行80千米,问甲、乙两车头相遇需要多长时间?引导学生分析问题,将问题转换成数学问题。
根据所给条件,可以列出两个方程式:甲车行驶的路程:70t(t为时间)乙车行驶的路程:80t(t为时间)又因为甲、乙两车头相遇时,它们的总路程为700千米,可以列出另一个方程式:70t + 80t = 700通过列方程,并求出t,就可以得出答案:当甲车头与乙车头相遇时,它们行驶的时间为5小时。
在以上的案例中,学生不仅需要掌握基本的代数方程式的求解方法,更需要理解如何将实际问题转换成数学问题,并运用数学知识解决问题的过程。
2. 通过案例教学,巩固学生对二元一次方程组的理解。
以上面的案例为例,引导学生进一步认识二元一次方程组的概念,并通过不同的例子,训练学生将实际问题转换成数学问题的能力。
例如,以下是另一个运用二元一次方程组解决问题的实例:草地上有羊和鸡两种动物,羊有4个腿,鸡有2个腿,这些动物一共有44个头,120个腿,问有多少只羊和鸡?解题思路如下:设羊的数量为x,鸡的数量为y,则可以得到两个方程:x + y = 444x + 2y = 120通过解方程组,可以得出x=28,y=16。
初中数学教案:二元一次方程组【优秀8篇】
初中数学教案:二元一次方程组【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初中数学教案:二元一次方程组【优秀8篇】元一次方程组篇一第1课 5.1二元一次方程组(1)教学目的1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
二元一次方程组的应用教案
二元一次方程组的应用教案【教案】二元一次方程组的应用一、教学目标1. 知识目标:了解二元一次方程组的定义和基本解法;掌握二元一次方程组在实际问题中的应用。
2. 能力目标:能够根据实际问题建立二元一次方程组,解答相关问题。
3. 情感目标:培养学生对二元一次方程组的应用的兴趣,提升问题解决能力。
二、教学过程1. 导入新知识教师通过一个实际问题引入二元一次方程组的应用,如:小明和小红一起做铅笔盒,总共做了8个铅笔盒,小明做了3个,小红做了5个,请问小明和小红一次做几个铅笔盒?让学生思考一下如何解决这个问题。
2. 提出问题教师提问:如何用数学的方法表示小明和小红一次做铅笔盒的个数?3. 引入二元一次方程组的概念教师向学生介绍二元一次方程组的概念和基本形式,并解释其中的符号含义。
4. 二元一次方程组的解法教师通过例题和步骤说明二元一次方程组的解法,如:(例题)解:将第一个方程两端同时乘以2,得到2x+2y=18;将第二个方程两端同时乘以3,得到2x+3y=24;然后将两个方程相减,消去x,得到y=6;将y=6代入第一个方程,得到2x+2*6=18,解得x=3;所以,原方程组的解为x=3,y=6。
5. 实际问题的解答教师给出一些实际问题,要求学生建立并解答相应的二元一次方程组,如:(问题)甲、乙两人同时朝相同的方向出发,甲的速度是每小时18千米,乙的速度是每小时15千米。
当两人相距72千米时,甲比乙多走了几个小时?6. 总结归纳教师与学生共同总结二元一次方程组的应用,并归纳出相关的解题方法和技巧。
三、教学评价1. 参与感评价:观察学生在课堂上的参与情况,是否积极思考问题,发表自己的观点。
2. 成绩评价:布置相关练习题,检验学生对二元一次方程组应用的掌握程度。
3. 自我评价:让学生进行自我评价,反思自己学习过程中的不足和进步,提出改进意见。
四、教学反思通过本节课的教学,学生对二元一次方程组的应用有了更深入的理解。
二元一次方程组教学设计(通用12篇)
二元一次方程组教学设计(通用12篇)二元一次方程组教学设计(通用12篇)作为一名教职工,时常要开展教学设计的准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。
教学设计应该怎么写呢?以下是小编收集整理的二元一次方程组教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
二元一次方程组教学设计篇1一、说教材分析1、教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。
通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2、教学目标知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。
会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3、重点、难点重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。
根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
二元一次方程组教学设计(共7篇)
二元一次方程组教学设计(共7篇)第1篇:二元一次方程组教学设计《二元一次方程组》(自主课堂教学设计)学习内容:义务教育课程人教板七年级数学下册88—89页。
教学目标知识与技能:1、使学生了解二元一次方程的概念,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
过程与方法:学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性。
情感、态度与价值观:通过对二元一次方程(组)的概念的学习,感受数学与生活的联系,感受数学的乐趣教学重点:二元一次方程(组)的概念及检验一对数是否是某个二元一次方程(组)的解。
教学难点:二元一次方程组的解的含义。
教学步骤:一、知识回顾1.什么叫做一元一次方程?解方程2X+3=5,X=2.2X+3Y=5是几元几次方程?二、指导自学—问题引领自学指导请认真看P.92—94的内容.思考:1、在P.92引例(篮球赛)中,你能用一元一次方程解吗?对于引例中的这两种解法:一种是设一个未知数,另一种是设两个未知数,哪种解法更好理解呢?:2.把两个二元一次方程合在一起,就形成一个二元一次方程组,是通过什么符号实现的?归纳二元一次方程(组)的概念。
3.如何检验一对数是否是某个二元一次方程(组)的解。
6分钟后,比谁能说出以上问题答案.三.学生自学学生按照自学指导看书,教师巡视,确保人人学得紧张高效.四.老师点拔:1.涉及二元一次方程(组)的概念问题时,要注意二元、一次,整式三方面;2.二元一次方程组的相同的字母它们所表示的意义一样。
并不是任意两个二元一次方程都能组成二元一次方程组。
(举例分析)3、二元一次方程组的解与一元一次方程的解它们有什么异同点?不同点:二元一次方程组的解是满足每一个二元一次的,并且是成对出现的解相同点:都是方程的解,代入方程都会使方程左右两边成立)五.检查自学效果自学检测题1、3x+2y=6,它有______个未知数,且未知数是___次,因此是_____元______次方程2、3x=6是____元____次方程,其解x=_____,有______个解,3x+2y=6,当x=0时,y=_____;当x=2时,y=_____;当y=5时,x=____(因此,使二元一次方程左右两边相等的______个未知数的值,叫作二元一次方程的解。
解二元一次方程组教案(优秀6篇)
解二元一次方程组教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!解二元一次方程组教案(优秀6篇)作为一名教师,编写教案是必不可少的,教案是教学活动的依据,有着重要的地位。
第五章二元一次方程组-实际应用(教案)
二、核心素养目标
1.培养学生的逻辑推理能力:通过解决实际应用问题,使学生能够运用二元一次方程组进行逻辑推理,增强分析问题和解决问题的能力。
2.提高学生的数学建模能力:使学生掌握将现实生活中的问题转化为数学模型,尤其是二元一次方程组,从而培养学生数学建模的核心素养。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是第五章“二元一次方程组-实际应用”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的问题?”比如购物时,如何分配预算买两种商品。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二元一次方程组在实际问题中的应用。
c.掌握消元法、代入法等解决二元一次方程组的方法,并能够熟练运用。
d.理解在实际问题中,方程组的解可能存在唯一解、无解或多个解的情况。
举例:在物理问题中,给定两个物体的质量和速度,求解它们的碰撞后的速度。学生需要能够将问题抽象为二元一次方程组,并运用消元法或代入法求解。
2.教学难点
a.将实际问题抽象为数学模型的能力。学生往往难以将复杂的现实问题简化为方程组模型。
3.重点难点解析:在讲授过程中,我会特别强调如何正确列出方程组和运用消元法、代入法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二元一次方程组相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示方程组在实际问题中的构建和求解过程。
《二元一次方程组的应用》教案
《二元一次方程组的应用》教案1教学目标1、通过对实际背景的分析,领会一元二次方程组与实际问题的紧密联系.2、能从复杂的问题中提炼关键信息、找出等量关系,建立正确的方程.3、体会方程模型在解决是问题中的策略.教学重点审清题意、找出正确的等量关系、列方程求解.教学难点掌握利用方程模型解决实际问题的策略.教学方法问题情境——建立模型——解释、应用于拓展.教学过程一、引入我们伟大祖国有五千年的文明历史,在历史长河中,为科学知识的创新与发展作出了巨大贡献,在数学领域,有《九章算术》《孙子算经》等古代明著流传于世,许多问题浅显易懂,趣味性强,如《孙子算经》中的“雉兔同笼”等,漂洋过海流传海外,对中国古文明的传播起到很大的作用.“雉兔同笼”的内容是:“今有雉兔同笼,上有三十五头,下有九十四足.问雉兔各几何?” 问题:(1)“上有三十五头”是什么意思?“下有九十四足”呢? (2)你能根据(1)中的数量关系列出方程组吗? (3)你能解决这个有趣的问题吗? 法一:解:设鸡有x 只,则兔有(35-x )只,由题可得 2x +4(35-x )=94解得x =23,则35-x =12. 法二:解:设鸡有x 只,兔有y 只,由题可得⎩⎨⎧=+=+944235y x y x 解得⎩⎨⎧==1223y x . 二、新课教学例1 以绳测井,若将绳三折测之,绳多五尺,若将绳四折测之,绳多一尺,绳长、井深各几何?题意:用绳子测量井的深度,如果将绳子折成三等分,一份绳长比井多5尺;如果将绳子折成四等分,一份绳长比井多1尺.绳长、井深各是几尺?解:设绳长x 尺,井深y 尺,由题可知⎪⎪⎩⎪⎪⎨⎧=-=-1453y x y x解之得⎩⎨⎧==1148y x . 因此,绳长48尺,井深11尺.用方程组解决实际问题时应注意的问题: (1)认真审清题意; (2)正确设出未知数;(3)找出题中的等量关系,列方程; (4)解方程;(5)写出答案.(注意单位) 三、巩固练习1、鸡和兔放在一只笼子里,上面有29个头,下面有92只脚.问:笼中有鸡、免各多少只?2、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?四、积累总结本节课你学到了那些哪些知识?有哪些感悟? 归纳总结:1、列二元一次方程组解应用题的步骤.2、理解用方程解决问题于用小学算术方法求解之间的内在联系和差别.3、遇到实际问题,有选择的使用最快捷的方法去解决. 五、作业布置 课本习题7.5《二元一次方程组的应用》教案2教学目标1、能运用列表分析法分析数量关系,熟练地列二元一次方程组解决简单的实际问题,掌握运用列二元一次方程组解决实际问题的技能.2、经历和体验列方程组解决实际问题的过程,体会方程是刻画现实世界的有效的数学模型,培养学习数学应用能力.教学重点如何运用列表分析法去分析较为复杂的各数量间的关系.教学难点列方程解应用题的一些规律、特点和方法.教学方法“问题情境—建立模型—应用与拓展”.教学教具多媒体.教学过程第一环节:创设情境,导入新课.提出问题:同学们你知道你的生活有哪些必要开支吗?经济生活在我们生活中多么重要!你想运用数学知识使你的生活更加合理优化,生活的更加幸福惬意吗?那么你能帮帮解决下面的实际经济问题吗?1、开商店小明想开一家时尚G点专卖店,开店前他到其它专卖店调查价格.他看中了一套新款春装,成本共500元,专卖店店员告诉他在上市时通常将上衣按50%的利润定价,裤子按40﹪的利润定价.由于新年将至,节日优惠,在实际出售时,为吸引顾客,两件服装均按9折出售,这样专卖店共获利157元,小明觉得上衣款式好,销路会好些,想问问上衣的成本价,但店员有事走开了,你能帮助他?2、购物新年来临爸爸想送Mike一个书包和随身听作为新年礼物.爸爸对Mike说:“我在家乐福、人民商场都发现同款的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元,你能说出随身听和书包单价各是多少元,那么我就买给你做新年礼物”.你能帮助他吗?最近商家促销有促销活动,人民商场所有商品打八折销售,家乐福全场购物满100元返物券30元销售(不足100元不返券,购物券全场通用),爸爸只给Mike400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?第二环节:新课讲解. 填一填1、某工厂去年的总产值是x 万元,今年的总产值比去年增加了20%,则今年的总产值是__________万元;2、若该厂去年的总支出为y 万元,今年的总支出比去年减少了10%,则今年的总支出是__________万元;某工厂去年的利润(总产值—总支出)为200万元.今年总收入比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元.去年的总收入、总支出各是多少万元?(题目中可分析今年,去年;总收入,总支出和利润,画个2×3的表格来分析看)得到两个等式:⎩⎨⎧=--+780%)101(%)201(y x解:设去年的总收入为x 万元,总支出为y 万元,则 今年的总收入=(1+20%)x 万元, 今年的总支出=(1-10%)y 万元. 由题意得:解得答:去年的总收入为2000万元,总支出为1800万元. 设今年的总收入为x 万元,总支出为y 元例2 医院用甲、乙两种原料为手术后的病人配制营养品.每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质200(1)(120%)(110%)780.(2)x y x y -=⎧⎨+--=⎩,20001800.x y =⎧⎨=⎩,和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?解:设每餐需要甲、乙两种原料各x ,y 克,则有下表:化简得:(1)×2得10x +14y =700(5) (5)-(4)得10y =300, y =30.将y =30代入(3)得x =28,答:每餐需甲原料28克,乙原料30克. 第三环节:练习提高、合作学习.1.育才学校去年有学生3100名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为.题目中可分析去年,今年;寄宿学生,走读学生,学生总数.画个2×3的表格来分析 解:(16%)(12%)3100(1 4.4%).x y ⎧⎨++-=⨯+⎩第四环节:问题解决.解决问题一小明想开一家时尚G 点专卖店,开店前他到其它专卖店调查价格.他看中了一套新款春装,成本共500元,专卖店店员告诉他在上市时通常将上衣按50﹪的利润定价,裤子按40﹪的利润定价.由于新年将至,节日优惠,在实际出售时,为吸引顾客,两件服装均按9折出售,这样专卖店共获利157元,小明觉得上衣款式好,销路会好些,想问问上衣的成本价,但店员有事走开了,你能帮助他吗?第五环节:学习反思,你的收获是什么?1、通过本节的学习活动,你会用列表分析数据吗?0.50.735(1)0.440.(2)x y x y +=⎧⎨+=⎩,57350(3)104400.(4)x y x y +=⎧⎨+=⎩,2、你能用列方程组的方法解决实际问题吗?3、你体会到方程思想在生活中的存在吗?《二元一次方程组的应用》教案3教学目标1、用二元一次方程组解决有趣场景中的数字问题和行程问题,归纳用方程(组)解决实际问题的一般步骤.2、通过设置问题串,让学生体会分析复杂问题的思考方法.3、让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型.教学重点1、初步体会列方程组解决实际问题的步骤.2、学会用图表分析较复杂的数量关系问题.教学难点将实际问题转化成二元一次方程组的数学模型;会用图表分析数量关系.教学准备教具:教材,课件,电脑(视频播放器).学具:教材,练习本.教学过程第一环节:复习提问(5分钟,学生口答)内容:填空:(1)一个两位数,个位数字是a,十位数字是b,则这个两位数用代数式表示为;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为___________.(2)一个两位数,个位上的数为x,十位上的数为y,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为_____________.(3)有两个两位数a和b,如果将a放在b的左边,就得到一个四位数,那么这个四位数用代数式表示为_____________;如果将a放在b的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为_______________.第二环节:情境引入(10分钟,学生动脑思考,全班交流)内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况.你能确定小明在12:00时看到的里程碑上的数吗?第三环节:合作学习(10分钟,小组讨论,找等量关系,解决问题) 内容:例3两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论. 第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流) 内容:练习1、一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1.这个两位数是多少?2、一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左边与放在右边所得的数之和为8484.求这个两位数.第五环节:课堂小结(5分钟,教师引导学生总结一般步骤) 内容:1、教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流.2、师生互相交流总结出列方程(组)解决实际问题的一般步骤. 第六环节:布置作业 内容:习题5.6如果设小明在12:00时看到的数的十位数字是x ,个位数字是,那么(1)12:00时小明看到的数可表示为___________________,根据两个数字和是7,可列出方程___________________;(2)13:00时小明看到的数可表示为___________________,12:00~13:00间摩托车行驶的路程是__________________;(3)14:00时小明看到的数可表示为___________________,13:00~14:00间摩托车行驶的路程是___________________;(4)12:00~13:00与13:00~14:00两段时间内摩托车的行驶路程有什么关系? 你能列出相应的方程吗?A组(优等生)2,3,4 B组(中等生)2、3C组(后三分之一生)2。
解二元一次方程组教案优秀9篇
解二元一次方程组教案优秀9篇课前预习:篇一一、阅读教材P96-P98的内容二、独立思考:1、满足方程组的x的值是-1,则方程组的解是_____________.2、用代入法解方程组比较容易的变形是()、A、由①得B、由①得C、由得D、则得3、用代入消元法解方程以下各式正确的是()A、B、C、D、4、如果是二元一次方程,则的值是多少?二元一次方程篇二数学七年级下册《二元一次方程》数学教案一、教学目标:1、认知目标:1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二、教学重难点重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学过程(一)创设情景,引入课题1、本班共有40人,请问能确定男女生各几人吗?为什么?(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2、男生比女生多了2人。
设男生x人,女生y人、方程如何表示?x,y的值是多少?3、本班男生比女生多2人且男女生共40人、设该班男生x人,女生y人。
方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)(二)探究新知,练习巩固1、二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。
找关键词,加深他们对概念的了解、](2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。
七年级数学二元一次方程组教案
七年级数学二元一次方程组教案七年级数学二元一次方程组教案(精选9篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。
我们应该怎么写教案呢?下面是店铺帮大家整理的七年级数学二元一次方程组教案,仅供参考,欢迎大家阅读。
七年级数学二元一次方程组教案篇1教学目标1.会用加减法解一般地二元一次方程组。
2.进一步理解解方程组的消元思想,渗透转化思想。
3.增强克服困难的勇力,提高学习兴趣。
教学重点把方程组变形后用加减法消元。
教学难点根据方程组特点对方程组变形。
教学过程一、复习引入用加减消元法解方程组。
二、新课。
1.思考如何解方程组(用加减法)。
先观察方程组中每个方程x的系数,y的系数,是否有一个相等。
或互为相反数?能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。
学生解方程组。
2.例1.解方程组思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?学生讨论,小组合作解方程组。
提问:用加减消元法解方程组有哪些基本步骤?三、练习。
1.P40练习题(3)、(5)、(6)。
2.分别用加减法,代入法解方程组。
四、小结。
解二元一次方程组的加减法,代入法有何异同?五、作业。
P33.习题2.2A组第2题(3)~(6)。
B组第1题。
选作:阅读信息时代小窗口,高斯消去法。
后记:2.3二元一次方程组的应用(1)七年级数学二元一次方程组教案篇2一、教材分析1.教材的地位与作用二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。
在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。
本节内容主要学习和二元一次方程组有关的四个概念。
本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组的应用
磨市镇中心学校 杨声学
教学目的:(1)会根据题意列出二元一次方程组解简单的实际问题。
(2)引导学生利用列表分析法分析实际问题。
重、难点:1、重点:根据应用题的题意,列出二元一次方程组。
2、难点: 根据应用题的题意,列出二元一次方程组。
教学过程和内容
一、复习引入
1、解二元一次方程组的思路是什么?有哪些方法?
2、列一元一次方程解应用题的步骤是什么?其关键点是哪两步?
二、例题讲解
例1、小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元,小玲买了2千克苹果,3千克梨,共花了18.2元,你能算出1千克苹果多少元,1千克梨多少元吗?
要求:学生带着下列问题分析、交流、讨论
1、题目中有几个要求的量?
2、有哪些等量关系?
3、怎样设未知数?可以列几个方程?
4、本题能列一元一次方程吗?
5、列二元一次方程组比列一元一次方程解决问题有什么好处?
分析:小刚买苹果花的钱+买梨花的钱=18.8元,
小玲买苹果花的钱+买梨花的钱=18.2元.
根据上述等量关系列出方程组:
3x +2y =18.8
2x +3y =18.2
解题过程:解:设1千克苹果x 元,1千克梨y 元,
根据题意得 ⎩
⎨⎧=+=+2.18328.1823y x y x 解这个方程组,得 ⎩⎨⎧==4
.34y x 答:1千克苹果4元,1千克梨3.4元.
归纳:1、列二元一次方程解决问题,能使问题变得简单,比较容易找出等量关系。
2、列二元一次方程组必须设两个未知数,找出两条等量关系,列两条不同的方程。
3、列二元一次方程组解应用题的步骤:分析实际问题;找出未知数;找出等量关系;列出方程组;解方程组;检验解的合理性。
例2、小琴去县城,要经过外婆家,头一天下午从她家走到外婆家里,第二天上午从外婆家出发匀速前进去县城,走了2小时、5小时后,离她自己家分别为13千米、25千米,你能算出她的速度呢?还能算出她家与外婆相距多远吗?
小琴家 外婆家 2h 5h 县城
根据题意,可列出方程组:⎩⎨⎧=+=+25
5132v s v s 解方程组,得 ⎩
⎨⎧==54s v 答:小琴走路的速度是4千米/时,她家与外婆家相距5千米.
三、练习
1、小洪买了80分与60分邮票共17枚,花了12.2元.试问:80分与60分邮票各买了多少枚?
解:设80分邮票x 枚, 60分邮票为y 枚
依题意义可列方程组 ⎩
⎨⎧=+=+2.126.08.017y x y x 解这个方程组:⎩⎨⎧==7
10y x 答: 80分邮票10枚, 60分邮票为7枚
2、汽车从甲地到乙地,若每小时行使45千米,就要延误0.5小时到达;若每小时行使50千米,就可提前0.5小时到达。
求:甲乙两地间的距离及原计划行使的时间。
四、思考
1、甲、乙两人从相距36千米的两地相向而行。
如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两人每小时各走多少千米?
2、我国古代数学著作<<孙子算经>>中有“鸡兔同笼”问题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
五、小结
谈谈你对解决问题的感悟与体验
1、列表与画线段图能有效地帮助我们分析问题,找等量关系。
2、应用二元一次方程组解决实际问题的基本步骤。
3、列二元一次方程组的关键是什么?。