不锈钢焊接接头的晶间腐蚀实验

合集下载

不锈钢晶间腐蚀问题

不锈钢晶间腐蚀问题

不锈钢晶间腐蚀问题晶间腐蚀是金属材料在特定的腐蚀介质中沿着材料的晶界发生的一种局部腐蚀。

这种腐蚀是在金属(合金)表面无任何变化的情况下,使晶粒间失去结合力,金属强度完全丧失,导致设备突发性破坏。

许多金属(合金)都具有晶间腐蚀倾向。

其中不锈钢、铝合金及含钼的镍基合金晶间腐蚀较为突出。

如有应力存在,由晶间腐蚀转变为沿晶应力腐蚀破坏。

贫化理论认为,晶间腐蚀是由于晶界析出新相,造成晶界附近某一成分的贫乏化。

如奥氏体不锈钢回火过程中(400-800℃)过饱和碳部分或全部以Cr23C6 形式在晶界析出,造成碳化物附近的碳与铬的浓度急剧下降,在晶界上形成贫铬区,贫铬区作为阳极而遭受腐蚀。

对于低碳和超低碳不锈钢来说,不存在碳化物在晶界析出引起贫铬的条件。

但一些实验表明,低碳,甚至超低碳不锈钢,特别是高铬、钼钢,在650-850℃受热时,在强氧化介质中,或其电位处于过钝化区时,也发生晶间腐蚀。

铁素体不锈钢在900℃以上高温区快冷(淬火或空冷)易产生晶间腐蚀。

即使极低碳、氮含量的超纯铁素体不锈钢也难免产生晶间腐蚀。

但在700-800℃重新加热可消除晶间腐蚀。

由此可见,铁素体不锈钢焊后在焊缝金属和熔合线处易产生晶间腐蚀。

18Cr-9Ni 钢在温度高于750℃时,不产生晶间腐蚀,而在600-700℃区间,晶间腐蚀倾向最严重。

当温度低于600℃时,需长时间才能产生晶间腐蚀倾向,温度低于450℃时基本不产生晶间腐蚀倾向。

检验某种钢材是否有晶间腐蚀倾向,一般采用敏化处理工艺。

钢材加热到晶间腐蚀最敏感的,恒温处理一定时间,这种处理工艺称为敏化处理,产生晶间腐蚀最敏感的温度叫敏化温度。

18-8 不锈钢最敏感温度为650-700℃,产生晶间腐蚀倾向所需要的最短时间为1-2小时。

不锈钢中,除了主要成分Cr、Ni、C 外,还含有Mo、Ti、Nb 等合金元素。

它们晶间腐蚀的作用如下:1.碳:奥氏体不锈钢中碳量越高,晶间腐蚀倾向越严重,导致晶间腐蚀碳的临界浓度为0.02%(质量分数)。

304不锈钢焊接接头电化学腐蚀行为研究

304不锈钢焊接接头电化学腐蚀行为研究

304不锈钢焊接接头电化学腐蚀⾏为研究摘要本⽂针对304不锈钢焊接接头分别在2300ppm、10000ppm、20000ppm、50000ppm浓度的硼酸⽔溶液和3.5%的NaCl溶液中的耐电化学腐蚀性能进⾏了研究,对焊接接头三个区域(母材区(BM)、热影响区(HAZ)和焊缝⾦属区(WM))的耐腐蚀性能的差异进⾏了分析;同时对焊接接头三部分在相应腐蚀介质的浸泡腐蚀中的耐腐蚀性能进⾏了对⽐分析。

为304不锈钢焊接钢结构在反应堆⽔下腐蚀环境下的使⽤提供实验数据和指导,为预防和减缓不锈钢焊接接头的腐蚀提供理论依据。

采⽤电化学⽅法研究了304不锈钢焊接接头的三个区域在室温下不同腐蚀介质中的电化学腐蚀⾏为和特征。

测得其在2300ppm、10000ppm、20000ppm、50000ppm的硼酸⽔溶液和3.5%的NaCl溶液中的阳极极化曲线,通过对焊接接头三个区域的⾃腐蚀电位、⾃腐蚀电流进⾏测量和对⽐分析来评定其耐蚀能⼒。

通过分析焊缝⾦属区、热影响区和母材区在不同腐蚀溶液中的电化学特征值,可知母材区的电化学腐蚀倾向⼤于焊缝⾦属区,焊缝⾦属区的电化学腐蚀倾向⼤于热影响区,⽽焊缝⾦属区的抗电化学腐蚀能⼒好于母材区,母材区的抗电化学腐蚀能⼒好于热影响区。

通过在室温下对304不锈钢焊接接头在不同浓度的硼酸⽔溶液中进⾏浸泡腐蚀试验,计算其腐蚀速率和观察其腐蚀形貌并与其在相应腐蚀介质溶液中的电化学腐蚀结果做对⽐,发现其浸泡腐蚀试验的结果与电化学腐蚀试验基本保持⼀致。

关键词:304不锈钢焊接接头;电化学腐蚀⾏为;浸泡腐蚀AbstractThe electrochemical corrosion of 304 stainless steel Weld Joints had been researched in the different concentration solution Boric acid of 2300ppm、10000ppm、20000ppm、50000ppm and 3.5%NaCl. The difference in corrosion resistance of three zones((BM)、(HAZ)and (WM)) of the Weld Joints had been analysised .At the same time, the three zones of Weld Joints had been compared and analysised by the immersion corrosion test. That offers theories for precautioning and relieving the corrosion of the stainless steel Weld Joints and experimental data and guide for the using of steel structure of 304 stainless steel under the Reactor underwater corrosion environment.The electrochemical corrosion behaviors and characteristics of three zones of 304 stainless steel Weld Joints had been researched in different corrosive media by using the method of electrochemical. The anodic polarization curves of the Weld Joint in the different concentration solution Boric acid of 2300ppm、10000ppm、20000ppm、50000ppm and 3.5%NaCl were measured. Througth comparing and analyzing corrosive potential、corrosive current to assess the ability of corrosion resistance. By analysis the electrochemical parameters of three zones((BM)、(HAZ)and (WM)) in different solution,we can draw a conclusion that the ability of corrosion tendency in BM is better than WM as well as the WM’s is better than HAZ and the ability of corrosion resistance in WM is better than BM as well as the BM’s is better than HAZ.We can reach a conclusion that there are the same results between the immersion corrosion test and the electrochemical corrosion test througth adopting the immersion corrosion test at room temperature to assess the ability of corrosion resistance of the Weld Joints in different concentration solutions Boric acid of 2300ppm、10000ppm、20000ppm、50000ppm and3.5%NaCl and calculating their erosive rate and checking the corrosive macrograph meanwhile comparing with the result of the electrochemical corrosion test in different concentration solutions.Key words: welded joint of 304 stainless steel; electrochemical corrosion behavior; immersion corrosion⽬录摘要................................................................................................................................. I Abstract ......................................................................................................................... II ⽬录.. (1)第⼀章绪论 (1)1.1 课题背景及研究的意义 (1)1.1.1 课题背景 (1)1.1.2 研究的意义 (1)1.2 不锈钢的焊接性和焊接特点 (1)1.2.1 不锈钢的焊接性 (1)1.2.2 奥⽒体不锈钢的焊接特点 (2)1.3 国内外的研究现状及分析 (3)1.3.1 核电的研究现状 (3)1.3.2 ⽔下湿法焊接的研究现状 (3)1.3.3 国内外不锈钢焊接接头耐腐蚀性研究现状 (4)1.4 研究内容 (5)1.4.1 304不锈钢的耐硼酸⽔腐蚀性能研究 (5)1.4.2 304不锈钢的耐海⽔腐蚀性能研究 (5)1.5 拟采取的研究⽅法和技术路线、预期达到的⽬标 (6)1.5.1 拟采取的研究⽅法 (6)1.5.2 技术路线 (6)1.5.3 拟解决的关键性问题 (6)1.6 本章⼩结 (6)第⼆章实验材料与试验⽅法 (7)2.1 试验材料 (7)2.2 试验⽅法 (8)2.2.1 不锈钢焊接接头的电化学腐蚀试验 (8)2.2.2 电化学腐蚀倾向分析 (9)2.2.3 阳极极化曲线分析 (10)2.2.4 不锈钢焊接接头浸泡腐蚀试验 (13)2.2.5 ⾦相分析⽅法 (13)2.3 本章⼩结 (14)第三章不锈钢焊接接头的浸泡腐蚀⾏为和特征 (15)3.1 不锈钢焊接接头⾦相组织分析 (15)3.1.1 焊接接头三区域⾦相组织的基本情况 (15)3.1.2 304不锈钢焊接接头三区域⾦相组织特征分析 (16)3.2 不锈钢焊接接头在不同浓度的硼酸⽔溶液中的浸泡腐蚀 (17) 3.2.1 不同浓度的硼酸⽔溶液中的浸泡腐蚀及相关参数 (17)3.2.2 ⼩结 (17)第四章不锈钢焊接接头的电化学腐蚀⾏为和特征 (19)4.1 不锈钢接头在不同介质中的电位时间曲线 (19)4.1.1 实验数据 (19)4.1.2 ⼩结 (20)4.2 不锈钢接头在不同介质中的极化曲线 (22)4.2.1 实验数据 (22)4.2.2 ⼩结 (23)4.3 本章⼩结 (25)结论 (27)参考⽂献 (28)致谢 (31)第⼀章绪论1.1 课题背景及研究的意义1.1.1 课题背景核能是⼀种安全、可靠、清洁的能源,对减少温室⽓体的排放也有明显的作⽤。

不锈钢晶间腐蚀试验规程

不锈钢晶间腐蚀试验规程

1.主题内容与适用范围本标准规定了不锈钢硫酸—硫酸铜试验方法的试验设备,试验条件和步骤,试验结果的评定和试验报告的要求。

本标准适用于本厂不锈钢晶间腐蚀试验。

2.试样的选取2.1 压力加工钢材的试样从同一炉号、同一批热处理和同一规格的钢材中选取。

2.2 焊接试样从产品钢材相同而且焊接工艺也相同的试板上选取。

2.3 试样尺寸及选取方法见表一。

3.试样的制备3.1 试样用锯切取,如用剪刀时,应通过切削或研磨方法除去剪刀的影响部份。

3.2 试样上有氧化皮时,要通过切削或研磨除掉。

需要敏化处理的试样,应在敏化处理后研磨。

3.3 试样切取及表面研磨时,应防止过热,被试验的试样表面粗糙度R a必须小于0.08μm。

不能进行研磨的试样,根据双方协议也可采用其他方法处理。

试样尺寸及选取方法表一mm-35-4. 试样的敏化处理4.1 试样的敏化处理在研磨前进行。

4.2 敏化处理前试样用适当的溶剂或洗涤剂(非氧化物)去油并干燥。

4.3 含碳量大于0.08%,不含稳定化元素的钢种不进行敏化处理。

4.4 对超低碳钢(碳含量不大于0.03%时)或稳定化钢种(添加钛或铌),敏化处理温度为650℃,压力加工试样保温2小时,铸件保温1小时。

4.5 含碳量大于0.03%,不大于0.08%,不含稳定化元素并用于焊接的钢种,应以敏化处理的试样进行试验。

敏化处理制度在协议中另行规定。

4.6 焊接试样直接以焊后状态进行试验。

对焊后还要经过350℃以上热加工的焊接件,试样在焊后还应进行敏化处理,敏化处理制度在协议中另行规定。

5. 试验设备5.1 1容量为1-2L带回流冷凝器的启口—锥形烧瓶。

5.2 使试验溶液能保持微沸状态的加热装置。

6. 试验条件和步骤:6.1 试验溶液:将100g硫酸铜(GB665 分析纯)溶介于700毫升蒸馏水或离子水中,再加入100ml硫酸(GB625 优级纯),用蒸馏水或去离子水稀释至1000ml,配制成硫酸—硫酸铜溶液。

晶间腐蚀 敏化

晶间腐蚀 敏化

敏化含碳量超过0.03%的不稳定的奥氏体型不锈钢(即不含钛或铌的0Cr18Ni9不锈钢),如果热处理不当则在某些环境中易产生晶间腐蚀。

这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间偏析,这样的热处理造成碳化物在晶界沉淀(敏化作用),并且造成最邻近的区域铬贫化使得这些区域对腐蚀敏感。

敏化作用也可出现在焊接时,在焊接热影响区造成其后的局部腐蚀。

最通用的检查不锈钢敏感性的方法是65%硝酸腐蚀试验方法。

试验时将钢试样放入沸腾的65%硝酸溶液中连续48h为一个周期,共5个周期,每个周期测定重量损失。

一般规定,5个试验周期的平均腐蚀率应不大于0.05mm/月。

晶间腐蚀intergranular corrosion晶间腐蚀,局部腐蚀的一种。

沿着金属晶粒间的分界面向内部扩展的腐蚀。

主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。

晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。

而且腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化, 不能经受敲击,所以是一种很危险的腐蚀。

通常出现于黄铜、硬铝合金和一些不锈钢、镍基合金中。

不锈钢焊缝的晶间腐蚀是化学工业的一个重大问题不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。

产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。

晶间腐蚀可以分别产生在焊接接头的热影响区(HAZ)、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀线腐蚀(KLA)。

晶间腐蚀不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于10~12%。

当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。

因为室温时碳在奥氏体中的溶解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C6等。

压力容器不锈钢晶间腐蚀的形成机理及试验方法

压力容器不锈钢晶间腐蚀的形成机理及试验方法

压力容器不锈钢晶间腐蚀的形成机理及试验方法作者:马宗萌来源:《中国化工贸易·上旬刊》2020年第02期摘要:介绍不锈钢的晶间腐蚀机理,奥氏体不锈钢在敏化温度区内,碳向晶界扩散,并且碳与铬形成碳化铬,导致晶间贫铬,晶体内外出现电位差,产生电化学腐蚀,即为晶间腐蚀。

晶间腐蚀在特定介质下无法避免,需根据腐蚀环境选择合理的材质及进行晶间腐蚀试验,以判定不锈钢是否具有晶间腐蚀倾向。

关键词:不锈钢;贫铬;晶间腐蚀1 不锈钢晶间腐蚀概述随着社会的发展,材料的进步,碳钢的大量应用让人们认识到了钢材腐蚀的严重性,以及腐蚀带来的安全事故频发。

通过向碳钢中填加合金元素发明了不锈钢。

不锈钢耐腐蚀能力很强,有优良的耐均匀腐蚀性能以及良好的力学、焊接性能,但并不是万能的。

由于奥氏体不锈钢压力容器所产生的晶间腐蚀属于局部腐蚀,隐蔽性很强,不易发现。

对压力容器的安全运行造成极大隐患,易发生安全事故。

因此本文探讨分析奥氏体不锈钢晶间腐蚀的形成原因,以及怎么采取措施降低晶间腐蚀的影响。

不锈钢因填加合金元素和冶炼方法区别形成不同的钢种。

按照钢材晶相组织结构可以分为铁素体不锈钢、奥氏体不锈钢、奥氏体--铁素体不锈钢、马氏体不锈钢、双相不锈钢和近年研发的超级不锈钢;按照化学成分可以将不锈钢分为铬镍不锈钢和铬不锈钢两大类。

奥氏体不锈钢因优异的性能和相对得到了广泛的应用。

2 不锈钢晶间腐蚀的理论基础晶间腐蚀是指不锈钢在特定的腐蚀介质接触中,晶粒、晶界、基体和晶间化合物之间形成微电池效应,导致腐蚀从金属的表面开始,沿晶界不断向晶粒内部发展,造成不锈钢晶粒间结合力降低,不锈钢强度降低,严重时会造成材料的完全失效。

晶间腐蚀虽然在不锈钢表面没有形成严重的腐蚀痕迹,外表看不出腐蚀的迹象,但晶间腐蚀为沿晶界发展的裂纹,金属原有的物理、机械性能几乎完全丧失,导致其在很小的载荷下,便有可能发生材料的破裂失效。

奥氏体不锈钢晶间腐蚀的机理是贫铬理论:不锈钢因填加铬元素而有很高的耐蚀性,经研究铬含量14%~18%的不锈钢有极佳的耐蚀性,但铬含量≤12%时其耐蚀性能和普通碳钢差不多。

不锈钢焊接接头的晶间腐蚀实验

不锈钢焊接接头的晶间腐蚀实验

防治措施
①采用超低碳不锈钢,含碳量希望小于 0.06% 。 ②在工艺上,尽量减小近缝区过热, 特别要避免在焊接过程中就产生“中温敏化” 的加热效果。 由此可见:“高温过热”和“中温敏化”是产 生刀蚀的必要条件。 对于焊接接头“高温过热”是焊接热循环中必 然形成的,因此只需要进行一次“中温敏化” 处理,就可根据 GB1223-75 标准进行晶间腐蚀 试验。
实验目的
一、观察与分析不锈钢焊接接头的显微 组织。 二、了解不锈钢焊接接头产生晶间腐蚀 的机理及晶间腐蚀区显微组织特征。
二、
实验装置及实验材料
(一)C法电解浸蚀装置 (二)金相显微镜 (三)吹风机 (四) 腐蚀液稀释为10%的草酸(C2H4O4· 2H2O 分析纯)水溶液1000ml (五) 实验材料1Cr18Ni9Ti(或1Cr18Ni9)钢手 弧焊或TIG焊试片40×20×1.5~3mm 6对 (六) 秒表 (七) 乙醇、丙酮、棉花、各号金相砂纸等。
三、
实验原理
1 焊接18-8型奥氏体不锈钢的接头产 生晶间腐蚀的类型及控制 18-8 型不锈钢焊接接头出现三个部位的 晶间腐蚀现象,即,焊缝腐蚀区,刀状 腐蚀区,敏化腐蚀区。但在同一个接头 中不会出现这三种晶间腐蚀区,其取决 于钢的成分。
1)
焊缝腐蚀区
焊缝腐蚀区主要与焊接材料有关,同时也受焊接工艺的影响。 (a) 防治措施:①控制焊缝金属化学成分,主要 是尽量降低含碳量和添加足够量的 Ti 和 Nb。焊缝中 Ti 和 Nb 的量 应大于钢板的量 (b)控制焊缝的组织状态,使之含有适当数量的 一次铁素体δ(δ=5%为最宜,适宜量为4~12ً%)。
2)
敏化区腐蚀
在焊接热影响区中峰值温度处于敏化温度区间的部 位所发生的腐蚀(敏化温度为450℃~ 850℃;实际区 为600℃~1000℃)。敏化区腐蚀只发生在不含Ti或Nb 的18-8不锈钢中。 防 治 措 施 : ① 采 用 含 Ti 或 Nb 的 1 8 - 8 或 超 低 碳 00Cr18Ni11不锈钢。 ②在工艺方面,应尽可能减少热影 响取处于敏化温度区间的时间。 产生敏化腐蚀区后的处理措施:采用稳定化处理, 将处理件进行850~900℃短时加热后空冷。

不锈钢焊接接头的晶间腐蚀实验

不锈钢焊接接头的晶间腐蚀实验

不锈钢焊接接头的晶间腐蚀实验项目编号 08505917项目名称不锈钢焊接接头的晶间腐蚀实验面向专业材料成型与控制工程,材料科学与工程课程名称金属焊接性教材、实习指导名称材料成型与控制工程专业(焊接部分)实验指导书所属院系材料科学与工程学院所属实验室材料成型实验室(焊接)实验类别专业课实验类型综合实验要求选做难易程度一般计划学时 4学分 .1实验套数 2每组人数8最多容纳人数10实验项目简介:晶间腐蚀是沿晶粒边界发生的腐蚀现象,因碳化铬在晶界沉淀而使晶界层“贫铬”,铬的有效含量<12%,在腐蚀介质中沿晶间发生腐蚀。

该试验以18-8型奥氏体不锈钢中最常用的含稳定元素的1Cr18Ni9Ti和含稳定元素的0Cr19Ni9为例,来讨论晶间腐蚀问题。

奥氏体不锈钢的焊接接头,通常在焊缝区、过热区、敏化区,产生晶间腐蚀倾向。

观察与分析不锈钢焊接接头的显微组织,观察晶间腐蚀区显微组织特征,分析不锈钢焊接接头产生晶间腐蚀的机理和防治。

实验目的:一、观察与分析不锈钢焊接接头的显微组织。

二、了解不锈钢焊接接头产生晶间腐蚀的机理及晶间腐蚀区显微组织特征。

对实验原理与方法的要求:晶间腐蚀是沿晶粒边界发生的腐蚀现象,因碳化铬在晶界沉淀而使晶界层“贫铬”,铬的有效含量<12%,在腐蚀介质中沿晶间发生腐蚀。

该试验以18-8型奥氏体不锈钢中最常用的含稳定元素的1Cr18Ni9Ti和含稳定元素的0Cr19Ni9为例,来讨论晶间腐蚀问题。

奥氏体不锈钢的焊接接头,通常在焊缝区、过热区、敏化区,产生晶间腐蚀倾向。

焊缝中尽量减少C,或添加足够的Nb,或使焊缝中获得适量的δ相,可避免焊缝区晶间腐蚀。

敏化腐蚀区是HAZ加热峰值温度为600~1000℃的区域,敏化区腐蚀只发生在不含Ti或Nb 的普通18-8钢中,超低碳不锈钢也不会发生。

刀状腐蚀区:只出现在含Ti或Nb的18-8接头中,且一定发生在紧邻焊缝的过热区中,呈窄而深的沿晶破坏,类似刀削切口,简称“刀蚀“。

奥氏体不锈钢焊接接头晶间腐蚀试验

奥氏体不锈钢焊接接头晶间腐蚀试验

三、晶间腐蚀试验方法 核电设计中常用的奥氏体不锈钢晶间腐蚀试验方法
标准号 试样尺寸 ASTM A262E GB/T4334 E RCC-M MC1300 5-13 厚 ,9-25 宽 , 最 小 80-100 长 , 20mm 厚 ,3-4mm 长 × 宽 × 厚 75mm长 厚 70×10×4mm 试样数量: 3 个, 1 个参 考试样,1个焊后热处理 态试样(若产品需要焊后 热处理态 ) , 1 个经敏化 处理后的试样; 675 650 700 1h 2h 加热至700±,加热时间 不 超 过 5min , 保 温 30min 后 , 缓 慢 随 炉 冷 却(60±/h)至后,空冷 将 硫 酸 铜 将 硫 酸 铜 质量百分比: 10% 结晶 (CuSO4· 5H2O) 溶 解 于 (CuSO4· 5H2O)(GB/T 665 分 硫酸铜, 10% 硫酸 ( 密度 700ml 蒸馏水中,再加 析纯 ) 溶解于 700ml 蒸馏水或 1.83),80%蒸馏水 入100ml硫酸(比重1.84), 去离子水中,再加入 100ml 用 蒸 馏 水 稀 释 至 纯硫酸(GB/T 625 优级),用 1000ml( 质量百分比: 蒸 馏 水 或 去 离 子 水 稀 释 至 约 6% 无 水 硫 酸 铜 , 1000ml 16%硫酸)
一、晶间腐蚀的机理 晶间腐蚀机理
1)晶间区偏析杂质或第二相选择性溶解理论 非敏化态晶间腐蚀机理主要是晶间区偏析杂质或第二相选 择性溶解理论。 该理论认为,偏析于晶界上的杂质元素(如P和Si)或沉淀析 出相(如σ相或亚显微的σ相)的选择性溶解是引起晶间腐蚀 的原因。 2)贫Cr理论 奥氏体不锈钢敏化态晶间腐蚀的机理主要是贫Cr理论。
二、晶间腐蚀的防止和消除 控制加热温度和时间

热处理对奥氏体不锈钢焊接接头晶间腐蚀的影响

热处理对奥氏体不锈钢焊接接头晶间腐蚀的影响
蚀 与 防 护 学 报 , 0 ,(3 ) 54 . 2 321 1: —8 0 4
【】张 受 禄 , 诗 哲 . 型 不 锈 钢 晶 问 腐蚀 敏 化 温 度 的研 究 II 4 宋 典 J.
中 国 腐 蚀 与 防 护 学 报 , 0 ,61:-. 2 62 () 4 0 1
3 结束语
务l
匐 似
热处理 对奥 氏体 不锈 钢焊接接头 晶问腐蚀 的影 响
T he r at ons p b w een t e t uct e an cor os’ esi ance of st nl el i hi et h s r ur d r i on r st ai ess s eel t
材 料 的 耐 腐 蚀 性 就 越 差 。 表 9 据 也 出现 异 常 现 数
( )B - 经 热 处 理 a 0未
[3 1 第3 卷 1 o 4
第4 期
、 l
象 ,如 B 的 晶粒 度 为 l 级 ,而B 的晶粒 度 为 5 , 1 5 级
. 出 8
【】许 天 已 . 铁 热 处 理 实 用 技 术 【 . 京 : 学 工 业 出 版 社 , 2 钢 MJ 北 化
s P i I S C r N i M O
123 电化学腐蚀实验 ..

I n M
利 用HDV一C晶体 管 恒 电位仪 ,在恒 电流条 件 7 下 ,形成 三 电 极 电解 池 ,在 腐 蚀介 质 为5 a I %N C 溶
液 ( g C + 5 H2 中测 定金 属 的 阳、 阴极 极 5 Na l9 ml o)
图 1 母 材 的
7 .2 mA。如 果 不计 母 材 和 热影 响 区 的 影 响 , 由 63 9

铁素体不锈钢晶间腐蚀的机理和改善应用研究

铁素体不锈钢晶间腐蚀的机理和改善应用研究

MANUFACTURING AND PROCESS | 制造与工艺 时代汽车 铁素体不锈钢晶间腐蚀的机理和改善应用研究胡海波 汤旭炎无锡晶晟科技股份有限公司 江苏省无锡市 214028摘 要: 铁素体不锈钢在汽车行业使用很广泛,从电子零件到车身焊接,都要用到铁素体不锈钢,而且激光焊接是汽车系统对不同金属材料连接的一个重要方式,而不锈钢的成分对金属焊接造成的晶间腐蚀敏感性不同。

不锈钢的晶间腐蚀对焊接强度的耐久性有直接影响,对焊接牢固的安全性即对汽车系统的安全性有直接影响。

晶间腐蚀在不锈钢焊接工艺多少存在,本文对晶间腐蚀的发生原因和改善对策做了充分阐述。

关键词:晶间腐蚀 敏化作用 贫铬区 铬化物 草酸试验法1 引言汽车电子零件和钣金件,有用到很多铁素体不锈钢零件,而连接不锈钢的方式很多是采用激光焊接工艺,激光焊接后强度能满足测试要求,但是在长期的盐雾试验后,我们发现有很多发生了晶间腐蚀,造成焊接区域产生裂缝,甚至长期使用后,焊接部分发生脱离,造成汽车零件失效甚至造成汽车安全事故。

因此分析晶间腐蚀的发生机理和如何避免晶间腐蚀的发生尤为关键,本论文就以上问题做出深刻分析和改善措施验证,并且以汽车零件实例进行阐述。

1.1 晶间腐蚀概述晶间腐蚀指的是不锈钢在腐蚀介质的作用之下在晶粒之间所产生的一种腐蚀现象。

晶间腐蚀是一种局部腐蚀,这种腐蚀会沿着金属晶粒间的分界面向内部扩展,其会严重破坏晶粒间的结合力。

导致这种腐蚀现象发生的原因是晶粒表面和内部之间的化学成分有着较大的差异,并且有晶界杂质或者是内应力存在。

这种腐蚀会严重破坏晶粒间的结合,让金属的机械强度受到巨大的影响。

需要注意的是这种腐蚀在金属和合金的表面看不出有破坏的迹象,然而其内部晶粒之间的结合力已经被破坏,并且力学性能也出现了恶化,很难有效分辨,所以非常危险。

只有采用金相显微镜进行观察,才能够发现晶界呈网状形态,晶界区因腐蚀已遭破坏,晶粒也接近分离。

晶间腐蚀多出现于黄铜、硬铝合金以及一些不锈钢、镍铬基合金中。

浅谈双相不锈钢S31803的焊接试验

浅谈双相不锈钢S31803的焊接试验

浅谈双相不锈钢S31803的焊接试验双相不锈钢S的焊接性能是其应用的关键因素之一。

在实际应用中,焊接接头的质量直接影响着整个设备的使用寿命和安全性。

因此,对S的焊接性能进行深入研究和试验具有重要意义。

为了更好地了解S的焊接特点,我们进行了大量的焊接试验。

试验结果表明,S的焊接接头具有很好的塑性和韧性,无常温脆性,抗晶间腐蚀性和耐氯化物应力腐蚀性能均有明显提高。

同时,S也保持了铁素体不锈钢的475℃脆性和导热系数高等特点。

这些优良的性能使S双相不锈钢广泛应用于石油化工设备、海水与废水处理设备、输油输气管线、造纸机械等工业领域。

在试验中,我们还确定了S的焊接工艺。

由于S双相不锈钢中铁素体含量一般在40%~50%之间,其余组织为奥氏体,因此在焊接接头中单相铁素体在冷却过程中会形成适量的奥氏体,使焊接接头的铁素体组织与奥氏体组织的比例趋于平衡。

这样既可改善双相不锈钢焊接热影响区的塑性和韧性,又确保了双相不锈钢的抗应力腐蚀和点蚀能力。

同时,我们还要注意控制焊接接头的冷却速度,避免过快或过慢的冷却会影响焊接接头的质量。

总之,S双相不锈钢具有优异的性能,在实际应用中具有广泛的应用前景。

通过对其焊接性能的深入研究和试验,我们可以更好地了解其特点,制定出适合的焊接工艺,为实际应用提供更好的保障。

双相不锈钢S的含镍量较低,杂质极少,不易形成低熔点液膜,同时保留了铁素体不锈钢的高导热系数和小膨胀系数的性能,因此对热裂纹的敏感性比奥氏体不锈钢小。

此外,双相不锈钢S含有50%左右的奥氏体组织,因此韧性高,产生冷裂的倾向也较小。

双相不锈钢焊接接头的力学性能和耐蚀性能取决于焊接接头的相比例,因此焊接时需要保证铁素体含量不少于30%,减少金属间相的产生。

除了合金元素的影响外,焊接时的热循环对相比例及金属间相的产生影响也很大。

因此,在正确选择焊材的前提下,选择合理的焊接参数,控制层间温度、冷却速度等是非常重要的。

为了保证焊接质量,控制焊接接头热影响区的组织和性能,我们采用非熔化极惰性气体保护焊丝打底,电弧焊填充盖面进行S的焊接。

316L不锈钢焊缝抗晶间腐蚀性能评价

316L不锈钢焊缝抗晶间腐蚀性能评价

316L不锈钢焊缝抗晶间腐蚀性能评价1 基本概况受太阳宝公司委托,对两种316L不锈钢焊接接头的抗晶间腐蚀性能进行评价。

316L不锈钢作为一种奥氏体不锈钢,是镍基合金和钛的代用材料,广泛应用于石油、化工、化肥、纺织、造纸、医药、原子能、宇宙航行以及海洋开发等领域。

然而,不锈钢如果热处理不当或焊接过程不当,导致材料敏化,就会发生晶间腐蚀。

其在化工及核工业生产中由晶间腐蚀造成的设备损坏占相当大的比重。

统计数据表明,晶间腐蚀约占腐蚀损失的10.2%,加上由晶间腐蚀转变为沿晶应力腐蚀开裂的事例数就更多了。

因此,晶间腐蚀是不锈钢最危险的破坏形式之一。

2 试验评价方法和步骤按照GB/T4334.5-2000《不锈钢硫酸—硫酸铜腐蚀试验方法》,对原材料和焊接材料进行试验。

2.1 试样取样图1 取样位置示意图根据国标GB4334.5-2000要求,试样尺寸取长度80mm,宽20mm,厚度为4mm。

由于本文为单焊缝取样,故取样位置见图1。

图2为按国标要求所取下的试样。

焊缝区所取试样图2 所取的试样2.2 试验溶液将100g符合GB/T665的分析纯硫酸铜(CuSO4·5H2O)溶解于700mL蒸馏水中,再加入100mL符合GB/T625的优级纯硫酸,用蒸馏水稀释至1000mL,配成硫酸—硫酸铜溶液。

2.3 试验仪器和设备油浴锅,带回流冷凝器的磨口烧瓶,微量天平,量筒等。

2.4 试验条件和步骤试验前将试样去油并干燥,在烧瓶底部铺一层符合GB/T466的铜屑,然后放置试样,并保证试样之间互不接触。

往烧瓶中加配置好的试验溶液,溶液应高出试样30mm。

再将烧瓶放在加热装置上,通以冷却水,加热试验溶液,使之保持微沸状态,连续16小时。

试验装置如图3所示。

图3 试验装置整体图2.5 断口扫描电镜及金相分析图4 6#样微观形貌图5 8#样微观形貌在316L不锈钢晶间腐蚀试验中,用弯曲方法来评定晶间腐蚀的倾向性,是用适量的变形,加速晶间腐蚀裂纹的暴露,但前提是试样的变形率不应超过试样允许的塑性变形量。

409L和410L铁素体不锈钢焊接接头力学和腐蚀性能对比

409L和410L铁素体不锈钢焊接接头力学和腐蚀性能对比
2 3

焊 接 接 头 的 塑性 因此 采 用 杯 突 试 验 测 试 焊 接 接 头 的

焊 接接 头 晶 间 腐 蚀 试 验 结 果
按 照 修改 的 不 锈 钢 硫 酸


塑性
4 334


由于
5
409 L

4 10 L

属 于 低铬铁 素体不 锈 钢 当

硫 酸 铜腐蚀 试 验 方法 进

采用标 准 不 锈 钢 硫 酸

4 10 L

焊 接 接 头 发 生 晶 间 腐蚀
49 0 L焊 接 接 头 塑 性 , 且 40 并 1L焊 接 接 头 存 在 晶 间 腐 蚀 敏 感 性 , 4 9 而 0 L焊 接 接 头 无 晶 间 腐 蚀 敏 感 性 。在 对 焊 接 接
头进行硬度测试和金相分 析的基础上 , 讨论 了两种铁素体不锈钢焊接接头性能差异 的原 因, N含量和是否 . 稳 C、 r i
现代低 铬铁素 体 不锈 钢 主 要 以 代替碳 钢 ( 括 各 种涂 包
表 1 试 验 材料 的化 学成 分 ( 量 分 数 , ) 质 %
的 S S 1 L标 准要求 。 U 40
收 稿 日期 : 0 8— 3—1 20 0 9
采 用机械 TG 自熔 焊 , I 电源 极 性 为 D E 钨 极直 C N,

象 导 致 无 法 进 行 有 效 判 断 因此 参 考 相 关 文 献 [ 3 ] 对
不锈钢硫酸


7

从 中可 知
:4 0 9 L
焊 接 接 头 没 有 发 生 晶 间腐蚀

细说不锈钢晶间腐蚀

细说不锈钢晶间腐蚀

细说不锈钢晶间腐蚀1 问题的提出技术统一规定中通常包括“奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境,焊后应做固溶或稳定化处理”,提出这样的要求,自有其存在的合理性。

但即使设计人员在图样的技术要求中提出这一条,要求制造厂进行不锈钢制容器(比如换热器)的焊后热处理,由于实际热处理工艺参数难以控制和其他一些意想不到的困难,通常难以达到设计人员提出的理想要求,实际上在役的不锈钢设备绝大部分是在焊后态使用。

这就促使我们去思考:晶间腐蚀是奥氏体不锈钢最常见的腐蚀形式,那么产生晶间腐蚀的机理是什么?在什么介质环境下会引起晶间腐蚀?防止和控制晶间腐蚀的主要方法有哪些?奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境焊后是否都要热处理?本文查阅有关的标准、规范,专著,结合生产实际谈谈个人看法。

2 晶间腐蚀的产生机理晶间腐蚀是一种常见的局部腐蚀,腐蚀沿着金属或合金晶粒边界或它的临近区域发展,而晶粒腐蚀很轻微,这种腐蚀便称为晶间腐蚀,这种腐蚀使晶粒间的结合力大大削弱。

严重的晶间腐蚀,可使金属失去强度和延展性,在正常载荷下碎裂。

现代晶间腐蚀理论,主要有贫铬理论和晶界杂质选择溶解理论。

2. 1 贫铬理论常用的奥氏体不锈钢,在氧化性或弱氧化性介质中之所以产生晶间腐蚀,多半是由于加工或使用时受热不当引起的。

所谓受热不当是指钢受热或缓慢冷却通过450~850 ℃温度区,钢就会对晶间腐蚀产生敏感性。

所以这个温度是奥氏体不锈钢使用的危险温度。

不锈钢材料在出厂时已经固溶处理,所谓固溶处理就是把钢加热至1050~1150 ℃后进行淬火,目的是获得均相固溶体。

奥氏体钢中含有少量碳,碳在奥氏体中的固溶度是随温度下降而减小的。

如0Cr18Ni9Ti , 在1100 ℃时,碳的固溶度约为0. 2 % , 在500~700 ℃时,约为0. 02 %。

所以经固溶处理的钢,碳是过饱和的。

当钢无论是加热或冷却通过450~850 ℃时,碳便可形成( Fe 、Cr) 23C6 从奥氏体中析出而分布在晶界上。

不锈钢焊接接头晶间腐蚀性能浅究

不锈钢焊接接头晶间腐蚀性能浅究

不锈钢焊接接头晶间腐蚀性能浅究不锈钢材料是当前我们生产、生活中经常见到的一种材料,它具有很多优点,但这种不锈钢材料用于冷加工成形与进行焊接作业时,时常会对其实际抗腐蚀性能造成影响,若其抗腐蚀性能不强,很容易被腐蚀,影响到构建的稳定性,因此在成形与焊接不锈钢产品后,在焊后不进行热处理的情况下,要求母材与焊接头的抗腐蚀性能必须足够强,特别是抗晶间腐蚀性能。

为此必须掌握不锈钢焊接接头晶间腐蚀的检验方法,了解造成焊接接头晶间腐蚀的原因,并采取相关策略努力提高不锈钢焊件抗晶间腐蚀能力。

1 不锈钢焊接接头晶间腐蚀检验在氧化与弱氧化环境中晶间腐蚀经常会出现在奥氏体不锈钢中,一旦不锈钢件出现这种腐蚀,腐蚀会从不锈钢表面沿晶界深入内部,对不锈钢材料的实际机械强度会造成严重影响,出现晶间腐蚀的材料,稍受外力断裂现象就有可能沿晶界线发生,只观看材料表面很难判断出晶间腐蚀,晶间腐蚀有高危性的特点。

这就要求在用不锈钢材料制作设备时,母料与焊接接头的实际抗晶间腐蚀性能必须足够强。

为使焊接构件足够牢固,必须检查焊接接头的晶间腐蚀性。

在测定不锈钢对晶间腐蚀的敏感情况时,一般采用的是加速法。

这种方法主要是采用适当腐蚀剂,在一定条件下,加速选择性腐蚀晶间,找一个万能材料试验机,把试样放置于上面,弯曲材料然后再评定,我们用与介质接触的面作为检验面,借助高倍放大镜对弯曲试样处的表面进行观察,看有无晶间腐蚀引发的裂纹。

2 判别晶间腐蚀裂纹位于试样弯曲部位棱角处的裂纹以及无裂纹的滑移线、皱纹等以上情况不一定都是由于晶间腐蚀引发的裂纹,发生晶间腐蚀的试验,在实施冷弯曲操作时,其表面鳞状裂纹随处可见,对试样进行敲击金属声响不会出现,在很难评定的情况下,可借助金相法进行判断,在实施断面金相检查时,若发现局部腐蚀发生于晶界或其毗邻区域,晶粒脱落,沿晶界腐蚀推进,并且推进有一定均匀性。

这种沿晶界形成的腐蚀通常为晶间腐蚀。

3 焊接接头抗晶间腐蚀能力控制奥氏体不锈钢发生晶间腐蚀通常是由于晶界碳化铬发生沉淀析出造成的,不锈钢晶界区缺乏铬是晶间腐蚀的主要原因,因此可从控制不锈钢焊接处碳化铬的沉淀来防止发生晶间腐蚀,具体可从沉淀碳化铬的分量情况、部位以及形成沉淀物的动力方面进行考虑。

4.不锈钢焊接接头的晶间腐蚀实验091123

4.不锈钢焊接接头的晶间腐蚀实验091123

不锈钢焊接接头的晶间腐蚀实验一、实验目的1.掌握C法(晶间腐蚀倾向实验方法)和评定标准。

2.加深对晶间腐蚀机理的理解。

二、实验概述晶间腐蚀(IGA)是不锈钢主要局部腐蚀形式之一,评定晶间腐蚀倾向实验方法按国家标准(GB1223-75)进行。

此标准适用于奥氏体型和奥氏体-铁素体型的不锈钢评定晶间腐蚀倾向实验方法有C法、T法、L法、F 法和X法五种。

在上述方法中,C法(草酸电解浸蚀法)作为其他方法的筛选法,其余的方法为仲裁方法。

应当指出的是,上述各种评定方法,从性质上讲是在特定的介质条件下进行的加速腐蚀实验,用以相对地了解钢的抗晶间腐蚀性能,而不是直接判断各种不锈钢在实际环境中的情况。

本实验用C法评定不锈钢的晶间腐蚀倾向。

三、实验设备、仪器及材料用品直流电源、电流表、电阻器、烧杯、草酸溶液、金相显微镜、经热处理的不锈钢试样四、实验方法1.不锈钢试样热处理状态。

表5.1不锈钢试样热处理状态2.各种热处理工艺规范如下:固溶处理1050-1150℃/30min水冷敏化处理650℃/2-4h空冷稳定化处理850-950℃/2-4h空冷3.热处理后制作成金相试样(不腐蚀)。

四、实验装置1.实验溶液:10%草酸溶液。

2.操作条件:阳极电流密度1安/厘米2,电解1分钟,实验温度20-50℃。

3. 实验装置(见图4.1)五、操作步骤1.配制10%草酸溶液:把100克草酸溶于900毫升蒸馏水中。

用酒精或丙酮洗干净被检验试样表面,干燥后试样底面作为阳极,用另一块不锈钢作为阴极,如图5.1接好线路。

2.调整好电流密度,电解1分钟,取出试样用水冲洗后再用酒精清洗后吹干。

3.在400-500X金相显微镜下观察,评定晶间腐蚀倾向(评定方法及标准见附录)。

附录评定方法及标准将实验后的试样在400-500X金相显微镜下观察评定腐蚀级别。

如果在浸蚀部分观察到一个或两个以上的晶粒被腐蚀沟包围,即不能通过本实验,如果浸蚀部分只产生阶梯状组织或短小的腐蚀沟(不形成腐蚀沟对晶粒的包围),则认为通过本实验。

不锈钢复合板焊接接头晶间腐蚀失效分析

不锈钢复合板焊接接头晶间腐蚀失效分析
渡 层焊 缝铬 的含 量 95 % , 于 耐蚀 性要 求 ; 头 产 生 了 等硬脆 相 , 些 因素都增 大 晶间腐蚀 敏 .8 低 接 这
感 性 ; 接 线 能量过 大 , 降低 接 头 的腐蚀 性 能 ; 焊 将 复合 板 整体 消应 热处 理可 以取 消。
关键词: 不锈 钢复 合板 ; 晶间腐 蚀 ; 组织
t ec ne to ri s1 . % ,a d tegan s e i 9 5 i h edn on o e h o tn fc r— h o tn ff rt i 8 3 e e n h ri i s . n tew ligj it n ,tec ne to h o z z
V 1 . 0 02 o 9 N 32 1 2
有能 够满 足特 殊 理化 性能 要求 的耐腐 蚀性 能 。但 在长 期 运 行 状 态 下 , 由于 热 加 工 、 接 等 因 素 影 焊
1 试 验材 料及试 验 方法
11 试验 材料 .
响, 不锈钢复合板会出现晶间腐蚀现象 , 对设备的 正常 运行 造成 重 大 隐患 , 因此 对 晶 间腐 蚀 的研 究 具有 实 际工程 意 义 ¨ 。
表 1 基 板 1 CMo 5 r R的 化 学 成 分 及 力 学 性 能
化学成分/ %
C S i Mn 1 C r N i I Mo R / MP a
力学性能
R“ MP / a A % /
0 1 .4
02 .1
04 l 11 .7 .
摘 要: 针对 不锈 钢 复合板 焊 接接 头 出现 晶 间腐 蚀裂 纹 问题 , 用 光 学显微 镜 、 采 扫描 电镜 、 R 等技 XD
术手段对复合板焊接接头的组织、 成分以及相组成进行检测和分析, 对焊接工艺规范和热处理制度 对 焊接 接 头耐蚀 性 的影 响进行 探讨 。 结果表 明 , 头焊 缝 区铁 素 体含 量 1.% , 接 8 3 晶粒度 9 5级 , . 过

晶间腐蚀试验操作规程

晶间腐蚀试验操作规程

晶间腐蚀试验操作规程总则1.1本公司采用的晶间腐蚀试验方法为GB/T4334.5-2000《不锈钢硫酸-硫酸铜腐蚀试验方法》。

1.2本守则对试样的提取、试验设备、试验条件和步骤、试验结果的评定及报告作了规定。

适用于检验奥氏体、奥氏体-铁素体不锈钢在加有紫铜屑的硫酸-硫酸铜溶液中的晶间腐蚀倾向。

2、试样的提取与制备2.1焊接件试样从与产品钢材相同且焊接工艺也相同的试板上提取,应包括母材、热影响区及焊接金属的表面,详见附件。

2.2试样用锯切取,如剪切则应通过切削或研磨方法除去剪切的影响部分。

2.3试样切取及表面研磨时,应防止表面过热。

试验试样表面粗糙度Ra值≯0.8μm,其他检验试样提取详见GB/T4334.5。

(见附件)3、试验仪器、设备、试验溶液3.1试验仪器为容量≥1L的带回流冷凝器的磨口锥形烧瓶。

3.2 600瓦的加热电炉配上一只可调变压器,通过后者调节加热电炉的功率,使本试验溶液能保持微沸状态。

3.3试验溶液配制方法如下:将100g符合GB/T665的分析纯硫酸铜(CuSO4·5H2O)溶解于700ml蒸馏水或去离子水中,再加入100ml符合GB/T625的优级纯硫酸,用蒸馏水或去离子水稀释至1000ml,即配成硫酸-硫酸铜溶液。

4、试验条件和步骤4.1试验前将试样用适当的溶剂或洗涤剂(非氯化物)去油污并干燥。

4.2在充入第3条配制的试验溶液的烧瓶底部铺一层符合GB/T466(纯度不小于99.5%)的紫铜屑或铜粒,然后放置试样。

保证每个试样与紫铜屑接触的情况下,同一烧瓶中允许放几层同一钢种的试样,但试样之间要用上述紫铜屑隔离而互不接触。

4.3试验溶液应高出最上层试样20mm以上。

每次试验都应使用新的试验溶液。

4.3.1仲裁试验时,试验溶液量按试样表面积计算,其量在8ml/Cm²以上。

4.4完成上述工作后,将烧瓶放在加热装置上,在回流冷凝器进水口要一直以冷却水(自来水)流入,出水口畅通放水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

产生机理:
• 18-8Ti不锈钢的供货状态一般为固溶处理状态(即一般经1050~1150℃水淬固溶) 这时钢中少部分碳和很少量 Ti溶入固溶体,大部分C与Ti结合成为TiC(游态)。 原因是在1150℃以下时TiC在钢中的溶解度是不大的,而在固溶处理时,Cr23C6将 可能全部溶入固溶体。 • 但是,在焊接时,温度超过1200℃的过热区中首先出现的变化是TiC不断地分解并 且向奥氏体中溶解而形成固溶体。峰值温度越高,TiC的固溶量越多,这时,在过 热区中只有少量大块的 Ti(CN)和TiN不能发生固溶。TiC高温分解后,分离出来的 碳原子将插入到奥氏体点阵间隙中,而Ti则占据奥氏体点阵节点的空穴位置。随 后冷却时,由于高温下碳原子极为活泼,比Ti的扩散能力强,碳原子将趋向奥氏 体晶粒周边扩散运动,Ti则来不及扩散而仍保留在奥氏体点阵节点上。因此,碳 将析集于晶界附近成为过饱和状态。 • 如果随后再经中温敏化加热时,碳原子可以优先已很快的速度向晶粒边界扩散, 是晶界更富集碳;而与此同时,Cr也以一定速度(比C扩散稍慢,比Ti扩散要快), 因此易于在晶界附近形成铬的碳化物M23C6的沉淀,致使靠近晶界的晶粒表面出现 一个贫铬层,使铬低于临界值12%。此时,奥氏体晶粒内由于含铬量高而带正电位, 晶界因铬的碳化物存在,而产生贫铬层带负电位,在腐蚀介质中带负电位的贫铬 层就会成为被消耗的阳极而遭受腐蚀。TiC固溶量越多的部位,M23C6的沉淀量越大, 相应地这个部位的晶间腐蚀倾向表现得越严重。

产生敏化腐蚀区后的处理措施:采用稳定化处理, 将处理件进行850~900℃短时加热后空冷。
3)
刀状腐蚀区:
• 产生的条件:①只出现于含Ti和Nb的18-8不锈钢接头中。 • ②发生在近缝区的过热区中(加热超过1200℃)

状。
产生的特征:①沿晶破坏,呈现深而窄的形状,类似刀口形
• ②腐蚀区宽度初期为3~5个晶粒,逐步扩展到1.0~1.5mm。
2)

敏化区腐蚀
在焊接热影响区中峰值温度处于敏化温度区间的部 位所发生的腐蚀(敏化温度为450℃~850℃;实际区为 600℃~1000℃)。敏化区腐蚀只发生在不含Ti或Nb的 18-8不锈钢中。 • 防 治 措 施 : ① 采 用 含 Ti 或 Nb 的 1 8 - 8 或 超 低 碳 00Cr18Ni11不锈钢。 • ②在工艺方面,应尽可能减少热影响取处 于敏化温度区间的时间。
防治措施
• ①采用超低碳不锈钢,含碳量希望小于0.06%。 • ②在工艺上,尽量减小近缝区过热, 特别要避免在焊接过程中就产生“中温敏化” 的加热效果。 • 由此可见:“高温过热”和“中温敏化”是产 生刀蚀的必要条件。 • 对于焊接接头“高温过热”是焊接热循环中必 然形成的,因此只需要进行一次“中温敏化” 处理,就可根据GB1223-75标准进行晶间腐蚀试 验。
3、X法:硝酸沸腾试验
• 该实验方法是将试片放在65%沸腾硝酸中,每周期沸腾 48小时,试验三个周期。每周期试验后取出试样,刷洗 干净干燥,称重。然后按下式计算腐蚀速度,以其中最 大者为准。
W S 0182 Ad
式中:S—腐蚀速度 ΔW—每周期试样失重。 A—试样表面积 d—试样密度
• T法和X法分别为国际通用的 B法和E法,试验条 件严格,需要一定的专门装置,试验周期较长, 因此一般常用C法进行试验。 • 当用C法试验评定认为有问题时,进一步作T发 或X法试验,并以T法和X法试验结果为准。 • 对于18-8钢焊接接头,由于母材一般已经过晶 间腐蚀试验评定合格,故可采用C法与母材同时 进行对比试验。
三、
实验原理
•1 焊接18-8型奥氏体不锈钢的接头产生晶 间腐蚀的类型及控制 • 18-8 型不锈钢焊接接头出现三个部位的晶间腐 蚀现象,即,焊缝腐蚀区,刀状腐蚀区,敏化 腐蚀区。但在同一个接头中不会出现这三种晶 间腐蚀区,其取决于钢的成分。
1)
焊缝腐蚀区
• 焊缝腐蚀区主要与焊接材料有关,同时也受焊接工艺的影响。 • (a) 防治措施:①控制焊缝金属化学成分,主要 是尽量降低含碳量和添加足够量的 Ti和Nb。焊缝中Ti和Nb的量应 大于钢板的量 • (b)控制焊缝的组织状态,使之含有适当数量的一 次铁素体δ(δ =5%为最宜,适宜量为4~12ً%)。
不锈钢焊接接头的晶间腐蚀实验
一、
实验目的
• 一、观察与分析不锈钢焊接接头的显微组织。 • 二、了解不锈钢焊接接头产生晶间腐蚀的机理 及晶间腐蚀区显微组织特征。
二、
• • • •
实验装置及实验材料
(一)C法电解浸蚀装置 (二)金相显微镜 (三)吹风机 (四) 腐蚀液稀释为10%的草酸(C2H4O4· 2H2O 分析纯)水溶液1000ml • (五) 实验材料1Cr18Ni9Ti(或1Cr18Ni9)钢手 弧焊或TIG焊试片40×20×1.5~3mm 6对 • (六) 秒表 • (七) 乙醇、丙酮、棉花、各号金相砂纸等。
图1草酸电解浸蚀实验示意图
该实验简单,方便迅速,一般不超过两分钟,但不如其他试验方法严格,常作为其他试验方法前的筛选试验方法(不适 用于含钼钛的不锈钢耐酸钢),也可作为独立的无损试验。
1、 T法铜屑、硫酸铜和硫酸沸腾试验
• 该实验方法是将规定的试样放在加有铜屑的硫 酸铜和硫酸的水溶液中沸腾 24 小时,然后弯曲 成 90度,用 10倍放大镜观察,以不出现横向裂 纹为合格,或在金相显微镜下观察,如发现晶 界有明显的腐蚀痕迹,即为晶间腐蚀倾向。
四、
• •
实验方法及步骤
根据国家标准GB1223-75试验晶间腐蚀倾向的方法共有五种,对于18-8钢主要采用C法、T法和X法三种试验方法。 1、 C法 草酸电解浸蚀试验,又称草酸阳极腐蚀试验,试验装置如图1所示
A
• •
图中不锈钢容器接电源的负极,若采用玻璃烧杯作容器,则负极端部接一厚度为1mm左右的不锈钢薄板,并放置于杯底, 腐蚀液采用10%的草酸水溶液。
• δ 相的有利作用:⑴打乱腐蚀介质的集中通道。 • ②δ 相富Cr,且Cr在δ 相中易扩散,碳化铬可优先在δ 相内部边 缘沉淀,并由于供Cr条件好,不会在奥氏体晶粒表层形成贫 Cr层。

物)。②δ 相选择性腐蚀。
δ 相的害处:①σ 相脆化(一种硬脆而无磁性的金属间化合
相关文档
最新文档