数形结合论文完整版
数学解题中数形结合作用论文
数学解题中数形结合作用论文一、研究数形结合思想的必要性所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。
如等式。
数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。
一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。
二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。
函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。
四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。
五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。
从图形上找思路恰好就体现了数形结合思想的应用。
六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。
用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。
七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。
初中数学教学中数形结合的应用论文
初中数学教学中数形结合的应用论文初中数学教学中数形结合的应用论文数形结合是数学学习和研究过程中一种重要思想,其优势就是能把抽象思维转化为形象思维,便于学生认知和理解数学知识,进而提升学习效率.本文以初中数学为研究对象,重点分析数形结合在初中数学教学中的应用.一、数形结合在初中数学教学中的作用简单来说,数形结合就是通过把抽象难懂的数字与简明易懂的几何图形相结合,实现抽象数学问题向直观几何问题的转化,从而达到降低问题难度的目的,帮助学生更好地理解数学知识内容.数形结合思想一般表现在:一是建构恰当的代数模型;二是建立几何模型解决函数和方程问题;三是与函数相关的几何、代数问题;四是利用图象形式呈现相应信息的应用问题.在数学教学中,教师要善于发现题目中数与形的恰当契合点,从而将数与形进行有机结合,达到互补的目的.数形结合在初中数学教学中的作用,主要表现在:一是有助于形成完整的数学概念,便于学生理解记忆概念和优化数学认知结构;二是有助于提高学生的解题能力,简缩思维链;三是有助于培养学生的数学思维能力,强化形象思维、直觉思维和发散思维;四是有助于激发学生的学习兴趣,进而提高其学习成绩.二、数形结合在初中数学教学中的应用1.推动“数”向“形”的转变面对一些数量关系过于抽象复杂的题目时,学生常常很难把握其本质要领,此时教师若能巧妙地利用数形结合思想,推动“数”向“形”的转变,那么学生就能直观、形象地理解抽象复杂的数量关系.这就要求教师在讲解某些知识内容时,在“数”向“形”转变的过程中找出与数相对应的形,在问题中提炼出数量模型,通过分析图形解决数量问题,从而简化数学计算.例如,在讲“一元一次不等式(组)”时,教师可以提出问题:判断哪些数是不等式3x>225的解,73、74.6、78、75、80、64、75.1?这个不等式是否有解,如果有,这个不等式有多少个解?这个题目相对来说十分简单,主要考查学生对“不等式解集的无限性”的理解,然后根据无限性引出不等式的解集概念.此题目进行简单除法,即可得到答案为x>75,但为了将解集的无限性表示的更加鲜明,教师可以利用数轴进行表示,在数轴上标明“75”所表示的点,然后向正数方向无线延伸,学生只需将以上数字与75进行比较,找出大于75的数,即可找出满足不等式的答案.这样的做法,不仅能够让学生直观地看清不等式的解集有多少个,而且能够推动“数”向“形”的转变.2.描述“形”向“数”的转化图形比数字的直观性更强,可以很好地将抽象思维具体化,但这并不代表数学解题不需要代数计算,因此初中数学教师还要重视“数”的计算,尤其要重视表面看起来无规律、无逻辑性的几何图形,然后根据需要将图形转化为与之相对应的“数”,从而挖掘出数学题目深处隐含的意义.在“形”向“数”转化的描述过程中,教师要将图形尽可能地数字化,将数字尽可能地明晰化,在“形”转化为“数”的过程中融入数值计算,进而发现深藏在几何图形内部的规律.例如,在讲“锐角三角函数”时,教师可利用学生对特殊“直角三角形”和“相似三角形”等相关知识已有的认知,结合具体几何图形给出锐角三角函数概念.这种将数与形结合起来的方法,描述出了“形”向“数”的转化,便于学生掌握锐角三角函数的本质,从而加深学生对数学知识的理解.3.增强“数”与“形”的互化有的数学题目很难通过单一的“形”转“数”或“数”转“形”就得以理解实现,而是需要“数”与“形”的互化.通过融合“数”与“形”的互化解决问题,此种方法适用于平面直角坐标系及函数、勾股定理及其逆定理等知识点.例如,在讲“勾股定理及其逆定理”时,它是一种典型的`数与形结合,通过把三边长度与直角三角形结合的方略,使其在直角三角形问题中得到广泛应用.勾股定理的具体定理为:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2.也就是说,两直角边与斜边的关系就是勾股定理.当然,这一定理可以通过代数计算或者实际构图得以验证.勾股定理及其逆定理是“数”与“形”互化的一种典型表现,它对于学生理解知识点、加深知识印象大有裨益,实现了几何图形与代数关系之间的描述转化.总之,在初中数学教学中应用数形结合思想是一种明智的做法,不仅能够有效培养学生的思维能力和多角度看问题的能力,而且能够拓展和延伸学生的数学思维.因此,初中数学教师务必要推动“数”向“形”的转变、描述“形”向“数”的转化、增强“数”与“形”的互化,提升初中生学习数学的能力,强化数形结合思想的运用.。
数形结合思想在初中数学教学中的应用优秀获奖科研论文-2
数形结合思想在初中数学教学中的应用优秀获奖科研论文数形结合是一种非常重要的数学思想方法,也是数学解题中要求掌握的重要思想方法之一,在数学学习中有着重要的地位.数形结合,有利于学生对数学知识的理解,落实新课标的要求,即通过“以形助数,以数解形”,能够将复杂问题简单化,抽象问题具体化.很多数学问题利用数形结合思想来解决,能够达到化难为易的目的.在初中数学教学中,教师应重视数形结合思想,从而提高学生分析问题和解决问题的能力.下面结合自己的教学实践就数形结合思想在初中数学教学中的应用谈点体会.一、数形结合思想在集合问题中的应用在教学中,教师单一地讲解集合问题,很难使学生想象出各数集之间的关联性,而利用图示法,能够解决抽象的集合问题,让学生对集合问题一目了然.在图形中,一般利用圆来表示集合,两集合有公共的元素则两圆相交,两圆相离则表示没有公共的元素.例如,在学校开展兴趣班时,初中某班共有28个学生,其中有15人参加音乐兴趣班,有8人参加舞蹈兴趣班,有14人参加书法兴趣班,同时参加音乐和舞蹈兴趣班的有3人,同时参加音乐和书法兴趣班的有3人,没有人同时参加三个兴趣班,问:同时参加舞蹈班和书法兴趣班的有多少人?只参加音乐兴趣班的有多少人?图1解析:如图1,设A={参加音乐兴趣班的学生},B={参加舞蹈兴趣班的学生},C={参加书法兴趣班的学生},同时参加舞蹈和书法兴趣班的学生有x人.由题意可知,card(A交B)=3.card(A交C)=3,card(B交C)=x,则15+8+14-3-3-x=28,得x=3.因此,同时参加舞蹈和书法班的有3人,只参加音乐兴趣班的有15-3-3=9人.这样,利用图示法,可以使复杂的数学问题变得简单化和具体化,降低做题难度,有助于激发学生的学习兴趣.二、数形结合思想在函数问题中的应用函数是整个数学的重点,关于函数类型的题也数不胜数.利用函数求极值的问题是常见的题型,以数辅形,需要将图象中的数量关系整理清楚,以函数的形式表达出来,把握函数与图形之间的关系,达到快速解决数学问题的目的,体现数形结合在解题中的重要性.初中生对一次函数和二次函数的图象有着很深的了解,因此在面对这类函数问题时,往往可以根据函数图象来解答.这样,不但可以加深学生对基本概念的理解,还可以加强学生对这些基本知识的灵活运用.例如,当0 解析:方程中含有两个未知数,无法直接求解,可以转化成两个函数问题,图2求解的个数就是求函数图象的交点个数.由|1-x2|=kx+k,可构造y=|1-x2|和y=kx+k,如图2.所以原方程解的个数为3个.这样,复杂的函数问题,利用图形进行展示,能够直接得出问题的答案,强化了学生的认知,深化了学生的思维训练,提升了教学效率.三、数形结合思想在概率问题中的应用概率作为初中数学教学中的重点内容,一直是教学的难点.许多概率问题在思考中都存在着抽象,如果借助于坐标平面或数学模型的问题,以形助数,运用数形结合思想,就能够帮助学生迅速找到问题的切入点,优化解题过程,提高解题速度.总之,在初中数学教学中,数形结合思想既是一种教学手段,又是一种解题方法.运用数形结合思想,能够拓宽学生的思维;运用数形之间的关联性,以图形助数学解题,能够强化学生对数学本质的认知和了解,提高学生数学思维的灵活性、根基性等.教师应适当运用数形结合思想开展教学活动,从学生的角度出发,培养学生的综合技能和素质,提升初中数学教学质量,确保学生全面发展.。
数形结合毕业论文
数形结合毕业论文数形结合毕业论文在数学和几何学领域中,数形结合是一种强大的方法,它将数学和几何学的概念相结合,以解决各种问题。
本文将探讨数形结合在毕业论文中的应用,并介绍一些相关的案例研究。
第一部分:数形结合的概念和原理数形结合是指将数学中的抽象概念与几何学中的图形相结合,以帮助解决问题。
通过将数学问题可视化为几何图形,我们能够更直观地理解问题的本质,并找到解决问题的方法。
数形结合的原理是将数学中的符号和公式转化为几何图形,以便更好地理解和分析。
第二部分:数形结合在毕业论文中的应用数形结合在毕业论文中有广泛的应用。
它可以用于解决各种数学和几何学问题,并提供更深入的分析和解释。
以下是一些数形结合在毕业论文中的应用案例:1. 几何图形的分析:通过将几何图形转化为数学符号和公式,我们可以更好地分析几何图形的性质和特征。
例如,在研究三角形的性质时,我们可以使用角度和边长的关系来推导出一些重要的结论。
2. 数据可视化:数形结合还可以用于将数据可视化为几何图形,以便更好地理解和分析数据。
例如,在统计学中,我们可以使用柱状图或折线图来表示数据的分布和趋势。
3. 几何模型的建立:数形结合可以帮助我们建立几何模型,以解决实际问题。
例如,在工程学中,我们可以使用几何模型来分析和设计建筑结构或机械装置。
第三部分:数形结合的案例研究以下是一些关于数形结合的案例研究,展示了它在毕业论文中的应用:1. 数学建模:一个学生在毕业论文中使用数形结合的方法建立了一个数学模型,以解决城市交通流量的问题。
通过将交通流量转化为几何图形,该学生能够更好地分析和预测交通拥堵的情况,并提出了一些改进交通流量的建议。
2. 几何优化:另一个学生在毕业论文中使用数形结合的方法,优化了一个建筑结构的设计。
通过将建筑结构转化为几何图形,并使用数学公式和算法进行分析,该学生能够找到最优的结构设计,以提高建筑的稳定性和效率。
3. 数据分析:还有一个学生在毕业论文中使用数形结合的方法,分析了一组市场数据。
数形结合思想数学论文1400字_数形结合思想数学毕业论文范文模板
数形结合思想数学论文1400字_数形结合思想数学毕业论文范文模板数形结合思想数学论文1400字(一):小学数学数形结合教学思想论文一、数形结合教学思想在小学数学教学中的运用数形结合作为一种教学思想方法,一般包含两方面内容,一个方面是“以形助数”,另一个方面的内容是“以数解形”。
下面介绍这两个方面的内容在小学数学教学中的运用。
(一)以形助数所谓“以形助数”,是指老师在讲解某些数学知识的时候,仅靠数字讲解学生不太能理解,借助几何图形的特点,将所要讲的知识点更直观地展现在学生面前,从而将抽象化的问题转变为具体化的问题。
学生在学习行程问题的应用题时,可以运用图形的办法清晰地展现问题。
如:一辆汽车从甲地开往乙地,先是经过上坡路,然后是平地,最后是下坡路,汽车上坡速度是每小时20千米,在平地的速度是每小时30千米,而下坡的速度则是每小时40千米,汽车从甲地到乙地一共上坡花了6小时,平地花了2小时,下坡花了4小时。
请问汽车从乙地到甲地需要多长时间?在这道题中,既存在变量,又存在不变量。
变量就是上坡路和下坡路随着汽车行驶的方向而发生改变,当汽车从乙地到甲地行驶时,原先的上坡路变成了下坡路,原先的斜坡路变成了上坡路。
而不变量就是这两个路程汽车行驶的速度都是始终不变的。
那么在解决问题的时候,就可以直观地展现出来。
先算出汽车从乙地到甲地的上坡时间,即(40×4)÷20=8(小时),然后算出下坡所花费的时间,即(20×6)÷40=3(小时),而平地所花费的时间是不变的,所以汽车从乙地到甲地所花费的时间是8+3+2=13(小时)。
在这道题中,运用图像将数学中的数量关系、运算都直观地展现出来,学生比较易于理解,这样的教学可以在很大程度上提高教学效率。
(二)以数解形虽然图形可以更加直观地展现数学中的数量关系,但是对于一些几何图形,特别是小学数学中的几何图形来讲,非常简单,如果仅仅是通过直接观察反而看不出规律,这时就可以运用“以数解形”的方式教学。
小学数学数形结合论文
小学数学数形结合论文浅析小学数学课堂中数形结合思想的运用一、数形结合思想的由来。
华罗庚先生在《谈谈与蜂房结构有关的数学问题》中首次提出“数形结合”思想,强调数与形的对应关系和相互转化,以几何与代数统一为核心。
数形结合思想能将抽象的数学问题直观化,使复杂问题简明化,有助于抽象思维与形象思维的协调发展。
小学中的数形结合思想主要借助实物和直观性活动,如摆、数、画等,使抽象的数与现实生活相联系,培养学生的数学思维和感知能力,为未来的数学学习打下基础。
二、小学教学中运用数形结合思想的必要性。
在小学课堂中用好数形结合思想,对于老师教学和学生成长都大有裨益。
(一)对于教师而言。
“双减”背景下,教师应遵循科学原则布置作业,特别是对于小学一、二年级的学生,不应布置书面作业。
这一政策的实施对传统教学模式产生了深远影响,促使教师们积极转变观念,重新审视并调整自己的教育实践。
基于小学低年级学生的认知特点,数学教师需更深入地解读教材,有效融入数形结合等数学思想,以激发低年级学生的数学兴趣,努力提升课堂教学质量,为国家教育改革做贡献。
(二)对于学生而言。
数形结合思想在小学数学低年级教学中的应用,可以有助于学生获得“四能”,即从生活中发现并提出数学问题、分析并解决问题。
数形结合思想增强了学生学习数学的主动性和自觉性,丰富了学生对于数学意义的理解,对于培养小学生数学素养和创新能力有很大的帮助。
三、如何在课堂上用好数形结合的思想。
下面通过一些教学案例,具体阐释如何把数形结合思想融入小学课堂当中。
在小学数学中,数形结合思想的具体运用主要有“以形助数”和“以数解形”两类。
“以形助数”是借助形的几何直观性来阐明某些概念及数之间的关系。
例如可以借助形来认识数、掌握加减法、掌握乘除法并解决数学问题。
在理解乘法的意义时,教师可以先提问几?然后展示一张有3排,每排5张桌子的图片,引导学生理解其中的联系。
“以数解形”是借助于数的精确性、程序性和可操作性来阐明形的某些属性。
数形结合参考论文
浅谈数形结合思想在解题中的应用摘要:数形结合思想是初中数学中很重要的一种思想方法,它主要是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法。
关键词:数形结合思想以形助数以数解形“数形结合”是初中数学中的一种重要的思想方法,“数”和“形”是数学中两个最基本的概念。
数是数量关系的体现,形是空间形式的体现,两者是对立统一的,我们在探讨数量关系时常常借助于图形直观地去研究;而在研究图形时,又常借助于图形间隐含的数量关系去求解。
即将数与形灵活地转换,运用彼此间的相互联系和作用,去有效地探求问题的解答,我认为这就是数形结合的思想方法。
我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事非”,“数”与“形”反映了事物两个方面的属性。
我认为,数形结合主要指的是数与形之间的一一对应关系。
数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。
因此在数学教学中,注意渗透这方面的思想,引导学生要善于将两者巧妙地结合起来分析问题,让学生在不断感悟中开阔和发展思维,为达到快速、有效地解决问题奠定良好的基础。
一、解决实数问题数轴的引入是实数内容体现数形结合思想的有力证明,因为数轴上的点与实数是一一对应关系。
因此两个实数大小的比较,可以通过它们在数轴上对应的点的位置进行判断,相反数与绝对值则可通过相应的数轴上的点与原点的位置关系来刻划。
例1:在数轴上的位置如图,化简:|a-b|-|b-c|+2|a+c|。
解:∵b<0,c<0,b>c,a>b,|c|>|a|∴a-b>0,b-c>0,a+c<0。
数形结合论文
数形结合论文引言数形结合是一种将几何形状与数学概念相结合的方法,通过这种方法我们可以更深入地理解和解决数学问题。
数形结合在数学教育中有着重要的地位,它不仅可以激发学生对数学的兴趣,还可以提高学生的思维能力和问题解决能力。
本论文将详细介绍数形结合的概念、应用和教学策略,并通过实例分析说明其在数学学习中的重要性。
数形结合的概念与应用1. 数形结合的基本概念数形结合是指通过几何形状来揭示和解释数学概念。
它是将数学与几何相结合的一种方法,通过对几何形状的分析和观察,可以得出一定的数学规律和结论。
数形结合的本质是将抽象的数学概念转化为直观的几何表示,使学生更容易理解和记忆。
2. 数形结合的应用领域数形结合广泛应用于各个数学领域,包括代数、几何、概率等等。
在代数中,可以通过几何图形表示多项式的乘法、因式分解等运算,帮助学生理解代数运算的本质。
在几何中,可以通过数学公式和方程与几何图形相结合,解决几何问题。
在概率中,可以通过几何模型来表示随机事件的概率,并进行相关计算。
数形结合在数学中的应用是多种多样的,它能够让抽象的数学概念变得具体可见,增加学生对数学的体验和理解。
数形结合的教学策略1. 主动探究数形结合的教学应该注重学生的主动参与和探究。
教师可以引导学生通过观察、分析和实践等方式,提出问题、发现规律,培养学生的数学思维和解决问题的能力。
学生通过自主探究和互动合作,能够更深入地理解数学概念和思想。
2. 多样化的教学方法在数形结合的教学中,应该采用多样化的教学方法来激发学生的学习兴趣。
例如,可以通过使用实物模型、图形软件等教具,让学生亲身感受数学与几何形状的联系;还可以运用问题解决法、探究法等教学策略,培养学生的思维能力和创新意识。
3. 融入实际问题数形结合的教学应该注重将数学概念和实际问题相结合。
通过将数学知识运用到实际问题中,可以增加学生对数学的兴趣和动力。
教师可以设计一些与日常生活息息相关的问题,让学生在解决问题的过程中,更好地理解和应用数学概念。
数形结合在小学数学教学中的应用论文
数形结合在小学数学教学中的应用论文数形结合在小学数学教学中的应用摘要:数形结合是指将数学中的抽象概念与具体的几何图形相结合,通过图形化的形式来帮助学生理解数学问题。
本论文主要探讨了数形结合在小学数学教学中的应用,讨论了使用数形结合的教学方法和技巧,以及数形结合在培养学生数学思维和解决问题能力方面的作用。
研究结果表明,数形结合能够激发学生的学习兴趣,提高学生的数学思维水平,促进综合能力的发展。
关键词:数形结合;小学数学教学;教学方法;数学思维;解决问题能力引言:数学是一门抽象而又理论性较强的学科,对于小学生来说,有时候很难理解一些抽象概念。
而数形结合作为一种教学方法,通过将数学内容与具体的几何图形相结合,能够帮助学生更好地理解和掌握数学知识。
本论文将重点探讨数形结合在小学数学教学中的应用,以及数形结合对学生数学思维和解决问题能力的培养作用。
一、数形结合的教学方法数形结合作为一种教学方法,有多种不同的应用方式。
在小学数学教学中,常用的数形结合教学方法包括利用几何图形辅助教学、运用模型解决实际问题、使用图表展示数学关系等。
1.利用几何图形辅助教学对于一些抽象的数学概念,利用几何图形辅助教学可以使学生更加直观地理解和记忆。
比如,在教学分数的概念时,可以通过画等分的几何图形来帮助学生理解分数的含义。
通过几何图形的分割,学生能够更好地理解分数的大小关系和运算规则。
2.运用模型解决实际问题数形结合还可以通过运用模型来解决实际问题。
通过将实际问题转化为几何图形模型,学生可以更好地理解和解决问题。
例如,在教学面积和体积计算时,可以通过制作纸箱模型或者利用积木搭建几何体模型,让学生通过实际操作来计算和比较大小,提高他们的计算能力和空间想象能力。
3.使用图表展示数学关系数形结合还可以通过展示数学关系的图表来加深学生对数学知识的理解。
比如,在教学二元一次方程时,可以通过绘制方程的解集图表,让学生通过观察图表找到解集的规律和特点,从而更好地理解方程的概念和求解方法。
数形结合论文
“数形结合”在小学数学教学中的应用数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,这就是数与形结合思想。
数学中数与形关系非常密切,数与形结合是一种重要的教与学的方法。
用“数形结合”的方法进行教学,符合儿童的认知规律。
小学儿童的抽象思维还不是很发达,学习抽象的数学知识时还必须有形象的支持;另一方面,形象化的实例又很容易引起学生兴趣,愉悦的情绪能引发学生的有意注意,激发学生学习的积极性。
用“数形结合”的方法进行学习,可以使左右脑协同作用,发挥全脑的功能。
可以帮助学生理解数学知识的难点,培养学生灵活运用知识和逻辑思维能力。
一、运用直观图形,启发学生思维,激发学生求知欲。
数形结合创设与知识信息相关的各种情景可激发学生浓厚的学习兴趣。
例如:五年级上《平行四边形的面积》一课,在教学时我设计了剪一剪、拼一拼等学习活动,通过直观的图形演示,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。
课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。
二、运用直观的图形,帮助学生解析知识的难点。
1、例如:在教学《分数与除法的关系》时,将3块月饼平均分给4个人,每人分得多少块?列式为:3÷4=34 (块)如果运用分数与除法的关系,学生很容易列式并解答。
但要理解34 块的真正分数的意义时图形给予了很大帮助,是将3块月饼摞在一起平均分成4份,每人分得一份即3块的14 ,也就是3个14 拼在一起组成了一块的34 ,巧妙地帮助学生理解了3块的14 与1块的34 是相等的。
2、四年级《植树问题》是数学中一个独立的单元,其内容和生活联系非常密切。
这一课我们不仅是要教给学生知识,更重要的是要学生领悟研究复杂问题可以从简单问题入手。
(完整版)谈数形结合思想在中学数学解题中的应用毕业论文
目录摘要 (2)Abstrqct (3)1引言 (3)2 方程问题 (4)2.1 方程实根的正负情况 (4)2.2 求方程实根的个数 (4)2.3 含参数的方程 (5)3 不等式问题 (6)3.1 无理不等式 (6)3.2 二元二次不等式组 (6)3.3 高次不等式 (7)3.4 绝对值不等式 (7)3.5 含参数的不等式 (7)4 最值问题 (8)4.1 转化为直线的截距 (8)4.2 转化为直线的斜率 (8)4.3 转化为距离 (9)5 函数问题 (10)5.1 比较函数值的大小 (10)5.2 函数的定义域 (11)5.3 函数的值域 (11)5.4 函数求值 (12)5.5 函数的单调区间 (12)5.6 函数的奇偶性,单调性 (13)6解决线性规划问题 (13)参考文献 (14)致谢 (14)谈数形结合思想在中学数学解题中的应用XXX数学与信息学院数学与应用数学专业2011级指导老师:XXX摘要:数形结合思想在中学数学中应用广泛, 本文将例举说明数形结合思想方法在方程问题,不等式问题,最值问题,函数问题,线性规划问题等方面的实际应用。
充分说明在解题中运用数形结合的方法,借助几何图形的直观描述,如何使许多抽象的概念和复杂的关系形象化、简单化。
在中学数学解题中充分运用数形结合思想,有助于学生思维能力的培养, 有利于他们解题能力的提高。
关键词: 数形结合;数形结合思想;方程问题;不等式问题;最值问题;函数问题;线性规划问题On the combination of application of thought in middle schoolmathematicsXXXCollege of Mathematics and Information Mathematics and AppliedMathematicsGrade 2011 Instructor: XXXAbstrqct:Several form combining ideas is widely used in the middle school mathematics, this article will illustrate that number form combined with the thinking and methods in the equation, inequality problem, the most value problem, function problem, the practical application of linear programming problems.Full explanation in the problem solving, with the method of using the number form, with the help of a visual description of the geometry, how to make many abstract concepts and visual and simplify complex relationships. Full use of in the middle school mathematics problem-solving number form combining ideas, helps to develop students' thinking ability, is conducive to the improvement of their ability to problem solving.Key words:The number of combination form; Several form combining ideas; Equation problem; Inequality problem; The most value problems; Function problem; Linear programming problem1引言数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。
数形结合方法论文高中数学教学论文
数形结合方法论文高中数学教学论文摘要:数形结合思想是一种非常有效的数学解决方法,既是学生解决数学问题的一种高效工具,又是一种辅助学生发展形象和抽象两种思维的有效途径。
该思想能够拓展学生的思维,让学生便于转换数形,通过数与形两个方面看到问题的本质,帮助学生将问题化难为易、化繁为简。
教师在高中数学教学中,一定要重视数形结合,充分利用周围的教学资源,根据自身的教学经验,把数与形做到有机结合后将该思想传授给学生,使学生能真正掌握数形结合思想,最终起到培养学生思维形象甚至思维创造的能力。
高中数形结合思想包含两个方面——“以形助数”和“以数辅形”。
具体来说,一个是借助生动直观的图形轴线来表现数与数之间的关系性质(如函数图象),另一个是凭借数的精准以规范图象的性质(如函数表达式)。
可以说,数形结合是一种非常实用便捷的数学思想,掌握了它,思考问题的速度将会更加敏捷。
一、强调数形结合思想,认识其重要性数形结合是高中数学的重点,也是高考数学中的重要考查点。
随着高考改革的推行,高中数学所要求的不仅仅是能做题解题,还包括学生是否能进行数学思维的思考。
不管是选择题、填空题还是综合题,归根结底都是对数学思想运用的考查。
所以,学生必须得掌握数形结合思想的精髓,能够从数量中看出图形,图形中得出数量,这样才能对任何几何相关题目都游刃有余。
1.数形结合思想改善学生思维以理解数学概念。
利用数形结合思想,分别对概念的数、形进行表达阐述。
其实,很多数学概念都具有明显的几何意义,善于利用这些几何意义,往往能收到事半功倍的效果,让学生真正理解概念的本质。
2.数形结合思想可以发展学生的形象思维。
一般学生的思路是具有一定逻辑性的,但逻辑也是一种十分抽象的东西,有时会遇到思维卡壳的情况。
但若是将逻辑思维形象化,学生就能直观地看待这些问题。
其次,这种思想不仅可以用于解决数学问题,还可以当作一种思维策略,使学生学会换一个角度思考问题。
二、改变传统教学,进行差异化多元教学1.教师要以一题多解的教学方式进行教学。
小学数学数形结合论文
小学数学数形结合论文一、教学中的常见问题1、学习兴趣不足在小学数学教学中,我们经常遇到学生对数学学习兴趣不足的问题。
这种情况可能是由于多种因素造成的,如教学内容枯燥乏味、教学方法单一、教学评价机制不科学等。
学生对数学缺乏兴趣,不仅影响他们的学习积极性,而且对数学知识的掌握和运用也产生不利影响。
(1)教学内容枯燥乏味:部分教师在教学过程中,过于注重知识的传授,而忽视了激发学生的学习兴趣。
课堂上,教师往往采用灌输式教学方法,使得学生感受到数学学习的枯燥无味。
(2)教学方法单一:在小学数学教学中,部分教师过于依赖传统的讲授法,缺乏与学生互动和引导。
这导致学生在课堂上缺乏主动参与的机会,难以激发学习兴趣。
(3)教学评价机制不科学:过分强调分数和排名,容易导致学生产生焦虑和压力,进而影响他们的学习兴趣。
2、重结果记忆,轻思维发展在当前的小学数学教学中,部分教师过于关注学生的成绩,导致教学过程重结果记忆,轻思维发展。
(1)应试教育的影响:在应试教育的背景下,部分教师为了追求高分,过分强调知识的记忆,忽视了对学生思维能力的培养。
(2)课堂教学模式单一:部分教师在课堂上采用“一言堂”的教学模式,缺乏启发式、探究式教学方法的运用,使得学生的思维发展受到限制。
3、对概念的理解不够深入在小学数学教学中,学生对概念的理解往往不够深入,这主要表现在以下几个方面:(1)概念教学过于简化:部分教师在教学过程中,对概念的讲解不够详细,导致学生对概念的理解停留在表面。
(2)缺乏实际情境的创设:在实际教学中,部分教师未能将概念与学生的实际生活紧密结合,使得学生难以深入理解概念。
(3)忽视概念之间的联系:教师在教学过程中,未能充分揭示不同概念之间的联系,导致学生对概念的理解缺乏系统性和深刻性。
二、教学实践与思考1、梳理脉络,全面理解教材(1)从培养目标出发,理解课程核心素养的发展体系为了解决教学中存在的问题,教师需要从培养目标出发,深入理解课程核心素养的发展体系。
数形结合论文
数形结合在小学数学中的运用数形结合的思想是一种重要的数学思想方法,也是解决数学问题的有效策略。
它是指解决数学问题时借助“形〞的直观来理解抽象的“数〞,或反过来运用“数〞与“式〞的描述来刻画“形〞的特征。
其实质是将抽象的数学语言化为直观的图形,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系和转化,化难为易化抽象为直观。
因此,以形助数、以数解形、实现“数〞与“形〞的完美结合。
由于小学数学中以数解形的例子很少,就以以形助数谈谈数形结合在教学中的运用。
一、以形助数,帮助学生理解概念在小学数学概念教学中,如果能够建立抽象的数学概念与形象的图形之间的联系,把数学概念中最本质的属性用恰当的图形演示出来,把数和形结合起来,丰富学生的感性材料,为建构数学概念奠定根底。
这样学生对所学数学概念就容易理解和掌握。
如:三年级上册?倍的认识?,运用图形创设了如下的问题情境:【片断一】胡萝红萝提问:1:胡萝卜有几根?2:红萝卜有几根?把红萝卜两个一份的圈起来,胡萝卜有几个2根?我们就说红萝卜的根数是胡萝卜的3倍。
结合图形使学生感悟到红萝卜是3个2根,而不仅仅是6根,来理解倍的意义。
在学生对倍有了初步认识后,设计摆一摆倍的关系。
在学生的信封里都放了红色和蓝色的圆片,这些圆片不一定都用完,只要你表示出红色圆片的个数是蓝色圆片的3倍。
学生作业展示:生1:生2:生3:这3位学生都用不同的方式表示了红圆片的个数是蓝圆片的3倍,实现了从形到数的抽象。
二、以形助数,帮助理解算理小学数学内容中,有相当局部的内容是计算问题,计算教学要引导学生理解算理。
在理解算理的根底上掌握计算方法,正所谓“知其然、知其所以然。
〞根据教学内容的不同,引导学生理解算理的策略也是不同的。
数形结合在分数大小比拟、分数的加减法,分数的乘除法等教学中是帮助学生理解算理的一种很好的方式。
“异分母分数加减法〞一课,计算异分母分数加减法,关键是通分。
教学时呈现通分过程的图形表征,帮助学生理解这些表征形成的意义,发现数与形之间的关系,帮助学生理解算理,而不是仅仅介绍某些抽象的计算规那么。
数形结合思想在数学教学中的运用论文
数形结合思想在数学教学中的运用论文摘要:数形结合思想是指在数学教学中,通过将抽象的数学概念与具体的图形结合起来,以图形化的方式呈现数学问题,从而帮助学生理解和解决问题。
本文从数形结合思想的原理和影响、在数学教学中的具体运用等方面进行探讨,并通过实例讲述了数形结合思想在数学教学中的具体应用。
关键词:数形结合思想,数学教学,图形化,解决问题一、引言数学是一门抽象的学科,对于学生来说,往往难以理解和应用其中的概念和原理。
因此,在数学教学中运用数形结合思想,将抽象的概念与具体的图形相结合,可以帮助学生更好地理解和记忆数学知识,并能够运用数学知识解决问题。
二、数形结合思想的原理和影响1.数形结合思想的原理数形结合思想的原理是通过将抽象的数学概念与具体的图形结合起来,使数学问题变得直观可见,从而更好地理解数学概念和解决问题。
通过图形化的方式,可以使学生对数学问题产生直观感受,并能够从直观角度思考和分析问题,提高解题能力。
2.数形结合思想的影响数形结合思想在数学教学中的应用具有重要影响力。
首先,它可以提高学生对数学概念的理解和记忆能力。
通过将抽象的数学概念转化为具体的图形,可以使学生更加深入地理解和记忆数学知识。
其次,数形结合思想可以提高学生的问题解决能力。
通过图形化的方式呈现问题,可以帮助学生更好地分析和解决问题,培养学生的逻辑思维和推理能力。
三、数形结合思想在数学教学中的具体运用1.数学概念的图形化呈现在数学教学中,可以通过绘图等方式将抽象的数学概念转化为具体的图形,使学生更加直观地理解和记忆数学知识。
例如,在教授几何知识时,可以通过绘制图形来讲解和解决几何问题,帮助学生理解和记忆各种几何概念和性质。
2.问题的图形化分析在解决数学问题时,可以通过绘制图形的方式来进行问题分析和解答。
例如,在解决代数方程时,可以通过绘制函数图像来观察函数的性质和方程的解决方式,帮助学生更好地理解和解决方程问题。
3.数学实验和模拟通过数学实验和模拟的方式,可以将数学问题转化为具体的图形或实际操作,使学生通过实际操作来理解和解决问题。
数形结合思想论文
图2
tan x = tanα
=
BC
12 = ( x = α + 2kπ , k ∈ Z
)
AC 5
评析:该题通过将数量关 系转化为图形性质的问题,用几何图形直观地 刻画了数 量关系,从而使抽 象问题具体化,问题得以简单的解 决。
2.2 运用数形结合思想解决方程问题
例3:已知 x1 是方程 log 3 x = 3 − x 的根, x2 是方程 3x = 3 − x 的根,求 x1 + x2 的值。
正文目录
1、数形结合思想的简单概述.............................................................................................. 1 1.1 数形结合的思想.............................................................................................................2 1.2 数形结合思想的价值......................................................................................................2 2、数形结合思想在解题中的应用...................................................................................... 2 2.1 运用数形结合思想解决三角函数问题..........................................................................3 2.2 运用数形结合思想解决方程问题..................................................................................4 2.3 运用数形结合思想解决集合问题..................................................................................4 2.4 运用数形结合思想解决函数问题..................................................................................6 2.5 运用数形结合思想解决复数问题..................................................................................7 2.6 运用数形结合思想解决线性规划问题..........................................................................8 2.7 运用数形结合思想解决解析几何问题..........................................................................9 2.8 运用数形结合思想解决数列问题................................................................................11 3、数形结合思想在解题时要注意的问题........................................................................ 12 4、总结................................................................................................................................ 15 参考文献.............................................................................................................................. 17 致谢.......................................................................................................................................17
数形结合思想论文
数形结合思想论文(11篇)目录Ⅰ、新课程高一数学教学中的“数”与“形”Ⅱ、运用数形结合思想处理一类对称问题Ⅲ、联想为媒----- 催化数形之结合Ⅳ、数形结合的思想方法的解题应用技巧Ⅴ、中学数学教学中“数形结合”思想的运用及实施Ⅵ、浅谈数学教学中的数形结合思想Ⅶ、浅谈数形结合思想在数学解题中的几点应用Ⅷ、数形结合在不等式中的应用Ⅸ、数形结合的思想方法--应用篇Ⅹ、数形结合的思想方法---高考题选讲Ⅺ、2010届新课标数学考点预测:数形结合的思想方法Ⅰ、新课程高一数学教学中的“数”与“形”潘晔晨嘉兴市第三中学摘要:以往的“数形结合”大多出现在教师的习题课中,以灌输为主,这并不完全符合新课程理念。
应寻找一种办法,能使学生在上“数形结合”的习题课之前就自主地发现数形结合的存在,并自然地使用数形结合的方法解题。
关键词:新课程高一数形结合一、“数形结合”的重要性“数”与“形”作为数学中最古老最重要的两个方面,一直就是一对矛盾体。
正如矛和盾总是同时存在一样,有“数”必有“形”,有“形”必有“数”。
华罗庚先生曾说过:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。
切莫忘,几何代数统一体,永远联系,切莫分离!”寥寥数语,把数形之妙说得淋漓尽致。
“数形结合”作为数学中的一种重要思想,在高中数学中占有极其重要的地位。
关于这一点,查查近年高考试卷,就可见一斑。
在多年来的高考题中,数形结合应用广泛,大多是“以形助数”,比较常见的是在解方程和不等式、求函数的最值问题、求复数和三角函数等问题中,巧妙运用“数形结合”思想解题,可以化抽象为具体,效果事半功倍。
二、新课程背景下的“数形结合”如此重要的数学思想自然一直被作为重点贯穿于每位数学教师的教学中,笔者发现近年来关于“数形结合”的论文也是数不胜数,但其内容大多是一些可以用数形结合巧解的例题。
笔者认为在讲解练习时强化“数形结合”固然是一种常用的有效的方法,但是也有缺点,就是学生是否能在老师提示之前自己想到“数形结合”的解法,如果不能,需要靠老师的提示完成,那么下次学生在碰到可以用“数形结合”巧解的题目时,是否还能想到要用“数形结合”来解。
数形结合毕业论文
数形结合思想在解题中的应用摘要:数学是研究数量关系和空间形式的科学,数和形的关系是非常密切的。
把数和形结合起来,能够使抽象的数学知识形象化,把数学题目中的一些抽象的数量关系转化为适当的几何图形,在具体的几何图形中寻找数量之间的联系,由此可以达到化难为简、化繁为易的目的。
关键词:数形结合解题应用数形结合是一种极富数字特点的信息转换方法,数学上总是用数的抽象性质说明形的事实,同时又用图形的性质来说明数的事实。
应用数形结合法,通过图形性质的的分析,使数学中的许多抽象的概念及定理直观化、形象化、简单化,并借助代数的计算和分析得以严谨化。
下面,我将从3个方面来说明数形结合思想在解题中的应用(一)、解决集合问题在集合运算中常常借助于数轴、韦恩图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。
例 1: 已知集合 A=[0,4],B=[-2,3], 求 A∩B。
分析: 对于这两个有限集合, 我们可以将它们在数轴上表示出来, 就可以很清楚的知道结果。
如图 1, 由图我们不难得出A∩B=[0,3]。
图1例2:某校高二年级参加市级数学竞赛,已知共有40个学生参加第二试(第二试共3道题),参赛情况如下:① 40个学生每人都至少解出一道题②在没有解出第一道题的学生中,图2解出第二道题的人数是解出第三道题人数的2倍③仅解出第一道题的人数比余下的学生中解出第一道题的人数多1个④ 仅解出一道题的学生中有一半没有解出第一道题试问:(1)仅解出第二道题的学生有几个?(2)解出第一道题的学生有几个?分析 本题数量关系错综复杂,似乎与集合无关,但若把“解出第一道题”、“解出第二道题”和“解出第三道题”的学生分别看作一个集合,则可利用韦恩图直观求解.解答 设集合A ={解出第一道题的学生数},集合B ={解出第二道题的学生数},集合C ={解出第三道题的学生数},如图2,可得⎪⎪⎩⎪⎪⎨⎧+=+++=+=+=++++++cb a g e d a fc f b g f ed c b a 1)(240 解之得a =11,b =10,c =1,d+e+g =10所以仅解出第二道题的学生有10个,解出第一道题学生有21个.(二)、解决函数问题利用图形的直观性来讨论函数的值域(或最值),求解变量的取值范围,运用数形结合思想考查化归转化能力、逻辑思维能力,是函数教学中的一项重要内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合论文HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数形结合思想在中学数学解题中应用摘要:数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。
数形结合思想在数学中得到了充分的重视。
本文就数形结合思想在数学问题解析中的应用加以整理、总结,并给出部分例题,以便得到更好的推广。
关键词:数形结合代数问题几何问题相互转化For combining the application in mathematics(YANG zhongxiang)Abstract : Several combining in mathematics teaching is widely used in combination, a new mathematical thought to write with. Several combining ideas in mathematics got full attention. Based on several combining analytical mathematical thoughts in the application are summarized, and gives some examples, in order to get better.Key words:Combining the number Algebra problem Geometryproblems Mutual transformation前言数形结合思想在实际的应用中显得十分重要和广泛,数形结合思想几乎贯穿了整个解析几何,可以说数形结合思想是解析几何的精髓所在。
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。
”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。
“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。
华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
”关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
美国着名数学教育家波利亚说过:“掌握数学就意味着要善于解题。
”只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。
中、高考试题十分重视对于数学思想方法的考查,其解答过程都蕴含着重要的数学思想方法。
我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。
而数形结合思想又显得格外重要和实用。
但在应用中也应该注意其应用的适用性、科学性、合理性等特性。
一、数形结合思想理论(一)、数形结合思想的定义:数形结合是数学中重要的思想方法之一,是通过数和形两者之间的关系来解决数学问题的方法思想。
(二)数形结合思想的研究对象:数形结合思想的主要研究对象是数与几何图形或几何图形与数的关系,即对于所要研究的代数问题可以通过研究其所表示的曲线、图象等几何图形来得以解决,反之对于几何图形问题也可以转化为其所对应的代数问题加以解决。
(三)数形结合思想的本质:数形结合思想的本质是几何图形的性质反映了数量关系;数量关系决定了几何图形的性质。
“数”不仅具有精确性,它还具有联系性(即在某一特定范围内它是联系不间断的),唯一性,逻辑性等,他们之间可以经过多种变换。
而几何图形往往具有直观性,我们可以较直观的从图象信息中分析得到信息。
(四)数形结合思想的研究方法:数形结合思想的方法应用主要可以分为两种情况:(1)、借助于“数”的精确性来阐明“形”的属性;(2)、借助于“形”的直观性来阐明“数”的关系。
(五)数形结合思想的研究思路:数形结合思想的基本思路是:根据“数”的结构特征,构造出与之相适应的几何图形,并利用图形的特性和规律,解决“数”的问题;或将图形信息部分或全部转换成代数信息,进而削弱或清除“形”的推理部分,使要解决的“形”的问题转换为数量关系的讨论。
通过以上转换使问题得以解决或简单化。
二、数形结合思想的实际应用(一)在一般方程中的应用:方程f(x) –g(x) = 0的解情况,可化为f(x)=g(x) 的解情况,也可看作函数y = f(x) 与y = g(x) 图像的交点的横坐标的情况,所以只要我们准确地在数轴或坐标轴中画出这两个函数的图像,再根据图像就能很容易地看出它们有几个交点,及交点大致的位置或坐标,还有一些其它的重要信息,这样我们就可以根据这些信息来解题,我们也可以用数形结合这种方法为自己提供一种思考问题的思路,也作可以作为一种验证方法用来检查自己到底有没有做错。
例题1 方程lnx=cosx解的个数为。
分析:画出函数y=lnx与y=cosx的图像(如图1)。
注意观察两个图图2-1(答案:1个。
)利用代数方法求解:lnx=cosx已知lnx的定义域为0<x,而cosx在此定义域内的值域为(-1,1)而lnx在(-1,1)内的定义域为(1/e,e),cosx在此定义域内取到最大值cos(1/e)和最小值cose。
由此,根据函数的值域可知,在定义域中存在有且只有一个实数根。
这一结论与图形求解结论一致。
显然,通过上可以题看出,函数的解析式和图像的实质是相同的,在解题时经常要相互转化,尤其是解决较为繁琐的(如方程解的个数、分类讨论、求参数的范围等)问题时,更要充分发挥图像的直观作用,可以代数问题转化为几何问题,实现数形转换。
但转换时,要注意方式、方法,如方程f(x)=g(x)的解的个数可以转换为函数y= f (x)和y=g(x)的图像的交点个数问题。
(二)三角函数与三角函数图象:(1)三角函数图象:三角函数是解析几何中常用的几种函数之一,在中学的各个学习阶段都显得尤为重要,特别是在近几年的中、高考中都占有一定的比重,其图象特点为正弦函数关于原点对称;余弦函数关于x 轴对称;正、余切函数关于原点对称,下面来看各种函数的图象特征:如图2-2,2-3所示:图2-2图2-3例题2函数y=sin (x+π /4)在闭区间( )A .[-π/2, π/2]是增函数B.[-3π/4, π/4]是增函数C.[-π,0] 是增函数D.[-π/4,3π/4] 是增函数解析,本题可以先根据图象直观的进行判断,函数y=sin(x+π/4)的图象如下图所示:图2-6由上图可得该函数的增区间为[-3π/4,π/4],C选项满足题意。
从上题可以看出,任意三角函数所对应的曲线都可以经过原图象经过延长、拉伸或平移的变换而得到的,一般而言,对于任意的三角函数图象都存在对应的三角函数。
并且可以说正、余弦函数图象是由圆变换得来的,如图2-4所示:图2-4由此我们可以用圆来记忆三角函数的性质和解决一些三角函数的问题。
例题3:在(0,2π)内,使sinx>cosx 成立的x 的取值范围为 解析:如图2-5所示;代数法:把sinx>cosx 转化为求sinx-cosx>0,即√2 sin(x-π/4)>0,求在(0。
π/2)上的解,解得x∈(π/4,5π/4)与图象解出一致。
(三)不等式(组)、函数用象表示:在函数中,函数的解析式和图像的实质是相同的。
同样,不等式也可以用图象表示,函数图象是用曲线的,那么,不等式就用所对应的区域来表示,该区域就在该不等式化为方程后所表示的曲线的领域内。
例题4:设函数f(x),g(x)分别是定义域在R上的奇函数和偶函数,当x<0时,df(x)/dxg(x)+f(x)dg(x)/dx>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是解析:设F(x)=f(x)g(x),F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),故,F(x)为奇函数,又x<0时,dF(x)/dx=df(x)/dxg(x)+f(x)dg(x)/dx>0,所以当x<0时F(x)为增函数,又∵奇函数在对称区间上的单调性相同,∴x>0时,F(x)也是增函数。
∵F(-3)=f(-3)g(-3)=0,∴F(3)=-F(-3)=0如图为一个符合题意的图象,观察后可得:图2-7f(x)g(x)=F(x)<0的解集为:x∈(-∞,-3)∪(0,3)。
由上图可以看出,该不等式的解集图象为该函数左下方与x轴负方向上小于-3相交部分和该函数右下方与x轴正方向上小于3相交部分,所有处在该区域内的x的值都满足题意,而曲线上的点则表示该函数的临界点。
例题5:如下图2-8所示,阴影部分的点满足不等式组x+y<=52x+y<=6 ,在这些坐标点中,使目标函数K=6x+8y取得最大x>=0, y>=0值的坐标是图2-8解析:这是线性规划问题,运用数形结合的思想方法,如上图2-8所示,做L:6x+8y=0的直线,然后向右(上)平移,使得L与阴影部分相交又到原点距离最大的交点,得(0,5)。
本题主要利用不等式组来确定x,y的取值范围(图中阴影部分),并利用该范围内的点做为定义域求满足目标函数的点,这是数形结合的应用中较为常见的“数”“形”转换的方法。
它避免了纯代数运算的繁杂性,较为充分的体现出了“形”的直观性。
由上两个例题可以看出,利用数形结合方法来解不等式(组),不仅可以避免许多繁杂的代数运算,简化解题的程序。
而且可以使做题的过程更加直观。
(四)曲线方程与曲线方程图象:曲线方程是中学数学中的重要组成部分,它包括圆的曲线方程、椭圆的曲线方程、双曲线方程,抛物线方程等曲线方程,数形结思想合在这一方面体现的更为重要,整个曲线方程几乎都是围绕数形结合思想来分析、解决问题。
例题5:如果实数x,y满足等式(x-2)2+y2=3,求y/x的最大值解析:本题作为代数问题的形式,y/x的最大值不易直接求出,若采用数形结合思想,利用y/x的几何意义则较为简便,如图2-10所示,在直角坐标系中,(x-2)2+y2=3表示以(2,0)为圆心,31/2为半径的圆,y/x=(y-0)/(x-0)表示圆上任意一点P(x,y)与原点连线斜率,当OP与圆相切,角POQ=60‘时,y/x取得最大值31/2。
图2-10例题5.圆x2+y2+2x-4y-3=0上到直线l:x+y+1=0的距离为21/2的点共有解析:先将圆的一般方程化为标准方程(x+1)2+(y-2)2=8,它与直线x+y+1=0的位置关系如图2-9所示,O、(-1,-2)是圆心,A(-1,0)和B(0,-1)是直线x+y+1=0与坐标轴的交点,连结O、B,易知O、B ⊥AB,而且O、B=21/2,x∵此圆的半径r=81/2,延长O 、B ,交圆于C ,则BC=21/2,做直径DE2D.5解析:复平面内满足︱z+i ︱+︱z-i ︱=2的点z 的轨迹是线段AB,而︱z+i+1︱表示点Z 到P(-1,-1)由图知︱z+i+1︱的最小值是1,选A.(七 )向量问题用图象解析利用向量可以解决线段相等,直线垂直,立体几何中空间角(异面直线的角、线面角、二面角)和空间距离(点线距、线线距、线面距、面面距),利用空间向量解决立体几何问题,将抽象的逻辑论证转化为代数计算,以数助形,大大降低了空间想象能力,是数形结合的深化。