分治算法实验(用分治法实现快速排序算法)
分治算法实验
分治算法实验(用分治法查找数组元素的最大值和最小值)算法分析与设计实验报告第一次实验实验步骤关键代码}else//当数组中元素个数少于2时,直接赋值处理1. 先解决小规模的问题,如数组中只有1个元素或者只有两个元素时候的情况。
2. 将问题分解,如果数组的元素大于等于3个,将数组分为两个小的数组。
3. 递归的解各子问题,将中分解的两个小的数组再进行以上两个步骤最后都化为小规模问题。
4. 将各子问题的解进行比较最终得到原问题的解。
//分治法处理整个数组,求出最大值与最小值void merge( int a[], int left, int right, int &Max, int &Min){int max1=0,min 1=0,max2=0,min2=0;if (right-left>2) //当数组中元素个数大于3时,才实行分治法{int mid=(right+left)/2;merge(a,left,mid,max1,mi n1);//左半边递归调用自身,求岀最大值与最小值,分别保存在max1,min1中merge(a,mid+1,right,max2,mi n2);//右半边递归调用自身,求岀最大值与最小值,分别保存在max2,min2中if (max1>=max2)Max=max1; //子序列两两合并,求岀最大值与最小值elseMax=max2; //分别保存在Max与Minif (min1<=min2)Min=mi n1;elseMin=mi n2;测试结果实验心得Max=compmax(a,left,right);Min=compmi n( a,left,right);}}利用分治法(递归实现):非递归实现:请输入数据克1000093 32767The tine is1990003276? 9The tine is1000032767 0TJ IE tine is1000 32767 9The time is3276? RThe tine is內.0060-004TO通解,明白了分治法到底是怎样的一个过程,在代码实现分治法的时候,也使我加深了对于自己构造函数的理解,明白了分治法利用代码是怎样实现的,以及构造函数的传参与返回值等等地方需要注意的F;\鮒实验沁[p || B附录:完整代码(分治法)#include <iostream>#inelude <time.h>#include <iomanip> using namespacestd;//当数组中的元素个数小于3时,处理最大值int compmax(int A[], int start, int end) {int max;if (start<end) //有两个元素{if (A[start]<=A[end]) max=A[e nd];elsemax=A[start];}else //有一个元素max=A[start];return max;}//当数组中元素的个数小于2时,处理最小值int compmin(int A[], int start, int end){int min;if (start<end) //有两个元素{if (A[start]<=A[end]) mi n= A[start];elsemin= A[e nd];}else //有一个元素mi n=A[start];return mi n;}//分治法处理整个数组,求最大值与最小值void merge( int a[], int left, int right, int &Max,int &Min) 〃Max,Min 用来保存最大值与最小值//之所以使用&引用,是由于如果只是简单的使用变量,并不会改变Ma>与Min的值,使用指针也可以{int max1=0,min 1=0,max2=0,min2=0;if (right-left>2) //当数组中元素个数大于等于3时,进行分治{int mid=(right+left)/2;merge(a,left,mid,max1,min1); //左半边递归调用自身,求出最大值最小值,分别保存在max1,min1中merge(a,mid+1,right,max2,min2); //右半边递归调用自身,求出最大值最小值,分别保存在max2,min2中if (max1>=max2) //子序列两两合并,求出最大值与最小值,保存在Max与Mi n 中Max=max1;elseMax=max2;if (min 1<=min2)Min=min1;elseMin=min 2;}else //数组中元素个数小于3时的情况,直接赋值{Max=compmax(a,left,right);Mi n=compmi n( a,left,right);}}void ran( int *input, int n) //随机生成数组元素函数{int i;sran d(time(0)); for(i=0;i<n;i++) input[i]=ra nd();input[i]= '\0';}int a[1000000]; //定义全局变量用来存放要查找的数组int main(){int n;int i;int max;int min;coutvv "请输入要查找的序列个数:"<<e ndl;for (i=0;i<5;i++){cin>>n;ran (a,n);start=clock();en d=clock();over=end-start;start=clock();//调用分治法算法merge(a,0, n-1,max,min);coutvvmax<<‘ " vvminvvendl;en d=clock();printf( "The time is %6.3f" ,( double )(end-start-over)/CLK_TCK); //显示运行时间}system( "pause"); // 停止运行窗口return 0;}完整代码(非递归方法)#include <iostream>#include <time.h>#include <iomanip> usingnamespacestd;void ran( int *input, int n) {//随机生成数组元素函数int i;sran d(time(0));for (i=0;i<n;i++)in put[i]=ra nd();input[i]= '\0';}int a[1000000];int main(){int max=a[0],min=a[0];int i,j,n;cout<<"请输入数据规模: "<<e ndl;for (j=0;j<5;j++){cin»n;ran( a, n);clock_t start,e nd,over;//计算程序运行时间的算法start=clock();en d=clock();start=clock(); for(i=1;i<n;i++) {if (a[i]>max)max=a[i];if (a[i]<min) min=a[i];}coutvvmax<<‘ " vvminvvendl;en d=clock();printf( "The time is %6.3f" ,( double )(end-start-over)/CLK_TCK); // 显示运行时间}system( "pause");return 0;}。
分治算法的实验报告
一、实验背景分治算法是一种常用的算法设计方法,其基本思想是将一个复杂问题分解成若干个相互独立的小问题,然后将小问题递归求解,最终将子问题的解合并为原问题的解。
分治算法具有高效性、可扩展性和易于实现等优点,被广泛应用于各个领域。
本实验旨在通过实现分治算法解决实际问题,掌握分治算法的设计思想,并分析其时间复杂度。
二、实验目的1. 理解分治算法的基本思想;2. 掌握分治算法的递归实现方法;3. 分析分治算法的时间复杂度;4. 应用分治算法解决实际问题。
三、实验内容本实验选择两个分治算法:快速排序和合并排序。
1. 快速排序快速排序是一种高效的排序算法,其基本思想是将待排序序列分为两个子序列,其中一个子序列的所有元素均小于另一个子序列的所有元素,然后递归地对两个子序列进行快速排序。
(1)算法描述:① 选择一个基准值(pivot),通常取序列的第一个元素;② 将序列分为两个子序列,一个子序列包含所有小于基准值的元素,另一个子序列包含所有大于基准值的元素;③ 递归地对两个子序列进行快速排序。
(2)代码实现:```cvoid quickSort(int arr[], int left, int right) {if (left < right) {int pivot = arr[left];int i = left;int j = right;while (i < j) {while (i < j && arr[j] >= pivot) {j--;}arr[i] = arr[j];while (i < j && arr[i] <= pivot) {i++;}arr[j] = arr[i];}arr[i] = pivot;quickSort(arr, left, i - 1);quickSort(arr, i + 1, right);}}```2. 合并排序合并排序是一种稳定的排序算法,其基本思想是将待排序序列分为两个子序列,分别对两个子序列进行排序,然后将排序后的子序列合并为一个有序序列。
分治算法实验报告
算法分析与设计实验报告第 1 次实验if(maxi>maxj)max=maxi;elsemax=maxj;if(mini<minj)min=mini;elsemin=minj;return;}}srand((unsigned int)time(NULL));cout <〈”随机产生的数据(0—100):”;for(int i=0; i〈m; i++)a[i] = rand()%100;测试结果附录:完整代码SelectMaxMin.cpp:#include <iostream>#include <ctime>#include 〈cstdio>#include <iomanip>#include 〈cstdlib〉using namespace std;void SelectMaxMin(int *a,int i,int j,int &max,int &min) {if(i==j){max= a[i];min =a[i];return;}else{int mid=(i+j)/2;int maxi,maxj,mini,minj;SelectMaxMin(a,i,(i+j)/2,maxi,mini);SelectMaxMin(a,((i+j)/2)+1,j,maxj,minj);if(maxi〉maxj)max=maxi;elsemax=maxj;if(mini<minj)min=mini;elsemin=minj;return;}}int main(){clock_t start,end,over;start=clock();end=clock();over=end—start;start=clock();//freopen("in。
txt",”r",stdin);//freopen(”out。
txt”,”w",stdout);int m;cout 〈<"Please input the number : ”;cin>〉 m;int a[m];srand((unsigned int)time(NULL));cout 〈〈 "随机产生的数据(0-100):";for(int i=0; i〈m; i++)a[i] = rand()%100;for(int i=0; i〈m; i++)cout <〈 a[i] 〈< " ";cout 〈< endl;int max,min;SelectMaxMin(a,0,m-1,max,min);cout 〈< "max = " 〈〈 max 〈〈 endl;cout <〈”min = " <〈 min 〈〈 endl;end=clock();printf(”The time is %6.3f”,(double)(end-start—over)/CLK_TCK); }。
分治算法举例范文
分治算法举例范文分治算法是一种很重要的算法思想,它将一个大的问题划分成较小的子问题,然后分别求解这些子问题,最后将子问题的解合并起来得到原问题的解。
下面我将详细介绍分治算法的几个经典例子。
1. 快速排序(Quick Sort)快速排序是一种经典的使用分治算法的排序算法。
它首先选择一个基准元素,然后将数组划分成两个子数组:小于基准元素的和大于基准元素的。
然后对这两个子数组分别递归地进行快速排序,最后将两个子数组合并起来即可得到有序的数组。
快速排序的时间复杂度为O(nlogn)。
2. 归并排序(Merge Sort)归并排序也是一种利用分治思想的排序算法。
它将待排序的数组划分成两个子数组,然后分别对这两个子数组进行归并排序,最后将两个有序的子数组合并成一个有序的数组。
归并排序的时间复杂度也是O(nlogn)。
3. 汉诺塔问题(Tower of Hanoi)汉诺塔问题是数学领域中一个经典的问题,也可以通过分治算法来解决。
问题的规模是将n个圆盘从一个柱子移动到另一个柱子上,移动时需要遵守以下规则:每次只能移动一个盘子,移动过程中不能将较大的盘子放在较小的盘子上。
可以将问题划分成三个子问题:将前n-1个盘子从起始柱子移动到中间柱子上,将最后一个盘子从起始柱子移动到目标柱子上,最后将前n-1个盘子从中间柱子移动到目标柱子上。
这样就可以递归地求解子问题,最后合并起来得到原问题的解。
4. 最大子数组和问题(Maximum Subarray)最大子数组和问题是求解给定数组中连续子数组的最大和的问题。
可以使用分治算法来解决这个问题。
首先将数组划分成两个子数组,然后分别求解这两个子数组中的最大子数组和。
接下来,需要考虑跨越中点的情况,即包含中点的子数组的最大和。
最后,将这三种情况中的最大值作为最终的结果。
最大子数组和问题的时间复杂度为O(nlogn)。
5. 矩阵乘法(Matrix Multiplication)矩阵乘法也可以通过分治算法来实现。
算法分析与设计实验报告合并排序快速排序
算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。
合并排序和快速排序是两种经典而常用的排序算法。
本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。
二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。
然后,再将这些单个元素两两合并,形成一个有序数组。
合并排序的核心操作是合并两个有序的数组。
1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。
2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。
无论最好情况还是最坏情况,合并排序的复杂度都相同。
合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。
三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。
然后,递归地对这两个子数组进行排序,最后得到有序数组。
快速排序的核心操作是划分。
1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。
2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。
最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。
快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。
四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。
快速排序实验总结
快速排序实验总结快速排序是一种常用的排序算法,其基本思想是通过分治的方法将待排序的序列分成两部分,其中一部分的所有元素均小于另一部分的元素,然后对这两部分分别进行递归排序,直到整个序列有序。
下面是我在实验中对于快速排序算法的一些总结和思考。
一、算法步骤快速排序的基本步骤如下:1.选择一个基准元素(pivot),将序列分成两部分,一部分的所有元素均小于基准元素,另一部分的所有元素均大于等于基准元素。
2.对于小于基准元素的部分和大于等于基准元素的部分,分别递归地进行快速排序,直到两部分都有序。
3.合并两部分,得到完整的排序序列。
二、算法优缺点优点:1.快速排序的平均时间复杂度为O(nlogn),在排序大数据集时表现优秀。
2.快速排序是一种原地排序算法,不需要额外的空间,因此空间复杂度为O(logn)。
3.快速排序具有较好的可读性和可维护性,易于实现和理解。
缺点:1.快速排序在最坏情况下的时间复杂度为O(n^2),此时需要选择一个不好的基准元素,例如重复元素较多的序列。
2.快速排序在处理重复元素较多的序列时,会出现不平衡的分割,导致性能下降。
3.快速排序在递归过程中需要保存大量的递归栈,可能导致栈溢出问题。
三、算法实现细节在实现快速排序时,以下是一些需要注意的细节:1.选择基准元素的方法:通常采用随机选择基准元素的方法,可以避免最坏情况的出现。
另外,也可以选择第一个元素、最后一个元素、中间元素等作为基准元素。
2.分割方法:可以采用多种方法进行分割,例如通过双指针法、快速选择算法等。
其中双指针法是一种常用的方法,通过两个指针分别从序列的两端开始扫描,交换元素直到两个指针相遇。
3.递归深度的控制:为了避免递归过深导致栈溢出问题,可以设置一个递归深度的阈值,当递归深度超过该阈值时,转而使用迭代的方式进行排序。
4.优化技巧:在实现快速排序时,可以使用一些优化技巧来提高性能。
例如使用三数取中法来选择基准元素,可以减少最坏情况的出现概率;在递归过程中使用尾递归优化技术,可以减少递归栈的使用等。
对快速排序的研究
快速排序算法实验报告
快速排序算法实验报告快速排序算法实验报告引言快速排序算法是一种高效的排序算法,它的时间复杂度为O(nlogn),在实际应用中被广泛使用。
本实验旨在通过实际的实验数据,验证快速排序算法的效果和性能,并对其进行分析和总结。
实验设计本实验采用C++语言编写快速排序算法,并通过随机生成的数据进行排序实验。
实验中使用了不同规模的数据集,并记录了排序所需的时间和比较次数。
实验步骤1. 实现快速排序算法快速排序算法的核心思想是通过选取一个基准元素,将待排序的序列分为两部分,一部分比基准元素小,一部分比基准元素大,然后对这两部分继续进行快速排序。
具体实现时,可以选择序列的第一个元素作为基准元素,然后使用分治法递归地对子序列进行排序。
2. 生成测试数据为了验证快速排序算法的性能,我们生成了不同规模的随机数序列作为测试数据。
测试数据的规模分别为1000、10000、100000和1000000。
3. 进行排序实验使用生成的测试数据,对快速排序算法进行实验。
记录每次排序所需的时间和比较次数,并将结果进行统计和分析。
实验结果通过对不同规模的数据集进行排序实验,我们得到了以下结果:数据规模排序时间(ms)比较次数1000 2 872810000 12 114846100000 124 13564771000000 1483 15737267分析与讨论从实验结果可以看出,随着数据规模的增大,排序所需的时间和比较次数也呈指数级增长。
这符合快速排序算法的时间复杂度为O(nlogn)的特性。
另外,通过观察实验结果,我们可以发现快速排序算法的性能受到多个因素的影响。
首先,基准元素的选择对算法的效率有很大的影响。
如果选择的基准元素恰好是序列的中位数,那么排序的效率会更高。
其次,数据的初始顺序也会影响排序的效果。
如果数据已经是有序的,那么快速排序算法的效率将大大降低。
此外,快速排序算法还存在一些优化的空间。
例如,可以通过随机选择基准元素来避免最坏情况的发生。
分治法实验心得
分治法实验心得分治法实验心得分治法是一种常见的算法设计策略,它将原问题划分成若干个规模较小但结构与原问题相似的子问题,然后递归地求解这些子问题,最终将子问题的解合并得到原问题的解。
在本次实验中,我们实现了两个基于分治法的算法:归并排序和快速排序,并对它们进行了性能测试和比较。
一、归并排序1. 原理归并排序是一种典型的分治算法。
它将待排序数组不断地二分为两个子数组,直到每个子数组只剩下一个元素。
然后将相邻的两个子数组合并成一个有序数组,再将相邻的两个有序数组合并成一个更大的有序数组,直到最终合并成整个待排序数组。
2. 实现我们采用了自顶向下的递归方式实现了归并排序。
具体来说,我们定义了一个merge函数用于合并两个有序子数组,并定义了一个sort 函数用于递归地对左右两个子数组进行排序和合并。
3. 性能测试与比较我们使用Python内置的time模块对不同规模(10^2 ~ 10^6)的随机整数列表进行了性能测试,并绘制出了运行时间随数组规模增大的变化曲线。
结果表明,归并排序的时间复杂度为O(nlogn),与理论分析相符。
二、快速排序1. 原理快速排序也是一种分治算法。
它选择一个基准元素,将数组中小于等于它的元素放在其左侧,大于它的元素放在其右侧。
然后递归地对左右两个子数组进行同样的操作,直到每个子数组只剩下一个元素。
2. 实现我们实现了两个版本的快速排序:递归版本和非递归版本。
其中,递归版本采用了经典的Lomuto分区方案,而非递归版本则采用了更高效的Hoare分区方案。
3. 性能测试与比较我们同样使用Python内置的time模块对不同规模(10^2 ~ 10^6)的随机整数列表进行了性能测试,并绘制出了运行时间随数组规模增大的变化曲线。
结果表明,快速排序具有很好的平均时间复杂度(O(nlogn)),但最坏情况下时间复杂度会退化到O(n^2)。
三、总结与思考通过本次实验,我们深入理解了分治算法设计策略,并学会了如何实现归并排序和快速排序。
算法设计与分析实验报告
算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。
2. 了解快速排序的分治算法思想。
【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。
任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。
n个字符的全体排列之间存在一个确定的线性顺序关系。
所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。
每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。
二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
【实验内容】1.全排列递归算法的实现。
2.快速排序分治算法的实现。
【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。
2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。
【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。
其中Xm-1=,Yn-1=,Zk-1=。
最长公共子序列问题具有最优子结构性质。
由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。
数据结构实验八快速排序实验报告
数据结构实验八快速排序实验报告一、实验目的1.掌握快速排序算法的原理。
2. 掌握在不同情况下快速排序的时间复杂度。
二、实验原理快速排序是一种基于交换的排序方式。
它是由图灵奖得主 Tony Hoare 发明的。
快速排序的原理是:对一个未排序的数组,先找一个轴点,将比轴点小的数放到它的左边,比轴点大的数放到它的右边,再对左右两部分递归地进行快速排序,完成整个数组的排序。
优缺点:快速排序是一种分治思想的算法,因此,在分治思想比较适合的场景中,它具有较高的效率。
它是一个“不稳定”的排序算法,它的工作原理是在大数组中选取一个基准值,然后将数组分成两部分。
具体过程如下:首先,选择一个基准值(pivot),一般是选取数组的中间位置。
然后把数组的所有值,按照大小关系,分成两部分,小于基准值的放左边,大于等于基准值的放右边。
继续对左右两个数组递归进行上述步骤,直到数组只剩一个元素为止。
三、实验步骤1.编写快速排序代码:void quicksort(int *a,int left,int right) {int i,j,t,temp;if(left>right)return;temp=a[left];i=left;j=right;while(i!=j) {// 顺序要先从右往左移while(a[j]>=temp&&i<j)j--;while(a[i]<=temp&&i<j)i++;if(i<j) {t=a[i];a[i]=a[j];a[j]=t;}}a[left]=a[i];a[i]=temp;quicksort(a,left,i-1);quicksort(a,i+1,right);}2.使用 rand() 函数产生整型随机数并量化生成的随机数序列,运用快速排序算法对序列进行排序。
四、实验结果实验结果显示,快速排序能够有效地快速地排序整型序列。
在随机产生的数值序列中,快速排序迅速地将数值排序,明显快于冒泡排序等其他排序算法。
常见算法设计实验报告(3篇)
第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
分治法实验总结
分治法实验总结
分治法是一种常用的算法设计策略,它将问题分解成若干个子问题,然后递归地解决这些子问题,最后将子问题的解合并成原问题的解。
在本次实验中,我们通过实现归并排序和快速排序两个算法,深入理解了分治法的思想和实现方式。
我们实现了归并排序算法。
归并排序的基本思想是将待排序的序列分成若干个子序列,每个子序列都是有序的,然后再将子序列合并成一个有序的序列。
在实现过程中,我们采用了递归的方式,将序列不断地分成两半,直到每个子序列只有一个元素,然后再将这些子序列两两合并,直到最终得到一个有序的序列。
归并排序的时间复杂度为O(nlogn),是一种稳定的排序算法。
接着,我们实现了快速排序算法。
快速排序的基本思想是选择一个基准元素,将序列分成两个部分,一部分比基准元素小,一部分比基准元素大,然后递归地对这两个部分进行排序。
在实现过程中,我们选择了序列的第一个元素作为基准元素,然后使用两个指针分别从序列的两端开始扫描,将比基准元素小的元素放在左边,将比基准元素大的元素放在右边,最后将基准元素放在中间,然后递归地对左右两个部分进行排序。
快速排序的时间复杂度为O(nlogn),但是在最坏情况下,时间复杂度会退化为O(n^2)。
通过实现归并排序和快速排序两个算法,我们深入理解了分治法的
思想和实现方式。
分治法是一种非常重要的算法设计策略,可以用来解决很多复杂的问题,比如最近点对问题、矩阵乘法问题等。
在实际应用中,我们可以根据具体问题的特点选择合适的分治算法,以提高算法的效率和准确性。
分治法实验报告
分治法实验报告分治法实验报告一、引言分治法是一种重要的算法设计策略,它将一个大问题分解成若干个小问题,并通过递归的方式解决这些小问题,最终将它们的解合并起来得到原问题的解。
本实验旨在通过实际案例,探索分治法的应用和效果。
二、背景在计算机科学领域,分治法常常被用于解决一些复杂的问题,如排序、搜索、图算法等。
它的核心思想是将问题划分为更小的子问题,然后分别解决这些子问题,最后将它们的解合并起来得到原问题的解。
通过这种方式,我们可以降低问题的复杂度,提高算法的效率。
三、实验目的本实验旨在通过实际案例,验证分治法在问题解决中的有效性,并探索其在不同问题上的应用效果。
通过对比不同算法的运行时间和结果准确性,评估分治法在不同场景下的适用性。
四、实验过程本次实验选取了两个典型的问题,分别是最大子数组和快速排序。
首先,我们使用分治法来解决最大子数组问题。
该问题要求在一个给定的数组中,找到一个连续子数组,使得该子数组的和最大。
我们将数组分为两半,分别求解左半部分和右半部分的最大子数组,然后再考虑跨越中点的最大子数组。
通过递归的方式,最终得到整个数组的最大子数组。
接着,我们使用分治法来实现快速排序算法。
快速排序是一种高效的排序算法,它的核心思想是通过选择一个基准元素,将数组分为两个部分,使得左边的元素都小于等于基准元素,右边的元素都大于等于基准元素。
然后,对左右两个部分分别递归地进行快速排序,最终得到有序的数组。
五、实验结果通过对最大子数组和快速排序问题的实验,我们得到了以下结果。
首先,分治法在解决最大子数组问题上表现出色。
通过将问题划分为更小的子问题,我们可以在较短的时间内找到最大子数组,大大提高了算法的效率。
其次,在快速排序问题上,分治法同样展现了强大的能力。
通过不断地划分数组并进行排序,我们可以快速得到有序的结果。
六、实验分析分治法作为一种重要的算法设计策略,具有许多优点。
首先,它可以将复杂的问题分解为简单的子问题,降低了问题的复杂度,提高了算法的效率。
快速排序算法实验报告
快速排序算法实验报告快速排序算法实验报告引言:快速排序算法是一种常用且高效的排序算法,它的核心思想是通过分治的思想将一个大问题分解成多个小问题,并通过递归的方式解决这些小问题。
本实验旨在通过实际实现和测试快速排序算法,探究其性能和效果。
实验目的:1. 理解快速排序算法的原理和思想;2. 掌握快速排序算法的实现方法;3. 通过实验比较快速排序算法与其他排序算法的性能差异。
实验步骤:1. 算法实现首先,我们需要实现快速排序算法。
快速排序算法的基本步骤如下:- 选择一个基准元素(通常选择数组的第一个元素);- 将数组分成两个子数组,小于基准元素的放在左边,大于基准元素的放在右边;- 对左右子数组分别递归地应用快速排序算法;- 合并左右子数组和基准元素。
代码实现如下:```pythondef quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[0]left = [x for x in arr[1:] if x < pivot]right = [x for x in arr[1:] if x >= pivot]return quick_sort(left) + [pivot] + quick_sort(right)```2. 性能测试接下来,我们将使用不同规模的随机数组进行性能测试,比较快速排序算法与其他排序算法的效率。
我们选择插入排序算法和归并排序算法作为对比算法。
首先,我们生成1000个随机整数,并分别使用快速排序算法、插入排序算法和归并排序算法进行排序。
记录下每个算法的运行时间。
然后,我们逐渐增加数组的规模,分别测试10000、100000、1000000个随机整数的排序时间。
最后,我们绘制出三种算法在不同规模下的运行时间曲线,并进行分析和比较。
实验结果:经过多次实验和测试,我们得到了以下结果:在1000个随机整数的排序中,快速排序算法的平均运行时间为X秒,插入排序算法的平均运行时间为Y秒,归并排序算法的平均运行时间为Z秒。
快速排序的实验报告
一、实验目的1. 理解快速排序算法的基本原理和实现方法。
2. 测试不同数据规模和不同数据分布情况下快速排序算法的性能。
3. 分析快速排序算法在不同数据类型和不同排序策略下的优缺点。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 测试数据:随机生成、有序、逆序、部分有序的整数数组三、实验内容1. 快速排序算法原理快速排序是一种分治策略的排序算法,其基本思想是选取一个基准值,将待排序的数组划分为两个子数组,一个子数组的所有元素均小于基准值,另一个子数组的所有元素均大于基准值。
然后递归地对这两个子数组进行快速排序,直至整个数组有序。
2. 快速排序算法实现```pythondef quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr) // 2]left = [x for x in arr if x < pivot]middle = [x for x in arr if x == pivot]right = [x for x in arr if x > pivot]return quick_sort(left) + middle + quick_sort(right)```3. 性能测试为测试快速排序算法的性能,我们将对不同数据规模和不同数据分布的数组进行排序,并记录排序所需时间。
(1)随机数据测试数据规模:100、1000、10000、100000(2)有序数据测试数据规模:100、1000、10000、100000(3)逆序数据测试数据规模:100、1000、10000、100000(4)部分有序数据测试数据规模:100、1000、10000、1000004. 性能分析通过对不同数据规模和不同数据分布的数组进行排序,我们可以分析快速排序算法在不同情况下的性能。
四、实验结果与分析1. 随机数据从实验结果可以看出,快速排序算法在随机数据上的性能相对稳定,时间复杂度接近O(nlogn)。
分治算法使用实例
分治算法使用实例分治算法是一种基本的算法思想,用于解决各种问题。
它将一个大问题分解成多个小问题,然后递归地解决这些小问题,并将结果进行合并,从而得到大问题的解决方案。
分治算法被广泛应用于各个领域,如排序、查找、计算、图像处理等。
下面以三个经典的分治算法为例,具体说明分治算法的使用场景和实现方法。
1.归并排序:归并排序是一种高效的排序算法,它使用了分治算法的思想。
该算法将待排序的数组不断地二分,直到问题被分解为最小规模的子问题。
然后,将这些子问题逐个解决,并将结果进行合并,即将两个有序的子数组合并为一个有序的数组。
最终,所有子问题都解决完毕后,得到的数组就是排序好的结果。
归并排序的实现过程如下:-分解:将待排序的数组分解为两个子数组,递归地对这两个子数组进行排序。
-解决:对两个子数组分别进行排序,可以使用递归或其他排序算法。
-合并:将两个已排序的子数组合并为一个有序的数组。
2.求解最大子数组和:给定一个整数数组,求其最大子数组和。
分治算法可以解决这个问题。
该算法将问题分解为三个子问题:最大子数组和位于左半部分、最大子数组和位于右半部分、最大子数组和跨越中间位置。
然后,递归地对这三个子问题求解,并将结果进行合并,得到最终的解。
求解最大子数组和的实现过程如下:-分解:将待求解的数组分解为两个子数组,递归地求解这两个子数组的最大子数组和。
-解决:对两个子数组分别求解最大子数组和,可以使用递归或其他方法。
-合并:找出三个子问题中的最大子数组和,返回作为最终的解。
3.汉诺塔问题:汉诺塔问题是一个著名的递归问题,可以使用分治算法解决。
假设有三个柱子,初始时,有n个盘子从小到大依次放在第一个柱子上。
目标是将这些盘子移动到第三个柱子上,并保持它们的相对顺序不变。
每次只能移动一个盘子,并且大盘子不能放在小盘子上面。
汉诺塔问题的实现过程如下:-分解:将问题分解为两个子问题,将n-1个盘子从第一个柱子移动到第二个柱子,将最大的盘子从第一个柱子移动到第三个柱子。
分治思想——快速排序算法
分治思想——快速排序算法快速排序官⽅说法:快速排序(Quicksort)是对冒泡排序的⼀种改进。
快速排序由C. A. R. Hoare在1960年提出。
它的基本思想是:通过⼀趟排序将要排序的数据分割成独⽴的两部分,其中⼀部分的所有数据都⽐另外⼀部分的所有数据都要⼩,然后再按此⽅法对这两部分数据分别进⾏快速排序,整个排序过程可以递归进⾏,以此达到整个数据变成有序序列。
通俗来说,就是不断的挖坑和填坑1、其实就是先选择⼀个基准数,然后这个基准数我们保存为x,那它所在的位置就是⼀个空出来的坑。
2、我们从右向左迭代,如果遇到⽐基准数⼩的数,就将其填到上次挖的坑中,然后它⾃⼰在的这个地⽅就变成了⼀个新的坑。
3、然后再从左向右迭代,找⽐基准数⼤的数,将其填到上次挖的坑中,然后它所在的地⽅就变成了新的坑。
4、最后要将基准数填⼊最后的坑中,然后将基准数所在的位置返回,⽅便下次调⽤时候使⽤//挖坑填数int adjustArray(int s[],int l, int r) //传⼊数组和左右的下标{int i = l,j = r; //分别表⽰左半边的下标和右半边的下标int x = s[l]; //默认最左边的数就是挖的第⼀个坑while(i < j) //要保证数组中元素最少有两个{//从右向左迭代,找⽐基准数⼩的while(s[j] >= x && i < j)j--;if(i < j) //找到了⽐基准数⼩的{s[i] = s[j]; //将其填到原来挖的坑的地⽅上,现在j处⼜形成了⼀个新的坑i++; //i处填⼊了新的数,所以i++,然后从左往右去找,在左半边⽐基准数⼤的数}//从左向右迭代去找⽐基准数⼤的while(s[i] < x && i < j)i++;if(i < j){s[j] = s[i];j--;}}//退出时,要把坑⽤基准数填回去s[i] = x;return i; //返回调整后基准数的位置,⽅便下⼀次递归调⽤的时候}就这样将原来的数组以返回的基准数所在的位置为中⼼,分成了两个数组(理论上两个,但在内存中还是在⼀起挨着的),然后分别对新的两个数组递归进⾏挖坑和填坑的操作,当先前指⽰数组左右两边的下标的变量左边的⼤于或等于(⼀般都是等于)右边的时候(即数组已经被分的不能被分了),这时候原数组就变成有序的了,因为按照上⾯的思路,所有左边的都⼩于右边的,那既然数组都被分的变成⼀个数⼀个⼩数组那就是左边的数⽐右边的数⼩,即有序,排序完成!void quick_sort(int s[], int l, int r){if(l < r){int i = adjustArray(s,l,r);//不能将上次的基准数拉⼊新的两个数组中的任何⼀个,因为其所在的位置已经是最终对的位置了,它左边的数都⽐它⼩,右边的都⽐它⼤quick_sort(s,l,i-1);quick_sort(s,i+1,r);}}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法分析与设计实验报告第四次附加实验
while (a[--j]>x); if (i>=j)
{
break;
}
Swap(a[i],a[j]);
}
a[p] = a[j]; //将基准元素放在合适的位置
a[j] = x;
return j;
}
//通过RandomizedPartition函数来产生随机的划分 template vclass
Type>
int RandomizedPartition(Type a[], int p, int r) {
int i = Random(p,r);
Swap(a[i],a[p]);
return Partition(a,p,r);
}
较小个数排序序列的结果:
测试结果
较大个数排序序列的结果:
实验心得
快速排序在之前的数据结构中也是学过的,在几大排序算法中,快速排序和归并排序尤其是
重中之重,之前的快速排序都是给定确定的轴值,所以存在一些极端的情况使得时间复杂度
很高,排序的效果并不是很好,现在学习的一种利用随机化的快速排序算法,通过随机的确
定轴值,从而可以期望划分是较对称
的,减少了出现极端情况的次数,使得排序的效率挺高了很多,
化算法想呼应,而且关键的是对于随机生成函数,通过这一次的
学习终于弄明白是怎么回事了,不错。
与后面的随机实
验和自己的
实验得分助教签名
附录:
完整代码(分治法)
//随机后标记元素后的快速排序
#i nclude <iostream>
#in elude <ctime>
#inelude <time.h> #include <iomanip> using namespacestd;
template < class Type>
void S &x,Type &y); // 声明swap函数
inline int Random(int x, int y); // 声明内联函数
template < class Type>
int Partition(Type a[], int p, int r); // 声明 Partition 函数template <class Type>
int RandomizedPartition(Type a[], int p, int r); // 声明 RandomizedPartition 函数
int a[1000000]; //定义全局变量用来存放要查找的数组
更大个数排序序列的结果:
template < class Type>
void RandomizedQuickSort(Type a[], int p, int r); // 声明 RandomizedQuickSort 函数
void ran( int *input, int n) // 随机生成数组元素函数{
int i;
srand(time(0));
for (i=0;i<n;i++) input[i]=rand()%100; // 生成的数据在0~100之间input[i]= '\0' ;
}
int main()
{
int n;
cout<< "请输入要排序的序列个数: " <<endl; cin>>n; // 输入要排序的序列个数 ran(a,n); // 随机生成数组 a
for (int i=0; i<n; i++) // 先将要排序的数组输出 {
cout<<a[i]<< " " ;
}
cout<<endl;
cout<<endl;
clock_t start,end,over; // 计算程序运行时间的算法
start=clock();
end=clock(); over=end-start;
start=clock();
// 调用随机化的快速排序 RandomizedQuickSort 函数
RandomizedQuickSort(a,0,n-1);
for (int i=0; i<n; i++) // 输出排序好的结果
{ cout<<a[i]<< " " ;
} cout<<endl;
end=clock();
printf( "The time is %6.3f"
,( double )(end-start-over)/CLK_TCK); // 显
示运行时间
cout<<endl;
system( "pause" );
return 0;
}
template < class Type>
void S &x,Type &y) // 将两个数据交换
{
Type temp = x; x = y;
y = temp;
}
//函数产生x和y之间的一个随机整数,且产生不同整数的概率相同 inline int Random(int x, int y)
{
srand(( unsigned )time(0));
int ran_num = rand() % (y - x) + x;
return ran_num;
}
//函数Partition 以一个确定的基准元素a[p]对子数组a[p:r]进行划分
template <class Type>
int Partition(Type a[], int p, int r)
{
int i = p,j = r + 1;
Type x = a[p];
//将<x的元素交换到左边区域
//将之的元素交换到右边区域 while (true )
{
while (a[++i]<x && i<r);
while (a[--j]>x);
if (i>=j)
{ break;
}
Swap(a[i],a[j]);
}
a[p] = a[j]; // 将基准元素放在合适的位置
a[j] = x; return j;
// 通过 RandomizedPartition 函数来产生随机的划分 template <class Type> int RandomizedPartition(Type a[], int p, int r)
{
int i = Random(p,r);
Swap(a[i],a[p]);
return Partition(a,p,r);
}
template < class Type>
void RandomizedQuickSort(Type a[], int p, int r)
{
if (p<r)
{
int q = RandomizedPartition(a,p,r); RandomizedQuickSort(a,p,q-1); RandomizedQuickSort(a,q+1,r);
// 获得基准元素的位置// 对左半段排序
// 对右半段排序。