高中奥林匹克数学竞赛 映射与函数1
高中数学竞赛高一第03讲 映射与函数 专项知识点和真题讲解
第三讲映射与函数一映射设A、B是两个集合,如果按照某个对应法则,,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射.记为f:A→B.如果给定一个从集合A到集合B的映射,那么与A中的元素a对应的B中的元素b叫做a的象,记作b=f(a),a叫做b的原象.A的象记为f(A).对映射定义的理解要注意以下几点:(1)A,B是两个集合,可以是数集也可以不是数集,并要注意先后次序,即从A到B的映射与从B到A的映射一般是不同的.(2)存在从A到B的对应法则,这个法则可以是解析的,也可以是表格的、图象的及其他形式.(3)集合A中的元素的任意性与集合B中元素的唯一性构成映射的核心.(4)A中的每一个元素都有象,且唯一,不要求集合B中每一个元素都有原象,即使有原象也不要求唯一.因此,“多对一”、“一对一”是映射,“一对多”不是映射.(5)如果对于集合A中的任意两个元素x1,x2,当x1≠x2时,若必有f(x l)≠f(x2),则称该映射为从A到B的单射.(6)如果集合B中的每一个元素都有原象,就称f是A到B上的映射,也称为满射.(7)如果f既是单射又是满射,则称f是一一映射.例1 设A ={4321,,,a a a a },},,,,{54321b b b b b B =(1)写出一个f :A →B ,使得f 为单射,并求所有A 到B 的单射的个数。
(2)写出一个f :A →B ,使得f 不是单射,并求所有这些映射的个数。
(3)A 到B 的映射能否是满射?解:(1)作映射f :A →B ,使得4,3,2,1 ,)(==i b a f i i则此映射即为A 到B 的一个单射,这种单射的个数为12045=P 。
(2)作映射f :A →B ,可以先求A 到B 的映射的个数:分四步确定4321,,,a a a a 的象,每步都有5种可能,因此所求映射的个数为45个,因此满足条件的映射的个数为45-45P =505。
数学竞赛知识点总结高中
数学竞赛知识点总结高中一、函数的基本概念1.1 函数的定义函数是一种对应关系,将定义域中的元素映射到值域中的元素,通常用f(x)表示函数。
1.2 常见函数常见函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
1.3 函数的性质函数的奇偶性、周期性等性质对于解题非常重要。
1.4 函数的图像函数的图像对于理解函数的性质和解题都具有重要意义。
二、不等式2.1 不等式的表示不等式通常表示为a>b、a≥b、a<b、a≤b等形式。
2.2 不等式的解法解不等式通常通过分析不等式的性质、代数方法和图像法进行。
2.3 不等式的应用不等式在优化问题、绝对值不等式、三角不等式等问题中常常出现。
三、集合与映射3.1 集合的基本概念集合是由各种对象的总体,通常用大写字母表示集合。
3.2 集合的运算包括交集、并集、差集等。
3.3 映射的概念映射是一种元素之间的对应关系,通常用f:A→B表示从集合A到集合B的映射。
三、多项式和方程4.1 多项式的定义多项式是由多个项的代数式,通常表示为P(x)。
4.2 多项式的运算多项式包括加减乘除等基本运算。
4.3 多项式的因式分解因式分解是将多项式表示为若干个不可约的因式乘积。
4.4 方程与不等式方程和不等式是基于多项式的等式与不等式。
四、数列与数学归纳法5.1 等差数列与等比数列等差数列的通项公式为an=a1+(n-1)d,等比数列的通项公式为an=a1*q^(n-1)。
5.2 数学归纳法的基本思想数学归纳法用于证明递推关系的性质。
五、排列与组合6.1 排列的基本概念排列是从n个元素中取出m个元素进行排列的方式。
6.2 组合的基本概念组合是从n个元素中取出m个元素进行组合的方式。
6.3 排列组合的性质排列组合问题通常包括排列数、组合数、二项式定理等内容。
六、数论7.1 整数的性质奇数、偶数、素数、合数等是数论中的基本概念。
7.2 最大公约数与最小公倍数最大公约数和最小公倍数是数论中的重要概念。
高中数学竞赛讲义(三)函数
高中数学竞赛讲义(三)──函数一、基础知识定义1 映射,对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素与之对应,则称f: A→B为一个映射。
定义2 单射,若f: A→B是一个映射且对任意x, y∈A, x y, 都有f(x)f(y)则称之为单射。
定义3 满射,若f: A→B是映射且对任意y∈B,都有一个x∈A使得f(x)=y,则称f: A →B是A到B上的满射。
定义4 一一映射,若f: A→B既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B到A由相反的对应法则f-1构成的映射,记作f-1: A→B。
定义5 函数,映射f: A→B中,若A,B都是非空数集,则这个映射为函数。
A称为它的定义域,若x∈A, y∈B,且f(x)=y(即x对应B中的y),则y叫做x的象,x叫y的原象。
集合{f(x)|x∈A}叫函数的值域。
通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3-1的定义域为{x|x≥0,x∈R}.定义6 反函数,若函数f: A→B(通常记作y=f(x))是一一映射,则它的逆映射f-1: A →B叫原函数的反函数,通常写作y=f-1(x). 这里求反函数的过程是:在解析式y=f(x)中反解x得x=f-1(y),然后将x, y互换得y=f-1(x),最后指出反函数的定义域即原函数的值域。
例如:函数y=的反函数是y=1-(x0).定理1 互为反函数的两个函数的图象关于直线y=x对称。
定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7 函数的性质。
(1)单调性:设函数f(x)在区间I上满足对任意的x1, x2∈I并且x1< x2,总有f(x1)<f(x2)(f(x-)>f(x2)),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。
(2)奇偶性:设函数y=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数。
高中数学奥林匹克竞赛讲座:27函数
竞赛讲座27-函数1.函数的基本概念一个函数由它的自变量允许取值的范围(即定义域)和对应关系所确定,并由此确定了函数值的变化范围(即值域).定义域、对应关系、值域称为函数的三要素.(1)求函数的定义域例1(1982年西安初中竞赛题)已知函数求自变量取值范围.解-2<x<-1,或-1<x<0,或0<x<2,或2<x≤3.或者写成-2<x≤3,且x≠0,2.例2(1982年大连海运学院研究生招考题)设函数y=f(x)的定义域为[0,1],试求f(x+a)+f(x-a)的定义域(a>0).解由若0<a<时,x∈[a,1-a];若a>时,函数关系不存在.(2)关于对应法则若把自变量比作将要加工的原料,那么对应法则f就是加工手段和规则.正确认识对应法则是深刻理解函数概念的一个重要方面.例3(美国34届中学生邀请赛题)设f是一个多项式,对所有实数x,f(x2+1)=x4+5x2+3.对所有实数x,求f(x2-1).分析若能找到函数的对应法则f,即自变量是怎样“加工处理”的,此题易解,下面给出两种解法.①配凑法:f(x2+1)=x4+5x2+3=(x2+1)2+3(x2+1)-1,∴f(x)=x2+3x-1,∴f(x2-1)=(x2-1)2+3(x2-1)-1=x4+x2-3.②换元法令 x2+1=t,则x2=t-1.由f(x2+1)=x4+5x2+3有f(t)=(t-1)2+5(t-1)+1=t2+3t-1∴f(x2-1)=(x2-1)2+3(x2-1)-1=x4+x2-3.例4 (1984年上海青少年数学爱好者协会招生试题)设函数f(x)=2x(ax2+bx+c)满足等式f(x+1)-f(x)=2x·x2,求a+b+c的值.解(待定系数法)f(x)=2x(ax2+bx+c),f(x+1)=2x+1[a(x+1)2+b(x+1)+c]=2·2x[(ax2+bx+c)+2ax+a+b]=2f(x)+2·2x(2ax+a+b)由f(x+1)-f(x)=2x·x2有2x(ax2+bx+c)+2·2x[2ax+a+b]=2x·x2,在上式中,令x=0得 2a+2b+c=0;①令x=1得 7a+3b+c=0;②令x=2得 14a+4b+c=0.③由①,②,③解出 a=1,b=-4,c=6,∴ a+b+c=3.(3)关于函数方程这个问题是前一个问题的继续,我们把含有未知函数的等式叫函数方程,把寻求未知数的过程,或证明函数方程无解叫解函数方程.例5 对于一切实数x,y,函数满足f(x·y)=f(x)·f(y),且f(0)≠0.求f(1987)和f(1988).解∵f(x·y)=f(x)·f(y),取y=0,得f(x·0)=f(x)f(0)f(0)=f(x)·f(0).又f(0)≠0,∴f(x)=1,∴f(1987)=f(1988)=1.例6 (第32届美国中学生数学竞赛题)函数f(x)在x=0处没有定义,但对所有非零实数x有f(x)+2f=3x.满足方程f(x)=f(-x)的实数( ).(A)恰有一个 (B)恰有两个 (C)不存在 (D)有无穷多个,但并非一切非零实数 (E)是一非零实数解 f(x)+2f=3x.①以换x得 f+2f(x)= ②由①,②两式消去f得3f(x)=-3x,∴f(x)= -x.③又由f(x)=f(-x),将③代入得-x=+x,即 -2x=0,2-x2=0,∴x=±.故应选(B).(4)求函数值例7(1986年北京高一竞赛题)f(x)=(2x5+2x4-53x3-57x+54)1986,求f[-1].解设,则2t+1=,即2t2+2t=55.∴2t5+2t4-53t3-57t+54=t3(2t2+2t)-53t3-57t+54=2t3+2t2-2t2-57t+54=55t-2t2-57t+54=-2t2-2t+54=-1.∴f()=(-1)1986=1.2.正比便函数、反比便函数及一次函数例8 (1987年浙江省初中竞赛题)已知y=y1+,其中y1与x成正比例,y2与x成反比例,且当x=2和x=3时,y的值都为19.求y与变量x的函数关系式.解设y1=k1x,y2=(k1,k2均不为零),则 y=y1+=k1x+.将x=2,x=3代入y=y1+得∴ y=5x+例9(1986年吉林八市初中数学竞赛题)一次函数y=ax+b(a≠0)有一组对应值x=,y=0.试证y=ax+b不能有二组以上的有理数的对应值.证明若y=ax+b存在两组不同的有理数对应值(x1,y1),(x2,y2),而函数式为y=a(x-),故∵a≠0,消去a可得(y2-y1)=x1y2-x2y1.∵x1y2-x2y1是有理数.∴y2-y1=0,即y1=y2,∴x1y1-x2y1=0.即(x1-x2)y1=0.若y1=0,则x1=,但这与假设矛盾,故不可能.∴y1≠0,从而x1=x2也不可能.∴y=ax+b不能有两组以上的有理数的对应值.3.二次函数关于二次函数,我们最关心的是应用二次函数的图象和极值定理解一些应用问题.例10(1987年浙江初中数学竞赛题)设二次函数y=(a+b)x2+2cx-(a-b),其中a,b,c是三角形的三边,且b≥a,b≥c.已知x=-这个二次函数有最小值为-,求△ABC三内角A、B、C的度数.解散由题设,二次函数图象的顶点坐标是(-,-),即().于是①②由①得a+b=2c,代入②得(b-c)+(b-a)=0.∵b≥a,b≥cb-c=0,b-a=0,即 a=b=c.△ABC为正三角形,A=B=C=60°.例11 (1989年全国初中数学竞赛题)如图31-1,△ABC中,D、E分别是边BC、AB上的点,且∠1=∠2=∠3,如果△ABC,△EBD,△ADC的周长依次为m,m1,m2,证明:证明由已知可得DE∥AC,进而△EBD∽△ABC∽△DAC. ①∴②③∴于是有在这里,我们是将看成关于的二次函数,利用配方法来处理的.4.其它下面我们再利用配方法来解一个多元函数的最值问题.例12 (1978年日本半桥技术科学大学入学题)在边长为a的正三角形中,设点P、Q、R 在边BC,CA,AB上运动,并保持的关系,设,△PQR的面积为S.(1)用x、y、z表示S;(2)求S的最大值;(3)求S取最大值时,、、的值.解(1)S=S△ABC-(S△AQR+S△BRP+S△CPQ).∵S△ABC=a2,S△AQR=z(a-y)sin60°同样S△BRP=x·(a-z),S△CPQ=y(a-x).∴S=a2-[z(a-y)+x(a-z)+y(a-x)]=a2-a(x+y+z)+(yz+yx+xy)=a2-a2+(yz+yx+xy)=(yz+yx+xy). ①(2)将z=a-x-y代入①消去z得S=[(a-x-y)(x+y)+xy]=-[x2+(y-a)y+y2-ay],∴S=-)≤当x+时,上式取等号,即x=y=z=时,Smax=a2,(3)根据(2),当S取最大值时,x=y=z=.在△CPQ内,CQ=,CP=.由余弦定理得最后,我们把视线转向分段函数的极值问题.例13(1968~1969年波兰竞赛题)已知两两互异的实数a1,a2,…,an.求由式子(x 为实数)y=|x-a1|+|x-a2|+…+|x-an|所定义的函数的最小值.解我们首先研究一个简单的事实:设a<b,则u=|x-a|+|x-b|=u在a≤x≤b上每一点达到最小值:-a+b. ①下面我们来研究原命题:对a1,a2,…,an重新按从小到大排序为a1′,a2′,…an′.于是,当n为偶数,即n=2m时,将原函数重新记为y=(|x-a1′|+|x-an′|+|x-a2′|+|x-a′n-1|+…+|x-am′|+|x-a′m+1).令y=|x-a′i|+|x-a′n+1-i|,由①,它在ai≤x≤an+i上取最小值-ai+an+1-i.又∵每一个区间都包含着下一个区间,即[a1,an][a2,an-1+…*am,am-1](“”读作包含,如AB,读作A包含B),因此它们的公共区间为[am,am+1].由于在区间[am,am+1]每点上所有yi都取常数最小值,为了方便令x=am 或x=am+1于是y最小值=-a1+an-a2+an-1+…-am+am+1=-a1-a2-…-am+am+1+am+2+…+an.当n为奇数时,将原函数记为y=(|x-a1′|+|x-an′|+|x-a2′|+|x-a′n-1|)+…+(|x-am′|+|x-a′m+2|)+|x-a′m+1|.类似上面的讨论,当x=am+1时,y最小值=-a1-a2-…-am+am+2+am+3+…+an.练习三十一(1)(1989年全国初中数学竞赛题)已知二次函数y=ax2+bx+c的图象如图所示,则下列6个代数式ab,ac,a+b+c,a-b+c,2a+b,2a-b中,其值为正的式子的个数为(). (A)2个(B)3个(C)4个(D)4个以上(2)曲线|y|=x2-1的图象(实线部分)大致形状是().(3)(1984年全国竞赛题)若则下列等式正确的是().(A)F(-2-x)=-1-F(x)(B)(C)F(x-1)=F(x)(D)F(F(x))=-x2.填空题(1)x,y为实数,.则x+xy+x2y的值是_________.(2)(据1990年全国初中竞赛题改)方程7x2-(k+13)x+k2-k-2=0(k是实数)有两个实根α、β,且0<α<1,1<β<2,那么k的取值范围是______.3.已知f(a+b)=f(a)+f(b),且f(1)=1.求的值.4.已知函数y=|x-1|+|x-3|+.试求使y值恒等于常数的x值范围.5.(1983年全国竞赛题)已知f(x)=ax2-c满足-4≤f(x)≤-1,-1≤f(2)≤5.求f(3)的范围.6.已知0≤x≤1,0≤y≤1,y-x≥,且x+y+z=1,求函数W=2x+5y+4z的最大、最小值.7.(1987年浙江初中竞赛题)二次函数f(x)=ax2+bx+c其中a≠0,且a、b、c为实数.对某一常数t,如有af(t)<0,试证:f(x)有不同的两个实数根,其中一个实根比t小,另一实根比t大.8.(浙江初中竞赛题)函数f(x)对一切实数x满足f(4+x)=f(4-x).若方程f(x)=0恰有三个不同的实根,求这些实根的和是多少?9.(1985年江苏东台初中数学竞赛题)若z2-2mz+m+6=0的二实数根为a、b,试求(a-1)2+(b-1)2的最小值.10.(1983年重庆初中数学竞赛题)等边△ABC的边长为a有三个动点P、Q、R分别同时从A、B、C出发沿AB、BC、CA按逆时针方向以各自的速度作匀速直线运动.已知P点由A到B需1秒,Q点从B到C需2秒,R点由C到A需3秒,在一秒钟内,问开始运动多少时间△PQR的面积最小?最小面积是多少?)11.(1985年苏州初中数学竞赛题)如图,凸四边形ABCD边长依次为2、2、3、1.问在四边形ABCD变形为各种凸四边形的过程中,BD的长的变化范围是什么?B到DC距离的变化范围又是什么?练习三十一1.A.D.A.2.3.4.当5.①②(1)+(2)得③(2)+(3)得-16.由z=1-x-y,∴W=4-2x+y.要求W的最大、最小值,只需求y-2x的最大、最小值.设P(x,y)是坐标适合条件的点,则P在以为顶点的内(包括边界).设t=y-2x,则y=2x+t.由t的几何意义W最大值=5W最小值=4.、∈∈8.四个根之和为16.9.先由10.∈11.如图(a)BD最大时,B、A、D在一直线上,BD=3.。
奥林匹克竞赛及自主招生辅导材料(强烈推荐)第三讲:函数的基本性质
函数是数学中最重要的概念之一,它贯穿于整个高中数学教学.数学竞赛试题当然也离 不开函数的点缀.在高中阶段,函数问题主要讲义函数的定义域、有界性、单调性、奇偶性、 周期性、最值和极值、函数的零点与正负区间等性质,以及复合函数的单调性与奇偶性等. 从历年来的数学竞赛试题来看,函数一直是竞赛的热点之一,备受命题者的青睐.
f (1001) 1002, 求 f (2009) 的值.
二.函数的值域
求函数最值的常用方法: (1)单调性法:利用函数的单调性求最值; (2)不等式法:利用各种不等式来求解,常用平均不等式、柯西不等式等; (3)判别式法:将等式 y f ( x) 化成 p ( y ) x q ( y ) x r ( y ) 0 的形式,利用该二次方程
2
有解 x ,考虑 q ( y ) 4 p ( y ) r ( y ) ,从而求出 y 的最值;
2
(4)猜测法:先猜测 f ( x) 在某一点 x0 处取得最大值,再证明对任意的 x, f ( x) f ( x0 ) ; (5)拆项法:先将 f ( x) 分解为 f ( x)
n
g ( x) c ,其中 g ( x) 有下界 z (i 1, 2, , n) ,
2 2 3x0 2 0, 且 y0 x0 x0 所以 x0 2 ,所以 x0 3 x0 2.
任取 y0 [1, ), 令 x0
3 2
2 ( y 1) 2 y0 y2 2 2 , ,则 x0 1 0 1 0 0. 2 y0 3 2 y0 3 2 y0 3
一.函数及其表示
函数及其表示主要分为三块内容,即映射、函数的概念与解析式. 在数学竞赛中,涉及到的内容主要有: (1)关于映射、函数的概念辨析题,以选择题与填空题为主; (2)利用对应与映射思想解决计数问题; (3)求解函数值x) 在 R 上有定义, 且 f (x y) f (x) g( y) g(x) f ( y) ,
高中数学 奥赛辅导精品第三讲 函数的概念和性质
第三讲 函数的概念和性质知识、方法、技能I .函数的定义设A ,B 都是非空的数集,f 是从A 到B 的一个对应法则.那么,从A 到B 的映射f :A →B 就叫做从A 到B 的函数.记做y=f(x),其中x ∈A ,y ∈B ,原象集合,A 叫做函数f(x)的定义域,象的集合C 叫做函数的值域,显然C ⊆B.II .函数的性质(1)奇偶性 设函数f(x)的定义域为D ,且D 是关于原点对称的数集.若对任意的x ∈D ,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x ∈D ,都有f(-x)=f(x),则称f(x)是偶函数.(2)函数的增减性 设函数f(x)在区间D ′上满足:对任意x 1, x 2∈D ′,并且x 1<x 2时,总有f(x 1)<f(x 2) (f(x 1)>f(x 2)),则称f(x)在区间D ′上的增函数(减函数),区间D ′称为f(x)的一个单调增(减)区间.III .函数的周期性对于函数 f(x),如果存在一个不为零的正数T ,使得当x 取定义域中的每个数时,f(x+T)=f(x)总成立,那么称f(x)是周期函数,T 称做这个周期函数的周期.如果函数f(x)的所有周期中存在最小值T 0,称T 0为周期函数f(x)的最小值正周期.IV .高斯函数对任意实数x,我们记不超过x 的最大整数为[x],通常称函数y=[x]为取整函数,又称高斯函数.进一步,记{x}=x -[x],则函数y={x}称为小数部分函数,它表示的是x 的小数部分. 根据高斯函数的定义,可得到其如下性质.性质1 对任意x ∈R ,均有x -1<[x]≤x<[x]+1.性质2 对任意x ∈R ,函数y={x}的值域为)1,0[.性质3 高斯函数是一个不减函数,即对任意x 1, x 2∈R ,若x 1≤x 2, 则[x 1] ≤[x 2]. 性质3 若n ∈Z , x ∈R ,则有 [x+n]=n+[x], {n+x}={x}后一个式子表明y={x}是一个以1为周期的函数.性质4 若x , y ∈R , 则 [x]+ [y]≤[x+y] ≤[x]+ [y]+1.性质5 若n ∈N*, x ∈R , 则[nx]≥n[x]性质6 若n ∈N*, x ∈R , 则]][[][nx n x=. 性质7 若n ∈N*, x ∈R +, 则在区间[1,x]内,恰有][n x个整数是n 的倍数.性质8 设p 为质数,n ∈N*,在p 在n!的质因数分解式中的幂次为++=][][)!(2pn p n n p 赛题精讲函数是高中数学,也是高等数学的基础.因此,也是高考和高中数学竞赛的重要内容.下面分类介绍此类题目.I 函数的定义域和值域例1 当x 为何值时,x lg lg lg lg lg lg 才有意义.【思路分析】应根据对数的意义,从最外层开始一层一层地逐步消去根号和对数符号求出x 的范围. 【略解】由x lg lg lg lg lg lg >0,得x lg lg lg lg lg ≥1……∴1021021021010⋅⋅⋅≥x【评述】这种多层对数及根式问题,一定要逐层由外向内求解,要有耐心。
高中数学奥赛辅导 第六讲 集合与映射
数学奥赛辅导 第六讲 集合与映射知识、方法、技能这一讲主要介绍有限集的阶,有限集上的映射及其性质,这些在与计数有关的数学竞赛问题中应用极广,是参赛者必不可少的知识Ⅰ.有限集元素的数目 1.有限集的阶有限集A 的元素数目叫做这个集合的阶,记作|A|[或n(A)]. 2.集族的阶若M 为由一些给定的集合构成的集合,则称集合M 为集族.设A 为有限集,由A 的若干个子集构成的集合称为集合A 的一个子集族,求满足一定条件的集族的阶是一类常见的问题.显然,若|A|=n ,则由A 的所有子集构成的子集族的阶为2n . Ⅱ.映射,映射法定义1 设X 和Y 是两个集合(二者可以相同).如果对于每个X x ∈,都有惟一确定的Y y ∈与之对应,则称这个对应关系为X 到Y 的映射.记为.Y y X x Y X ∈→∈→或这时,Y x f y ∈=)(称为X x ∈的象,而x 称为y 的原象,特别当X 和Y 都是数集时,映射f 称为函数.定义2 设f 为从X 到Y 的一个映射.(1)如果对于任何x 1、.),()(,,21212为单射则称都有f x f x f x x X x ≠≠∈ (2)如果对于任何Y y ∈,都有X x ∈,使得f (x )=y ,则称f 为满射; (3)如果映射f 既为单射又为满射,则称f 为双射;(4)如果f 为满射且对任何Y y ∈,恰有X 中的m 个元素x 1、x 2、…x m ,使得.)(,,,2,1,)(倍数映射的倍数为为则称m f m i y x f i ==定理1 设X 和Y 都是有限集,f 为从X 到Y 的一个映射, (1)如果f 为单射,则|X|≤|Y| (2)如果f 为满射,则|X|≥|Y| (3)如果f 为双射,则|X|=|Y|(4)如果f 为倍数为m 的倍数映射,则|X|=m|Y|. 这个定理的结果是显然的.定理2 设有限集f a a a A n },,,,{21 =是A 到A 上的映射,),()(1x f x f =),,)](([)(1*+∈∈=N r A x x f f x f r r 则f 是一一映射(即双射)的充要条件是:对任意).11,()(,)(1,,-≤≤∈≠=≤≤∈∈**i i i s i i m i i i m s N s a a f a a f n m N m A a i 而使得存在证明:必要性.若f 是双射,则i i a a f ==)(1(此时m i =1),或者.)(11i i i a a a f ≠=在后一种情形下,不可能有.)()(1112i i i a a f a f ==否则,a i 1在A 中有两个原象a i 和a i 1,与f 是双射不合,而只可能有2222)(,,)(),2()(12i i i i i i i i i a a f a a a a f m a a f =≠===如果或者此时,则依同样的道理,不可能有或者此时而只可能有),3()(,,)()(33212====i i i i i i i m a a f a a a f a f213,,)(3i i i i i a a a a a f ≠=.如此等等.因为A 是有限集,所以经过有限次(设经过m 次)后,有i s i i m a ai f a a f i ≠=)(,)(而).11,(-≤≤∈*i m s N s这表明当f 是双射时,对任一A a i ∈都存在着映射圈:i im i i i a a a a a i →→→→-121在这个映射圈中,诸元素互异,且),1(1i i i a m n m 只有一个元素=≤≤充分性.如果对任意i i s i i m i i i i a a f a a f n m N m A a ≠=≤≤∈∈*)(,)(,1,,而使存在)1,(1-*≤≤∈i m s N s ,这说明从A 中任一元素a i 出发,都可以得到一个包含m i 个互异元素的映射圈,显然f 是双射.定理3 在命题1的条件下,若对i i m i i i a a f N m A a =∈∈*)(,,使存在,则对任意.)(,i i tm a a f N t i =∈*有这是明显的事实,证明从略.赛题精讲例1:设集合,30001|{},,14,20001|{≤≤=∈+=≤≤=y y B Z k k x x x A 集合||},,13B A Z k k y ⋂∈-=求.【解】形如4k +1的数的数可分三类:)(912,512,112Z l l l l ∈+++,其中只有形如12l +5的数是形如3k -1的数..167||},1997,,17,5{,1660),(20005121=⋂=⋂≤≤∈≤+≤B A B A l Z l l 所以所以得令例2:有1987个集合,每个集合有45个元素,任意两个集合的并集有89个元素,问此1987个集合的并集有多少个元素.【解】显然,可以由题设找到这样的1987个集合,它们都含有一个公共元素a ,而且每两个集合不含a 以外的公共元素.但是,是否仅这一种可能性呢?由任意两个集合的并集有89个元素可知,1987个集合中的任意两个集合有且仅有一个公共元素,则容易证明这1987个集合中必有一个集合中的元素a 出现在A 以外的45个集合中,设为A 1,A 2,…,A 45,其余的设为A 46,A 47,…,A 1996.设B 为A 46,…,A 1996中的任一个集合,且B a ∉,由题设B 和A ,A 1,A 2,…,A 45都有一个公共元素,且此46个元素各不相同,故B 中有46个元素,与题设矛盾,所以这1987个集合中均含有a .故所求结果为1987×44+1=87429.即这1987个集合的并集有87429个元素. 例3:集合n B B B A ,,,},9,2,1,0{21 =为A 的非空子集族,并且当,2||≤⋂≠j i B B j i 时 求n 的最大值.【解】首先考虑至多含三个元素的A 的非空子集族,它们共有175310210110=++C C C 个,这说明.175max ≥n下证,.175max ≤n 事实上,设D 为满足题设的子集族,若,,4||,B b B D B ∈≥∈设且 则B 与B-{b}不能同时含于D ,以B-{b}代B ,则D 中元素数目不变.仿此对D 中所有元素数目多于4的集合B 作相应替代后,集族D 中的每个集合都是元素数目不多于3的非空集合,故.175max ≤n .所以,.175max =n在许多问题中,计数对象的特征不明显或混乱复杂难以直接计数,这时可以通过适当的映射将问题划归为容易计数的对象,然后再解决,从而取得化难为易的效果.例4:设},,,2,1{n S =A 为至少含有两项的公差为正的等差数列,其项都在S 中且当将S 的其他元素置于A 中之后,均不能构成与A 有相同公差的等差数列.求这种A 的个数(只有两项的数列也视为等差数列) 【解】当k n 2=为偶数时,满足题中要求的每个数列A 中必有连续两项,使其前一项在集{1,2,…,k}和{k +1,k +2,…,2k }中各任取一数,并以二数之差作为公差可以作出一个满足要求的数列A.容易看出,这个对应是双射.故知A 的个数为.422n k = 当n =2k +1为奇数时,情况完全类似.惟一的不同在于这时第二个集合},2,1{n k k ++ 有k +1个元素.故A 的个数为.4/)1()1(2-=+n k k例5:设a n 为下述自然数N 的个数:N 的各位数字之和为n 且每位数字都只能取1、3或4.求证对每个自然数n ,a 2n 都是完全平方数.【证明】记各位数字之和为n 且每位数字都是1或2的所有自然数的集合为S n ,并记,3,2,1,||2121--+=≥===n n n n n f f f n f f f S 时有且当则这意味着{f n }恰为菲波那契数列.作对应'1M M S n →∍如下:先将M 的数字中自左至右的第一个2与它后邻的数字相加,其和作为一位数字;然后再把余下数字中第一个2与它后邻的数字相加,所得的和作为下一位数字;依此类推,直到无数再相加为止.所得的新自然数M′除最后一位数可能为2之外,其余各位数字均为1、3或4.若记所有M ′的集合为T n ,则容易看出,上述对应是由S n 到T n 的双射,从而有n n n f S T ==||||,且显然有,4,3,2=+=-n a a f n n n ①对于任一数字和为2n ,各位数字均为1或2的自然数M ,必存在正整数k ,使得下列两条之一成立:(1)M 的前k 位数字之和为n ;(2)M 的前k 位数字之和为n -1,第k +1位数字为2.则立即可得 ,3,2,2122=+=-n f f f n n n ② 由①和②得到,2122222--+==+n n n n n f f f a a),(122222----=-n n n n f a f a ③因为.0,2,4,2,12242432=-====f a f a a a 所以于是由③递推即得,,3,2,1,22 ==n f a n n即n a 2为完全平方数.应用映射还可以证明某些与计数相关的不等式和等式.这时可以通过分别计数来证明等或不等,也可以不计数而直接通过适当的映射来解决问题.例6:将正整数n 写成若干个1和若干个2之和,和项顺序不同认为是不同的写法,所有写法种数记为a (n ).将n 写成若干个大于1的正整数之和,和项顺序不同认为是不同的写法,所有写法的种数记为)(n β.求证对每个n ,都有).2()(+=n n βα【证法1】将每项都是1或2,各项之和为n 的所有数列的集合记为A n ,每项都是大于1的正整数,各项之和为n 的所有数列的集合记为B n ,则问题就是证明|,|||2+=n n B A 显然,只需在两集之间建立一个双射就行了.i k ik i i n m a m i i i a a a A a a a a 其余的其中设,1,2,),,,(212121≤<<≤≤====∈= 均为1且令.21n a a a m =+++1211i a a a b +++= ,,22112122121121+++++++++++=+++=+++=--m i i k ik i i k i i i a a a b a a a b a a a b k k k k),,,,,(121+=k k b b b b b①则定义.2+∈n B b2+∈→∍n n B b a A②则f 为双射.事实上,若a a A a a n '≠∈'且,,,则或者数列a 和a ′中的2的个数不同,或者2的个数相同但位置不全相同.无论哪种情形,由①和②知f a f b a f b 即不同与,)()('='=为单射,另一方面,对任何2+∈n B b 利用①式又可确定,n A a ∈使得,,)(为满射即f b a f =从而f 为由A n 到B n +2的双射.【证法2】使用证一中的记号.n n B A 和对于任意的令,),,,,(2121+-∈=n m m A a a a a a,,2;,1,).,,,(11121A a a A a a a a a a m n m m ∈'=∈'=='+-时当时当显然 容易看出,映射 n n n A A a af A ⋃∈'→∍++12是双射,故有).()1()2(n n n ααα++=+注意到2)2(,1)1(==αα,便知,)(n f n =α这里|f n |为菲波那契数列.对于任意的令2121),,,,(+-∈=n k k B b b b b b⎩⎨⎧>-=='--2)1,,,,(2),,,(121121k k k k k b b b b b b b b b b 当当则当,,,2;,2,21容易验证时当时时+∈'>∈'='=n k n k B b b B b b b 映射n n n B B b b B ⋃∈'→∍++12为双射,故有),()1()2(n n n βββ++=+==+n f n )2(β所以a (n )【证法3】显然有),4(2)2(),3(1)1(βαβα===即命题于n =1,2时成立.设命题于,.2,)1(1k n k n k k n =+=≥+≤既然命题于时命题成立须证当时成立令与之间的双射与与故存在时都成立.,,11312+++++f k k k k n f f B A B A k⎩⎨⎧>∈=+2),()()(1k k k k b a f A a a f a f 当当则f 为由.321的双射到+++⋃⋃n n k k B B A A对于任意的令和任意,),,,(),,,,(32212121+++-⋃∈'=∈=k k l k m m B B b b b b A a a a a a⎩⎨⎧==∈='+-,1,,2,),,,(1121m k m k m a A a A a a a a 当当 ⎩⎨⎧∈'∈+∈'∈=++++.,)1,,,)2,,,(34212421k k l k k l B b B b b b B b B b b b b 当当 43212:.:+++++∈→'∍⋃⋃∈'→∍k k k k k k B b b B B h A A a a A g 则映射都是双射,从而复合映射42:++∈→∍k k B b a A g f h为双射,故有)4()2(+=+k k βα,于是由数学归纳法知命题对所有自然数n 都成立.映射法还可以与其他方法结合起来使用,而且大多数竞赛题是这种类型.例如映射法可与抽屉原理、构造法、反证法等各种方法结合起来.例7:设oxyz 是空间直角坐标系,S 是空间中的一个有限点集,S x ,S y ,S z 分别是S 中所有点的坐标平面oyz ,ozx ,oxy 上的正投影所成的集合.求证.||||||||2z y x S S S S ⋅⋅≤(1992年IMO 试题5)【证明】对每点令,),(x S j i ∈∑∈=∈=ixS j i ijij TS S j i x j i x T ),(}},,(|),,{(显然有由柯西不等式有2),(2),(),(2||||||1||ij S j i x ijS j i S j i T S TS xxx∑∑∑∈∈∈⋅=⋅⋅≤①考虑集合},,|),{(),(2121),(ij ij ij ij ij S j i T t t t t T T T T V x∈=⨯⨯=∑∈其中显然,|V|=2),(||ij S j i T x∑∈定义映射f 如下z y S S i x j x j i x j i x V ⨯∈'→'∍)),(),,((),,(),,,(,不难看出f 为单射,因此有||||||z y S S V ⋅≤由①、②即得||||||||2z y x S S S S ⋅⋅≤.例8:设集合},10,,2,1{ =A A 到A 的映射f 满足下列两个条件: ①对任意;)(,30x x f A x =∈②对每个.)(,,291,a a f A a k Z k k ≠∈≤≤∈+使得至少存在一个求这样的映射的总数. (1992年日本奥林匹克预选赛题) 【解】注意到10=5+3+2,30=5×3×2.这提示我们将A 划分成三个不相交的子集},{},,{},,,,{2132154321c c b b b a a a a a A ⋃⋃=.因为f 满足条件①和②,所以f 是A 到A 上的双射,并且由定理2的证明过程得知A 中存在映射圈,因此,定义映射,)(,)(;)(,)(,)(,)(,)(:32211554433221b b f b b f a a f a a f a a f a a f a a f f ======= .)(,)(;)(122113c c f c c f b b f ===因为30是5、3、2的最小公倍数,故由定理2和定理3知f 是满足题目条件①和②惟一的一类映射.因此,f 的总数目相当于从10个元素中选取5个,再从剩下的5个中选取3个,最后剩下的两个也选上,它们分别作圆排列的数目,它等于.120960)!1)(!2)(!4(2235510=⋅⋅⋅C C C例9:设集合A={1,2,3,4,5,6},映射A A f →:,其三次复合映射f ·f ·f 是恒等映射,这样的f 有多少个? (1996年日本数学奥林匹克预选赛题)【解】因为集合A 上的三次复合映射是恒等映射,所以定理2和定理3推知符合条件的映射f 有三类:(1)f 是恒等映射;(2)A 中存在一个三元映射圈),,(互异c b a a c b a →→→,而其他三个元素是不动点; (3)A 中存在两个三元映射圈).,,,,,(互异和c b a c b a a c b a a c b a ''''→'→'→'→→→类型(1)的f 只有1个.对于类型(2),先从6个元素中选出3个元素20,,36=C c b a 的方法有种,又a 、b 、c 作圆排列有(3—1)!=2种,故这样的f 有20×2=40个.对于类型(3),首先6个元素平分成两组有10236=÷C 种分法,每组分别作圆排列又有(3—1)!(3—1)!=4种方式,所以这样的f 有10×4=40个. 综上所述,所求的f 有 1+40+40=81个.例10:把正三角形ABC 的各边n 等分,过各分点在△ABC 内作各边的平行线,得到的图形叫做正三角形ABC 的n 格点阵. (1)求其中所有边长为||1BC n的菱形个数; (2)求其中所有平行四边形的个数. (1988年国家集训队选拔考试题) 【解】延长AB 至.||1||||,,BC nC C B B C AC B ='='''使得至作出正三角形C B A ''的n+1格点阵(图I —3—1—1).边2+''n C B 上有个点,依次编码为0,1,2,…,n+1. 在△ABC 中边长为n1|BC|的菱形可以按边不平 行于BC 、AC 与AB 分为三类.容易看出,这三类 中菱形个数相同.边不平行BC 且边长为n1|BC|的 所有菱形集合记作S.由正整数1,2,…,n 组成 的所有有序的数对(i ,j ),i <j 所构成的集合记作T.很明显,,||2n C T =设菱形EFGH ∈S ,延长它的两条邻边HG 与GF ,分别交.),(,1,T j i n j i j i C B ∈≤<≤''则与于点令(i ,j )是菱形EFGH 在S 到T 的映射ϕ下的像,这样便建立了S 到T 的映射ϕ.容易验证,映射ϕ是双射.因此,,||||2n C T S ==所以所求的边长为n1|BC|的菱长个数为32n C . 其次,将平行四边形按边不平行于BC 、AC 与AB 分为三类,这三类的平行四边形个数应相同,边不平行BC 的所有平行四边形集合记作V.非负整数0,1,2,…,n+1构成的所有有序四元数组(i ,j ,k ,l ),10+≤<<<≤n l k j i 构成的集合记作W.很明显,42||+=n C W .设α是V 中平行的四边形,延长它的四条边分别交l k j i C B ,,,于点'',其中10+≤<<<≤n l k j i ,则ϕαββ的映射到在是令W V W l k j i .),,,(∈=下的像.这样便定义了V 到W 的一个映射ϕ.容易验证,ϕ是双射.因此,.||||42+==n C W V 从而所求平行四边形的个数为423+n C .。
高一数学竞赛知识点总结归纳
高一数学竞赛知识点总结归纳概述:高一数学竞赛是对学生数学能力的全面检测和提升,具有一定的难度和深度。
在竞赛备考过程中,需要对各个知识点进行有效的总结和归纳,以便更好地复习和应对考试。
本文将对高一数学竞赛的知识点进行分类总结和归纳,帮助同学们更好地掌握和理解这些知识点。
一、函数与方程1. 函数的定义和性质- 定义函数的概念和符号表示- 求解函数的定义域和值域- 判断函数的奇偶性和周期性2. 一次函数与二次函数- 求解一次函数和二次函数的零点和解析式- 理解一次函数和二次函数的图象与性质- 应用一次函数和二次函数解决实际问题3. 不等式与方程- 解一元一次不等式和方程- 解一元二次不等式和方程- 组合不等式和方程的解集二、数与集合1. 复数与向量- 复数的定义和运算法则- 解复数方程和不等式- 向量的定义和运算法则- 应用向量解决几何问题2. 集合与运算- 集合的基本概念和表示方法- 集合的运算及其性质- 应用集合解决实际问题三、数列与数列极限1. 等差数列与等比数列- 定义等差数列和等比数列- 求解等差数列和等比数列的通项公式 - 求解数列的和与项数2. 数列的极限- 了解数列极限的概念和性质 - 求解常见数列的极限值- 应用数列极限解决实际问题四、概率与统计1. 概率基础知识- 概率的定义和性质- 概率的计算和应用2. 统计基础知识- 数据的收集和整理- 数据的分析和表示- 统计推断和误差分析五、几何与三角学1. 平面几何- 直线与角的性质- 三角形的定义和性质- 四边形和多边形的性质- 圆的定义和性质2. 空间几何- 空间几何中的直线和平面- 空间几何中的几何体3. 三角函数- 三角函数的基本概念和性质 - 三角函数的图像与变换- 三角函数的应用六、解析几何1. 坐标与向量- 二维坐标系和向量的概念- 坐标和向量的运算- 向量的共线和垂直性- 向量的线性运算2. 直线与曲线- 直线的方程与性质- 圆的方程与性质- 抛物线和双曲线的方程与性质七、数理逻辑与证明1. 命题与命题连接词- 命题的概念和符号表示- 命题连接词的真值表和性质- 命题的等价、否定和充分必要条件2. 数学归纳法与证明方法- 数学归纳法的基本思想和步骤- 证明方法的基本规则和技巧- 应用证明解决实际问题总结:通过对高一数学竞赛知识点的总结和归纳,同学们可以更清晰地了解各个知识点的要点和考点,进一步提升数学竞赛的应试能力。
高中奥林匹克数学竞赛 函数与方程
函数与方程例1:填空(1) 若二次函数)(x f y =满足()()x f x f -=+33且()0=x f 有实根21,x x ,则________21=+x x 。
(2) 设函数)(x f y =的图象关于直线1=x 对称,若当x ≤1时,12+=x y ,则当1>x 时,y= 。
(3) 若函数432+-=x x y 与函数22a x y -=的图象有公共点,则a 的取值范围是 。
(4) 已知函数a ax x y 62--=的图象与x 轴交于A 、B 两点,若线段AB 的长不超过5,则a 的取值范围是 。
例2:方程()()0522=-+--a x a x 的两根都大于2,求实数a 的取值范围。
例3:已知关于x 的方程02212=-++k kx kx 两个实根分别在(0,1)与(-1,0)之间,试求实数k 的取值范围。
例4:已知方程()0116322=++--m x m x 的两个实根绝对值之和为2,求实数m的值。
例5:m 取何值时,关于x 的方程0cos sin 2=++m x x 有实数解?例6:已知关于x 的方程()()()2lg 2lg 1lg 2+=--+a x x 有两个不相等的实根,求a 的取值范围,并求出两根。
例7:已知抛物线c bx ax y ++=2的顶点(-1,10),并且方程02=++c bx ax 的两实根的平方和等于12,求a 、b 、c 的值。
例8:已知函数a ax x y 322++=的定义域为R ,求关于x 的方程()0652|2|4=++--a a x 的解的范围。
例9:当0≤m ≤2时,求方程()0122=--+m mx x 的实根的取值范围。
例10:设}05202|{},31|{22⎪⎩⎪⎨⎧≤+-≤+-=<<=bx x a x x x B x x A ,(a ,b ∈R ),如果B A ⊆,确定a 、b 的取值范围。
例11:设函数()()()()x x g x x f a a +=-=1log ,1log ,()10≠>a a 且若关于x 的方程()()x a a k f x x g -=+-12只有一解,求k 的取值范围。
奥林匹克数学题型函数复变函数
奥林匹克数学题型函数复变函数奥林匹克数学题型:函数与复变函数函数与复变函数是奥林匹克数学竞赛中常见的题型,它们要求考生掌握基本的函数知识和复变函数的性质。
本文将从函数的定义、性质以及相关的解题技巧等方面展开论述。
一、函数的定义与性质1. 函数的定义:函数是一种特殊的对应关系,它将一个自变量的值映射到一个因变量的值上。
数学中常用f(x)表示函数,其中x是自变量,f(x)是对应的因变量的值。
2. 函数的性质:函数可以有定义域和值域,它们分别是自变量和因变量可能取值的范围。
函数还有奇偶性、周期性等特点,可以通过导数、积分和极值等方式进行研究。
二、复变函数的定义与性质1. 复变函数的定义:复变函数是将复数映射到复数的函数。
它可以分为实部函数和虚部函数,在复平面上表示为f(z) = u(x, y) + iv(x, y),其中z = x + yi,u(x, y)和v(x, y)分别是实部和虚部函数。
2. 复变函数的性质:复变函数满足解析性,即在定义域内连续且可导。
复变函数有导数、积分和级数展开等运算法则,可以用于解决复数方程、调和函数等问题。
三、函数与复变函数的解题技巧1. 函数解题技巧:函数题常涉及函数的性质和图像的分析。
可以通过求导、求极值、解方程等方法解决。
巧用函数性质和数学方法,可以简化解题过程,提高解题效率。
2. 复变函数解题技巧:复变函数题目通常要求求解解析函数满足的条件,或者计算复函数的导数、积分等。
可以利用柯西-黎曼方程、柯西定理、留数定理等技巧,简化复变函数的计算过程。
四、例题解析1. 函数题例题:已知函数f(x) = x^2 + 2x + 1,求函数f(x)的最小值。
解析:为求函数的最小值,可以先求出函数的导数,然后令导数为0,求得极值点,最后代入函数求出最小值。
2. 复变函数题例题:已知复变函数f(z) = e^z + z^2,求函数f(z)在z = i处的导数。
解析:可以根据复变函数的性质,计算复变函数的导数。
映射与函数真题及答案解析
映射与函数真题及答案解析是数学中常见且重要的概念。
在解题过程中,对的理解和运用能力往往会直接影响到解答的准确性和效率。
本文将通过一些真题及答案解析,探讨的相关知识点,帮助读者更好地理解和掌握这一主题。
一、函数的定义和性质在数学中,函数是一个将一个集合的元素映射到另一个集合的元素的规则。
它常用符号$f(x)$表示,其中$x$为输入,$f(x)$为对应的输出。
函数的定义域为输入可能的取值的集合,值域为输出可能的取值的集合。
对于函数的性质,有一些基本概念需要了解。
首先是函数的奇偶性质。
若对于定义域内的任意$x$,有$f(-x) = f(x)$成立,则函数是偶函数;若对于定义域内的任意$x$,有$f(-x) = -f(x)$成立,则函数是奇函数。
其次是函数的单调性质。
若对于定义域内的任意$x_1$和$x_2$,当$x_1 < x_2$时,有$f(x_1) \leq f(x_2)$或$f(x_1) \geqf(x_2)$成立,则函数是单调增加或单调减少的。
二、映射和函数的题型在高考或其他数学竞赛中,映射和函数常常成为试题的重点。
以下将通过一些典型题目进行解析,以帮助读者更好地理解相关知识点。
1. 已知函数$f(x) = x^2 - 2x + 1$,求函数的值域。
解析:首先,我们可以将函数写成标准形式$f(x) = (x-1)^2$。
显然,$(x-1)^2 \geq 0$对任意$x$都成立,因此函数值域的最小值为0。
而且,当$x - 1 = 0$时,$(x-1)^2 = 0$,所以函数的最小值为0。
因此,函数的值域为$[0, +\infty)$。
2. 已知函数$f(x) = \sqrt{3-x} - 2$,求函数的定义域。
解析:根据函数的定义,我们可以得到$\sqrt{3-x} - 2 \geq0$。
解这个不等式可以得到$3-x \geq 4$,即$x \leq -1$。
因此,函数的定义域为$(-\infty, -1]$。
江苏省丹阳高级中学高二数学竞赛培训讲义:映射与函数
映射与函数的最值一、基础知识 1.映射的定义设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作:f A B →. 2.单射若:f A B →是一个映射且对任意,x y A ∈,x y ≠,都有()()f x f y ≠,则称之为单射.3.满射若:f A B →是一个映射且对任意y B ∈,都有一个x A ∈,使得()f x y =,则称:f A B →是A 到B 上的满射.4.一一映射一般地,设A ,B 是两个集合,:f A B →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么这个映射叫做A 到B 上的一一映射.(即:f A B →既是单射又是满射)只有一一映射存在逆映射,即从B 到A 由相反的对应法则1f-构成的映射,记作:1:f B A -→.5.函数设A ,B 都是非空的数集,f 是从A 到B 的一个对应法则.那么,从A 到B 的映射:f A B →就叫做从A 到B 的函数,记做()y f x =,其中x A ∈,y B ∈,原象集合A 叫做函数()f x 的定义域,象的集合C 叫做函数的值域,显然C B ⊆.6.反函数若函数:f A B →是一一映射,则它的逆映射1:f B A -→叫原函数的反函数,通常记作1()y f x -=.二、基础训练1、在19×93的方格纸上画出主对角线,则它穿过_________个单位方格的内部.【解】主对角线穿过一个方格时,就会在方格内部留下一小段线段,因此每个方格对应于其内的这条小线段.这个网格共有20条竖线和94条横线,主对角线和所有竖线与横线共有112个交点,这112个交点可组成111条小线段.2、函数y _________,最小值是_________【解】导数法.y '==, 故y 在51[4,]12上单调增,在51[,5]12上单调减,从而max 2y =,min 1y =. 3、设定义在整数集上的函数()f x 满足52000()[(8)]2000n n f n f f n n -≥⎧=⎨+<⎩,则(1993)f =_____【解】(1993)[(19938)](1996)[(19968)](1999)f f f f f f f =+==+=[(19998)](2002)1997f f f =+==.4、求函数y =.【解】y =x 轴上点(,0)x到点(1,1)-和(1,1)的距离之和,故值域为)+∞.三、典型例题 1、设集合{|011,}M x x x =≤≤∈Z ,集合{(,,,)|,,,}F a b c d a b c d M =∈,映射:f F Z →使得(,,,)fa b c d ab cd →-,已知(,,,)39,(,,,)66f fu v x y u y x v →→,求,,,x y u v 的值.【解】由f 的定义和已知数据,得3966(,,,)uv xy uy xv u v x y M -=⎧⎨-=∈⎩,将两式相加,相减并分别分解因式得()()105y v u x +-=,()()27y v u x -+=,显然,0,0u x y v -≥-≥,在,,,{|011,x y u v x x x ∈≤≤∈Z 的条件下,011u x ≤-≤,105[]12211y v +≤+≤,即1022y v ≤+≤,但()|105y v +,可见1()15y v +=, 2()21y v +=,对应可知1()7u x -=,2()5u x -=.同理,由011y v ≤-≤,27[]12211u x +≤+≤知322u x ≤+≤, 又有1()3u x +=,2()9u x +=.对应地1()9y v -=,2()3y v -=,于是有以下两种可能:(Ⅰ)15,7,9,3;y x u x u x y v +=⎧⎪-=⎪⎨+=⎪⎪-=⎩ (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围,因此(Ⅱ)无解.2、设,x y R +∈,求u =.【解】将已知式变形为:u =构造等腰直角三角形AOD,如图,||||OA OD ==,OB OC 是AOD ∠的三等分线,||OB x =,||OC y =,则||||||||u AB BC CD AD =++≥=由等面积法可解得,当3x y ==.3、求函数3422(21)x x y x x -=++的值域. 【解法一】由于函数为奇函数,故只需考虑0x ≥的情形.(1)当01x ≤<时,由均值不等式有22222111()8118x x x y x x -+=≤+=++; (2)当1x =时,0y =;(3)当1x >时,222222211111||(2118118x x x x x x y x x x x +--+=⋅⋅≤+=++++,当1x =等号,所以原函数的值域为11[,88-.【解法二】222121411x x y x x -=⋅⋅++,令tan ,[0,)2x παα=∈,则111sin 4[,888y α=∈-. 4、若,,x y z R +∈,且1x y z ++=,求u =的最小值. 【解法一】易证222222222333(),(),()444x y xy x y y z yz z y z x zx x z ++≥+++≥+++≥+,所以[()()()]u x y y z z x ≥=+++++=(当且仅当13x y z ===时取等号)【解法二】设11()2z x y yi =+,21()2z y z zi =++,31()2z z x xi =+,所以123123||||||||u z z z z z z =++≥++=【解法三】设1()2A x y y +,31())22B x y z y z +++,3(())2C x y z x y z ++++,则u OA AB BC OC =++≥5、在圆周上给定21(3)n n -≥个点,从中任选n 个点染成黑色,试证一定存在两个黑点,使得以它们为端点的两条弧之一的内部,恰好含有n 个给定的点.【证明】若不然,从圆周上任何一个黑点出发,沿任何方向的第1n -个点都是白点,因而对于每一个黑点,都可得到两个相应的白点.这就定义了一个由所有黑点到白点的对应,因为每个黑点对应于两个白点,故共有2n 个白点(包括重复计数).又因为每个白点至多是两个黑点的对应点,故至少有n 个不同的白点,这与共有21n -个点矛盾,故命题成立.6、把△ABC 的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平行四边形的个数.【解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC 的小平行四边形. 把AB 边和AC 边各延长一等分,分别到B ′,C ′,连接B ′C ′. 将A ′B ′的n 条平行线分别延长,与B ′C ′相交, 连同B ′,C ′共有n+2个分点,从B ′至C ′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B ′C ′于i ,j ,k ,l .记A={边不平行于BC 的小平行四边形},{(,,,)|12}B i j k l i j k l n =≤<<<≤+. 把小平行四边形的四条边延长且交C B ''边于四点的过程定义为一个映射::f A B →,下面我们证明f 是A 与B 的一一对应.事实上,不同的小平行四边形至少有一条边不相同,那么交于C B ''的四点亦不全同. 所以,四点组),,,(l k j i 亦不相同,从而f 是A 到B 的1-1的映射.任给一个四点组(,,,)i j k l ,12i j k l n ≤<<<≤+,过i ,j 点作AB 的平行线,过k ,l 作AC 的平行线,必交出一个边不平行于BC 的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有42()()n card A card B C +==.加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C四、课后作业金版奥数教程高一分册P109-116。
高中数学竞赛知识点提纲
【高中数学(竞赛)知识点提纲】1.集.合(set)1.1集.合的阶,集.合之间的关系。
1.2集.合的分划1.3子集,子集族1.4容斥原理1.5极端原理1.6抽屉原理2. 函数(function)2.1函数的基本概念2.1.1映射2.1.1.1单射2.1.1.2满射2.1.1.3一一映射(双射)2.1.2函数的定义域、值域2.2函数的性质2.2.1对称性2.2.2单调性2.2.3奇偶性2.2.4周期性2.2.5凹凸性2.2.6连续性2.2.7可导性2.2.8有界性2.2.9收敛性2.3初等函数2.3.1一次、二次、三次函数2.3.2幂函数2.3.3双勾函数2.3.4指数、对数函数2.4函数的迭代2.5函数方程3. 三角函数(trigonometricfunction)3.1三角函数图像与性质3.2三角函数运算3.3三角恒等式、不等式、最值3.4正弦、余弦定理3.5反三角函数3.6三角方程4. 向量(vector)4.1向量的运算4.2向量的坐标表示,数量积5. 数列(sequence)5.1数列通项公式求解5.1.1换元法5.1.2特征根法5.1.3不动点法5.1.4迭代法5.1.5数学归纳法5.1.6代换法5.1.7待定系数法5.1.8阶差法5.2数列求和5.2.1裂项相消法5.2.2错位相减法5.2.3倒序相加法5.2.4分组分解法5.2.5归纳猜想法6.不等式(inequality)6.1解不等式6.2重要不等式6.2.1均值不等式6.2.2柯西不等式6.2.3排序不等式6.2.4契比雪夫不等式6.2.5赫尔德不等式6.2.6权方和不等式6.2.7幂平均不等式6.2.8琴生不等式6.2.9 Schur不等式6.2.10嵌入不等式6.2.11卡尔松不等式6.3证明不等式的常用方法6.3.1利用重要不等式6.3.2调整法(放缩法)6.3.3归纳法6.3.4切线法6.3.5展开法6.3.6局部法6.3.7反证法6.3.8其他7.解析几何(analyticgeometry)7.1直线与二次曲线方程7.2直线与二次曲线性质7.3参数方程7.4极坐标系8.立体几何(solidgeometry)8.1空间中元素位置关系8.2空间中距离和角的计算8.3棱柱,棱锥,四面体性质8.4体积,表面积8.5球,球面8.6三面角*8.7空间向量9.排列,组合,概率(permutations, combinatorics, probability)9.1排列组合的基本公式9.1.1加法、乘法原理9.1.2无重复的排列组合9.1.3可重复的排列组合9.1.4圆排列、项链排列9.1.5一类不定方程非负整数解的个数9.1.6错位排列数9.1.7 Fibonacci数9.1.8 Catalan数9.2计数方法9.2.1映射法9.2.2容斥原理9.2.3递推法9.2.4折线法9.2.5算两次法9.2.6母函数法9.3证明组合恒等式的方法9.3.1 Abel法9.3.2算子方法9.3.3组合模型法9.3.4归纳与递推方法9.3.5母函数法9.3.6组合互逆公式9.4二项式定理9.5概率9.5.1独立事件概率9.5.2互逆事件概率9.5.3条件概率9.5.4全概率公式,贝叶斯公式9.5.5现代概率,几何概率9.6数学期望与方差9.7概率分布9.7.1二项分布9.7.2几何分布9.7.3正态分布10.极限,导数(limits,derivatives)10.1极限定义,求法10.2导数定义,求法10.3导数的应用10.3.1判断单调性10.3.2求最值10.3.3判断凹凸性10.4洛比达法则10.5偏导数11.复数(complexnumbers)11.1复数概念及基本运算11.2复数的几个形式11.2.1复数的代数形式11.2.2复数的三角形式11.2.3复数的指数形式11.2.4复数的几何形式11.3复数的几何意义,复平面11.4复数与三角,复数与方程11.5单位根及应用12.平面几何(planegeometry)12.1几个重要的平面几何定理/引理12.1.1梅勒劳斯定理12.1.2塞瓦定理12.1.3托勒密定理12.1.4西姆松定理12.1.5斯特瓦尔特定理12.1.6张角定理12.1.7欧拉定理12.1.8九点圆定理12.1.9沢山引理12.2圆幂,根轴12.3三角形的巧合点12.3.1内心12.3.2外心12.3.3重心12.3.4垂心12.3.5旁心12.3.6费马点12.4调和点列12.5圆内接调和四边形12.6完全四边形12.7几何变换12.7.1平移变换12.7.2旋转变换12.7.3位似变换12.7.4对称变换(反射变换)12.7.5反演变换12.7.6配极变换12.8几何不等式12.9平面几何常用方法12.9.1纯几何方法12.9.2三角法12.9.3解析法12.9.4复数法12.9.5向量法12.9.6面积法13.多项式(polynomials)13.1多项式恒等定理13.2多项式的根及应用13.2.1韦达定理13.2.2虚根成对原理13.3多项式的整除,互质13.4拉格朗日插值多项式13.5差分多项式13.6牛顿公式13.7单位根13.8不可约多项式,最简多项式14.数学归纳法(mathematicalinduction)14.1第一数学归纳法14.2第二数学归纳法14.3螺旋归纳法14.4跳跃归纳法14.5反向归纳法14.6最小数原理15. 初等数论(elementarynumber theory)15.1整数,整除15.2同余15.3素数,合数15.4算术基本定理15.5费马小定理,欧拉定理15.6拉格朗日定理,威尔逊定理15.7裴蜀定理15.8平方数15.9中国剩余定理15.10高斯函数15.11指数,阶,原根15.12二次剩余理论15.12.1二次剩余定理及性质15.12.2 Legendre符号15.12.3 Gauss二次互反律15.13不定方程15.13.1不定方程解法15.13.1.1同余法15.13.1.2构造法15.13.1.3无穷递降法15.13.1.4反证法15.13.1.5不等式估计法15.13.1.6配方法,因式分解法15.13.2重要不定方程15.13.2.1一次不定方程(组)15.13.2.2勾股方程15.13.2.3 Pell方程15.14 p进制进位制,p进制表示16.组合问题(combinatorics)16.1组合计数问题(参见9.1,9.2)16.2组合恒等式,不等式(参见9.3)16.3存在性问题17.6其~他~ 16.4组合极值问题16.5操作变换,对策问题16.6组合几何16.6.1凸包16.6.2覆盖16.6.3分割16.6.4整点16.7图论16.7.1图的定义,性质16.7.2简单图,连通图16.7.3完全图,树16.7.4二部图,k部图16.7.5托兰定理16.7.6染色与拉姆塞问题16.7.7欧拉与哈密顿问题16.7.8有向图,竞赛图16.8组合方法16.8.1映射法,对应法,枚举法16.8.2算两次法16.8.3递推法16.8.4抽屉原理16.8.5极端原理16.8.6容斥原理16.8.7平均值原理16.8.8介值原理16.8.9母函数法16.8.10染色方法16.8.11赋值法16.8.12不变量法16.8.13反证法16.8.14构造法16.8.15数学归纳法16.8.16调整法16.8.17最小数原理16.8.18组合计数法17.其他(others)17.1微积分,泰勒展开17.2矩阵,行列式17.3空间解析几何17.4连分数17.5级数,p级数,调和级数,幂级数。
数学奥林匹克竞赛讲座 15函数方程
竞赛讲座15 -函数方程相关知识函数方程)()(x f x f -=的解是函数方程)()(a x f x f += )0(≠a 的解是二、函数方程的题型许多函数方程的解决仅以初等数学为工具,解法富于技巧,对人类的智慧具有明显的挑战 意味,因此,函数方程是数学竞赛中一种常见的题型。
1、确定函数的形式尚无一般解法,需因题而异,其解是多样的:有无限多解的,有有限个解的,有可能无解(如:方程01)()(22=+-+x f x f 无解)。
2、确定函数的性质3、确定函数值三、求函数的解析式1、换元法例题1、设函数)(x f 满足条件x x f x f 2)1(2)1(3=-+-,求)(x f 。
例题2、设函数)(x f 定义于实数集R ,且)(x f 满足条件x x xf x f +=-+1)1()(,求)(x f 。
[]1ex :函数)(x f 在0=x 处没有定义,但对所有非零实数x 有:x x f x f 312)(=⎪⎭⎫⎝⎛+,求)(x f 。
答案:x xx f 22)(-=[]2ex :求满足条件422)1()(x x x f x f x -=-+的)(x f 。
2、赋值法 例题1、设函数)(x f 定义于实数集R 上,且1)0(=f ,若对于任意实数m 、n ,都有: )12()()(+--=-n m n m f n m f ,求)(x f 。
例题2、设函数)(x f 定义于自然数集N 上,且1)1(=f ,若对于任意自然数x 、y ,都有:xy y f x f y x f ++=+)()()(,求)(x f 。
3.探究函数的性质例题、设函数)(x f 定义于R 上,且函数)(x f 不恒为零,0)2(=πf ,若对于任意实数x 、y ,恒有:)2()2(2)()(yx f yx f y f x f -⋅+=+。
求证:)()2(x f x f =+π求证:)()(x f x f -=求证:1)(2)2(2-=x f x f[]3ex :若对常数m 和任意x ,等式)(1)(1)(x f x f m x f -+=+都成立,求证:函数)(x f 是周期函数。
数学奥赛知识点总结
数学奥赛知识点总结数学是一门重要的学科,也是各种数学竞赛的必备知识点。
在数学奥赛中,考察的内容包括数论、代数、几何、概率统计等多个方面。
本文将针对数学奥赛的知识点进行总结,希望能够帮助竞赛学子更好地掌握相关知识。
一、数论数论是研究整数性质的一个分支学科,在数学竞赛中往往占有重要地位。
数论中的知识点包括整数分解、同余、素数、公因数与公倍数等。
1. 整数分解任何一个正整数都可以唯一地表示为一串素数的乘积。
这个唯一表示称为这个数的素因子分解式。
例如,12=2^2 * 3,24=2^3 * 3。
2. 同余对于给定的正整数m,如果a-b整除m,则称a与b关于模m同余,记作a≡b(mod m)。
例如,7≡2(mod 5),16≡1(mod 3)。
3. 素数素数是指只能被1和自身整除的正整数。
例如,2、3、5、7、11、13等都是素数。
素数在数论中占有重要地位,因为它们是构成其他整数的基本元素。
4. 公因数与公倍数对于两个正整数a和b,公因数是同时整除a和b的正整数,而公倍数是同时被a和b整除的正整数。
确定两个正整数的最大公因数和最小公倍数是重要的知识点。
二、代数代数是数学的一个基本分支,其知识点在数学竞赛中也占有重要地位。
代数中的知识点包括多项式、方程组、不等式、函数等。
1. 多项式多项式是由幂函数经过加减运算所得到的代数式,具有重要的代数性质。
多项式的知识包括对多项式的加减乘除、多项式系数的整数性质以及多项式的因式分解等。
2. 方程组方程组是由多个方程组成的一种数学结构,方程组的解是满足所有方程的变量值。
在数学竞赛中常常考察二元一次方程组、二元二次方程组和三元一次方程组等。
3. 不等式不等式是数学中的一种比较关系,用于描述数或函数之间大小关系的符号组合。
学生需要掌握不等式的基本性质和解不等式的方法。
4. 函数函数是一种数学映射关系,描述了一个自变量和一个因变量之间的对应关系。
数学竞赛中涉及到函数的性质、反函数、复合函数、函数图像、函数的极值等多个方面的知识点。
高中数学奥林匹克竞赛
高中数学奥林匹克竞赛数学奥林匹克竞赛,是一项为了挑战高中学生数学综合能力和创造性思维而设立的竞赛活动。
参加这一竞赛的学生,需要具备扎实的数学基础知识,同时要具备较强的逻辑推理和问题解决能力。
数学奥赛的题目涉及各个知识领域,包括代数、几何、概率论等,要求参赛选手在有限的时间内准确答题,并且要能够独立思考、灵活运用知识。
在数学奥林匹克竞赛中,旨在激发学生对数学的兴趣,培养他们的解决问题的能力,提高他们的数学思维水平。
\textbf{竞赛形式}高中数学奥林匹克竞赛通常分为初赛和决赛两个阶段。
初赛的题目较为基础,主要考察学生对各个数学知识点的掌握情况;决赛的题目则更具有挑战性,要求学生在压力下迅速思考,灵活运用所学知识解决难题。
竞赛涉及的题型包括选择题、填空题、解答题等,不同题型考察的内容各不相同,要求参赛选手全面发挥自己的优势。
在竞赛中,时间管理和策略是非常重要的,选手需要在有限的时间内尽快解题,并且要注意答题的准确性和逻辑性。
\textbf{备战策略}为了取得好成绩,参加高中数学奥林匹克竞赛的学生需要进行充分的备战。
首先,要全面复习数学知识,包括代数、几何、概率论等各个领域的内容。
其次,要多做题,提高解题速度和准确性,锻炼逻辑推理和问题解决能力。
同时,要注意分析竞赛考点和题型,制定合理的答题策略,提高应对不同类型题目的能力。
此外,参加模拟考试也是非常重要的,通过模拟考试可以检验自己的水平,找出不足之处,及时纠正。
在备战过程中,要保持耐心和恒心,不断提高自己的水平,争取在竞赛中取得好成绩。
\textbf{竞赛收获}参加高中数学奥林匹克竞赛,不仅可以锻炼学生的数学思维和解决问题的能力,还可以培养他们的团队合作精神和竞争意识。
通过竞赛,学生可以结识志同道合的朋友,互相学习、交流经验,一起进步。
而取得好成绩的学生还有机会获得奖品和奖学金,增加个人荣誉感和成就感。
此外,参加竞赛还可以拓展学生的视野,激发他们对数学学科的兴趣,培养他们对知识的渴望和探求精神。
2020高中数学竞赛标准讲义:第三章:函数
2020高中数学竞赛标准讲义:第三章:函数一、基础知识定义1 映射,关于任意两个集合A ,B ,依对应法那么f ,假设对A 中的任意一个元素x ,在B 中都有唯独一个元素与之对应,那么称f : A →B 为一个映射。
定义2 单射,假设f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )那么称之为单射。
定义3 满射,假设f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,那么称f : A →B 是A 到B 上的满射。
定义4 一一映射,假设f : A →B 既是单射又是满射,那么叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法那么f -1构成的映射,记作f -1: A →B 。
定义5 函数,映射f : A →B 中,假设A ,B 差不多上非空数集,那么那个映射为函数。
A 称为它的定义域,假设x ∈A , y ∈B ,且f (x )=y 〔即x 对应B 中的y 〕,那么y 叫做x 的象,x 叫y 的原象。
集合{f (x )|x ∈A }叫函数的值域。
通常函数由解析式给出,现在函数定义域确实是使解析式有意义的未知数的取值范畴,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,假设函数f : A →B 〔通常记作y =f (x )〕是一一映射,那么它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 那个地点求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。
例如:函数y =x -11的反函数是y =1-x1(x ≠0).定理1 互为反函数的两个函数的图象关于直线y =x 对称。
定理2 在定义域上为增〔减〕函数的函数,其反函数必为增〔减〕函数。
高中数学 奥赛辅导精品第二讲 映射及映射法
第二讲映射及映射法知识、方法、技能1.映射的定义设A,B是两个集合,如果按照某种对应法则f,对于集合A中的任何一个元素,在集合B中都有惟一的元素和它对应,这样的对应叫做从集合A到集合B的映射,记作.f→:BA(1)映射是特殊的对应,映射中的集合A,B可以是数集,也可以是点集或其他集合,这两个集合有先后次序,从A到B的映射与从B到A的映射是截然不同的.(2)原象和象是不能互换的,互换后就不是原来的映射了.(3)映射包括集合A和集合B,以及集合A到B的对应法则f,三者缺一不可.(4)对于一个从集合A到集合B的映射来说,A中的每一个元素必有惟一的,但B中的每一个元素都不一定都有原象.如有,也不一定只有一个.2.一一映射一般地,设A、B是两个集合,.是集合A到集合B的映射,f→A:B如果在这个映射下,对于集合A中的不同元素,在集合B中有不同的象,而且B中每一个元素都有原象,那么个这个映射叫做A到B 上的一一映射.3.逆映射如果f是A与B之间的一一对应,那么可得B到A的一个映射g :任给B b ∈,规定a b g =)(,其中a 是b 在f 下的原象,称这个映射g 是f 的逆映射,并将g 记为f —1.显然有(f —1)—1= f ,即如果f 是A 与B 之间的一一对应,则f —1是B 与A 之间的一一对应,并且f —1的逆映射是f .事实上,f —1是B 到A 的映射,对于B 中的不同元素b 1和b 2,由于它们在f 下的原象不同,所以b 1和b 2在f —1下的像不同,所以f —1是1-1的.任给b a f A a =∈)(,设,则a b f =-)(1.这说明A 中每个元素a 在f —1都有原象.因此,f —1是映射上的.这样即得f —1是B 到A 上的1-1映射,即f —1是B 与A 之间一一对应.从而f —1有逆映射.:B A h →由于任给b a h A a =∈)(,设,其中b 是a 在f —1下的原象,即f —1(b)=a ,所以,f(a)=b ,从而f h a f b a h ===得),()(,这即是f —1的逆映射是f . 赛题精讲Ⅰ映射关映射的高中数学竞赛题是常见题型之一,请看下述试题. 例1:设集合},,,,|),,,{(},,110|{M d c b a d c b a F x x x M ∈=∈≤≤=集合Z 映射f :F →Z.使得v u y x v x y u y x v u cd ab d c b a ff f ,,,,66),,,(,39),,,(.),,,(求已知→→-→的值.【思路分析】应从cd ab d c b a f -→),,,(入手,列方程组来解之.【略解】由f 的定义和已知数据,得将两式相加,相减并分别分解因式,得显然,},110|{,,,,0,0Z ∈≤≤∈≥-≥-x x x v u y x v y x u 在的条件下,,110≤-≤v u 对应可知.5)(,7)(21=-=-x u x u 同理,由.9)(,3)(223,221]1127[,11021=+=+≤+≤≤+≤+≤-≤x u x u x u x u v y 又有知 对应地,.3)(,9)(21=-=-v y v y 于是有以下两种可能:(Ⅰ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+;3,9,7,15v y x u x u x y (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y 由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围.因此,(Ⅱ)无解.【评述】在解此类问题时,估计x u v y x u v y +--+,,,的可能值是关键,其中,对它们的取值范围的讨论十分重要.例2:已知集合}.0|),{(}333|),{(><<=x y y x x y y x A 和集合求一个A 与B 的一一对应f ,并写出其逆映射.【略解】从已知集合A ,B 看出,它们分别是坐标平面上两直线所夹角形区域内的点的集合(如图Ⅰ-1-2-1).集合A 为直线x y x y 333==和所夹角内点的集合,集合B 则是第一、三象限内点的集合.所要求的对应实际上可使A 区域拓展成B 区域,并要没有“折叠”与“漏洞”.先用极坐标表示集合A 和B :图Ⅰ-1-2-1令).6(3),sin ,cos ()sin ,cos (πθϕϕρϕρθρθρ-=→f 在这个映射下,极径ρ没有改变,辐角之间是一次函数23πθϕ-=,因而ϕθ和之间是一一对应,其中),3,6(ππθ∈ ).2,0(πϕ∈所以,映射f 是A 与B 的一一对应. 逆映射极易写,从略.【评述】本题中将下角坐标问题化为极坐标问题,颇具特色.应注意理解掌握.Ⅱ映射法应用映射知识往往能巧妙地解决有关集合的一些问题.例3:设X={1,2,…,100},对X 的任一非空子集M ,M 中的最大数与最小数的和称为M 的特征,记为).(M m 求X 的所有非空子集的特征的平均数.【略解】设.}|101{,:,X A a a A A A f X A ≠≠⊂∈-=''→⊂令 于是A A f '→:是X 的非空子集的全体(子集组成的集),Y 到X 自身的满射,记X 的非空子集为A 1,A 2,…,A n (其中n=2100-1),则特征的平均数为由于A 中的最大数与A ′中的最小数的和为101,A 中最小数与A ′中的最大数的和也为101,故,202)()(='i i A m A m 从而特征平均数为 .10120221=⋅⋅n n 如果A ,B 都是有限集合,它们的元素个数分别记为).(),(B card A card 对于映射B A f →:来说,如果f 是单射,则有)()(B card A card ≤;如果f 是满射,则有)()(B card A card ≥;如果f 是双射,则有)()(B card A card =.这在计算集合A的元素的个数时,有着重要的应用.即当)card比(A较难求时,我们就找另一个集合B,建立一一对应B:,把B的Af→个数数清,就有)Acardcard=.这是我们解某些题时常用的方法.()(B请看下述两例.例4:把△ABC的各边n等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平等四边形的个数.【略解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC的小平行四边形.把AB边和AC边各延长一等分,分别到B′,C′,连接B′C′.将A′B′的n条平行线分别延长,与B′C′相交,连同B′,C′共有n+2个分点,从B′至C′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B′C′于i,j,k,l.记A={边不平行于BC的小平行四边形},把小平行四边形的四条边延长且交C'边于四点的过程定义B'为一个映射:Bf→:.A下面我们证明f是A与B的一一对应,事实上,不同的小平行四边形至少有一条边不相同,那么交于C'的四点亦不全同.所以,B'四点组),,,(l k j i亦不相同,从而f是A到B的1-1的映射.任给一个四点组2jkli≤ni,过i,j点作AB的jkl,,),1<,(+<<≤平行线,过k,l作AC的平行线,必交出一个边不平行于BC 的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有.)()(42+==n C B card A card加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C例5:在一个6×6的棋盘上,已经摆好了一些1×2的骨牌,每一个骨牌都恰好覆盖两上相邻的格子,证明:如果还有14个格子没有被覆盖,则至少能再放进一个骨牌.【思路分析】还有14个空格,说明已经摆好了11块骨牌,如果已经摆好的骨牌是12块,图Ⅰ-1-2-3所示的摆法就说明不能再放入骨牌.所以,有14个空格这一条件是完全必要的.我们要证明当还有14个空格时,能再放入一个骨牌,只要能证明必有两个相邻的空格就够了.如果这种情况不发生,则每个空格的四周都有骨牌,由于正方形是对称的,当我们选定一个方向时,空格和骨牌就有了某种对应关系,即可建立空格到骨牌的一种映射,通过对空格集合与骨牌集合之间的数量关系,可以得到空格分布的一个很有趣的结论,从而也就证明了我们的命题.【略解】我们考虑下面5×6个方格中的空.如果棋盘第一行(即最上方的一行)中的空格数多于3个时,则必有两空格相邻,这时问题就得到解决.现设第一行中的空格数最多是3个,则有11314)(=-≥X card ,另一方面全部的骨牌数为11,即.11)(=Y card 所以必有),()(Y card X card =事实上这是一个一一映射,这时,将发生一个很有趣的现象:最下面一行全是空格,当然可以放入一个骨牌.【评述】这个题目的证明是颇具有特色的,从内容上讲,这个题目具有一定的综合性,既有覆盖与结构,又有计数与映射,尤其是利用映射来计数,在数学竞赛中还较少见.当然这个题目也可以用其他的方法来解决.例如,用抽屉原则以及用分组的方法来讨论其中两行的结构,也能比较容易地解决这个问题,请读者作为练习.例6:设N={1,2,3,…},论证是否存一个函数N N f →:使得2)1(=f ,n n f n f f +=)())((对一切N ∈n 成立,)1()(+<n f n f 格,即除去第一行后的方格中的空格.对每一个这样的空格,考察它上方的与之相邻的方格中的情况.(1)如果上方的这个方格是空格,则问题得到解决.(2)如果上方的这个方格被骨牌所占,这又有三种情况.(i )骨牌是横放的,且与之相邻的下方的另一个方格也是空格,则这时有两空格相邻,即问题得到解决;(ii )骨牌是横放的,与之相邻的下方的另一个方格不是空格,即被骨牌所覆盖;(iii )骨牌是竖放的.现在假设仅发生(2)中的(ii )和(iii )时,我们记X 为下面5×6个方格中的空格集合,Y 为上面5×6个方格中的骨牌集合,作映射Yϕ,由于每个空格(X中的)上方都有骨牌(Y中的),X→:且不同的空格对应于不同的骨牌.所以,这个映射是单射,于是有cardX(Ycard≤,对一切N))(n成立.∈【解法1】存在,首先有一条链.1→2→3→5→8→13→21→…①链上每一个数n的后继是)(nf,f满足))((②=)(f+nfnfn即每个数是它产面两个数的和,这种链称为f链.对于①中的数m>n,由①递增易知有-)((③≥)mf-nnmf我们证明自然数集N可以分析为若干条f链,并且对任意自然数m>n,③成立(从而)nf+),并且每两条链无公共元素).f>(n()1方法是用归纳法构造链(参见单壿著《数学竞赛研究教程》江苏教育出版社)设已有若干条f链,满足③,而k+1是第一个不在已有链中出现的数,定义+kf=f④k)1()1(+这链中其余的数由②逐一确定.对于m>n,如果m、n同属于新链,③显然成立,设m、n中恰有一个属于新链.若m属于新链,在m=k+1时,mff-nkf=-=-+-f≥+)1((),1n)nk(m(n)设对于m,③成立,则n m f m n m n f m m f n f m f f -≥+-≥-+=-)()()()())(([由②易知)(2m f m ≥]. 即对新链上一切m ,③成立.若n 属于新链,在n=k+1时,设对于n ,③成立,在m>n 时,m 不为原有链的链首。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 映射与函数
[知识要点]
1.映射有关概念
2.函数定义,定义域、值域 [能力训练]
1. 合B A ,的并集{}321,,a a a B A =⋃,当B A ≠时,),(B A 与),(A B 视为不同的对,则这样的),(B A 对的个数为( )(1993年全国高中数学联赛试题) (A ) 8 (B ) 9 (C )26 (D )27
[解法一]:若{}321,,a a a A =,则满足题意的B 有:{}{}{}{}{}{}{};
,,;,;,;,;;;;321323121321a a a a a a a a a a a a B φ=即这时的配对个数有:8)(3323130333=+++C C C C C ;仿此,若{}21,a a A =(或{}{}3231,,,a a a a ),满足题意的B 的个数,即配对个数有:12)(2
2120223
=++C C C C ;于是,全部配对个数有:2716128=+++。
[解法二]:B A =且P B A =⋃的情形只有1个配对:P B P A ==,,而B A ≠的配对个数必是偶数,所以全部配对个数为奇数。
又粗略计数后知,配对个数不少于16,故选(D )。
[评注]:两种解法反映的是一种数学思想:配对思想。
解法一是分类讨论;解法二是估算法。
2. 设A ={4321,,,a a a a },},,,,{54321b b b b b B =
(1)写出一个f :A →B ,使得f 为单射,并求所有A 到B 的单射的个数。
(2)写出一个f :A →B ,使得f 不是单射,并求所有这些映射的个数。
(3)A 到B 的映射能否是满射?
解:(1)作映射f :A →B ,使得4,3,2,1 ,)(==i b a f i i
则此映射即为A 到B 的一个单射,这种单射的个数为1204
5=P 。
(2)作映射f :A →B ,可以先求A 到B 的映射的个数:分四步确定4321,,,a a a a 的象,每步都有5种可能,因此所求映射的个数为4
5个,因此满足条件的映射的个数为4
5-4
5P =505。
(3) 不能。
由于A 中的每一个元素恰与B 中的一个元素对应,|A |=4,|B |=5, 所以B 中至少有一个元素在A 中找不到与它对应的元素,因此A 到B 的满射不存在。
说明:一般地,若A 到B 有一个单射,则|A |≤|B |,若A 到B 有一个满射, 则|A |≥|B |,若A 到B 有一个一一映射,则|A |=|B |
思考:在上述问题中,如何求从A 到B 的子集上的一一映射的个数?
B 中的4个元素的子集共有45
C 个,从A 到B 的每4个元素的子集上的一一映射各有44P 个,所求的映射的
个数是4
5C 4
4P =120个。
3. 若函数)(log 23a ax x y -+=的值域为R ,则实数a 的取值范围是________________。
(94年第5届“希
望杯”全国数学邀请赛)
[解法一]:根据函数值域定义,对于任意实数y ,关于x 的方程y a ax x =-+)(log 23即032=--+y a ax x 恒有解,因此0344)3(422≥⋅++=++=∆y y a a a a ——(*) 恒成立,034>⋅y ∴(*)式成立的充要条件是042≥+a a ,解得4-≤a 或0≥a 。
[解法二]:根据对数函数和二次函数的性质,)()(2
R x a ax x x u ∈-+=的最小值不在于0,即04
2
≤--a a 解
得4-≤a 或0≥a 。
[评注]:解法一运用转化思想把对数函数转化为指数形式(关于x 的二次方程)获得解答;解法二运用对数函数和二次函数的性质获得思路。
4. 对实数x ,求函数48148)(22----=x x x x x f 的最大值。
(96年美国中学数学竞赛题) [解法一]:)(x f 的定义域为[6,8],22)4(168)(--=-=x x x x u ,当6=x 时,12max =u ;
22)7(14814)(---=---=x x x x v ,当6=x 时,0max =v ,从而当6=x 时)(x f 有最大值3212=。
[解法二]:)(x f 定义域为[6,8],令28)(x x x u -=,4814)(2--=x x x v ,x v u 64822-=-。
126480],8,6[≤-≤∴∈x x , 12022≤-≤∴v u (1)。
v u y -= ,v y u +=∴代入(1)得:1222≤+vy y ,易知0≥y ,0)7(12≥--=x v ……(1)12222≤+≤∴vy y y ,32≤∴y ,当6=x 时
(1)、(2)同时取等号。
故)(x f 有最大值3212=。
[解法三]:)(x f 的定义域为[6,8],6
86)6(8)(-+-=
---=x x x x x x x f ,x -8 ,
6
1-+x x 在
[6,8]上是减函数,从而当6=x 时)(x f 有最大值3212=。
评注:联想思维是数学问题解决的重要思维方式,解法一运用知识点:“若)()()(x v x u x f +=,)(),(x v x u 同时在0x x =处取得最大值,则)(x f 在0x x =处取得最大值;解法二运用不等式的放缩法求解;解法三运用知识点“若)(x f 在闭区间[a,b ]上为单调函数,则)(x f 在端点处取得最值”。
5. 设集合1|{x M =≤x ≤9, x ∈N},},,,|),,,{(M d c b a d c b a P ∈=.定义M 到Z 的映射f :
(cd ab d c b a -→),,,。
若y x v u ,,,都是M 中的元素,且满足f :(y x v u ,,, )→39,(),,,v x y u →66。
求y x v u ,,,的值。
解:由题意得
39=-xy uv (1) 66=-xv uy (2) (1)+(2),(2)-(1)得
753))((⋅⋅=+-y v x u (3) 333))((⋅⋅=+-x u v y (4)
由于0<x u -<9,y v +≤18,0<v y -<9,x u +≤18,所以由(3)、(4)可得 x u -=7,y v +=15,v y -=3,x u +=9 解得 9,1,6,8====y x v u
6. 已知函数)(x f 的定义域为[-1,1],求)()(a
x f ax f +的定义域,其中a >0。
解:)()(a
x f ax f +的定义域应是下列两个集合的交集: 1|{1-=x X ≤ax ≤1}=[-a 1,a
1] 1|{2-=x X ≤
a x
≤1}=[-a ,a ] 当a ≥1时,a ≥a 1,-a ≤-a 1
, 所以121X X X =
当0<a <1时, a 1>a ,-a 1
<-a ,所以221X X X =
因此,)()(a x f ax f +的定义域为[-a ,a ](0<a <1);[-a 1,a
1
](当a ≥1时)。