TL494开关电源设计--BUCK电路解析

合集下载

开关电源TL494控制芯片的电路设计及调试(开关电源课程设计)

开关电源TL494控制芯片的电路设计及调试(开关电源课程设计)

开关电源TL494控制芯片的电路设计及调试(开关电源课程设计)
开关电源TL494控制芯片是一种常用的控制芯片,它能够实现开关电源的电压和电流稳定控制,是开关电源的核心控制部件。

下面是TL494控制芯片的电路设计及调试步骤:
1. 电路设计
根据开关电源的需要,设计电源的输入电压、输出电压和输出电流等参数,并选择合适的开关管、电感和电容等元件。

2. 搭建电路原型
根据电路设计图,搭建电路原型,注意元件的布局和连接方式,保证电路的稳定性和可靠性。

3. 编写程序并调试
将TL494控制芯片与MSP430单片机相连接,并编写程序。

在调试过程中,可以先将电源的输出电压和电流设定为目标值,然后逐步调整控制芯片的参数,如占空比、频率等,观察输出是否稳定和符合要求。

如果出现问题,可以通过示波器等工具进行检测和分析,找出问题所在并进行调整。

4. 完善电路和程序
在调试完成后,可以对电路和程序进行完善,如加入保护电路、优化控制算法等,以提高电源的性能和稳定性。

需要注意的是,在设计和调试过程中,应注意安全问题,如避免高压触电、防止电路短路等,以确保人身安全和电路的正常运行。

TL494控制BUCK型开关电源电路

TL494控制BUCK型开关电源电路

TL494控制BUCK型开关电源电路摘要1、引言电源的优劣直接影响到各类电子设备的性能。

因此设计出性能良好的电源意义重大。

广义的讲,能够提供电能的设备称为电源。

我们这里所指的电源是把身边现有的电源转化成我们电子设备所需要的某种类型电源的一种电子装置。

开关电源是直流稳压电源的一种,自问世以来,以其轻小高效越来越受到人们的青睐,在直流电源的大多场合已取代了传统的线性开关电源,并且正不断发展,其市场广阔。

2、DC/Dc变换器主电路及其控制方式开关电源功率调整管都工作在开关状态下,而线性稳压电源的功率管工作在线性放大状态下,这是开关电源与线性稳压电源的显著区别,也是开关电源这个名字由来的原因。

目前开关电源中目前常用的半导体开关管有GTR、MOSFET、IGBT等,通过控制信号控制其导通与关断,实现将一种直流电转换成另外一种大小的直流电,配上电感电容滤波器件能输出稳定。

DC/DC变换器是开关电源中最主要的功率变换环节。

DC/DC变换器有输入输出无隔离(即“直通”)型和输人输出隔离型两种类型。

“直通”型DC/oC变换器典型的电路有Buck(降压)型、Boost(升压)型、Buck一Boost(升降压)式和Cuk型等几种类型;输人与输出隔离型的DC/DC变换器典型的电路有单端正激式、单端反激式、推挽式、半桥式和全桥式等几种类型。

但无论哪种类型的DC/DC变换器的开关电源,其基本原理都是开关管工作于开关状态下,通过改变开关管导通与关断的时间关系来改变输出电压的。

开关电源要实现输出稳定少不了相应的控制电路,其电路有三种:(l)由分立元件构成;(2)通过软件编程由单片机系统来实现;(3)由专用的集成控制器来实现。

其中专用集成控制器实现方式以其使用方便、无需编程、所需元件数量少等优点,是开关电源常用的一种控制方式。

TL494就是其中常见的一种专用集成控制器。

3、TL494介绍TL494由德州仪器公司设计并推出,推出后立刻得到市场的广泛接受,尤其是在PC机的ATx半桥电源上。

TL494开关电源设计--BUCK电路

TL494开关电源设计--BUCK电路

VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
L0 ~
VIN T 8I
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
t
I (10% ~ 20%) I O max
电流断续状态DCM
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
5. 较典型的设计验证方法和负载实验。
三、BUCK型DC-DC变换器(CCM工作模式)
1. 导通状态 U I UO UL I ON t1 t1 L L 2. 截止状态 UO UL I OFF t2 t2 L L 3. 输入输出关系
I ON I OFF
U O DU I
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6

基于TL494的双向Buck-Boost BDC高效开关电源设计

基于TL494的双向Buck-Boost BDC高效开关电源设计

基于TL494的双向Buck-Boost BDC高效开关电源设计黄仲平;徐航;沈烨【摘要】该文双向DC-DC变换器(BDC)的设计由PWM控制、驱动、功率变换及测控4大部分组成.PWM控制以TL494为控制核心,闭环调节电路占空比;PWM驱动由IR2111构成,驱动同步整流电路的开关管;功率变换采用同步整流电路为功率变换拓扑,实现DC-DC双向高效功率变换;测控电路以MSP430单片机为控制器,结合电流、电压采样电路,控制电路输出参数并显示.系统具有过流、过压保护功能,并能通过MSP430单片机实现高精度的程控.测试结果表明,采用同步整流电路能较好完成DC-DC功率双向变换,双向功率变换效率均达到95%以上,同时还具有很强的抗扰动能力.【期刊名称】《实验科学与技术》【年(卷),期】2017(015)001【总页数】5页(P12-16)【关键词】双向DC-DC变换器;TL494;IR2111;MSP430单片机【作者】黄仲平;徐航;沈烨【作者单位】四川大学电气信息学院,四川成都610065;四川大学电气信息学院,四川成都610065;四川大学电气信息学院,四川成都610065【正文语种】中文【中图分类】TN702开关电源一般由脉冲宽度调制(pulse width modulation, PWM)控制IC和MOSFET构成,具有效率高、体积小、质量轻以及功耗小等特点,尤其是电源效率一般都超过了80,比传统的线性电源提高近一倍[1-3]。

随着自动化产业的发展,开关电源技术也得到了不断地提高,应用领域也逐渐扩大[4]。

不仅包括仪器仪表、测控系统以及计算机内部各供电系统,也适应各种消费类电子产品。

开关电源逐步取代了传统的线性电源成为主流的电源产品,并且不断地向集成化、智能化、模块化发展[5]。

在一个直流供电系统中,并不局限于单一的“充电”或者“放电”模式,往往需要能量的双向流动。

如电动汽车中的燃料电池,给汽车运动系统提供电能的同时从压缩机处吸收能量,只有吸收的能量大于等于提供的能量汽车才能正常运行[6-7];太阳能电池阵也是如此,航天器外围的太阳能板是一个双向DC-DC变换器,即可以为航天器时刻提供工作电压,也需要不断吸收太阳能[8];不停电(UPS)系统中的放电单元和充电单元也可以理解为双向boost-buck电源[9]。

Buck电路的原理分析和参数设计

Buck电路的原理分析和参数设计

Buck电路的原理分析和参数设计连续工作状态一Buck工作原理将快速通断的晶体管置于输入与输出之间,通过调节通断比例(占空比)来控制输出直流电压的平均值。

该平均电压由可调宽度的方波脉冲构成,方波脉冲的平均值就是直流输出电压。

Q导通:输入端电源通过开关管Q及电感器L对负载供电,并同时对电感器L充电。

电感相当于一个恒流源,起传递能量作用电容相当于恒压源,在电路里起到滤波的作用Q闭合:电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

导通时Q的电流闭合时C的电流L的电流和输出电流的关系。

输出电压与输入电压的关系(不考虑损耗)二 buck 的应用Buck 为降压开关电路,具有效率高,体积小,功率密度高的特点1.Buck 的效率Buck 的损耗:1.交流开关损耗 2.管子导通损耗3.电感电容等效电阻损耗Buck 的效率很高,一般可以达到60%以上,2.Buck 的开关频率频率越高,功率密度越大,但也同时带来了开关损耗。

在25~50KHZ 范围内buck 的体积可随频率的增大而减小。

三.参数的设计1.电感的参数电感的选择要满足直到输出最小规定电流时,电感电流也保持连续。

在临界不连续工作状态时 2120I I I -=ON OI T I V V L 20-=' ON I T LV V I I 012-=- 所以L L '≥ L 越大,进入不连续状态时的电流就越小2.电容的参数电容的选择必须满足输出纹波的要求。

电容纹波的产生:1. 电容产生的纹波: 相对很小,可以忽略不计2. 电容等效电感产生的纹波:在300KHZ~500KHZ 以下可以忽略不计3. 电容等效电阻产生的纹波:与esr 和流过电容电流成正比。

为了减小纹波,就要让esr 尽量的小。

不连续工作状态(1)开关管Q 导通,电感电流由零增加到最大(2)开关管Q 关断,二极管D 续流,电感电流从最大降到零; (3)开关管Q 和二极管D 都关断(截止),在此期间电感电流保持为零,负载由输出滤波电容来供电。

用TL494制作的ATXC开关电源控制电路图

用TL494制作的ATXC开关电源控制电路图

用TL494制作的ATXO 关电源控制电路图本开头电源控制电路采用T L 4 9 4 (有的电源采用KA 7 5 0 0 B, 其管脚功能与TL4 9 4相同,可互换)及LM 3 3 9集成电路(以下简称4 9 4和 3 3 9 ) o 4 9 4是双排1 6脚集成电路,工作电压7〜4 0 V 。

它含有由 (14} 脚输出的+ 5 V 基准电源,输出电压为+ 5 V (± 0 . 0 5 V ),最大输出电流 2 5 0 mA; 一个频率可调的锯齿波产生电路。

ATX 电源的控制电路见图1。

控制电路采用T L 4 9 4 (有的电源采用K A 7 5 00 B,其管脚功能与TL4 9 4相同, 可互换)及LM 3 3 9集成电路 (以下简称4 9 4和3 3 9 ) 。

4 9 4是双排1 6脚集成电路, 工作电压7〜4 0 V 。

它含有由(14}脚输出的+ 5 V 基准电源,输出电压为+ 5 V (± 0 . 0 5 V ),最大输出电流2 5 0 mA; 一个频率可调的锯齿波产生电路,振荡频率由 (5}脚外接电容及(6}脚外接电阻来决定。

(13}脚为高电平■时,由(8}脚及(11}脚 输出双路反相(即推挽工作方式)的脉宽调制信号。

本例为此种工作方式,故将(13}脚与{14}脚相连接。

比较器是一种运算放大器,符号用三角形表示,它有一 个同相输入端“ + ” ; 一个反相输入端“―”和一个输出端。

rr、 国人宜wm n 厂L“fe 出崎□藕腿LL_p_ c_妁州蝴与门 Q -WWWJ d Lan ;一触及尧 输出T U LTh_nurt_n_rL c Ji_4Lri_2i Jt —JCL 部<峋4明电平陵青l :<M 的勺嘟曰平 今 [的1质电职彼修 2.1949^1^^ 4牌电平赣离印1脚柿出波曜 M 财明,BWE 形 c 皿口瑁获性时W 圈制灌弟C 枷:前日施把液磅 力摆博电卑新HW11圈俯出建0 M 阴曲1W 阍说罪比较器同相端电平若高丁反相端电平,则输出端输出高电平;反之输出低电平。

TL494降压开关电源的设计

TL494降压开关电源的设计

TL494降压开关电源的设计一、设计任务及要求:1、掌握TL494主要性能参数、端子功能、工作原理及典型应用2、掌握DC—DC降压型开关电源原理,掌握电路布线及焊接。

主要技术指标:设计要求:1直流输入:0—30v,电压变化范围为+15%~-20%;2输出电压:5v—30v连续可调,最大输出电流1.5A二、DC—DC变换器buck线路(降压电路)的原理图如图1所示,降压线路的基本特征为:输出电压低于输入电压,输出电流为连续的,输入电流是脉动的。

图1S为开关管,D为续流二极管,当给S一个高电平使得开关管导通,输入电源对电感,电容充电,同时向负载供电。

当给S一个低电平时使得开关管关断,负载电流经二极管续流。

改变开关管的占空比即能改变输出的平均电压。

三、TL494中文资料及应用电路TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。

TL494主要特征集成了全部的脉宽调制电路。

片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。

内置误差放大器。

内止5V参考基准电压源。

可调整死区时间。

内置功率晶体管可提供500mA的驱动能力。

推或拉两种输出方式。

TL494引脚图TL494工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。

四、电路设计输出为5V的电源电路:电路分析:50u/50v是滤波电容对输入电源滤波,47欧的电阻主要是当8和11引脚输出高电平时不足以驱动大功率三极管,通过47欧电阻来上拉高电平,将高电平拉高驱动三极管,当三极管导通以后就铅位到三极管基极和发射极的管压降。

8和11引脚处的150欧电阻是限流电阻。

2和3引脚处连接成PI 调节器,提高精度,增加电路的稳定性。

基于TL494的开关稳压电源设计

基于TL494的开关稳压电源设计

基于TL494的开关稳压电源设计张双冀苗苗李怡潜李竹(山西师范大学物理与信息工程学院,山西临汾041004)[摘要]在分析传统BUCK 电路特点的基础上,提出了一种基于TL494的开关稳压电源设计方案。

为了缓解开关电源效率与纹波二者之间的矛盾,该设计方案采用了两个改善措施:开关管代替续流二极管;多个滤波电容并联代替单个滤波电容。

通过测试,当电源效率大于85%时,纹波系数可降低到1.6%。

另外本设计还具有过流保护功能和负载识别功能。

[关键词]开关电源;PWM 波;BUCK 电路;稳压中图分类号:TN86文献标识码:A文章编号:1008-6609(2019)01-0009-041引言对开关电源的研究是当今电源设计中最为活跃的课题之一,由于开关电源具有效率高、稳压范围宽、体积小、重量轻、输出精度高等优点,因此被广泛用于电子计算机、通讯、家电等各个行业。

然而开关电源的效率和纹波存在矛盾,即在开关频率一定时,提高了电源效率,同时纹波也增大,使电源稳定性能降低,反之若降低纹波,又会导致电源效率下降。

为了缓解效率和纹波二者之间的矛盾,同时电源效率和纹波电压都控制在比较理想的范围内,本设计方案主要采用了两个改进措施:用开关管代替续流二极管和用多个滤波电容并联代替单个滤波电容。

本设计方案以16V 到5V 的直流电源降压转换为例进行说明。

2理论分析在DC-DC 非隔离式开关电源拓扑结构中,根据工作开关T 、电感L 、二极管D 、电容C 的连接方式不同,可以分为BUCK 拓扑结构、BOOST 拓扑结构、BUCK-BOOST 拓扑结构,其中BUCK 拓扑结构能完成输出电压低于输入电压的降压功能。

BUCK 拓扑结构电路原理图如图1所示。

PWM 波作用于开关管T 的控制极,使得输入电压值为U I 的直流电压源为后续电路间歇提供能量;电感L 起储能作用,是开关稳压电路的标志元器件;电容C 起滤波作用,将开关高频谐波滤除;续流二极管D 在开关管断开时,为负载R L 提供了通路;反馈采样电路中的采样电阻R 1和R 2,为主控电路提供负反馈信号,使其产生稳定占空比的PWM 波。

tl494开关电源维修和原理

tl494开关电源维修和原理

tl494开关电源维修和原理TL494充电器原理与维修电动自行车充电器多采用开关电源,型号虽多,但电路结构大同小异,主要区别在于所选的脉宽调制(PWM)芯片不同如(UC3845、UC3842、SG3524、TL494)。

现以佳腾牌充电器为例,介绍其原理和故障检修方法。

一、电路原理根据实物测绘的佳腾牌充电器电路原理如图1所示。

整机可分为PWM产生和推动电路、功率开关变换电路、充电状态指示电路和交流输入电路四个部分。

图11.PWM产生和推动电路PWM产生电路由IC1TL494和外围元件构成。

TL494是PWM开关电源集成电路。

引脚功能和内部框图如图2所示。

IC1的第5、6脚外接的C10、R19是定时元件,决定锯齿波振荡器的振荡频率,F=1.1/RC,按图中数值为50KHz。

第14脚是+5V基准电压输出端,除芯片内部使用外,还直接或分压后供第2、4、13脚和IC2使用。

第13脚为输出方式控制端,该脚接低电平时为单端输出方式,图中接第14脚+5V高电平,为双端输出方式。

第4脚为死区电压控制端,该脚电压决定死区时间。

电位升高,死区时间延长,输出脉宽变窄,当电压大于锯齿波电压时,输出脉宽将变得很窄,甚至停振。

凡输出端采用全桥或半桥式的开关电路,都要正确设置死区时间,以免两个开关管同时导通,发生电源短路的危险。

图中该脚电位由基准电压经R24和R20分压取得,实测电压为0.46V。

第1 、2脚和第16、15脚是IC1内部的两个电压比较器的正、反相输入端,分别用作充电电压取样和充电电流取样。

+44V充电电压经R28、R27和R26分压反馈至第1脚。

C15是软启动电容。

第2脚电位由基准电压经R23和R3分压取得,实测为3.2V。

第1脚电压越高,输出脉宽越窄,充电电压越低;反之脉宽增宽,充电电压升高。

从而实现+44V充电电压的目的。

Ra是充电电压调试电阻,Ra和R26并联值越小,充电电压越高。

R29是脚充电电流取样电阻,由该电阻上取得的电压变化,经R13送入IC1的第15脚。

Buck电路的多角度干货解析

Buck电路的多角度干货解析

Buck电路的多角度干货解析描述1. Buck 电路的模型Buck 电路是最常见的电路,具体电路结构如图所示。

对其进行等效,得到的等效电路如图 2 所示:对图1 进行等效后得到徒图2 电路,可以看出相当于一个脉冲波形的输出,高电压幅值为Vin,即图1 输入直流的电压值,低电压为0。

由于图1 中D1 的存在,使得电流只能单向流动,因此在图2 中等效为串联二极管D2。

2. Buck 电路的常规角度分析2.1 时域分析方法下面按着电容充放电和电感充放电进行时域分析。

时域分析的过程是按着输入电压的高与低,分析电路里电容电压和电感电流的变化过程。

这个分析过程可以按着大多课本上面所讲述的过程分析,从CCM模式到DCM 模式。

(1)CCM 模式当输入电压为Vin 时,电感电流增加,电流小于输出负载电流iL,此时的负载电流由电感和电容同时提供。

当电流逐渐增加到大于输出的平均电流的时候,电感电流为负载和电容提供能量。

当输入为0,即开关管关断时,电感电流下降,此时电流依然大于输出平均值,电容电压延续上述上升的趋势,直至电感电流小于输出平均电流,电容开始放电,完成一个开关周期的循环过程。

具体的波形如下:(2)DCM模式在 DCM 模式下,电感的电流在开关管管断后的一段时间后逐渐减为零,此时的等效输入电压为输出电压值,具体的波形如图4 所示。

在 CCM 模式下,电压的输出值与输入值之间是正比关系,比例系数为占空比D。

在DCM 的模式下电压会被抬升,具体的关系和电路的参数、开关频率以及占空比相关。

具体的推导关系为:其中根据此公式可以看出,当电路输出开路,即电阻无穷大的时候,输入等于输出。

2.2 相平面分析上面的分析过程中,电感电流以及电容的电压都被看作是三角波的上升和下降,其实在有些过程中这些状态变量是正弦变化的,下面从相平面的方式分析它的工作过程。

(1)CCM 模式CCM 模式下的电路的相平面图为图5 所示,红色部分为电感电流和电容电压的变化范围和变化过程。

(完整版)BUCK电路

(完整版)BUCK电路
电感量L增加
纹波增大,斜率增大
纹波减小,斜率减小
BCM电感电流临界导电模式
CCM电感电流连续导电模式
DCM电感电流断续导电模式
注意 1、若输入输出电压不变,则占空比不变,电流上升和下降时长不变 2、磁芯大小不变,L与线圈匝数N2成正比 3、磁芯大小不变,在不引起磁饱和的情况下,改变L的大小仅影响电流的形态, 不影响电感所能传递的功率大小,要改变功率,必须改变磁芯的规格。
I L _ m ax I L _ avg
I L _ m in
电磁感应定律
UL

n
T
(Uin UO ) TON UO TOFF
UO
Uin
Ton Ton Toff
Uin D
D<1,故为降压
UL

L I T
I U L 电流线性变化
T L
若 输入输出电压、开关频率、 占空比不变,仅改变L大小
测试内容 输出电压
ON 12VDC
示波器探头
GND
示波器夹子 (接地)
结果分析
波形(近似线性,相当于电感电流波形,CCM) 输出电压不等于
电压平均值(6.32V,纹波电压3.6V(57%))
12x0.96(11.5V) 现在还不是BUCK
提示:R11功耗大,温度较高,小心烫伤,测试时间尽量不要太长。
则 电流的斜率和纹波大小会相应改变
电感电流模式
I U L k T L
若输入输出电压不变,开关频率不变,不限制电流的峰值
I L _ m ax
I L _ avg I L _ m in
电感量L减小
I L _ m ax I L _ avg
I L _ m in

TL494BUCK

TL494BUCK

常见的DC-DC应用多是适合于较低的Vin/Vout电压(小于30V-40V)。

对于更高电压输入的情况则很少见,本文介绍一种以TL494为控制器,可以工作在60V输入的降压变换器。

适当修改零件规格即可以用于更高电压。

此电路工作在110Khz,效率高于80%。

输出电流可在0-2.2A(通过R5设置)开关管MOSFET(IRFW630A)的驱动电压取自自举电路,使得栅极信号始终可以高出输入电压10V左右。

使用MOSFET 的好处是可以工作在高频,还可以降低导通时的损耗。

电路的工作频率高也使得电感的体积减小。

元器件选取:D7要选用超高频快恢复二极管,这里用的是HER303,用HER304-307也可以但导通压降略高。

肖特基二极管的话要选择耐压大于最高输入电压的型号;C11,C12选用能工作在高频并ESR较小的,低频的电容甚至会明显发热并很快损坏,纹波也非常大;所有小三极管用常见的2N5551,耐压150V,开关速度尚可;MOSFET的选用,耐压高于可能的最大输入电压即可,导通电阻越小越好,例如VINmax:50V,60N06即可;功率电感:使用常见的黄白色铁粉磁芯,(外径*内径*厚度:13*7.5*6.5)。

0.4mm的漆包线三线并绕50匝,电感量约120UH。

注意这里不能用黑本色的磁芯(电感量大容易饱合)。

这个电感仅适合图纸条件,如有较大变化请自行更改。

保护二极管不小缺少,万一开关管击穿,VOUT=VIN,会直接损坏负载!用1W的稳压管,标称电压高于输出电压几V。

更安全的作法是用一个单向可控硅加一个稳压管和一个电阻的保护电路。

其它:输出电压设置:R9输出电流限制:R5最高占空比设置:R3(不用R3,占空比可以达到最大,适合输入输出压差小的情况)。

Buck电路原理分析详解

Buck电路原理分析详解










参照图九,可以得出仿真结果,








Buck电路原理分析
蓝色:电感电流 红色:电感电压
绿色:开关驱动
棕色:输出电压
图九
Buck电路原理分析
3、DCM模式仿真验证:在上述BCM分析的基础上,得出储能电感的电感量80uH为临界 点,由系统工作在DCM的条件,可以将储能电感电感量设置为40uH。重点验证输入输 出电压关系以及输出平均电流关系。










同样,在一个周期进行分析,


Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
3、DCM Mode:关键点原件波形见图六
图六
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
3、DCM Mode: 由图六可知,电路系统工作在DCM模式下,需要满足两个条件,一、电感充磁开 始以及消磁结束时流经电感的电流为零;二、电感消磁时间小于开关管关断时
五、BUCK电路仿真验证:
图七
Buck电路原理分析
上述电路中基本参数设置:
驱动波形:V=14V, f=20KHz,D=50%;输入电压:Vin=10Vdc;储能电感:L=80uH 1、BCM模式仿真验证:根据电路系统工作在BCM模式下的条件,进行理论计算,


因此,电阻可定义为







, T为工作周期,D为占空比: 为Q管导通时间,所以,

TL494开关电源设计BUCK电路

TL494开关电源设计BUCK电路
通,两管同时导
通,称为单端工 作方式。
死区 时间控 制
反馈 /PWM比较 器输入
图二 :TL494时序 图
3.功能描述
▪ 含有控制开关式电源所需的主要功能块。 ▪ 线性锯齿波振荡器(3V),频率Fosc = 1.1/ (RT* CT ) ▪ 输出开关管导通时间由“死区时间控制”和“反馈/PWM比
较器输入”两个信号中电平较高的一个控制,控制信号电 平与电容器CT 上的锯齿波进行比较,实现脉冲宽度的调整。 ▪ 控制信号电平线性增加时,Q1 和Q2 的导通时间线性减少。 ▪ “输出控制”=5V为推挽输出,最小死区2%,最大占空比 48%; “输出控制” =0为单端输出,最小死区4%。
2. TL494的时
序(续)
触发 器
时钟
当输出控制电压 =H时, Q和时钟 Q
信号均为0时, Q
Q1基极高电平导
通, /Q和时钟信 Q1射极
号均为0时, Q2
基极高电平导通, Q2射极
两管轮流导通,
称为推挽工作方 输出控制
式。
当输出控制电压 =L时,时钟信号 为0时, Q1和Q2 基极获高电平导
C7 C8
5 CT 6 RT
GND 7
I N2+ 16
I N215
10u/16V
C2
332 R3
R8
120
10K
R9
图三:由TL494组成降压型开关稳压电源
0.1
+12
104 C9
5K1 R17
R16 3K6
稳压原理--输出电压负反馈。
若某因致输出电压过高,则误差放大器1同向端电位升高,反馈/PWM端电位 上升,Q1管导通时间减少,占空比减少,输出电压减少。负反馈使输出电压 保持稳定,R17和R16中点电压为5V。R12/R10为误差放大器1的静态放大倍 数,影响控制精度。C3和R6、C4、C5和R13补偿网络,提高静、动态性能。

TL494开关电源电路图,引脚功能及参数讲解

TL494开关电源电路图,引脚功能及参数讲解

TL494开关电源电路图,引脚功能及参数讲解TL494系列设备包含所有功能在构造脉宽调制中所必需的(PWM)控制电路在单片机上。

主要为电源控制而设计设备提供了灵活性,以定制电源控制电路到一个特定的应用。

TL494系列基本描述:TL494设备包含两个错误放大器,一个错误放大器片上可调振荡器,有死区时间控制(DTC)比较器,一种脉冲转向控制触发器5v, 5%精度调节器,输出控制电路。

误差放大器显示共模电压范围从- 0.3 V到VCC - 2v。

的空时控制比较器有一个固定的偏移量,提供大约5%的停止时间。

芯片上的振荡器是否可以通过终止RT来绕过引用输出并提供一个锯齿输入到CT,或者它可以驱动同步多轨共用电路电力供应。

未提交的输出晶体管提供任何一种共发射极或发射-跟随器输出能力。

TL494系列设备提供推拉或单端输出操作,其中可选择通过输出控制功能。

该体系结构该设备中禁止任何一种输出的可能性在推-拉操作期间被脉冲两次。

TL494系列基本特征:·完成PWM电源控制电路·未承诺输出的200毫安接收器或电流源·输出控制选择单端或推挽式操作·内部电路禁止双脉冲直至输出·可变死时间提供控制总行驶里程·内部调节器提供稳定的5伏电压参考供应与5%的公差·电路结构允许简单的同步TL494系列电路图及原理图:TL494系列主要应用:·电源:交流/直流、隔离、带PFC,>90w·电源:交流/直流、隔离、无PFC,<90w·电源:电信/服务器AC/DC电源:·太阳能许多独立的·洗衣机:低端和高端·电动自行车双控制器:模拟·烟雾探测器·太阳能逆变器·服务器电源·台式电脑·微波炉TL494系列开关电源电路图:TL494IN引脚图及功能说明:1IN+ 1 (I) 非逆变输入到误差放大器11IN- 2(I) 反向输入到误差放大器12IN+ 16(I) 非逆变输入到误差放大器22IN- 15(I) 反向输入到误差放大器2C1 8(O) BJT输出集电极端1C2 11(O) BJT输出集电极端2CT 5(-) 电容器端子用于设定振荡器频率DTC 4(I) 停止时间控制比较器输入E1 9(O) BJT发射器终端输出1E2 10(O) BJT输出集电极端2FEEDBACK 3(I) 反馈输入脚GND 7(-) 地OUTPUT CTRL 13(I) 选择单端/并行输出或推拉操作REF 14(O) 5伏参考调节器输出RT 6 (-) 用于设置振荡器频率的电阻端子VCC 12(-) 电源电压TL494IN核心参数及功能框图:制造商: Texas Instruments输出端数量: 2 Output开关频率: 300 kHz占空比-最大: 45 % 输出电压: 40V输出电流: 200 mA 最小工作温度: -40°C 最大工作温度: +85°C 封装: PDIP-16高度: 4.57 mm长度: 19.3 mm下降时间: 40 ns上升时间: 100 ns单位重量: 1 g。

tl494开关电源工作原理

tl494开关电源工作原理

tl494开关电源工作原理
【最新版】
目录
1.TL494 开关电源的工作原理概述
2.TL494 开关电源的主要组成部分
3.TL494 开关电源的工作过程
4.TL494 开关电源的优点和应用领域
正文
【1.TL494 开关电源的工作原理概述】
TL494 开关电源是一种常用的开关电源,它的工作原理主要基于开关管的开通和关断,通过改变开关管的占空比来调整输出电压。

与传统的线性稳压器相比,TL494 开关电源具有更高的转换效率和更小的体积。

【2.TL494 开关电源的主要组成部分】
TL494 开关电源主要由四个部分组成,分别是输入电源、开关管、储能电感和输出电容。

其中,输入电源为开关电源提供直流电压;开关管是开关电源的核心元件,负责控制电流的通断;储能电感用于储存电能,以保证输出电压的稳定;输出电容则用于平滑输出电压。

【3.TL494 开关电源的工作过程】
TL494 开关电源的工作过程可以分为两个阶段:开关阶段和稳压阶段。

在开关阶段,开关管根据控制信号的变化进行开关操作,使输入电源的电流呈脉冲状。

在稳压阶段,储能电感和输出电容对脉冲电流进行平滑处理,使得输出电压保持稳定。

【4.TL494 开关电源的优点和应用领域】
TL494 开关电源具有以下优点:
(1)较高的转换效率:与线性稳压器相比,TL494 开关电源的转换效率更高,可达到 80% 以上。

(2)更小的体积和重量:由于采用开关管进行能量转换,TL494 开关电源的体积和重量相对较小。

(3)输出电压可调:通过改变开关管的占空比,可以方便地调整 TL494 开关电源的输出电压。

第1页共1页。

TL494开关电源设计--BUCK电路解析

TL494开关电源设计--BUCK电路解析
放大器2的输出(即反馈/PWM端)为正,Q1管不导通,输出电压降低。
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6
7
六、原理图
CT
2. TL494的时 序 (续 )
当输出控制电压 =H时, Q和时钟 信号均为0时, Q1基极高电平导 通, /Q和时钟信 号均为0时, Q2 基极高电平导通, 两管轮流导通, 称为推挽工作方 式。 当输出控制电压 =L时,时钟信号 为0时, Q1和Q2 基极获高电平导 通,两管同时导 通,称为单端工 作方式。
设计案例分析
降压型(BUCK型)开关稳压电源设计
一. 技术指标
1. 电源容量 输入:15~24Vac(或18~28.8Vdc)。 输出:电源电压+12V(不可调),纹波小于 150mVP-P,最大输出电流2.0A(限流型保 护 )。 工作频率
2.

3.
开关电源的工作频率为30~40kHz。
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6
7
七、参数选择
1.整流管:桥式整流,整流管工作电流=0.5负载电流,大反向电
682 1M

基于TL494的同步整流Buck稳压电源设计

基于TL494的同步整流Buck稳压电源设计

基于TL494的同步整流Buck稳压电源设计
蒋冠东;龙顺宇;胡柏威;刘世杰
【期刊名称】《工业控制计算机》
【年(卷),期】2024(37)4
【摘要】设计了一款基于TL494的同步整流Buck稳压电源。

该设计通过控制单片机端PWM占空比,经LPF滤波器将PWM信号转变为直流电压信号,从而由TL494产生PWM信号控制同步整流管的占空比,实现电压0至30 V稳定连续可调输出。

输出采样电路将电流值经放大后传送给单片机和TL494,当电流超过5 A 后,MOS管关断,实现过流保护。

经实验测量表明,在输入电压48 V、输出电压30 V、输出电流5 A的情况下,该设计负载调整率小于1%、输出纹波低于50 mV、效率高于96%,满足基本数控要求。

【总页数】3页(P152-154)
【作者】蒋冠东;龙顺宇;胡柏威;刘世杰
【作者单位】海南热带海洋学院
【正文语种】中文
【中图分类】TM4
【相关文献】
1.基于STM32F334双向同步整流BUCK-BOOST数字电源设计
2.基于TL494控制的同步整流BUCK恒流源的设计∗
3.基于LTC3879高效同步整流BUCK变换器
的设计4.基于同步整流Buck变换器的高精度数控电源设计5.基于单片机的同步整流Buck稳压开关电源设计
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+5V
IN2 +
GND
IN2 -
CT
RT
DE AD
4
16
C2 332
15
R4 10K
R3 10K R9 0.1
R8 120
图三:由TL494组成降压型开关稳压电源
过载保护--过载时,降低输出电压使负载电流保持在保护值。 不论开关管T2是否导通,流过负载的电流都经过R9(由上向下),R9的下端
电位为负,当负载电流达一定值时,误差放大器2的反相端电位为负,误差
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
tON=TOSCVO/(VIN-Vsta)=13.0~21.4uS(Vsta~1.2V)。
七、参数选择 4.开关管:
开关速度<1uS,
IC VEC PT
VIN+VF
IECO tON tOFF
VSTA t
耐压>2(VIN)max,
电流>2(IO)max
图四:开关管开关速度与功耗分析
TIP127(100V/5A,
死区时间控制 触发器 时钟
反馈/PWM比较器输入
Q
Q
Q1射极
Q2射极
输出控制 图二:TL494时序图
3. 功能描述
含有控制开关式电源所需的主要功能块。 线性锯齿波振荡器(3V),频率Fosc = 1.1/ (RT* CT ) 输出开关管导通时间由“死区时间控制”和“反馈/PWM比 较器输入”两个信号中电平较高的一个控制,控制信号电 平与电容器CT 上的锯齿波进行比较,实现脉冲宽度的调整。 控制信号电平线性增加时,Q1 和Q2 的导通时间线性减少。
六、原理图
L1 270uH/2.0A 3A/400 IN5399*4 R1 10K
12 11 8
+12
VCC
C2
C1
E2
E1
C4
PW M IN1 IN1 + 3 2 1
682 1M
R10 3K
R12
IC2 3300u/35V C1
494
CONT
13 14
R11 3K C8 R5 2K R7 3K
10u/16V
电源电压 集电极电压 集电极输出电流(每个三极管) 误差放大器输入共模电压 反馈/PWM比较器输入端电流 基准输出电流 计时电阻 计时电容 振荡器频率
L1 270uH/2.0A
+12
六、原理图
3A/400 IN5399*4 R1 10K
12 11 8
VCC
C2
C1
E2
E1
C4
PW M IN1 IN1 + 3 2 1
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
VIN-VSTA IOC
-VF
t
10.软启时间:~100mS。
(tON)min (tOFF)max
临界连续状态
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6
7
七、参数选择
1.整流管:桥式整流,整流管工作电流=0.5负载电流,大反向电
稳压原理--输出电压负反馈。
若某因致输出电压过高,则误差放大器1同向端电位升高,反馈/PWM端电位 上升,Q1管导通时间减少,占空比减少,输出电压减少。负反馈使输出电压
保持稳定,R17和R16中点电压为5V。R12/R10为误差放大器1的静态放大倍
数,影响控制精度。C3和R6、C4、C5和R13补偿网络,提高静、动态性能。
控制电路

采用脉冲宽度调制控制集成电路TL494。
二. 课题的意义
1. 具有实用性:几乎所有的电子设备都涉及电源设计,容量 较大时多采用开关电源。 2. 掌握一种共性技术:脉冲宽度调制技术-PWM是一项共性 技术,应用面广,各种电源设计、恒温控制、电机调速等。 3. 学习集成电路应用方法:TL494、SG3525A是常用的、典 型的固定频率的PWM控制电路,有一定代表性。 4. 易于建立工程设计概念:课题涉及多个典型的工程要素, 如:功率器件的最大电流、耐压、开关速度,磁性材料的 选择、功率电感的设计与绕制等。
t
Imax = (Vref /R7)*R8/ R9~2.0A
7.电感量:L~270μH(ΔI~0.4A, VIN~28.8V)。
2I VIN VO I OC I tON L0 V (1 D) DT VIN T I IN 2L0 8L0
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
t ON t1 D t1 t 2 t ON t OFF
D称为占空比
四、TL494的内部结构与功能
1. 结构
CT
死区时间控制 触发器 时钟
反馈/PWM比较器输入
四、TL494 的内部结构 与功能
Q
Q
Q1射极
Q2射极
输出控制 图二:TL494时序图
2.TL494的时序
当锯齿波电平<死区时间控制电平时,死区时间比较器输出高电平。 当锯齿波电平<反馈/PWM输入电平时,PWM比较器输出高电平。 死区时间控制电压和反馈/PWM输入电压,二者中较高的电平控制触发器时钟宽度。
682 1M
R10 3K
R12
IC2 3300u/35V C1
494
CONT
13 14
R11 3K C8 R5 2K R7 3K
10u/16V
+5V
IN2 +
GND
IN2 -
CT
RT
DE AD
4
16
C2 332
15
R4 10K
R3 10K R9 0.1
R8 120
图三:由TL494组成降压型开关稳压电源
设计案例分析
降压型(BUCK型)开关稳压电源设计
一. 技术指标
1. 电源容量 输入:15~24Vac(或18~28.8Vdc)。 输出:电源电压+12V(不可调),纹波小于 150mVP-P,最大输出电流2.0A(限流型保 护 )。 工作频率
2.

3.
开关电源的工作频率为30~40kHz。
5. 较典型的设计验证方法和负载实验。
三、BUCK型DC-DC变换器(CCM工作模式)
1. 导通状态 U I UO UL I ON t1 t1 L L 2. 截止状态 UO UL I OFF t2 t2 L L 3. 输入输出关系
I ON I OFF
U O DU I
t
电流断续状态DCM
图五:电流连续、临界连续、断续状态
八、电感计算方法
H dl NI
l
B
0
la
B
0 e
l e NI , B
图五:电流连续、临界连续、断续状态
七、参数选择
8.输出电容: CO=C7=220uF
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA 2ΔI IO>IOC -VF (tON)min (tOFF)max
一个工作周期共向输出电容充电荷
ΔQ~0.5*(ΔI)*(0.5T) 纹波0.5 ΔVP-P= ΔQ/CO,
Darl-L,hFE>1000,tr和
td<1uS)满足要求,需
带散热器。
七、参数选择
5.输出电压: VO=5V*(1+R17/R16)~12.1V 6.保护电流:
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA 2ΔI IO>IOC -VF (tON)min (tOFF)max
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6
7
闭环输出电压调整系数
记输出电压反馈系数为: F R16(R16 R17) TL494 误差放大器 1 的差模电压放大倍数为: k R12 R10 则 TL494 反馈/PWM 比较器输入端电压为
放大器2的输出(即反馈/PWM端)为正,Q1管不导通,输出电压降低。
100u/25VC6220u/25VT2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6
相关文档
最新文档