高三上学期期中考试数学(理)试题
河南省南阳市2019届高三上学期期中考试数学理试题(解析版)
河南省南阳市2019届高三上学期期中考试数学理试卷一、选择题(本大题共12小题每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的)1.设集合,集合,则()A. B. C. D.【答案】D【解析】由题意得,∴.选D.2.若是虚数单位,复数的共轭复数是,且,则复数的模等于()A. 5B. 25C.D.【答案】A【解析】分析:由复数的运算,求得,进而得,再根据复数模的计算公式,即可求解复数的模.详解:由题意,复数的共轭复数满足,所以,所以复数,所以,故选A.点睛:本题主要考查了复数模的运算及复数的运算,其中熟记复数的运算公式和复数的基本概念是解答的关键,着重考查了推理与运算能力.3.下列四种说法中,①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x<0”;②命题“p且q为真”是“p或q为真”的必要不充分条件;③已知幂函数f(x)=xα的图象经过点(2,),则f(4)的值等于;④已知向量a=(3,4),b=(2,1),b =(2,1),则向量a在向量b方向上的投影是,其中说法正确的个数是()A. 1B. 2C. 3D. 4【答案】A【解析】【分析】本题①根据命题否定的规律判断命题是否为真;②化简研究命题中的条件和结论,从而判断条件间的关系;③根据函数图象上的点坐标,得到参数a的值,再利用解析式求出函数的值;④利用平面向量的数量积与投影的关系,判断命题是否正确,得到本题结论.【详解】①命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x≤0”,故命题①不正确;②命题“p且q为真”,则命题p、q均为真,∴“p或q为真”.反之“p或q为真”,则p、q不一定都真,∴不一定有“p且q为真”,∴命题“p且q为真”是“p或q为真”的充分不必要条件,故命题②不正确;③由幂函数f(x)=xα的图象经过点(2,)∴2α=,∴α=−∴幂函数为f(x)=,故f(4)的值等于∴命题③正确;④向量在向量方向上的投影是||cosθ=.其中θ是和的夹角,故④错误.∴正确的命题有一个.故选:A.【点睛】本题考查了命题真假的判断,还考查了命题的否定、充要条件、幂函数解析式和向量的投影等知识,属于基础题.4.已知,则()A. B. C. D.【答案】D【解析】试题分析:,选D.考点:同角三角函数关系【方法点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数。
2025届济宁市高三数学上学期期中质量检测试卷及答案解析
2024~2025学年度第一学期期中教学质量检测高三数学试题2024.11本试卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的考场、座号、姓名、班级填(涂)写在答题卡上,将条形码粘贴在“贴条形码区”.2.做选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再改涂其它答案标号.3.非选择题须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡中各题目指定的区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.否则,该答题无效.4.考生必须保持答题卡的整洁;书写要求字体工整,符号规范,笔迹清楚.一、选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{P x y ==,{Q y y ==,则()R P Q =I ð( )A. ÆB. [)1,+¥C. (),0-¥ D. (],1-¥-【答案】D 【解析】【分析】首先根据偶次方根的被开方数非负求出集合P ,再求出集合Q ,最后根据集合的运算法则计算可得.【详解】由y =可得210x -³,解得1x ³或1x £-,所以{(][),11,P x y ¥¥===--È+,又210x -³,则0y =³,所以{[)0,Q y y ¥===+,所以()R ,0Q =-¥ð,所以()(]R ,1P Q =-¥-I ð.故选:D2. 若复数12i=-z (i 为虚数单位),则z =( )A.21i 55- B.21i 55+ C.33i 55- D.33i 55+【答案】A 【解析】【分析】利用复数的除法化简复数z ,利用共轭复数的定义可得结果.【详解】因为()()12221222555z ++====+--+i i i i i i ,故21i 55z =-,故选:A3. 已知角a 的顶点与原点重合,始边与x 轴正半轴重合,终边经过点()1,2--,则tan 2a =( )A.34B.43C. 34-D. 43-【答案】D 【解析】【分析】利用三角函数定义求解tan a ,使用二倍角公式求解tan 2a .【详解】由三角函数的定义有:2tan 21a -==-,所以22tan 44tan 21tan 33a a a ===---;故选:D .4. 已知函数()f x 的定义域为R ,满足()()()2024f x y f x f y +-+=éùëû,则下列说法正确的是( )A. ()f x 是偶函数 B. ()f x 是奇函数C. ()2024f x +是奇函数 D. ()2024f x +是偶函数【答案】C 【解析】【分析】根据抽象函数,利用奇偶函数的性质直接判断即可.【详解】因为()()()2024f x y f x f y +-+=éùëû,所以令0x y ==,可得()02024f =-,令y x =-,则()()()02024f f x f x ---=,所以()()4048f x f x -=--,则()f x 既不是奇函数又不是偶函数,且()()20242024f x f x -+=-+éùëû,所以()2024f x +是奇函数.故选:C5. 向量()1,2a =r ,()1,1b =-r ,则a r 在b r上的投影向量是( )A.B. C. 11,22æö-ç÷èøD. 12,55æö--ç÷èø【答案】C 【解析】【分析】根据投影向量的定义计算得解.【详解】由题意可知,a r在b r 上的投影向量为:()1111,1,222a b b bb ×æö=-=-ç÷èør r r rr .故选:C .6. 已知函数()21,11,11x x f x x x ì-£ï=í>ï-î,则()()3f f =( )A. 8B. 34-C. 109-D.12【答案】B 【解析】【分析】利用分段函数求值.【详解】因为函数()21,11,11x x f x x x ì-£ï=í>ï-î,所以()113312f ==-,即()()211331224f f f æöæö==-=-ç÷ç÷èøèø,故选:B.7. 已知πcos 5a =,πsin 4b =,3log 2c =,则( )A. b a c <<B. b c a<< C. c a b<< D. c b a<<【答案】D【解析】【分析】根据余弦函数单调性可判断,a b 的大小关系,利用2332>可得3232>>可得,b c 的大小关系,即可得答案.【详解】因为ππ54<,故πππcos cos sin 544>=,即s π4c s πo 5in a b ==>,又2332>,即3232>>333log 3log >\>,即3312,log 2>>,即3l πsin 4og 2b c ==>,故选:D8. 如图,在ABC V中,AC =,AB =,90A Ð=°,若PQ 为圆心为A 的单位圆的一条动直径,则BP CQ ×uuu r uuu r的最大值是( )A. 2B. 4C.D.1【答案】A 【解析】【分析】以A 为坐标原点,,AB AC uuu r uuu r的方向分别为x 轴、y 轴,建立坐标系,设(cos ,sin ),[0,2π)P q q q Î,则(cos ,sin )Q q q --,利用向量的坐标运算及三角恒等变换求解即可.【详解】解:以A 为坐标原点,,AB AC uuu r uuu r的方向分别为x 轴、y 轴,如图所示:则(0,0),A B C ,设(cos ,sin ),[0,2π)P q q q Î,则(cos ,sin )Q q q --,的所以(cos ),(cos ,sin BP CQ q q q q ==---uuu r uuu r,所以cos (cos sin (sin BP CQ q q q q ×=-+-uuu r uuu r1q q =-3sin()1q j =+-,其中tan j =j 为第二象限角),所以当sin()1q j +=时,3sin()1q j +-取最大值,为2.即BP CQ ×uuu r uuu r的最大值为2.故选:A.【点睛】关键点睛:本题的关键是建立坐标系,利用向量的坐标运算求解.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法正确的是( )A. 命题“x "ÎR ,210x x ++>”的否定形式是“x $ÎR ,210x x ++£”B. 当()0,πx Î时,4sin sin y x x=+的最小值为4C. tan 25tan 20tan 25tan 201°+°+°°=D. “ππ4k q =±(k ÎZ )”是“π4k q =(k ÎZ )”的必要不充分条件【答案】AC 【解析】【分析】写出命题“x "ÎR ,210x x ++>”的否定形式判断选项A ;求得当()0,πx Î时,4sin sin y x x=+的最小值判断选项B ;求得tan 25tan 20tan 25tan 20°+°+°°的值判断选项C ;求得“ππ4k q =±(k ÎZ )”与“π4k q =(k ÎZ )”的逻辑关系判断选项D.【详解】选项A :命题“x "ÎR ,210x x ++>”的否定形式是“x $ÎR ,210x x ++£”判断正确;选项B :当()0,πx Î时,(]sin 0,1x Î,令sin x t =,则4y t t=+在(]0,1单调递减,最小值为5,则当()0,πx Î时,4sin sin y x x=+的最小值为5.判断错误;选项C :由tan 25tan 201tan 451tan 25tan 20°+°=°=-°°,可得tan 25tan 20tan 25tan 201°+°+°°=.判断正确;选项D :π4k q =(k ÎZ ),可化为ππ4n q =-或πn q =或ππ4n q =+或ππ2n q =+(n ÎZ ),故“ππ4k q =±(k ÎZ )”是“π4k q =(k ÎZ )”的充分不必要条件.判断错误.故选:AC10. 已知函数()cos f x x x =+,则( )A. 函数()f x 在π2,6π3éùêúëû上单调递减B. 函数()f x 的图象关于点5π,06æöç÷èø对称C. 函数()f x 的图象向左平移m (0m >)个单位长度后,所得的图象关于y 轴对称,则m 的最小值是π3D. 若实数m 使得方程()f x m =在[]0,2π上恰好有三个实数解1x ,2x ,3x ,则1238π3x x x ++=【答案】BCD 【解析】【分析】利用辅助角公式化简函数,根据三角函数的单调性、对称性、奇偶性以及图像问题逐个选项判断即可.【详解】()1πcos 2cos 2sin 26f x x x x x x öæö=+=+=+÷ç÷÷èøø,对于A ,令π2π,63x éùÎêúëû,则ππ5π,636x éù+Îêúëû,所以对于函数sin y x =,π5π,36x éùÎêúëû时,有增有减,A 错;令5π6x =,则5π5ππ2sin 0666f æöæö=+=ç÷ç÷èøèø,B 正确;对于C ,平移后,得π2sin 6y x m æö=++ç÷èø,若图象关于y 轴对称,则πππ,Z 62m k k +=+Î,ππ,Z 3m k k =+Î,C 正确;因为[]0,2πx Î,作出()f x 图像如下图所示,由()f x 与y m =有且只有三个交点,所以32πx =,又因为()2f x =时π3x =,且12,x x 关于直线π3x =对称,所以123π8π22π33x x x ++=´+=,D 正确.故选:BCD11. 设数列{}n a 前n 项和为n S ,满足()()214100n n a S -=-,*N n Î且10a >,10n n a a -+¹(2n ³),则下列选项正确的是( )A. 223n a n =-B. 数列n S n ìüíýîþ为等差数列C. 当10n =时,n S 有最大值D. 设12n n n n b a a a ++=,则当8n =或10n =时,数列{}n b 的前n 项和取最大值【答案】BCD 【解析】【分析】对于A ,由n a 和n S 的关系,求出数列{a n }的通项公式,进行判定;对于B ,由等差数列求和公式求出n S ,由定义判断n S n ìüíýîþ是否为等差数列;对于C ,借助二次函数性质判定;对于D ,由n a 的正负判定12n n n n b a a a ++=正负,即可判定最值.【详解】对于A ,当1n =时,()()21114100a a -=-,解得119a =或121a =-,因为10a >,所以119a =,当2n ³时,由()()214100n n a S -=-,*N n Î得()()21114100n n a S ---=-,*N n Î,所以()()()()22111141004100n n n n a a S S -----=---,整理得()()1120n n n n a a a a --+-+=,因为10n n a a ->+,所以120n n a a --+=,即12n n a a --=-,所以数列{a n }是首项为19,公差为2-的等差数列,所以()()1912221n a n n =+-´-=-+,故A 错误;对于B ,由A 可知,()()21192202n n n S n n n -=+´-=-+,所以22020n S n n n n n-+==-+,所以()()11202011n nS S n n n n+-=-++--+=-+,所以数列n S n ìüíýîþ是首项为19,公差为1-的等差数列,故B 正确;对于C ,因为()222010100n S n n n =-+=--+,*N n Î,所以当10n =时,n S 取得最大值,故C 正确;对于D ,由2210n a n =-+>,得*10N 1n n ££Î,,由2210n a n =-+<,得*N 11n n ³Î,,所以当*1,N 8n n ££Î时,120n n n n b a a a ++=>,当9n =时,9910110b a a a =<,当10n =时,101011120b a a a =>,当*11,N n n ³Î时,120nn n n b a a a ++=<,因为()9910113113b a a a ==´´-=-,()()101133b =´-´-=,所以当8n =或10n =时,数列{b n }的前n 项和取最大值.故D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12. 已知a ,b 都是正数,且230a b ab +-=,则a b +的最小值为______.【答案】1【解析】【分析】由题意可得213b a+=,从而得12(3)3a ba b b a +=++,利用基本不等式求解即可.【详解】解:因为a ,b 都是正数,且230a b ab +-=,所以213b a+=,所以1211211()()(3(3(313333a b a b a b b a b a +=++=++³+=+=+,当且仅当2a bb a=,即b =时,等号成立,将b =,代入230a b ab +-=,得a b ==时,等号成立.故答案为:1+13. 已知函数()21ln 22xf x x ax =-+在区间()2,+¥上没有零点,则实数a 的取值范围是______.【答案】[)2,-+¥【解析】【分析】根据题意转化为()21ln 022x f x x ax =-+>在区间()2,¥+上恒成立,得到ln22xa x x>-在区间()2,¥+上恒成立,设()ln2,22x g x x x x =->,利用导数求得函数的单调性和最值,即可求解.【详解】因为函数()21ln 22x f x x ax =-+在区间()2,¥+上没有零点,且x 趋向正无穷时,()f x 趋向正无穷,所以()21ln 022xf x x ax =-+>在区间()2,¥+上恒成立,所以ln22xa xx>-在区间()2,¥+上恒成立,设()ln2,22x g x x x x =->,可得2221ln 1ln 222()122x xx g x x x ---=-=¢,因为2x >,ln 02x >,可得21ln 202x x --<,所以()0g x ¢<,所以()g x 在区间()2,¥+上单调递减,所以()()22g x g <=-,所以2a ³-,所以,实数a 的取值范围为[2,)-+¥.故答案为:[2,)-+¥.14. 已知函数e 1()e 1x x f x -=+,()(1)2g x f x =-+,则()g x 的对称中心为______;若12321()()()(n n a g g g g n n n n-=+++×××+(*n ÎN ),则数列{}n a 的通项公式为______.【答案】 ①. (1,2) ②. 42n a n =-【解析】【分析】利用中心对称的定义求出()g x 图象的对称中心,利用函数()g x 的对称性及倒序相加法求出通项.【详解】函数e 1()e 1x x f x -=+的定义域为R ,e 11e ()()e 1e 1x x x x f x f x -----===-++,由()(1)2g x f x =-+,得(1)()2g x f x +=+,则(1)(1)()()224g x g x f x f x -+++=-+++=,因此函数()g x 图象的对称中心是(1,2);由(1)(1)4g x g x -+++=,得()(2)4g x g x +-=,当*n ÎN 时,11((24g g n n+-=,12321()()()(n n a g g g g n n n n -=+++×××+,2122231((((n n n n a g g g g n n n n---=+++×××+,于是24(21)n a n =-,即42n a n =-,所以数列{}n a 的通项公式为42n a n =-.故答案为:(1,2);42n a n =-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知在ABC V 中,角A ,B ,C ,所对的边分别为a ,b ,c,)2cos cos cos b B a C c A =+.(1)求角B ;(2)过点A 作AD BC ∥,连接CD ,使A ,B ,C ,D 四点组成四边形ABCD,若AB =,2AC =,CD =,求AD 长.【答案】(1)π6B =(2)1AD =或2.【解析】【分析】(1)利用正弦定理边化角即可求解;(2)利用余弦定理来求解边边角三角形,得到两解.【小问1详解】由)2cos cos cos b B a C c A =+,结合由正弦定理边化角可得)2sin cos sin cos sin cos B B A C C A ×=+,故()2sin cos B B A C ×=+,而()sin sin 0B A C =+>,所以cos B =B ∈(0,π),所以π6B =.【小问2详解】在ABC V中,2AB AC ==,由正弦定理可得sin sin B ACB AB AC Ð=´=因为AD BC ∥,所以DAC ACB Ð=Ð,即sin DAC Ð=在ACD V 中,因为CD AC <3cos 4DAC Ð===,又因为2AC =,CD =,结合定理可得3cos 4DAC Ð==.的解得1AD =或2.16. 已知数列{}n a 的前n 项和为n S ,22n n a S =+,(*n ÎN ).(1)求数列{}n a 的通项公式;(2)记2log n n c a =,数列n n c a ìüíýîþ的前n 项和为n T ,若关于n 的不等式()()221n n n T n l +-£+恒成立,求实数l 的取值范围.【答案】(1)2n n a = (2)3,2éö+¥÷êëø.【解析】【分析】(1)利用条件,再写一式,两式相减,可证得数列{}n a 是首项为2,公比为2的等比数列,即可求出数列{}n a 的通项公式;(2)求出数列的通项,利用错位相减法求出n T ,再将题意转化为可得()max12nn n l éù+£êúëû,记()12n nn n b +=,求出n b 的最大值,即可得出答案.【小问1详解】由22n n a S =+,可得1122n n a S ++=+,两式相减可得:1122n n n a a a ++-=,所以12n n a a +=,令1n =,可得1122a a =+,所以12a =,所以数列{}n a 是首项为2,公比为2的等比数列,其通项公式为1222n n n a -=´=.【小问2详解】2log 2n n c n ==Q ,2n n n c n a \=.可得212222n n n T =++×××+,则2311122222n n n T +=++×××+,两式相减得:231111122111111222222212nnn n n n n T ++éùæö-êúç÷èøêúëû=+++×××+-=--111211222nn n n n +++æö=--=-ç÷èø,所以222n n n T +=-,因()()()22221n nn n n n T n l ++-=£+,则()12nn n l +£,原题意等价于关于n 的不等式()12nn n l +£恒成立,可得()max12nn n l éù+£êúëû,记()12n nn n b +=,令11n n n n b b b b +-³ìí³î,则()()()()()11112221122n n nn n n n n n n n n+-ì+++³ïïí+-ï³ïî,解得2n =或3,则1234b b b b <=>>×××,即当2n =或3n =时,n b 取到最大值32,可得32l ³,所以实数l 的取值范围3,2éö+¥÷êëø.17. 已知函数()223,02ln ,0x x x f x x x ì+-£=í-+>î(1)请在网格纸中画出()f x 的简图,并写出函数的单调区间(无需证明);(2)定义函数()()2241,2012,022f x x x xg x x x ì--+-££ï=í-<£ïî在定义域内的0x ,若满足()00g x x =,则称0x 为函数()g x 的一阶不动点,简称不动点;若满足()()00g g x x =,则称0x 为函数()gx 的二阶不动点,简称为稳定点.①求函数()g x 的不动点;②求函数()g x 的稳定点.【答案】(1)作图见解析,单增区间为[]1,0-,()0,¥+,()f x 的单减区间为(],1-¥- (2)①23-;②32-,23-和1.【解析】【分析】(1)根据分段函数解析式,画出相应的函数图像,结合函数图像写出单调区间.(2)结合分段函数解析式,由不动点,稳定点的定义计算分析求解.【小问1详解】()f x 的单增区间为[−1,0],(0,+∞),()f x 的单减区间为(],1-¥-.【小问2详解】易知()222,2012,022x x g x x x ---££ìï=í-<£ïî①当020x -££时,()0022g x x =--,令()00g x x =得0022x x --=,解得023x =-;当002x <£时,()200122g x x =-,令()00g x x =得200122x x -=,解得01x =综上所述:函数()g x 的不动点为23-.②当021x -£<-时,()0022g x x =--,且()002g x <£,则()()()()2200000122222242g g x g x x x x =--=---=+令()()00g g x x =得,200024x x x +=,解得032x =-或00x =(舍);当010x -££时,()0022g x x =--,且()020g x -££,则()()()()000022222242g g x g x x x =--=----=+令()()00g g x x =,得0042x x +=,解得023x =-;当002x <£时,()200122g x x =-,且()020g x -<£,则()()2220000112222222g g x g x x x æöæö=-=---=-+ç÷ç÷èøèø,令()()00g g x x =,得2002x x -+=,解得01x =或02x =-(舍)综上所述:函数()g x 的稳定点有3个,分别是32-,23-和1.18. 摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色,如图,某摩天轮最高点距离地面高度为100m ,转盘直径为90m ,均匀设置了依次标号为1~48号的48个座舱.开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,开始转动min t 后距离地面的高度为m H ,转一周需要24min .(1)求在转动一周的过程中,H 关于t 的函数解析式;(2)若甲、乙两人分别坐在1号和9号座舱里,在运行一周的过程中,求两人距离地面的高度差h (单位:m )关于t 的函数解析式,并求t 为何值时高度差h 最大.(参考公式:sin sin 2cos sin22q jq jq j +--=,cos cos 2sinsin22q jj qq j +--=)【答案】(1)π5545cos12H t =-,[]0,24t Î. (2)π2π45cos 123h t æö=-ç÷èø,[]0,24t Î;8min t =或20mint =【解析】【分析】(1)据题意,设(),π2sin 0H A t B j w j w æö=++>çè£÷ø,由条件确定,,,A B w j 的值;(2)由题意,1号与9号座舱的角度差为π3,不妨假设1号座舱出发早于9号座舱,min t 时1号与9号的高度分别为1H ,9H ,进而求出高度差π2π45cos 123h t æö=-ç÷èø,由余弦函数性质即可求.【小问1详解】设(),π2sin 0H A t B j w j w æö=++>çè£÷ø,则2π12πT w ==,令0t =时,则sin 1j =-,π2j =-,又10010A B A B +=ìí-+=î,解得4555A B =ìí=î,所以πππ45sin 555545cos 12212H t t æö=-+=-ç÷èø,[]0,24t Î.【小问2详解】由题意得:1号与9号座舱的角度差为π3.不妨假设1号座舱出发早于9号座舱,min t 时1号与9号的高度分别为1H ,9H ,则1ππ45sin 55122H t æö=-+ç÷èø,9ππππ5π45sin 5545sin 551223126H t t æöæö=--+=-+ç÷ç÷èøèø,所以高度19πππ5π45sin sin 122126h H H t t æöæö=-=---ç÷ç÷èøèø,由参考公式得,上式π2πππ2π90cos sin 45cos 1236123t t æöæö=-=-ç÷ç÷èøèø从而高度差π2π45cos 123h t æö=-ç÷èø,[]0,24t Î;当π2πcos 1123t æö-=ç÷èø,即π2ππ123t k -=,N k Î时,解得812t k =+,N k Î,又[]0,24t Î,所以8min t =或20min t =,此时高度差h 的最大值为45m .19. 已知 a ÎR ,函数()ln af x x x=+,()ln 2g x ax x =--.(1)当()f x 与()g x 都存在极小值,且极小值之和为0时,求实数a 的值;为(2)若()()()12122f x f x x x ==¹,求证:12112x x a+>.【答案】(1)1 (2)证明见解析【解析】【分析】(1)分别对()f x ,()g x 求导,讨论0a £和0a >,得出()f x 和()g x 的单调性,即可求出()f x ,()g x 的极小值,即可得出答案.(2)令1211,m n x x ==,由()()()12122f x f x x x ==¹可得1ln ln m na m n -=-,要证12112x x a +> ,不妨设0n m <<,所以只要证()2lnm n m n m n ->+,令()1m t t n =>,()()()21ln 11t h t t t t -=->+,对()h t 求导,得出()h t 的单调性,即可证明.小问1详解】()f x ,()g x 定义域均为(0,+)¥,()221,a a xf x x x x-+¢=-+=, 当0a £时,则()0f x ¢>,()f x 在(0,+)¥单调递增,无极值,与题不符;当0a >时,令()=0f x ¢,解得:=x a ,所以()f x 在()0,a 单调递减,在(),a +¥单调递增,∴在=x a 取极小值,且()1ln f a a =+; 又()1g x a x¢=-,当0a £时:()0g x ¢<,()g x 在(0,+)¥单调递减,无极值,与题不符;当0a >时:令()=0g x ¢,解得:1x a=,所以()g x 在10,a æöç÷èø单调递减,在1,a æö+¥ç÷èø单调递增,∴在1x a =取极小值,且11ln g a a æö=-+ç÷èø; 由题:,解得:=1a .【小问2详解】【令1211,m n x x ==,因为12x x ¹,所以m n ¹,由()()()12122f x f x x x ==¹可得:()()1122+ln =2ln =21ln =22+ln =2ax x am m an n a x x -Þ-ìïìïïííïîïïîL L ,(1)-(2)得:()ln ln a m n m n -=-,所以1ln ln m n a m n-=-,要证:12112x x a +> ,只要证:2m n a +> ,只要证:2ln ln m n m n m n-+>-, 不妨设0n m <<,所以只要证:()2lnm n m n m n->+, 即证:21ln 1m m n m n næö-ç÷èø>+,令()1m t t n =>,只要证:()()21ln 11t t t t ->>+,令()()()21ln 11t h t t t t -=->+, ()()()()()()()222221211114111t t t h t t t t t t t +---¢=-=-=+++,所以()h t 在()1,t Î+¥上单调递增,∴, 即有()()21ln 11t t t t ->>+成立,所以12112x x a +>成立.。
陕西师范大学附属中学2022-2023学年高三上学期期中理科数学试题含解析
A. B. C.2D.
【答案】B
【解析】
【分析】将 代入双曲线方程求出点 的坐标,通过解直角三角形列出三参数 , , 的关系,求出离心率的值.
【详解】由于 轴,且 在第一象限,设
所以将 代入双曲线的方程得 即 ,
7.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为Sn,则()
A.Sn无限大B.Sn<3(3+ )m
C.Sn=3(3+ )mD.Sn可以取100m
17.已知 中,角A,B,C的对边分别为a,b,c, .
(1)若 ,求 的值;
(2)若 的平分线交AB于点D,且 ,求 的最小值;
【答案】(1) ;(2)4
【解析】
【分析】(1)由 ,利用正弦定理将边转化为角得到 ,再根据 ,有 ,然后利用两角差的正弦公式展开求解.
(2)根据 的平分线交AB于点D,且 ,由 ,可得 ,化简得到 ,则 ,再利用基本不等式求解.
【详解】设 , ,
则 , ,
如图所示,
连接 交 于点 ,连接 、 ,
因为 平面 , 平面 ,
所以 ,而 ,所以四边形 是直角梯形,
则有 ,
, ,
所以有 ,
故 ,
因为 平面 , 平面 ,
所以 ,又因为 为正方形,所以 ,
而 平面 ,
所以 平面 ,即 平面 ,
,
所以 , ,
故答案为:③④.
安庆一中高三年级第一学期期中考试数学试卷(理)
安庆一中高三年级第一学期期中考试数学试卷(理)一、选择题 1、已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则M N = ( )A 、{1}x x >-B 、{1}x x <C 、{11}x x -<<D 、φ 2、已知数列{}n a 的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( ) A 、9 B 、8 C 、7 D 、6 3、函数2()f x ax b =-在(,0)-∞内是减函数,则,a b 应满足 ( ) A 、00a b <=且 B 、0a b R >∈且 C 、00a b <≠且 D 、0a b R <∈且 4、已知如果1N 能拉长弹簧1cm ,为了将弹簧拉长6cm ,所耗费的功为 ( ) A 、0.18J B 、0.26J C 、0.12J D 、0.28J 5、设函数()m f x x ax =+的导函数()21f x x '=+,则数列*1{}()()n N f n ∈的前n 项和是 ( ) A 、1n n + B 、21n n ++ C 、1n n - D 、1n n + 6、若a 是12b +与12b -的等比中项,则22aba b+的最大值为 ( )A 、15 B 、4 C 、5 D 、27、已知()f x 为R 上的减函数,则满足1()(1)f f x<的实数x 的取值范围是 ( ) A 、(1,1)- B 、 (0,1) C 、 (1,0)(0,1)- D 、(,1)(1,)-∞-+∞8、设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图像画在同一个直角坐标系中,不可能的是 ( )9、函数2()4f x x x =-+在[,]m n 上的值域是[5,4]-,则m n +取值所成的集合是( ) A 、[0,6] B 、 [1,1]- C 、 [1,5] D 、[1,7] 10、已知定义在R 上的函数()f x 对任意的实数12,x x 满足关系1212()()()2f x x f x f x +=++,数列{}n a 满足10a =,且对任意*n N ∈,()n a f n =,则(2009)f 的值为 ( ) A 、2009 B 、2010 C 、4014 D 、4016A B C D安庆一中高三年级第一学期期中考试数学试卷(理)二、填空题11、已知数列的通项52n a n =-+,则其前n 项的和n S = ; 12、函数(1)()()x x a f x x++=为奇函数,则a = ;13、方程96370xx-⋅-=的解是 ; 14、定义运算*a b 为:()*()a ab a b ba b ≤⎧=⎨>⎩,例如1*21=,则21*log x 的取值范围是;15、若干个能唯一确定一个数列的量称为该数列的“基本量”,设{}n a 是公比为q 的无穷等比数列,下列{}n a 的四组量中,一定能成为该数列“基本量”的是第 组(写出所有符合要求的组号)。
江苏省徐州市2024-2025学年高三上学期11月期中抽测数学试题(含解析)
2024—2025学年度第一学期高三年级期中抽测数学试题1.答题前,考生务必将自己的姓名、准考证号等填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将各答案写在答题卡上写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则( )A. B. C. D.2.复数的虚部为( )A.1B.C.D.3.若向量,则向量在向量上的投影向量为( )A. B. C. D.4.已知圆锥的母线长为13,侧面积为,则该圆锥的内切球的表面积为( )A.B. C. D.5.等比数列的各项均为正数,若,则( )A.588B.448C.896D.5486.在直角坐标系中,已知直线与圆相交于两点,则的面积的最大值为( )A.1C.27.已知,则( )A.B. C. D.{}{}230,3,1,0,1,2,3A xx x B =-≤=--∣A B ⋂={}1,2,3{}0,1,2,3{}3,1--{}3i 11i-+1-i i-()()2,1,3,4a b == ab 68,55⎛⎫ ⎪⎝⎭34,55⎛⎫ ⎪⎝⎭34,55⎛⎫- ⎪⎝⎭65π100π94000π81400π91000π81{}n a 1234327,2a a a a a a ++==+789a a a ++=xOy 1y kx =+224x y +=,A B AOB ()()11sin ,sin 23αβαβ+=-=22cos cos αβ-=136136-1616-8.已知定义在上的函数满足,且,则( )A.B.C.是增函数D.是减函数二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数,则( )A.的图象关于点对称B.的图象可由的图象向左平移个单位长度得到C.在区间单调递减D.当时,的值域为10.已知正方体的棱长为2,点分别是棱的中点,则( )A.直线与直线的夹角为B.直线与平面C.点到平面D.三棱锥11.如图,由函数与的部分图象可得一条封闭曲线,则()()0,∞+()f x ()()()f xy xf y yf x =+()e e f =()22e 1ef =()1010e 10e f =()f x ()f x x()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭()f x π,03⎛⎫⎪⎝⎭()f x ()2sin2g x x =π3()f x ππ,122⎛⎫⎪⎝⎭π0,2x ⎛⎫∈ ⎪⎝⎭()f x 2⎤⎦1111ABCD A B C D -,M N 111,CC C D MN 1AD 60MN 11AB D A 1B MN 11C B MN -e e 1x y =-+()ln e 1y x =+-ΓA.有对称轴B.的弦长的最大值为C.直线被D.的面积大于三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量服从二项分布,若,则__________.13.在四面体中,是正三角形,是等腰直角三角形,,平面平面,点在棱上,使得四面体与四面体的体积之比为,则二面角的余弦值为__________.14.已知双曲线上所有点绕原点逆时针旋转角所得曲线的方程为,则的虚轴长为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)下表提供了某厂进行技术改造后生产产品过程中记录的产能(单位:)与相应的生产能耗(单位:标准煤)的几组对应数据:3456标准煤3.5455.5(1)求关于的经验回归方程;(2)已知该厂技术改造前产品的生产能耗为标准煤,试根据(1)中求出的经验回经验回归方程,预测该厂技术改造后产品的生产能耗比技术改造前降低了多少标准煤.参考公式:ΓΓx y t +=Γ)e 2-Γ2e 4-ξ()10,B p ()3111E ξ+=p =ABCD ABC ACD DA DC =ACD ⊥ABC E BD ACDE ABCD 1:2D AC E--()2222:10,0x y C a b a b-=>>C θ2268x y xy ++=C x t y t /tx /t y y x ˆˆˆy bx a =+100t 90t 100t t 1221ˆ()ˆˆ.ni i i ni i x y nxy b x n x ay bx ==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑16.(15分)已知椭圆,短轴的一个端点与两个焦点构成的三角形的面积为4.(1)求的方程;(2)设直线与交于两点,点,求.17.(15分)已知数列满足为常数.(1)若,求;(2)若的各项均为正数,证明:.18.(17分)在中,角的对边分别为,且.(1)求;(2)点分别在边上,且平分平分,.①求证:;②求.19.(17分)设定义在上的函数的导函数为.如果存在实数和函数,使得,其中对任意实数恒成立,则称函数具有性质.(1)求证:函数具有性质;(2)已知函数具有性质,给定实数,,其中.证明:;(3)对于函数和点,令,若点满足在处取得最小值,则称是的“点”.已知函数具有性质,点()2222:10x y C a b a b +=>>C 22y x =+C ,A B 11,04M ⎛⎫- ⎪⎝⎭MA MB ⋅ {}n a (*111,n nd n d a a +-=∈N )1211,3a a ==11nk k k a a +=∑{}n a 212n n n a a a +++≤ABC ,,A B C ,,a b c ()1cos sin b C B +=C ,P Q ,AC AB BP ,ABC CQ ∠ACB ∠BC BQ PB PC +=+AB APBC PC=ABC ∠R ()f x ()f x 'k ()x ϕ()()()244f x x kx x k ϕ=-+'()0x ϕ>x ()f x ()W k ()3212413f x x x x =-++()1W ()g x ()2W ()22121212,,sincos x x x x x x αθθ<=+2212cos sin x x βθθ=+θ∈R ()()()()12g g g x g x αβ-≤-()h x (),P a b ()()22()()L x x a h x b =-+-()()00,Q x h x ()L x 0x x =Q P h ()h x ()W k.若对任意的,都存在曲线上的一点,使得既是的“点”,又是的“点”,求的取值范围.()()()()()()121,,1,P t h t t P t h t t ϕϕ-++-t ∈R ()y h x =Q Q 1P h 2P h k2024—2025学年度第一学期高三年级期中抽测数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】,,选B.2.【答案】A 【解析】,虚部为1,选A.3.【答案】A【解析】在上的投影向量,选A.4.【答案】C【解析】,内切球半径,选C.5.【答案】B【解析】,则舍或2,选B.6.【答案】D 【解析】D.7.【答案】D【解析】,选D.8.【答案】B【解析】,则,则{}03A xx =≤≤∣{}0,1,2,3A B ⋂=()()1i 1i 1i 1i i 1i 1i 22-+--+-+++===+a b()210683,4,2555||a b b b ⋅⎛⎫== ⎪⎝⎭π13π65π,5,12rl r r h ==∴==1121021021313103R ⨯⨯⨯==++2100400π4π4π99S R ==⋅=4322a a a =+222,20,1q q q q q =+--==-()6789123764448a a a a a a q ++=++=⨯=111,22AOB d AB S AB d =≤==⋅=⋅ =≤()()()()2211111sin ,sin ,cos cos sin sin 23236αβαβαβαβαβ+=-=-=-+-=-⨯=-()()()f xy xf y yf x =+()()()(),ln f xy f y f x f x x xyyx x=+=,即对.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】AC 【解析】关于对称,A 对.向左平移个单位变为错.,则的一个单调减区间而在单调递减,C 对.,则.D 错.选AC.10.【答案】ABD【解析】与的夹角为与的夹角即为正三角形,,A 对.面与平面,B 对.设平面的法向量()()1010ln ,ee10f x x x f ==⋅()1010e 10,B ef =()π0,3f f x ⎛⎫=⎪⎝⎭π,03⎛⎫⎪⎝⎭()g x π3()π2π2sin 2,B 33g x x f x ⎛⎫⎛⎫+=+≠ ⎪ ⎪⎝⎭⎝⎭ππ3π2232x <+<()π7π,1212x f x <<∴π7π,1212⎛⎫⎪⎝⎭()πππ7π,,,1221212f x ⎛⎫⎛⎫⊂∴⎪ ⎪⎝⎭⎝⎭ππ,122⎛⎫⎪⎝⎭π02x <<ππ4ππ02π,2,2sin 223333x x x ⎛⎫<<<+<<+≤ ⎪⎝⎭MN ∥1,CD MN 1AD 1CD 1AD 11,AD C AD C ∠ 160AD C ∠∴= 1CA ⊥()()111111,2,2,2,0,2,2,cos ,AB D CA D C CA D C =-=-==MN ∴11AB D 1B MN ()100,,,,200n MN y z n x y z x z n B M ⎧⋅=-+=⎧⎪=∴⎨⎨--=⋅=⎩⎪⎩不放设,则错.对于D ,的外接圆是以为直径的圆上,设圆心为D 对.11.【答案】ACD【解析】由的反函数为,两者关于对称,A 正确.对于B ,,令在上单调递减;上单调递增,注意掉在和有一个零点,另一个零点为,B 错.对于与曲线对称轴垂直,如图,只需考察曲线上到距离大最大值即可,找出过与曲线相切且与平行的点即可,令,令,此时到的距离直线被正确.1x =()182,2,1,2,2,,C 3AB n z y n d n ⋅=-=-=--==1C MN MN ,P MN =22222132,,12(2)2OP R R R OP R ⎧+=⎪⎪∴==⎨⎪-+>⎪⎩()e e 1e e 1,ln e 1,e e 1xxxy y x y y =-+⇒=+-∴=+-∴=-+()ln e 1y x =+-y x =e e 1e e 1x x y x y x⎧=-+⇒-=-⎨=⎩()()e e 1,e 1x x h x x h x =+'--=-()h x (),0∞-()0,∞+()()()()120,12e 010,e h h h h x ->-=+-<=∴()2,1--0x ()()001,1,1,,A B x y ∴)01AB x ∴=->∴C,x y t +=ΓAB e e 1x y =-+P y x =P AB P ()e e 1xf x =-+()e 10x f x x ==⇒='()000,2e ,P P -y x =d =∴x y t +=Γ)e 2,C -对于D ,ВD 正确,选:ACD.三、填空题:本题共3小题,每小题5分,共15分.12.【答案】【解析】13.【答案】【解析】设,则,取中点为中点平面平面二面角为.14.【答案】4【解析】设在曲线上,也在曲线上且也在曲线上,曲线的两条对称轴分别为()()()()0Γ0122e 2e 212e 22P AB A B S S x x x ∴>=⋅-⋅-=-->- ( )021,x -<<-∴13()()110,,10,313130111,3B p E p E E p p ξξξξ~=+=+=+=∴=122DA DC ==AC =AC 1,2B ACD E ACD V BF DF BD E V --====∴BD ACD ⊥,ABC BD DE EF ∴===D AC E --1,cos 2DFE DFE ∠∠∴=(),P x y 2268x y xy ++=(),P y x ∴'2268x y xy ++=(),P y x ''--∴2268x y xy ++=y x=±而与曲线没有交点,为曲线实轴所在的直线联立实轴端点为,的虚轴长为4.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)(2),即改造后预测生产能耗为.预测该厂改造后100t产品的生产能耗比技术改造前降低了标准煤.16.【解析】(1)由题意,椭圆:.(2),解得或.17.【解析】(1).∴y x=-y x∴=221,68y xxx y xy=⎧⇒=±∴⎨++=⎩()()1,1,1,1--a∴=2c b⇒==C∴44114.5, 4.5,84.5,4 3.5i i i ii ix y x y x y xy=====-=∑∑4213.5ˆˆ45,0.7, 4.50.7 4.5 1.355iix x b a=-=∴===-⨯=∑0.7 1.5ˆ3.y x∴=+100,71.35x y==71.35t9071.3518.65-=∴18.65t222124,222ca ab c bca b c⎧=⎪⎧⎪=⎪⎪⋅=∴=⎨⎨⎪⎪=⎩=+⎪⎪⎩22184x y+=2222184y xx y=+⎧⎪⎨+=⎪⎩2xy=⎧⎨=⎩()1616149,0,2,,14999xA By⎧=-⎪⎪⎛⎫--⎨ ⎪⎝⎭⎪=-⎪⎩113514113514637,2,24369436914416MA MB⎛⎫⎛⎫⋅=⋅-=⨯-⨯=-=-⎪ ⎪⎝⎭⎝⎭()12111111,,2,121213n n na a n na a a+==∴-=∴=+-=-1111111,21(21)(21)22121n nnk kan k k k k==⎛⎫∴=∴=-⎪--+-+⎝⎭∑∑11111111112335212122121nn n n n⎛⎫⎛⎫=⋅-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭(2)整理得显然成立,.18.【解析】(1).(2)①证明:在和中分别使用正弦定理(2)同理()()1111111,0,0,11n n n d a d a a a n d a =+->≥∴=+-()()21111211111211n n n a a a nd n d n d a a a +++≤⇔≤+++-++2221111nd nd d a a ⎛⎫⎛⎫+≥+- ⎪ ⎪⎝⎭⎝⎭212n n n a a a +++∴≤()sin 1cos sin ,sin 0B C C B B +=> ππcos 12sin 1,63C C C C ⎛⎫-=⇒-== ⎪⎝⎭ABP BCP sin 4sin ,sin 3sin ABAP AB AP BC PC BC PC ∠θ∠θ⎧=⎪⎪⇒⇒=⎨⎪=⎪⎩①①②②()sin60sin sin60sin sin 60PB PC BC PB PCθθθ+===++ ()()1sin30sin 230sin 2302BC BQ BC BQθθ+==+++ ()()1sin 2302sin 230BC BQ PB PC θθ+++=+⇒=+19.【解析】(1)取,则具有性质.(2)具有性质函数使得时对恒成立在上单调递增,当且且另一方面,同理(3)设,,()1260sin 302θθ⇒+=<<+()12cos 602θ∴+==- ()()()22cos 3011cos 602cos 602θθθ-∴+=⇒--=()()()2cos 30sin 602602θθθ∴-+-=- ()()2cos 302cos 902θθ⇒-=- 30290,40,80ABC θθθ∠-=-∴==()()2244144f x x x x x '=-+=⋅-+()1x ϕ=()()()()244,f x x x x f x ϕ=⋅-+∴'()1W ()g x ()2,W ∴∃()x ϕ()()()2248g x x x x ϕ=-+'()()22240x x x ϕ=⋅-+>x ∀∈R ()g x ∴R ()()1212,x x g x g x <∴< 2222222111sin cos ,cos sin x x x x x x αθθβθθ≤+=≥+=()()()()()()()()2121,,g g x g g x g g g x g x αβαβ∴≤≥∴-≤-22111sin cos x x x αθθ≥+=2x β≤()()()()()()()()1212,,g g x g g x g g g x g x αβαβ∴≥≤∴-≥-()()()()()()2112g g g x g x g x g x αβ∴-≤-=-()()()()221(1)[]L x x t h x h t t ϕ=-++--()()()()222(1)[]L x x t h x h t t ϕ=--+-+()()()()()()1212L x x t h x h t t h x ϕ⎡⎤=-++--⎦'⎣'对,都存在曲线上的一点,使得既是的点又是的点设既是,也是的最小值点,两函数定义域为也为两函数极小值点,①,②,①-②具有性质恒成立故恒成立综上:的取值范围为.()()()()()()2212L x x t h x h t t h x ϕ⎡⎤=--+-+⋅⎦'⎣' t ∀∈R ()y h x =Q Q 1P h 2P h ()000,,P x y x ∴()1L x ()2L x 0,x ∴R ()()10200L x L x ∴==''()()()()()0002120x t h x h x h t t ϕ⎡⎤⇒-++--=⎣⎦'()()()()()0002120x t h x h x h t t ϕ⎡⎤---+⎣'+=⎦()()()()()00044010h x t h x t h x ϕϕ⇒-⋅='⇒'⋅'⇒=>()h x ()()()0,00W k t h x ϕ∴>⇒>'2440kx x k -+>2116160k k k >⎧⇒⇒>⎨-<⎩k ()1,∞+。
安徽省黄山市屯溪2024-2025学年高三上学期11月期中数学试题含答案
屯溪2024-2025学年度第一学期期中质量检测高三数学试题(答案在最后)命题人:(考试时间:120分钟满分:150分)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若全集{}{}{}0,1,2,3,4,0,1,4,1,3U A B ===,则()U A B =ð()A.{}2,3 B.{}1,3,4 C.{}1,2,3 D.{}0,1【答案】C 【解析】【分析】根据给定条件,利用补集、并集的定义直接求解即可.【详解】由{}{}0,1,2,3,4,0,1,4U A ==,得{2,3}U A =ð,而{}1,3B =,所以{}3()1,2,U B A = ð.故选:C2.已知命题2:1,1p x x ∀<->,则p ⌝是()A.21,1x x ∃<-≤B.21,1x x ∀≥->C.21,1x x ∀<->D.21,1x x ∃≤-≤【答案】A 【解析】【分析】运用全称命题的否定,否定结论,全称量词换成存在量词即可解题.【详解】全称命题的否定,否定结论,全称量词换成存在量词.则G ∀<−1,2>1,则p ⌝是21,1x x ∃<-≤.故选:A.3.设各项均为正数的等比数列{}n a 满足41082a a a ⋅=,则()2121011log a a a a 等于()A.102B.112 C.11D.10【答案】C 【解析】【分析】等比数列中若+,,,N m n p q ∈,m n p q +=+,则m n p q a a a a ⨯=⨯.我们先根据此条性质和已知条件求出6a 的值,最后运用对数性质计算即可.【详解】在等比数列{}n a 中,8462108a a a a a ==⋅,得62a =.根据等比数列性质,2211121039485762a a a a a a a a a a a ======.所以1210111112103948576()()()()()a a a a a a a a a a a a a a a = 5116262()a a ==⨯,1121210112log ()log (2)11a a a a == .故选:C.4.若()()220,cos 2,cos 2m n m n αβαβ-≠-=+=,则tan tan αβ=()A.2m nm n +- B.m n m n +-C.2m n m n-+ D.m n m n-+【答案】D 【解析】【分析】由两角和差的余弦展开式求出cos cos ,sin sin m n m n αβαβ=+=-,再由同角的三角函数关系求解即可;【详解】因为()()cos cos cos sin sin 2,cos cos cos sin sin 2m n αβαβαβαβαβαβ-=+=+=-=,所以cos cos ,sin sin m n m n αβαβ=+=-,所以sin sin tan tan cos cos m nm nαβαβαβ-==+.故选:D.5.已知函数()f x 与其导函数()f x '的图象的一部分如图所示,则关于函数()()e xf xg x =的单调性说法正确的是()A.在(1,1)-单调递减B.在(0,2单调递减C.在[2单调递减 D.在[1,2]单调递减【答案】B 【解析】【分析】根据图象判断出过点()2,0的为()f x 的图象,过点()1,0的为导函数()f x '的图象,求导得到()()()exf x f xg x '-'=,()g x在(1,2x ∈-上单调递减,在2x ⎡⎤∈⎣⎦上单调递增,得到答案.【详解】从图象可以看出过点()2,0的为()f x 的图象,过点()1,0的为导函数()f x '的图象,()()()e xf x f xg x '-'=,当(1,2x ∈-时,()()0f x f x '-<,故()0g x '<,()()ex f x g x =在(1,2x ∈-上单调递减,当2x ⎡⎤∈-⎣⎦时,()()0f x f x '-≥,故()0g x '≥,()()ex f x g x =在2x ⎡⎤∈⎣⎦上单调递增,ACD 错误,B 正确,故选:B6.若对任意实数b ,关于x 的方程()212ax b x x ++-=有两个实根,则实数a 的取值范围是()A.02a <≤B.01a <≤ C.10a -≤< D.11a -≤≤且0a ≠【答案】B 【解析】【分析】根据方程有两个根,利用判别式可转化为关于实数b 的不等式恒成立,即可求解.【详解】关于x 的方程()212ax b x x ++-=有两个实根,即方程()2120ax b x b +-+-=有两个实根,所以()()210Δ1420a b a b ≠⎧⎪⎨=---≥⎪⎩,即()20212810a b a b a ≠⎧⎨-+++≥⎩对任意实数b 恒成立,所以()()220Δ4124810a a a ≠⎧⎪⎨=+-+≤⎪⎩,即200a a a ≠⎧⎨-≤⎩,得01a <≤.故选:B.7.直线1y =被函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象所截得线段的最小值为π,则ω=()A.13B.23C.32D.3【答案】B 【解析】【分析】由()π2sin 16f x x ω⎛⎫=+= ⎪⎝⎭,得到ππ2π,Z 66x k k ω+=+∈或π5π2π,Z 66x k k ω+=+∈,再结合条件,即可求解.【详解】由()π2sin 16f x x ω⎛⎫=+= ⎪⎝⎭,得到π1sin 62x ω⎛⎫+= ⎪⎝⎭,所以ππ2π,Z 66x k k ω+=+∈或π5π2π,Z 66x k k ω+=+∈,又直线1y =被函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象所截得线段的最小值为π,显然最小值在一个周期内取到,不妨取0k =,得到0x =或2π3x ω=,所以2ππ3ω=,解得23ω=,故选:B.8.已知定义在(0,)+∞上的函数()f x 满足(()()xf yf x xf y y=-,且当1x >时,()0f x >,则()A.2()2()f x f x ≥B.322()()()f x f x f x ≥C.2()2()f x f x ≤D.322()()()f x f x f x ≤【答案】D 【解析】【分析】应用赋值法构造出23(),(),()f x f x f x 的等量关系,再结合不等式性质判断即可.【详解】由题意,0,0x y >>,()()()x f yf x xf y y=-.赋值1x y ==,得1(1)(1(1)1(1)01f f f f ==⋅-⋅=;赋值1x =,得1(1)1()()f yf f y f y y ⎛⎫=-⋅=- ⎪⎝⎭,即1()f f x x ⎛⎫=- ⎪⎝⎭,当1x >时,()0f x >,当01x <<时,则11x >,所以1()0f f x x ⎛⎫=-> ⎪⎝⎭,即()0f x <;赋值2x y =,得()222()()y f f y yf y y f y y ⎛⎫==- ⎪⎝⎭,解得21()()f y y f y y ⎛⎫=+ ⎪⎝⎭,即21()()f x x f x x ⎛⎫=+⎪⎝⎭;AC 项,由21()()f x x f x x ⎛⎫=+⎪⎝⎭,0x >,得()212()2()f xf x x f x x ⎛⎫-=+- ⎪⎝⎭,其中由0x >,可知1220x x +-≥=,当1x >时,1()0,2()0f x x f x x ⎛⎫>+-≥ ⎪⎝⎭,即()22()f x f x ≥;当01x <<时,1()0,2()0f x x f x x ⎛⎫<+-≤ ⎪⎝⎭,即()22()f x f x ≤;故AC 错误;BD 项,21,x x y x ==,得232222111()()()()1x f f x f x x f f x x f x x x x x ⎛⎫ ⎪⎛⎫==-=+ ⎪ ⎪⎝⎭ ⎪⎝⎭;又21()()f x x f x x ⎛⎫=+ ⎪⎝⎭,所以3222211()()()1()f x f x x f x x f x x x ⎛⎫=+=++ ⎪⎝⎭,则322222222211()()()1()2()()0f x f x f x x f x x f x f x x x ⎛⎫⎛⎫-=++-++=-≤ ⎪ ⎪⎝⎭⎝⎭,故322()()()f x f x f x ≤,且()f x 不恒为0,故B 错误,D 正确.故选:D.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错或不选的得0分)9.给出下列四个关系式,其中正确的是()A.2024∈RB.0∈∅C.∈Z QD.∅{}【答案】AD 【解析】【分析】根据R,Z,Q 表示的数集,结合空集的性质、真子集的定义逐一判断即可.【详解】因为2024是实数,因此选项A 正确;因为空间集中没有元素,显然0∈∅不正确,因此选项B 不正确;因为所有的整数都是有理数,因此整数集是有理数集的子集,所以选项C 不正确;因为空集是任何非空集合的真子集,所以选项D 正确,故选:AD10.(多选)下列说法不正确的是()A.已知{}{}260,10A xx x B x mx =+-==-=∣∣,若B A ⊆,则m 组成集合为11,23⎧⎫-⎨⎩⎭B.不等式23208kx kx +-<对一切实数x 恒成立的充分不必要条件是30k -<<C.()f x 的定义域为()1,2-,则()21f x -的定义域为()3,3-D.不等式20ax bx c ++>解集为()(),23,-∞-⋃+∞,则0a b c ++>【答案】ACD 【解析】【分析】A 选项,考虑B =∅时,0m =,满足要求,可判断A ;B 选项,考虑0k =时,0k ≠两种情况讨论可得充要条件为30k -<≤,可判断B ;C 选项,由1212x -<-<,可求定义域判断C ;D 选项,根据不等式的解集得到0a >且2,3-为方程20ax bx c ++=的两个根,由韦达定理得到的关系,,a b c ,计算可判断D.【详解】A 选项,{}2,3A =-,又{}10B xmx =-=∣,当0m =时,B =∅,满足B A ⊆,当0m ≠时,1B m ⎧⎫=⎨⎬⎩⎭,当12m =时,{}2B =,满足B A ⊆,当13m =-时,{}3B =-,满足B A ⊆,综上,m 组成集合为110,,23⎧⎫-⎨⎬⎩⎭,A 说法不正确;B 选项,当0k =时,不等式为308-<恒成立,可得23208kx kx +-<对一切实数x 恒成立,当0k ≠时,由23208kx kx +-<对一切实数x 恒成立,可得20342()08k k k <⎧⎪⎨-⨯⨯-<⎪⎩,解得30k -<<,综上所述:不等式23208kx kx +-<对一切实数x 恒成立的充要条件是30k -<≤,所以不等式23208kx kx +-<对一切实数x 恒成立的充分不必要条件是30k -<<,故B 正确;C 选项,因为()f x 的定义域为()1,2-,所以1212x -<-<,解得302x <<,故()21f x -的定义域为30,2⎛⎫⎪⎝⎭,C 说法不正确;D 选项,不等式20ax bx c ++>解集为−∞,−2∪3,+∞,则0a >且2,3-为方程20ax bx c ++=的两个根,故23,23b c a a-+=--⨯=,则,6b a c a =-=-,故60a b c c a ++==-<,D 说法不正确.故选:ACD.11.如图,心形曲线22:()1L x y x +-=与y 轴交于,A B 两点,点P 是L上的一个动点,则()A.点,02⎛⎫⎪ ⎪⎝⎭和−1,1均在L 上B.点PC.O 的最大值与最小值之和为3D.PA PB +≤【答案】ABD 【解析】【分析】点代入曲线判断A ,根据曲线分段得出函数取得最大值判断B ,应用三角换元再结合三角恒等变换求最值判断C ,应用三角换元结合椭圆的方程得出恒成立判断D.【详解】令0x =,得出1y =±,则()()1,0,1,0,A B -对于A :2x =时,21122y ⎛⎫+-= ⎪ ⎪⎝⎭得0y =或y =,=1x -时,()2111y +-=得1y =,所以,02⎛⎫ ⎪ ⎪⎝⎭和()1,1-均在L 上,A 选项正确;对于B :因为曲线关于y 轴对称,当0x ≥时,()221x y x+-=,所以y x =+()()222221112y y x x x x =+=+-+≤++-=,所以2x =时,y 最大,最大值为22+=B 选项正确;对于C :OP =,因为曲线关于y 轴对称,当0x ≥时,设cos ,sin x y x θθ=-=,所以()2222222cos cos sin 2cos sin 2sin cos OP x y θθθθθθθ=+=++=++()1cos231351sin2cos2sin2sin 222222θθθθθϕ+=++=++=+,因为θ可取任意角,所以OP 12=,OP 512+=,C 选项错误;对于D :PA PB +≤等价为点P 在椭圆22132y x +=内,即满足()222cos sin 3cos 6θθθ++≤,即()()31+cos221sin 262θθ++≤,整理得4sin23cos25θθ+≤,即()sin 21θβ≤+恒成立,故D 选项正确.故选:ABD.【点睛】方法点睛:应用三角换元,再结合三角恒等变换化简,最后应用三角函数值域求最值即可.三、填空题(本题共3小题,每小题5分,共15分.)12.若()f x 是定义在R 上的奇函数,当0x >时,()2f x x x =-+,则(2)f -=______.【答案】2-【解析】【分析】根据函数为奇函数,利用()()f x f x -=-求解.【详解】由题意得,(2)2222f =-=+.∵()f x 是定义在R 上的奇函数,∴(2)(2)2f f -=-=-.故答案为:2-.13.函数()sin cos f x x x =+在()0,2π上的极小值点为:__________.【答案】5π4【解析】【分析】法一,由辅助角公式得π()4f x x ⎛⎫=+ ⎪⎝⎭,利用函数()f x 与π4f x ⎛⎫- ⎪⎝⎭图象的平移关系可得所求;法二,利用导函数,求出导函数的零点按零点分区间,分析导函数符号与原函数单调性即可求解极值点.【详解】法一:()πsin cos 4f x x x x ⎫⎛=+=+ ⎪⎝⎭,()0,2πx ∈,由()f x 的图象向右平移π4个单位可得到函数π4f x x ⎛⎫-= ⎪⎝⎭,π9π,44x ⎛⎫∈ ⎪⎝⎭的图象.而函数y x =在π9π,44⎛⎫⎪⎝⎭的极小值点为3π2,故函数()f x 的极小值点即为3ππ5π244-=.法二:()sin cos f x x x =+,()0,2πx ∈,则π()cos sin 4f x x x x ⎛⎫'=-=+ ⎪⎝⎭,由()0,2πx ∈,则ππ9π,444x ⎛⎫+∈ ⎪⎝⎭,令()0f x '=,得ππ42x +=或3π2,解得π4x =或5π4x =.则(),()f x f x '的变化情况如下表:xπ0,4⎛⎫ ⎪⎝⎭π4π5π,44⎛⎫ ⎪⎝⎭5π45π,2π4⎛⎫ ⎪⎝⎭()f x '+0-0+()f x极大值极小值()f x 在()0,2π上的极小值点为5π4.故答案为:5π4.14.函数,0ky k x=>与ln yx =和e x y =分别交于11(,)A x y ,22(,)B x y 两点,设ln y x =在A 处的切线1l 的倾斜角为α,e x y =在B 处的切线2l 的倾斜角为β,若2βα=,则k =________.【答案】【解析】【分析】由对称性可得21ex x =,利用导数求切线1l 和2l 的斜率,得tan β和tan α,由2βα=解出1x ,再由11ln kx x =求出k 的值.【详解】函数,0ky k x=>与ln y x =和e x y =分别交于11(,)A x y ,22(,)B x y 两点,则111ln k y x x ==,222e x ky x ==,函数,0ky k x=>的图象关于直线y x =对称,函数ln y x =和e x y =的图象也关于直线y x =对称,所以11(,)A x y ,22(,)B x y 两点关于直线y x =对称,有221e xy x ==,函数ln y x =的导数为1y x'=,函数e x y =的导数为e x y '=,则11tan x α=,2tan e x β=,由2βα=,有22tan tan tan 21tan αβαα==-,即211212e 1x x x x ==-,由1>0x ,解得1x =所以11l n k x x ==.【点睛】关键点点睛:本题除了导数和倍角公式的运用,关键点在于运用函数的对称性或对数式的运算,得到21e x x =.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知数列{}n a 满足:11a =,()*12n n a a n +=+∈N ,数列{}n b 为单调递增等比数列,22b =,且1b ,2b ,31b -成等差数列.(1)求数列{}n a ,{}n b 的通项公式;(2)设2log n n n c a b =+,求数列{}n c 的前n 项和n T .【答案】(1)21n a n =-,12n n b -=;(2)232n n n T -=【解析】【分析】(1)根据()*12n n a a n +=+∈N 得到{}na 为公差为2的等差数列,利用等差数列求通项公式求出21n a n =-,再设{}nb 的公比为q ,列出方程,求出2q =,得到通项公式;(2)化简得到32n c n =-,故{}n c 为公差为3的等差数列,利用等差数列求和公式得到答案.【小问1详解】因为()()**1122n n n n a a n a a n ++=+∈⇒-=∈N N ,故{}n a 为公差为2的等差数列,所以()()12112121n a a n n n =+-=+-=-,又1b ,2b ,31b -成等差数列,故21321b b b =+-,设{}n b 的公比为q ,其中22b =,则2421q q =+-,解得2q =或12,当2q =时,11b =,此时1112n n n b b q --==,为递增数列,满足要求,当12q =时,14b =,此时31112n n n b b q --⎛⎫== ⎪⎝⎭,为递减数列,舍去,综上,21n a n =-,12n n b -=;【小问2详解】212log 1322n n c n n -=+--=,则13n n c c +-=,故{}n c 为公差为3的等差数列,故()2121323143222n n n n n n T c c c n +--=+++=+++-== .16.记ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos 1.a C b =+(1)求证:2;C B =(2)若3cos 4B =,6c =,求ABC 的面积.【答案】(1)证明见解析(2)4【解析】【分析】(1)利用正弦定理以及两角和与差的正弦公式可证2C B =;(2)由正弦定理及三角形面积公式可得答案.【小问1详解】由正弦定理sin sin a b A B =,知sin sin a A b B =,所以2cos 1a C b =+,即为sin 2cos 1sin A C B =+,所以sin 2sin cos sin A B C B =+,即()sin 2sin cos sin B C B C B +=+,所以()sin sin cos cos sin sin .B BC B C C B =-+=-因为0πB <<,ππC B -<-<,所以B C B =-或()πB C B +-=,即2C B =或πC =(舍去);【小问2详解】由2C B =,得21cos cos22cos 18C B B ==-=,所以52cos 14a C b =+=,即5.4a b =由余弦定理,得2222cos c a b ab C =+-,即22225513621648b b b =+-⨯⨯,解得=4,所以 5.a =又由1cos 8C =,可得π0<2<C ,得37sin 8C ==,所以ABC V 的面积1137157sin 54.2284S ab C ==⨯⨯⨯=17.如图,在四棱锥P ABCD -中,底面四边形ABCD 是直角梯形,224,AD AB BC AB ===⊥,,AD AB BC E ⊥是AD 的中点,PC BE ⊥.(1)证明:BE ⊥平面PAC .(2)若PA PC ==B PA D --的正弦值.【答案】(1)证明见解析(2).7【解析】【分析】(1)连接CE ,通过四边形ABCE 是正方形,得到BE AC ⊥,进而可求证;(2)作BH PA ⊥,垂足为H ,连接,EH PE .先证明PA ⊥平面BEH ,得到BHE ∠是二面角B PA D --的平面角,在判断四棱锥P ABCE -为正四棱锥,求得2EH BH ==,再由余弦定理即可求解.【小问1详解】证明:连接CE .因为E 是AD 的中点,所以2AD AE =.分因为224AD AB BC ===,且,AB AD AB BC ⊥⊥,所以四边形ABCE 是正方形,则BE AC ⊥.因为,,PC BE PC AC ⊥⊂平面PAC ,且PC AC C ⋂=,所以BE ⊥平面PAC .【小问2详解】解:作BH PA ⊥,垂足为H ,连接,EH PE .由(1)可知BE ⊥平面PAC .又PA ⊂平面PAC ,所以PA BE ⊥.因为,BH BE ⊂平面BEH ,且BH BE B = ,所以PA ⊥平面BEH .因为EH ⊂平面BEH ,所以PA EH ⊥,则BHE ∠是二面角B PA D --的平面角.记AC BE O =I ,连接OP ,则O 是AC 的中点.因为PA PC =,且O 是AC 的中点,所以OP AC ⊥.因为BE ⊥平面PAC ,且OP ⊂平面PAC ,所以BE OP ⊥.连接PE .因为,AC BE ⊂平面ABCE ,且AC BE O =I ,所以OP ⊥平面ABCE ,则四棱锥P ABCE -为正四棱锥,故PA PB PE ===.因为PAB 的面积1122S AB PA BH ==⋅,即11222BH ⨯=⨯,所以2BH =.同理可得2EH BH ==.在BEH △中,由余弦定理可得2221cos 27BH EH BE BHE BH EH +-∠==-⋅,则sin 7BHE ∠=,即二面角B PA D --的正弦值为718.已知函数()e xx f x =.(1)求()f x 在区间[]22-,上的最大值和最小值;(2)若0x =是函数()()()sin g x f a f x x =⋅+的极值点.(ⅰ)证明:2ln20a -<<;(ⅱ)讨论()g x 在区间()π,π-上的零点个数.【答案】(1)最大值为1e -,最小值为22e -;(2)(ⅰ)证明见解析;(ⅱ)2【解析】【分析】(1)求导得到导函数,根据导函数的正负确定在[]22-,上的性,再计算最值得到答案;(2)(ⅰ)计算得到1()cos e ea x a x g x x -'=⋅+,确定e 0a a +=,设()e x F x x =+,根据函数的单调性结合()01F =,()2ln 20F -<得到证明;(ⅱ)求导得到导函数,考虑()π,0x ∈-,0x =,∈0,π三种情况,构造()e sin xF x x x =-,确定函数的单调区间,根据()00F =,()00F x >,()π0F <得到零点个数.【小问1详解】()e x x f x =,1()e xx f x -'=,令1()0e x x f x -'==得到1x =,当()2,1x ∈-时,′>0,函数单调递增,当()1,2x ∈时,′<0,函数单调递减,又()22222e e f ---==-,()1111e e f -==,()22222e ef -==,故()f x 在区间[]22-,上的最大值为1e -,最小值为22e -;【小问2详解】(ⅰ)()()()sin sin e e a xa x g x f a f x x x =⋅+=⋅+,1()cos e e a xa x g x x -'=⋅+,(0)10e a a g '=+=,故e 0a a +=,设()e x F x x =+,函数单调递增,()010F =>,()2ln 212ln 2e 2ln 2ln 404F --=-=-<.根据零点存在定理知2ln 20a -<<;(ⅱ)()sin e x x g x x =-+,()00g =,1()cos e x x g x x -'=+,设1()cos e x x h x x -=+,2()sin e xx h x x -'=-,当()π,0x ∈-时,20,sin 0e x x x -><,故()0h x '>,()g x '单调递增,()()0110g x g <=-+'=',故函数()g x 单调递减,()()00g x g >=,故函数在()π,0-上无零点;当∈0,π时,()1()sin e sin e e x x x x g x x x x =-+=-,设()e sin x F x x x =-,()()esin cos 1x F x x x =+-',设()()esin cos 1x k x x x =+-,则()2e cos x k x x '=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=>,当π,π2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=<故()k x 在π0,2⎛⎫ ⎪⎝⎭单调递增,在π,π2⎛⎫ ⎪⎝⎭上单调递减,()00k =,π2πe 102k ⎛⎫=-> ⎪⎝⎭,()ππe 10k =--<,故存在0π,π2x ⎛⎫∈ ⎪⎝⎭使()00k x =,当∈0,0时,()0k x >,单调递增;当()0,πx x ∈时,()0k x <,单调递减.()00F =,故()00F x >,()ππ0F =-<,故函数在()0,πx 上有1个零点.综上所述:()g x 在区间()π,π-上的零点个数为2.【点睛】关键点点睛:本题考查了利用导数解决函数的单调性和极值,根据极值求参数,零点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中分类讨论是解题的关键,三角函数的有界性和正负交替是经常用到的关键思路.19.设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为()2,3,4,n n =⋅⋅⋅阶“曼德拉数列”:①1230n a a a a +++=⋅⋅⋅+;②1231n a a a a +++⋅⋅⋅+=.(1)若某()*2k k ∈N 阶“曼德拉数列”是等比数列,求该数列的通项n a(12n k ≤≤,用,k n 表示);(2)若某()*21k k +∈N 阶“曼德拉数列”是等差数列,求该数列的通项n a (121n k ≤≤+,用,k n 表示);(3)记n 阶“曼德拉数列”{}n a 的前k 项和为()1,2,3,,k S k n =⋅⋅⋅,若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,试问:数列{}()1,2,3,,i S i n =⋅⋅⋅能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.【答案】(1)()1112n n a k -=-或()1112n n a k -=--(2)()()*1,211n n a n n k k k k ∴=-∈≤++N 或()()*1,211n n a n n k k k k =-+∈≤++N (3)不能,理由见解析【解析】【分析】(1)结合曼德拉数列的定义,分公比是否为1进行讨论即可求解;(2)结合曼德拉数列的定义,首先得120,k k a a d ++==,然后分公差是大于0、等于0、小于0进行讨论即可求解;(3)记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,进一步()11,2,3,,2k S k n ≤=⋅⋅⋅,结合前面的结论以及曼德拉数列的定义得出矛盾即可求解.【小问1详解】设等比数列()1232,,,,1k a a a a k ⋅⋅⋅≥的公比为q .若1q ≠,则由①得()21122101k k a q a a a q -++⋅⋅⋅+==-,得1q =-,由②得112a k =或112a k=-.若1q =,由①得,120a k ⋅=,得10a =,不可能.综上所述,1q =-.()1112n n a k -∴=-或()1112n n a k-=--.【小问2详解】设等差数列()12321,,,,1k a a a a k +⋅⋅⋅≥的公差为d ,123210k a a a a ++++⋅⋅⋅+= ,()()11221210,02k k dk a a kd +∴++=+=,即120,k k a a d ++=∴=,当0d =时,“曼德拉数列”的条件①②矛盾,当0d >时,据“曼德拉数列”的条件①②得,()23211212k k k k a a a a a a +++++⋅⋅⋅+==-+++ ,()1122k k kd d -∴+=,即()11d k k =+,由10k a +=得()1101a k k k +⋅=+,即111a k =-+,()()()()*1111,21111n n a n n n k k k k k k k ∴=-+-⋅=-∈≤++++N .当0d <时,同理可得()1122k k kd d -+=-,即()11d k k =-+.由10k a +=得()1101a k k k -⋅=+,即111a k =+,()()()()*1111,21111n n a n n n k k k k k k k ∴=--⋅=-+∈≤++++N .综上所述,当0d >时,()()*1,211n n a n n k k k k ∴=-∈≤++N ,当0d <时,()()*1,211n n a n n k k k k =-+∈≤++N .【小问3详解】记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,得12A =,12B =-,1122k B S A -=≤≤=,即()11,2,3,,2k S k n ≤=⋅⋅⋅.若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,由前面的证明过程知:10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-.若数列{}()1,2,3,,i S i n =⋅⋅⋅为n 阶“曼德拉数列”,记数列{}()1,2,3,,i S i n =⋅⋅⋅的前k 项和为k T ,则12k T ≤.1212m m T S S S ∴=++⋅⋅⋅+≤,又12m S =,1210m S S S -∴==⋅⋅⋅==,12110,2m m a a a a -∴==⋅⋅⋅===.又1212m m n a a a ++++⋅⋅⋅+=-,1m S +∴,2m S +,⋅⋅⋅,0n S ≥,123123n n S S S S S S S S ∴+++⋅⋅⋅+=+++⋅⋅⋅+,又1230n S S S S +++⋅⋅⋅+=与1231n S S S S +++⋅⋅⋅+=不能同时成立,∴数列{}()1,2,3,,i S i n =⋅⋅⋅不为n 阶“曼德拉数列”.【点睛】关键点点睛:第三问的关键是得到10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-,由此即可顺利得解.。
2022-2023学年四川省成都市高三年级上册学期期中考试 数学(理 )
2022-2023学年四川省成都市高三上学期期中考试 理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 满足,则在复平面内复数z 对应的点在( )()11i i z +=A. 第四象限B. 第三象限C. 第二象限D. 第一象限2. 已知数列的前n 项和是,则(){}n a 2n 45a a +=A. 20 B. 18C. 16D. 143. 设全集,集合,,则()(){}*N 60U x x x =∈-≤{}13,5A =,{}0,2,4B =()UB A ⋂= A.B.C.D.{}2,4{}0,2,4{}1,3,5{}0,2,4,64. 函数在区间的图象大致为( )()33cos x x y x-=-ππ,22⎡⎤-⎢⎥⎣⎦A. B.C. D.5. 某几何体的三视图如图所示,则该几何体的体积为()A.B. C.D. 283π-23π483π-43π6. 已知命题p :在中,若,则;命题q :向量与向量相等的充要条件是ABC cos cos A B >A B <ab 且.在下列四个命题中,是真命题的是( )a b = a b∥A. B.C.D.p q∧()()p q ⌝∧⌝()p q⌝∧()p q ∧⌝7. 已知函数的部分图象如图所示,则下列说法正确的是( ()()sin 0,0,2f x A x Aπωϕωϕ⎛⎫=+>>< ⎪⎝⎭)A. 直线是函数的图象的一条对称轴x π=()f x B. 函数的图象的对称中心为,()f x ,0122k ππ⎛⎫-+ ⎪⎝⎭k ∈Z C. 函数在上单调递增()f x 311,26ππ⎡⎤⎢⎥⎣⎦D. 将函数的图象向左平移个单位长度后,可得到一个偶函数的图象()f x 12π8. 数列中,,对任意 ,若,则{}n a 12a =,,m n m n m n N a a a ++∈=155121022k k k a a a ++++++=-( )k =A. 2 B. 3 C. 4 D. 59. 2020年,由新型冠状病毒(SARS -CoV -2)感染引起的新型冠状病毒肺炎(COVID -19)在国内和其他国家暴发流行,而实时荧光定量PCR (RT -PCR )法以其高灵敏度与强特异性,被认为是COVID -19的确诊方法,实时荧光定量PCR 法,通过化学物质的荧光信号,对在PCR 扩增进程中成指数级增加的靶标DNA 实时监测,在PCR 扩增的指数时期,荧光信号强度达到阈值时,DNA 的数量与扩增次数n 满足n X ,其中p 为扩增效率,为DNA 的初始数量.已知某样本的扩增效率()0lg lg 1lg n X n p X -+=0X ,则被测标本的DNA 大约扩增( )次后,数量会变为原来的125倍.(参考数据:0.495p ≈)1.495log 54≈A. 10 B. 11C. 12D. 1310. 设,,(其中e 是自然对数的底数),则( )152e a -=b =65c =A. B. C. D. a b c <<c a b<<b a c<<c b a<<11. 已知正三棱柱的所有顶点都在球O 的表面上,若球O 的表面积为48π,则正三棱柱111ABC A B C -的体积的最大值为()111ABC A B C -A. B. C.D.12. 已知的三个顶点都在抛物线上,点为的重心,直线经过该抛物线ABC 24y x =()2,0M ABC AB 的焦点,则线段的长为( )AB A. 8B. 6C. 5D. 4.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量满足,则_______.,a b ||||||1a b a b ==+= a b ⋅= 14. 在二项式的展开式中,各项的系数之和为512,则展开式中常数项的值为___________.5nx ⎛⎫ ⎪⎝⎭15. 已知双曲线C :的左、右焦点分别为,,点P 是双曲线C 的右支上一点,若()222103x y a a -=>1F 2F ,且的面积为3,则双曲线C 的焦距为___________.121tan 3PF F ∠=12PF F △16. 已知函数,若关于x 的方程有8个不同的实数解,()11e ,0e ,0x x x x f x x x ---⎧⋅>=⎨-⋅<⎩()()222f x m f x =-⎡⎤⎣⎦则整数m 的值为___________.(其中e 是自然对数的底数)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答,17. 已知a ,b ,c 为的内角A ,B ,C 所对的边,向量,ABC (,),(sin ,sin sin )m a b c a n B A C =--=+且.m n ⊥ (1)求角C(2)若,D 为的中点,的面积.sin sin ,4B C b <=BC AD =ABC 18. 全国中学生生物学竞赛隆重举行.为做好考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分成6组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计这50名学生成绩的中位数;m (2)在这50名学生中用分层抽样的方法从成绩在[70,80),[80,90),[90,100]的三组中抽取了11人,再从这11人中随机抽取3人,记为3人中成绩在[80,90)的人数,求的分布列和数学期望;ξξ19. 如图,四棱柱中,底面是矩形,且,,1111ABCD A B C D -ABCD 22AD CD ==12AA =,若为的中点,且.13A AD π∠=O AD 1CD A O ⊥(1)求证:平面;1A O ⊥ABCD (2)线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存BC P 1D A A P --3πBP 在,说明理由.20. 已知曲线C 上的任意一点到点的距离和它到直线l :的距离的比是常数,过点F 作()1,0F -4x =-12不与x 轴重合的直线与曲线C 相交于A ,B 两点,过点A 作AP 垂直于直线l ,交直线l 于点P ,直线PB 与x 轴相交于点M .(1)求曲线C 的方程;(2)求面积的最大值.ABM 21. 已知函数在处的切线方程为.()ln m x nf x x +=()()1,1f 1y =(1)求实数m 和n 的值;(2)已知,是函数的图象上两点,且,求证:()(),A a f a ()(),B b f b ()f x ()()f a f b =.()()ln ln 1a b ab +<+22. 在平面直角坐标系xOy 中,已知直线l 的参数方程为(t 为参数),以坐标原点O 为12x t y ⎧=⎪⎪⎨⎪=+⎪⎩极点,x 轴的非负半轴为极轴(取相同的长度单位),建立极坐标系,曲线C 的极坐标方程为.π4cos 3ρθ⎛⎫=- ⎪⎝⎭(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若点P 的极坐标为,直线l 与曲线C 相交于A ,B 两点,求的值.3π2⎫⎪⎭11PA PB +23. 已知函数,M 为不等式的解集.()2111f x x x =+-+-()0f x <(1)求集合M ;(2)设a ,,求证:b M ∈211222a b ab +--<+2022-2023学年度上期高2023届11月半期考试理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 满足,则在复平面内复数z 对应的点在( )()11i i z +=A. 第四象限B. 第三象限C. 第二象限D. 第一象限【答案】B 2. 已知数列的前n 项和是,则(){}n a 2n 45a a +=A. 20 B. 18C. 16D. 14【答案】C 3. 设全集,集合,,则()(){}*N 60U x x x =∈-≤{}13,5A =,{}0,2,4B =()UB A ⋂= A.B.C.D.{}2,4{}0,2,4{}1,3,5{}0,2,4,6【答案】A4. 函数在区间的图象大致为( )()33cos xxy x-=-ππ,22⎡⎤-⎢⎥⎣⎦A. B.C. D.【答案】A5. 某几何体的三视图如图所示,则该几何体的体积为( )A.B. C.D. 283π-23π483π-43π【答案】A6. 已知命题p :在中,若,则;命题q :向量与向量相等的充要条件是ABC cos cos A B >A B <ab 且.在下列四个命题中,是真命题的是( )a b = ab ∥A. B.C.D.p q ∧()()p q ⌝∧⌝()p q⌝∧()p q ∧⌝【答案】D7. 已知函数的部分图象如图所示,则下列说法正确的是( ()()sin 0,0,2f x A x Aπωϕωϕ⎛⎫=+>>< ⎪⎝⎭)A. 直线是函数的图象的一条对称轴x π=()f x B. 函数的图象的对称中心为,()f x ,0122k ππ⎛⎫-+ ⎪⎝⎭k ∈Z C. 函数在上单调递增()f x 311,26ππ⎡⎤⎢⎥⎣⎦D. 将函数的图象向左平移个单位长度后,可得到一个偶函数的图象()f x 12π【答案】B8. 数列中,,对任意 ,若,则{}n a 12a =,,m n m n m n N a a a ++∈=155121022k k k a a a ++++++=- ( )k =A. 2 B. 3 C. 4 D. 5【答案】C9. 2020年,由新型冠状病毒(SARS -CoV -2)感染引起的新型冠状病毒肺炎(COVID -19)在国内和其他国家暴发流行,而实时荧光定量PCR (RT -PCR )法以其高灵敏度与强特异性,被认为是COVID -19的确诊方法,实时荧光定量PCR 法,通过化学物质的荧光信号,对在PCR 扩增进程中成指数级增加的靶标DNA 实时监测,在PCR 扩增的指数时期,荧光信号强度达到阈值时,DNA 的数量与扩增次数n 满足n X ,其中p 为扩增效率,为DNA 的初始数量.已知某样本的扩增效率()0lg lg 1lg n X n p X -+=0X ,则被测标本的DNA 大约扩增( )次后,数量会变为原来的125倍.(参考数据:0.495p ≈)1.495log 54≈A. 10 B. 11 C. 12 D. 13【答案】C10. 设,,(其中e 是自然对数的底数),则( )152e a -=b =65c =A. B. C. D. a b c <<c a b<<b a c<<c b a<<【答案】D 11. 已知正三棱柱的所有顶点都在球O 的表面上,若球O 的表面积为48π,则正三棱柱111ABC A B C -的体积的最大值为()111ABC A B C -A. B. C. D. 【答案】C12. 已知的三个顶点都在抛物线上,点为的重心,直线经过该抛物线ABC 24y x =()2,0M ABC AB 的焦点,则线段的长为( )AB A. 8 B. 6C. 5D. 4.【答案】B二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量满足,则_______.,a b ||||||1a b a b ==+= a b ⋅= 【答案】12-14. 在二项式的展开式中,各项的系数之和为512,则展开式中常数项的值为___________.5nx ⎛⎫ ⎪⎝⎭【答案】13515. 已知双曲线C :的左、右焦点分别为,,点P 是双曲线C 的右支上一点,若()222103x y a a -=>1F 2F ,且的面积为3,则双曲线C 的焦距为___________.121tan 3PF F ∠=12PF F △【答案】16. 已知函数,若关于x 的方程有8个不同的实数解,()11e ,0e ,0x x x x f x x x ---⎧⋅>=⎨-⋅<⎩()()222f x m f x =-⎡⎤⎣⎦则整数m 的值为___________.(其中e 是自然对数的底数)【答案】5三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答,17. 已知a ,b ,c 为的内角A ,B ,C 所对的边,向量,ABC (,),(sin ,sin sin )m a b c a n B A C =--=+且.m n ⊥ (1)求角C(2)若,D 为的中点,的面积.sin sin ,4B C b <=BC AD =ABC 【答案】(1)π3C =(2)【解析】【分析】(1)根据向量垂直可得数量积为0,结合正余弦定理边角互化即可求解,(2)根据余弦定理可求值,进而可求,根据三角形面积公式即可求解.CD a 【小问1详解】因为,所以,m n ⊥()sin (sin sin )()0a b B A C c a -⨯++-=由正弦定理得.()()()a b b a c a c -⨯=+-即,由余弦定理得,222a b c ab +-=2221cos 22a b c C ab +-==因为,所以.0πC <<π3C =【小问2详解】在三角形中,,ADC 2222cos AD AC CD AC CD ACD =+-⋅∠即,解得或,即或,213164CD CD =+-1CD =3CD =2a =6a =因为,故,sin sin B C <B C <因为,所以,故,所以,π3C =A CB >>a c b >>6a =所以11sin 6422ABC S ab C ==⨯⨯=△18. 全国中学生生物学竞赛隆重举行.为做好考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分成6组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计这50名学生成绩的中位数;m (2)在这50名学生中用分层抽样的方法从成绩在[70,80),[80,90),[90,100]的三组中抽取了11人,再从这11人中随机抽取3人,记为3人中成绩在[80,90)的人数,求的分布列和数学期望;ξξ【答案】(1),中位数;0.012m =68(2)分布列见解析,.911【解析】【分析】(1)根据频率分布直方图中所有小矩形的面积为1,结合中位数的定义进行求解即可;(2)根据分层抽样的性质,结合古典概型公式、数学期望公式进行求解即可.【小问1详解】由频率分布直方图的性质可得,,(0.0040.0220.030.0280.004)101m +++++⨯=解得,0.012m =设中位数为,解得;a ()0.004100.02210600.30.5a ∴⨯+⨯+-⨯=68a =【小问2详解】的三组频率之比为0.28:0.12:0.04=7:3:1[)[)[]70,80,80,90,90,100 从中分别抽取7人,3人,1人,∴[)[)[]70,80,80,90,90,100所有可能取值为0,1,2,3,ξ,,,38311C 56(0)C 165P ξ===2183311C C 28(1)C 55P ξ===1283311C C 8(2)C 55P ξ===33311C 1(3)C 165P ξ===故的分布列为:ξξ0123P5616528558551165故()56288190123.165555516511E ξ=⨯+⨯+⨯+⨯=19. 如图,四棱柱中,底面是矩形,且,,1111ABCD A B C D -ABCD 22AD CD ==12AA =,若为的中点,且.13A AD π∠=O AD 1CD A O ⊥(1)求证:平面;1A O ⊥ABCD (2)线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存BC P 1D A A P --3πBP 在,说明理由.【答案】(1)证明见解析;(2)存在,理由见解析.【解析】【分析】(1)由已知得为等边三角形,,再由,能证明⊥平1A AD1A O AD ⊥1A O CD ⊥1AO 面.ABCD (2)过作,以为原点,建立空间直角坐标系,利用向量法能求出当的长为时,O //Ox AB O O xyz -BP 23二面角的值为1D A A P --3π【详解】(1)证明:∵,且,13A AD π∠=12AA AD ==∴为等边三角形1A AD∵为的中点O AD ∴,1A O AD ⊥又,且,1CD A O ⊥CD AD D = ∴平面.1A O ⊥ABCD (2)过作,以为原点,建立空间直角坐标系(如图)O //Ox AB O O xyz -则,,(0,1,0)A-1A 设,(1,,0)P m ([1,1])m ∈-平面的法向量为,1A AP 1(,,)n x y z =∵,,1AA =(1,1,0)AP m =+且,1110(1)0n AA y n AP x m y ⎧⋅=+=⎪⎨⋅=++=⎪⎩ 取,得1z=11),n m =+平面的一个法向量为11A ADD 2(1,0,0)n =由题意得12cos ,n n = 解得或(舍去),此时13m =-53m =-12133BP =-=∴当的长为时,二面角的值为.BP 231D A A P --3π20. 已知曲线C 上的任意一点到点的距离和它到直线l :的距离的比是常数,过点F 作()1,0F -4x =-12不与x 轴重合的直线与曲线C 相交于A ,B 两点,过点A 作AP 垂直于直线l ,交直线l 于点P ,直线PB 与x 轴相交于点M .(1)求曲线C 的方程;(2)求面积的最大值.ABM 【答案】(1)22143x y +=(2)94【解析】【分析】(1)由题意列出曲线方程化简即可求解;(2)设直线AB 的方程为,,,表示出,联立直线与椭圆方程消去,1,x my =-()11,A x y ()22,B x y P x 表示出关于的韦达定理,结合求出直接PB 的方程,令,求出坐标,进而得到,由y ,B P 0y =M FM求出面积,结合换元法和对勾函数性质可求面积的最大值.1212ABM S FM y y =-△ABM 【小问1详解】设曲线C 上的任意一点的坐标为,(),x y,即,所以曲线C 的方程为;12=22143x y +=22143x y +=【小问2详解】由题意,设直线AB 的方程为,,,则.1,x my =-()11,A x y ()22,B x y ()14,P y -联立方程得,则,221,1,43x my x y =-⎧⎪⎨+=⎪⎩()2234690m y my +--=()214410m ∆=+>所以,,所以122634m y y m +=+122934y y m -=+()121223my y y y -=+又因为,所以直接PB 的方程为.2124PB y y k x -=+()211244y y y y x x --=++令,则,0y =()()1212121212121343352444422y y y x my y y x y y y y y y -++=--=--=--=-+=----所以,.5,02M ⎛⎫- ⎪⎝⎭32FM =因为12y y -====所以121324ABMS FM y y =-==△令,,则.t =1t ≥2991313ABM t S t t t ==++△又因为在上单调递减,所以当时,,()913f t t t =+[)1,+∞1t =()max94ARM S =△故面积的最大值为.ABM 94【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;()()1122,,,x y x y (2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;x y ∆(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;12x x +12x x 12y y +12y y (5)代入韦达定理求解.21. 已知函数在处的切线方程为.()ln m x nf x x +=()()1,1f 1y =(1)求实数m 和n 的值;(2)已知,是函数的图象上两点,且,求证:()(),A a f a ()(),B b f b ()f x ()()f a f b =.()()ln ln 1a b ab +<+【答案】(1) 1m n ==(2)证明见解析【解析】【分析】(1)先求导,由可求对应的m 和n 的值;()()10,11f f '==(2)设,由可判断,由得,设0a b <<10e f ⎛⎫= ⎪⎝⎭11e a b <<<0a b <<11111ln 1ln a a b b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,,,得,代换整理得,原不等式要11x b =21x a =21x tx =()()11221ln 1ln x x x x -=-11ln ln 1t t t x t --=-证,只需证,全部代换为关于的不等式得,()()ln ln 1a b ab +<+11e a b +<t ()()1ln 1ln 0t t t t -+-<设,,由导数得,再证,放缩得()()()1ln 1ln S t t t t t =-+-1t >()12ln 11S t t t ⎛⎫'=+-⎪+⎝⎭()ln 1x x ≤+,进而得证.112ln 11t t t ⎛⎫+≤<⎪+⎝⎭【小问1详解】由,得.()ln m x n f x x +=()2ln m m x nf x x --'=因为函数在处的切线方程为,()f x ()()1,1f 1y =所以,,则;()10f m n '=-=()11f n ==1m n ==【小问2详解】证明:由(1)可得,,,()ln 1x f x x +=()2ln xf x x -'=所以当时,,单调递增;()0,1x ∈()0f x ¢>()f x 当时,,单调递减.()1,x ∈+∞()0f x '<()f x 因为,是函数的图象上两点,且,()(),A a f a ()(),B b f b ()f x ()()f a f b =不妨设,且,所以.0a b <<10e f ⎛⎫= ⎪⎝⎭11e a b<<<由,得,即.()()f a f b =ln 1ln 1a b a b ++=11111ln 1ln a a b b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭设,.11x b =21x a =设,则,所以,21x tx =1t >()()11221ln 1ln x x x x -=-即,故.()111ln 1ln ln x t t x -=--11ln ln 1t t tx t --=-要证,只需证,()()ln ln 1a b ab +<+11e a b +<即证,即证,即证,12e x x +<()11e t x +<()1ln 1ln 1t x ++<即证,即证.()1ln ln 111t t tt t --++<-()()1ln 1ln 0t t t t -+-<令,,()()()1ln 1ln S t t t t t=-+-1t >则,()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭证明不等式;()ln 1xx ≤+设,则,()()ln 1u x x x=+-()1111xu x x x -'=-=++所以当时,;当时,,10x -<<()0u x '>0x >()0u x '<所以在上为增函数,在上为减函数,()u x ()1,0-()0,∞+故,所以成立.()()max 00u x u ==()ln 1xx ≤+由上还不等式可得,当时,,故恒成立,1t >112ln 11t t t ⎛⎫+≤<⎪+⎝⎭()0S t '<故在上为减函数,则,()S t ()1,+∞()()10S t S <=所以成立,即成立.()()1ln 1ln 0t t t t -+-<12e x x +<综上所述,.()()ln ln 1a b ab +<+22. 在平面直角坐标系xOy 中,已知直线l 的参数方程为(t 为参数),以坐标原点O为12x t y ⎧=⎪⎪⎨⎪=+⎪⎩极点,x 轴的非负半轴为极轴(取相同的长度单位),建立极坐标系,曲线C 的极坐标方程为.π4cos 3ρθ⎛⎫=- ⎪⎝⎭(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若点P 的极坐标为,直线l 与曲线C 相交于A ,B 两点,求的值.3π2⎫⎪⎭11PA PB +【答案】(1) y =2220x y x +--=(2)79【解析】【分析】(1)利用消元法将参数方程化为普通方程即可得到直线l 的普通方程;利用极坐标方程与直角坐标方程的转化公式即可得到曲线C 的直角坐标方程;(2)将点P 的极坐标化为直角坐标判断得P 在直线l 上,再利用直线参数方程中参数的几何意义,将直线l 代入曲线C 的直角坐标方程,结合韦达定理即可求解.【小问1详解】因为直线l 的参数方程为(t 为参数),12x t y ⎧=⎪⎪⎨⎪=⎪⎩所以直线l 的普通方程为y =因为,即,π4cos 3ρθ⎛⎫=- ⎪⎝⎭2cos ρθθ=+所以,得,22cos sin ρρθθ=+222x y x +=+所以曲线C 的直角坐标方程为.2220x y x +--=【小问2详解】因为点P 的极坐标为,所以点P 的直角坐标为,所以点P 在直线l上,3π2⎫⎪⎭(0,将直线l 的参数方程(t 为参数),代入,化简得,12x t y ⎧=⎪⎪⎨⎪=⎪⎩2220x y x +--=2790t t -+=设A ,B 两点所对应的参数分别为,,则,,故,,1t2t 127t t +=129t t =10t >20t >所以,,11PA t t ==22PB t t ==所以.121212111179t t PA PB t t t t ++=+==23. 已知函数,M 为不等式的解集.()2111f x x x =+-+-()0f x <(1)求集合M ;(2)设a ,,求证:.b M ∈211222a b ab +--<+【答案】(1){}11M x x =-<<(2)证明见解析【解析】【分析】(1)采用零点讨论法去绝对值可直接求解;(2)结合绝对值三角不等式得,要证()2112|2112|22a b a b a b+--≤+--=+,即证,即证,去平方结合因式分解即可求211222a b ab +--<+1a b ab +<+221a b ab +<+证.【小问1详解】.()21110f x x x =+-+-<①当时,不等式可化为,解得,则;1x <-()21110x x -+++-<1x >-x ∈∅②当,不等式可化为,解得,则;112x -≤≤-()()21110x x -+-+-<1x >-112x -<≤-③当时,不等式可化为,解得,则.12x >-()()21110x x +-+-<1x <112x -<<综上所述,;{}11M x x =-<<【小问2详解】证明:因为(当且仅当时取等号),()2112|2112|22a b a b a b+--≤+--=+()()21120a b +-≥所以要证,只需证,211222a b ab +--<+2222a b ab +<+即证,即证,即证,1a b ab +<+221a b ab +<+222210a b a b --+>即证.()()22110a b -->由(1)可知,.{}11M x x =-<<因为a ,,所以,所以成立.b M ∈221,1a b <<()()22110ab -->综上所述,.211222a b ab +--<+。
四川省成都市2024-2025学年高三上学期11月期中数学试题(含答案)
成都2022级半期考试数学试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分;2.本堂考试时间120分钟,满分150分;3.答题前考生务必先将自己的姓名、学号填写在答题卡上,并用2B 铅笔填涂;4.考试结束后将答题卡交回.第Ⅰ卷(选择题部分,共58分)一、单项选择题:本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.2.若函数是周期为4的奇函数,且,则( )A.2B. C.3D.3.已知,,则为第几象限角( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.若向量,,且,,三点共线,则( )A. B. C. D.5.若,则( )A.3 B. C. D.66.为了得到函数的图象,只需将函数的图象( )A.向左平移个单位,再将所有点的横坐标伸长到原来的2倍(纵坐标不变)B.向左平移个单位,再将所有点的横坐标缩短到原来的(纵坐标不变)C.所有点的横坐标缩短到原来的(纵坐标不变),再将图象向左平移个单位D.所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象向左平移个单位7.已知关于的不等式在上有解,则实数的取值范围是( ){}2log 1A x x =≤{}04B x x =<≤A B = {}04x x <≤{}4x x ≤{}2x x ≤{}02x x <≤()f x ()13f =()3f =2-3-()sin π0θ-<()cos π0θ+>θ()2,5AB = (),1AC m m =+A B C m =23-2332-32tan 3θ=-sin cos sin cos 2θθθθ+=103-56-()sin 2cos 2f x x x =+()g x x =π4π41212π4π8x 2230ax x a -+<(]0,2aA. B. C. D.8.设,,且,则下列结论正确的个数为( )① ② ③ ④A.1B.2C.3D.4二、多项选择题:本题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对得部分分,有选错的得0分.9.下列说法不正确的是( )A.钝角三角形的内角是第一象限角或第二象限角B.若向量,满足且,同向,则C.若,,三点满足,则,,三点共线D.将钟表的分针拨快10分钟,则分针转过的角的弧度数为10.函数(,)的部分图象如图所示,则( )A. B.C.的图象关于点对称 D.在区间上单调递增11.已知函数的定义域为,为奇函数,为偶函数,且时,单调递增,则下列结论正确的为( )A.是偶函数 B.的图象关于点中心对称C. D.第Ⅱ卷(非选择题部分,共92分)三、填空题:本题共3个小题,每小题5分,共15分.12.已知角的终边经过点,则______.4,7⎛⎫-∞ ⎪⎝⎭⎛-∞ ⎝(],0-∞(),0-∞0a >0b >1a b +=22log log 2a b +≥-22a b +≥ln 0a b +<1sin sin 4a b <a b a b > a b a b>P A B 3OP OA OB =+P A B π3()()sin f x x ωϕ=+0ω>π2ϕ<2ω=π6ϕ=()f x π,012⎛⎫⎪⎝⎭()f x 5ππ,4⎛⎫⎪⎝⎭()f x R ()1f x +()2f x +[]0,1x ∈()f x ()f x ()f x ()1,0-()20240f =51044f f ⎛⎫⎛⎫+-<⎪ ⎪⎝⎭⎝⎭α()3,4P -sin α=13.设函数,则满足的的取值范围是______.14.若,则的最大值为______.四、解答题:本题共5个小题,共70分,其中15题13分,16、17题每题15分,18、19题每题17分,解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)已知数列为等差数列,,前项和为,数列为等比数列,,公比为2,且,.(1)求数列与的通项公式;(2)设数列满足,求数列的前项和.16.(本小题15分)在学校食堂就餐成为了很多学生的就餐选择.学校为了解学生食堂就餐情况,在校内随机抽取了100名学生,其中男生和女生人数之比为1:1,现将一周内在食堂就餐超过8次的学生认定为“喜欢食堂就餐”,不超过8次的学生认定为“不喜欢食堂就餐”.“喜欢食堂就餐”的人数比“不喜欢食堂就餐”人数多20人,“不喜欢食堂就餐”的男生只有10人.男生女生合计喜欢食堂就餐不喜欢食堂就餐10合计100(1)将上面的列联表补充完整,并依据小概率值的独立性检验,分析学生喜欢食堂就餐是否与性别有关;(2)用频率估计概率,从该校学生中随机抽取3名,记其中“喜欢食堂就餐”的人数为.事件“”的概率为,求随机变量的期望和方差.参考公式:,其中.0.10.050.010.0050.0012.7063.8416.6357.87910.82817.(本小题15分)已知锐角,内角,,所对的边分别为,,,面积为,.(1)求角;(2)若,求的取值范围.18.(本小题17分)已知抛物线:()经过点,直线:与的交()11,02,0x x x f x x -+≤⎧=⎨>⎩112f x ⎛⎫-> ⎪⎝⎭x ()()sin cos 2sin αβααβ+=-()tan αβ+{}n a 11a =n n S {}n b 11b >2354b S =3216b S +={}n a {}n b {}n c n n n c a b =+{}n c n n T 0.001α=X X k =()P X k =X ()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++αx αABC △A B C a b c S πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭B 2a =S E 22y px =0p >()1,2P l y kx m =+E点为,,且直线与倾斜角互补.(1)求抛物线在点处的切线方程;(2)求的值;(3)若,求面积的最大值.19.(本小题17分)设函数(),.(1)当时,判断在上的单调性;(2)当时,证明:;(3)设函数,若函数在上存在唯一极值点,求实数的取值范围.A B PA PB ()1,2P k 3m <PAB △()()cos sin f x a x x x =-a ∈R ()e x g x =1a =()f x ()0,2π0x >()2112g x x x >++()()()2112h x g x f x x x =----()h x ()0,πa成都2022级半期考试数学参考答案及评分标准一、单选题:1. A2. D3. C4. B5. C6. B7. B8.C二、多选题:9. BCD 10. ACD 11. ABD三、填空题:12.13.四、解答题15.(1)设等差数列的公差为,由题知,解得,,∴,.(2)∵,∴.16.(1)列联表见图,男生女生合计喜欢食堂就餐402060不喜欢食堂就餐103040合计5050100零假设:假设食堂就餐与性别无关,由列联表可得:,根据小概率的独立性检验推断不成立,即可以得到学生喜欢食堂就餐与性别有关,此推断犯错误的概率不超过0.001(2)由题意可知,抽取的3名学生,喜欢饭堂就餐的学生人数服从二项分布,453,2⎛⎫+∞ ⎪⎝⎭{}n a d ()11233544216b d b d ⎧+=⎨++=⎩13b =2d =()11221n a n n =+-⨯=-132n n b -=⋅()12132n n n n c a b n -=+=-+⋅()()2112132131222n n n T c c c n -⎡⎤=++⋅⋅⋅+=++⋅⋅⋅+-++++⋅⋅⋅+⎣⎦()()()21121213321212nn n n n ⨯-⎡⎤+-⎣⎦=+⨯=+--0H 0H ()221004030102016.66710.82850506040χ⨯-⨯=≈>⨯⨯⨯0.001α=0H X且喜欢饭堂就餐的频率为,则,故其期望,方差.17.(1)因为,由正弦定理可得,,且,且故,所以,.(2)由正弦定理可得,,且,则,由(1)知,则,且是锐角三角形,即,,所以,即,,..18.(1)由题意可知,,所以,所以抛物线的方程为;(),,则,则切线方程为.(2)如图:设,,将直线的方程代入,得,所以,,因为直线与倾斜角互补,所以600.6100=()3,0.6X B~() 1.8E X np ==()()10.72D X np p =-=πsin cos 6b A a B ⎛⎫=-⎪⎝⎭1sin sin sin sin 2B A A B B ⎫=+⎪⎪⎭1sin 0sin 2A B B ≠=cos 0B ≠tan B =π02B <<π3B =sin sin sin a b c A B C ==2a =2sin sin Cc A=π3B =2π3A C +=ABC △π02C <<2ππ032A <-<π2π63A <<ππ62A <<π113sin 22S ac B ⎫⎛⎫⎪⎪====⎪ ⎪⎝⎭ππ62A <<S <<42p =2p =E 24y x =y =0x >y '=11x k y ='==1y x =+()11,A x y ()22,B x y l 24y x =()222240k x km x m +-+=12242km x x k -+=2122m x x k=PA PB,即,所以,即,所以.(3)由(1)可知,所以,,则因为,所以,即,又点到直线的距离为所以因为,所以,即时,等号成立,所以19.(1)当时,,则,当时,;当时,,所以在上单调递减,在上单调递增.(2)证明:令(),则,令,则,21212121222201111PA PB y y kx m kx m k k x x x x --+-+-+=+=+=----()()()()122121211222201111x x k k m k k m x x x x ⎛⎫+-++-+=++-=⎪----⎝⎭()()()242222022km k k k m k m k m --++-=+-++2422442022km k k k k m k m --++==++++1k =-()22240x m x m -++=1242x x m +=+212x x m =AB ==()222440m m ∆=+->1m >-13m -<<P AB d 12S =⨯()()()()()213133222m m m m m -+=--+3133222562327m m m -+-++⎛⎫≤= ⎪⎝⎭S ≤322m m -=+13m =PAB △1a =()cos sin f x x x x =-()cos sin cos sin f x x x x x x x =--=-'()0,πx ∈()0f x '<()π,2πx ∈()0f x '>()f x ()0,π()π,2π()()22111e 122x G x g x x x x x ⎛⎫=-++=---⎪⎝⎭0x >()e 1x G x x =--'()e 1x k x x =--()e 1x k x '=-当时,,所以在上单调递增,即在上单调递增;所以,所以在上单调递增,所以,所以不等式成立.(3)由题可知:,则,令且,所以函数在上存在唯一极值点等价于在上存在唯一变号零点,又因为且,令,则且①当时,,(ⅰ)当时,在上单调递减,所以在上单调递增.又因为,,由零点存在性定理知:存在唯一,使得,所以当时,;当时,,(ⅱ)当时,,所以,所以由(ⅰ)(ⅱ)知:在上单调递减,在上单调递增,即在上单调递减,在上单调递增,所以当时,,又因为,0x >()0k x '>()k x ()0,+∞()G x '()0,+∞()()00G x G '>='()G x ()0,+∞()()00G x G >=()2112g x x x >++()()21e 1cos sin 2xh x x x a x x x =-----()e 1sin x h x x ax x =--+'()e 1sin x m x x ax x =--+()00m =()h x ()0,π()m x ()0,π()()e 1sin cos x m x a x x x =-++'()00m '=()()()e 1sin cos x n x m x a x x x =-+'=+()()e 2cos sin x n x a x x x =+-'()012n a '=+12a <-()0120n a =+<'π0,2x ⎛⎫∈ ⎪⎝⎭2cos sin y x x x =-π0,2⎛⎫⎪⎝⎭()()e 2cos sin x n x a x x x =+-'π0,2⎛⎫⎪⎝⎭π2ππe 022n a ⎛⎫=-> ⎪⎝⎭'()0120n a =+<'0π0,2x ⎛⎫∈ ⎪⎝⎭()00n x '=()00,x x ∈()0n x '<0π,2x x ⎛⎫∈ ⎪⎝⎭()0n x '>π,π2x ⎛⎫∈⎪⎝⎭2cos sin 0y x x x =-<()()e 2cos sin 0x n x a x x x '=+->()n x ()00,x ()0,πx ()m x '()00,x ()0,πx ()00,x x ∈()()00m x m '<='()ππe 1π0m a =-->'所以由零点存在性定理知:存在唯一,使得,所以当时,;当时,所以在上单调递减,上单调递增,所以当时,,又因为,由(2)知:,所以由零点存在性定理知:存在唯一,使得,当时,;当时,,即为在上唯一变号零点,所以符合题意;②当时,由时,得:,令且,则且,令,又因为,则在上单调递增,即在上单调递增,所以,所以在上单调递增,所以,所以当时,,即在上无零点,所以不符合题意.综上:,即实数的取值范围为.()10,πx x ∈()10m x '=()10,x x ∈()0m x '<()1,πx x ∈()0m x '>()m x ()10,x ()1,πx ()10,x x ∈()()00m x m <=()ππe π1m =--()π0m >()21,πx x ∈()20m x =()20,x x ∈()0m x <()2,πx x ∈()0m x >2x ()m x ()0,π12a <-12a ≥-()0,πx ∈sin 0y x x =>()1e 1sin e 1sin 2x x m x x ax x x x x =--+≥---()1e 1sin 2xM x x x x =---()00M =()()1e 1sin cos 2xM x x x x =--+'()00M '=()()()1e 1sin cos 2xx M x x x x ϕ=--+'=()01e cos sin e cos 0002x x x x x ϕ'=-+>-+=()x ϕ()0,π()M x '()0,π()()00M x M '>='()M x ()0,π()()00M x M >=()0,πx ∈()0m x >()m x ()0,π12a ≥-12a <-a 1,2⎛⎫-∞- ⎪⎝⎭。
辽宁省大连市滨城高中联盟2023-2024学年高三上学期期中(Ⅰ)考试 数学
滨城高中联盟2023-2024学年度上学期高三期中Ⅰ考试数学一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设命题p:∃x₀∈(0,+∞),lnx₀>x₀-1,则¬p为( )A. ∀x∈(0,+∞),lnx≤x-1B. ∃x₀∈(0, + ∞),lnx₀≤x₀﹣1C. ∀x∈(-∞,0],lnx≤x-1(-∞,0],lnx₀≤x₀ -12. 已知集合A={x|log2x<1},B=x|y=则图中阴影部分所表示的集合为 ( )A. (-∞,2)B. (-∞,2]C. (0,2)D. [0,2]3.若复数z满足(1-3i)z=1+i,则z的共轭复数在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知幂函数f(x)=(m2−2m−2)x m2+m−2在(0,﹢∞)上是减函数, 则 f(m)的值为 ( )A. 3B. 1C. -3D. -15. 函数y=logₐx+aˣ⁻¹+2(a>0且a≠1)的图象恒过定点(k,b),若m+n=b-k且m>0, n> 0, 则9m +1n的最小值为( )A. 9B. 8C. 92D. 526. 已知△ABC 中,∠BAC = 120°, AC = 3AB=3,DC=2AD,在线段 BD上取点E,使得BE=3ED,则cos<AE,BD>=B.7. 已知函数f(x)=e(x+1)2,x≤0x+4x−3,x>0,函数 y=f(x)﹣a有四个不同的零点,从小到大依次为x₁,x₂,x₃,x₄,则x刂x₁x₂+x₃+x₄的取值范围为( )A. (5,3+e]B. (4,4+e)C. [4, + ∞)D. (-∞,4]8.设函数f(x)=cos(ωx+φ)(ω>0且| |φ|<π2)满足以下条件:①∀x∈R, 满足f(x)≥②∃x₀,使得=f(x0)=0;且|x0−π3|min>π6,则关于 x 的不等式f(x)−ff(x)>0的最小正整数解为( )B. 2C. 3D. 4二、选择题:本题共4小题,每小题5分,共20分。
四川省成都市第七中学2023-2024学年高三上学期期中考试理科 数学试题
2023-2024学年度上期高2024届半期考试数学试卷(理科)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.本试卷分选择题和非选择题两部分.3.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.4.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上.5.所有题目必须在答题卡上作答,在试题卷上答题无效.6.考试结束后,只将答题卡交回.第Ⅰ卷(选择题,共60分)一、选择题:(本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}220,21xA x x xB x =-<=>,则()A .B A ⊆B .A B⊆C .A B =RD .A B =∅2.复数34i2iz +=+,则z =()A B .5C .3D 3.执行如图所示程序框图,则输出结果是()A .热B .爱C .生D .活4.某公司一种型号的产品近期销售情况如表:月份x23456销售额y (万元)15.116.317.017.218.4根据上表可得到回归直线方程ˆˆ0.75yx a =+,据此估计,该公司7月份这种型号产品的销售额为()A .18.85万元B .19.3万元C .19.25万元D .19.05万元5.已知空间两不同直线m n 、,两不同平面αβ、,下列命题正确的是()A .若//m α且//n α,则//m nB .若m β⊥且m n ⊥,则//n βC .若m α⊥且//m β,则αβ⊥D .若m 不垂直于α,且n α⊂,则m 不垂直于n6.如图,在ABC △中,120,2,1,BAC AB AC D ∠=︒==是BC 边一点,2DC BD =,则AD BC ⋅等于()A .83-B .83C .23D .23-7.将函数()cos2f x x =的图象向左平移2π个单位得到函数()g x 的图象,则关于函数()y g x =以下说法正确的是()A .最大值为1,图象关于直线2x π=对称B .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数D .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数8.如图,平面四边形ABCD 中,1,2,AB AD CD BD BD CD ====⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,四面体A BCD '-的顶点在同一个球面上,则该球的体积为()A .43πB .32C .43πD .239.已知双曲线C 的两个顶点分别为12,A A ,若C 的渐近线上存在点P ,使122PA =,则C 的离心率范围是()A .(]1,3B .[)3,+∞C .(]1,2D .[)2,+∞10.已知函数()()2ln 2x f x kx x kx k R =--∈,在()20,e 有且只有一个极值点,则k 的取值范围是()A .[)0,e B .(){}2,0,2e e ⎡⎫-∞+∞⎪⎢⎣⎭C .()2,0,2e ⎡⎫-∞+∞⎪⎢⎣⎭D .(]0,e11.已知数列{}n a 满足()12121,1,54032n n n a a a a a n --=-=-+=≥,则1013a =()A .202321-B .202421-C .202621-D .101321-12.已知0,0a b >>,则在下列关系①222a b +≤②1a b e -≤③1cos 23a b≥-④a b e ea e eb -=-中,能作为“2a b +≤”的必要不充分条件的个数是()A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分.)13.曲线22ln 2y x x x =--+在点()1,1处的切线的倾斜角为______.14.已知40n xdx =⎰ ,则二项式()310nx x x ⎛⎫+> ⎪⎝⎭展开式中的常数项为______.15.数列{}n a 满足:2212212121,2,2n n n na a a a a a ++-==-==,数列{}n a 的前n 项和记为n S ,则23S =______.16.12F F 、分别是椭圆()222210x y a b a b +=>>的左、右焦点,点P 在椭圆上,12PF F △的内切圆的圆心为I ,设直线12,IF IF 的斜率分别为11,23-,则椭圆的离心率为______.三、解答题:(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)在ABC △中,内角A B C 、、所对的边分别为a b c 、、,其外接圆半径为1,4,sin sin 11cos bA C B=+=-.(1)求cos B ;(2)求ABC △的面积.18.(本小题满分12分)一个多面体的三视图和直观图如图所示,其中正视图和俯视图均为矩形,侧视图为直角三角形,M 是AB 的中点.(1)求证:CM ⊥平面FDM ;(2)若N 为线段FC 上一点,且FN FC λ= ,二面角F DM N --的余弦值为3,求λ的值.19.(本小题满分12分)体育强国是新时期我国体育工作改革和发展的目标和任务,我国要力争实现体育大国向体育强国的转变。
河南省焦作市普通高中2024届高三上学期期中考试数学试题
河南省焦作市普通高中2024届高三上学期期中考试数学试题一、单选题1.已知集合{}|10M x x =+≥,{}|21x N x =<,则下列V enn 图中阴影部分可以表示集合{}|10x x -≤<的是( )A .B .C .D .2.复数z 满足21i i 34i z z ++=+,则z =( )A .22i --B .22i -+C .22i -D .22i +3.已知等比数列{}n a 的前n 项积为n T ,116a =,公比12q =,则n T 取最大值时n 的值为( ) A .3 B .6 C .4或5 D .6或74.在ABC V 中,13BD BC =,点E 是AD 的中点,记AB a =u u u r r ,AC b =u u u r r ,则BE =u u u r ( ) A .1133a b -+r r B .2136a b -+r r C .1133a b --r r D .2136a b -r r 5.在边长为1的小正方形组成的网格中,ABC V 如图所示,则tan A =( )A .74B .1C .53D 6.已知O 为坐标原点,直线l 过抛物线()2:20D y px p =>的焦点F ,与D 及其准线依次交于,,A B C 三点(其中点B 在,A C 之间),若4AF =,2BC BF =,则OAB △的面积是( )ABC.D7.l 、l '为两条直线,,αβ为两个平面,满足:,l l O l '⋂=与l '的夹角为π,//,,6l αβαα⊥与β之间的距离为2.以l 为轴将l '旋转一周,并用,αβ截取得到两个同顶点O (点O 在平面α与β之间)的圆锥.设这两个圆锥的体积分别为12、V V ,则12V V +的最小值为( ) A .3π B .23π C .9π D .29π 8.设[]x 表示不超过x 的最大整数(例如:[]3.53=,[]1.52-=-),则[][][][]2222log 1log 2log 3log 2046++++=L ( )A .10928⨯-B .11928⨯-C .10922⨯+D .11922⨯+二、多选题9.有一组样本数据12,,,n x x x L 的平均数为x ,方差为2s ,则下列说法正确的是( ) A .设a ∈R ,则样本数据1ax ,2ax ,…,n ax 的平均数为axB .设a ,b ∈R ,则样本数据1ax b +,2ax b +,…,n ax b +的标准差为22a sC .样本数据21x ,22x ,…,2n x 的平均数为2xD .22211n i i s x x n ==-∑ 10.已知0,0m n >>,且2m n mn +=,则下列结论中正确的是( )A .1mn ≥ B.m n +≤C .222m n +≥ D.23m n +≥+11.(多选)在平面直角坐标系xOy 中,由直线4x =-上任一点P 向椭圆22143x y +=作切线,切点分别为A ,B ,点A 在x 轴的上方,则( )A .APB ∠恒为锐角B .当AB 垂直于x 轴时,直线AP 的斜率为12C .||AP 的最小值为4D .存在点P ,使得()0PA PO OA +⋅=u u u r u u u r u u u r 12.已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为(02)r r <<,设圆台的体积为V ,则下列选项中说法正确的是( )A .当1r =时,V =B .V 存在最大值C .当r 在区间(0,2)内变化时,V 逐渐减小D .当r 在区间(0,2)内变化时,V 先增大后减小三、填空题13.某市高三年级男生的身高X (单位:cm )近似服从正态分布()2175,N σ,已知()1751800.2P X ≤<=,若()[]0.3,0.5P X a ≤∈.写出一个符合条件的a 的值为.14.已知圆22:4cos 4sin 0C x y x y θθ+--=,与圆C 总相切的圆D 的方程是.15.组合数学常应用于计算机编程,计算机中著名的康威生命问题与开关问题有相似的地方.下图为一个开关阵列,每个开关只有“开”和“关”两种状态,按其中一个开关一次,将导致自身和周围所有相邻的开关改变状态,例如,按(2,2)将导致(1,2),(2,1),(2,3),(3,2)改变状态.如果要求只改变(1,1)的状态,则需按开关的最少次数为.16.机器学习是人工智能和计算机科学的分支,专注于使用数据和算法来模仿人类学习的方式.在研究时需要估算不同样本之间的相似性,通常采用的方法是计算样本间的“距离”,闵氏距离是常见的一种距离形式.两点()()1122,,,A x y B x y 的闵氏距离为()()11212,p p p p D A B x x y y =-+-,其中p 为非零常数.如果点M 在曲线e x y =上,点N 在直线1y x =-上,则()1,D M N 的最小值为.四、解答题17.已知数列{}n a 为:1,1,2,1,1,2,3,1,1,2,1,1,2,3,4….即先取11a =,接着复制该项粘贴在后面作为2a ,并添加后继数2作为3a ;再复制所有项1,1,2并粘贴在后面作为4a ,5a ,6a ,并添加后继数3作为7a ,…依次继续下去.记n b 表示数列{}n a 中n 首次出现时对应的项数.(1)求数列{}n b 的通项公式;(2)求12363a a a a ++++L .18.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,满足6cos 2C c b +=,3a =.(1)证明:ABC V(2)若()2222211ABC S t a b c ≤++V 恒成立,求实数t 的取值范围. 19.为了切实加强学校体育工作,促进学生积极参加体育锻炼,养成良好的锻炼习惯,某高中学校计划优化课程,增加学生体育锻炼时间,提高体质健康水平,某体质监测中心抽取了该较10名学生进行体质测试,得到如下表格:记这10名学生体质测试成绩的平均分与方差分别为x ,2s ,经计算()102111690i x x =-=∑,102133050i i x==∑.(1)求x ;(2)规定体质测试成绩低于50分为不合格,从这10名学生中任取3名,记体质测试成绩不合格的人数为X ,求X 的分布列;(3)经统计,高中生体质测试成绩近似服从正态分布()2,N μσ,用x ,2s 的值分别作为μ,2σ的近似值,若监测中心计划从全市抽查100名高中生进行体质测试,记这100名高中生的体质测试成绩恰好落在区间[]30,82的人数为Y ,求Y 的数学期望()E Y .附:若()2,N ξμσ:,则()0.6827P μσξμσ-≤≤+≈,(22)0.9545P μσξμσ-≤≤+≈,330.9()973P μσξμσ-≤≤+≈. 20.类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角P ABC -,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理; (2)如图2,平行六面体1111ABCD A B C D -中,平面11AAC C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒,①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DAC ?若存在,求出点P 的位置;若不存在,说明理由.21.我们给予圆锥曲线新定义:动点到定点的距离,与它到定直线(不通过定点)的距离之比为常数e (离心率).我们称此定点是焦点,定直线是准线.已知双曲线22:324360E x y x --+=.(1)求双曲线E 的准线;(2)设双曲线E 的右焦点为F ,右准线为l .椭圆C 以F 和l 为其对应的焦点及准线过点F 作一条平行于y x =的直线交椭圆C 于点A 和B .已知C 的中心P 在以AB 为直径的圆内,求椭圆C 的离心率e 的取值范围.22.已知函数23()e 232xa x f x x ax =---. (1)当0a =,求曲线()y f x =在点(1,(1))f 处的切线方程.(2)若()f x 在[0,)+∞上单调递增,求a 的取值范围;(3)若()f x 的最小值为1,求a .。
浙江省金华市艾青中学高三上学期期中考试数学(理)试题
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则=…………( )A .B .C .D . 2.已知函数为奇函数,且当时, 则…………( )A .B .C . D.. 3.在△中,“”是“”的………………………………( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4、函数(其中)的图象如下面右图所示,则函数的图象是………………………………………………………………………………( )5.若为等差数列,是其前项和,且S 15 =,则tan 的值为………………( ) A . B . C . D .6.设为平面,为直线,给出下列条件:①,,//,//a b a b αββα⊂⊂ ② ③ ④其中能推出的条件是……………………………………………………… ( ) A .①② B .②③ C .②④ D .③④7.若非零向量a ,b 满足︱a -b ︱=︱b ︱,则…………………………………………( )A .︱2a ︱<︱a -2b ︱B .︱2b ︱<︱a -2b ︱C .︱2a ︱>︱a -2b ︱D .︱2b ︱>︱a -2b ︱8.过点(,0)引直线与曲线交于A,B 两点 ,O 为坐标原点,当△AOB 的面积取最大值时,直线的斜率等于………………………………………………( ) A . B . C . D .9.已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为,点在双曲线的左支上,且,则此双曲线离心率的最大值为………………( )A .B .C .D . 10.若对任何,不等式11kx lx -≤≤-恒成立,则一定有…………( ) A . B . C . D .二、填空题:本大题共7小题,每小题4分,共28分.11.设函数⎩⎨⎧≥+<=.0,2,0,2)(x x a x x f x 若,则实数=________.12.若,则___________.13.设抛物线的焦点为F ,点A(0,2).若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.14.已知一个正三棱锥的正视图为等腰直角三形, 其尺寸如图所示,则其侧视图的周长为 .15.已知实数、满足242y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,且)0()2()1(222>=-+-r r y x ,则的最小值为 . 16.已知,若实数满足,则的最小值为 .17.定义在满足:上的函数)(),1[x f +∞①;②当时,,则集合 )}61()(|{f x f x S ==中的最小元素是_________.三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. 18、(本题满分14分)已知向量,,函数 (1)求函数的最小正周期和单调递减区间; (2)在中,分别是角的对边,且,,,且,求的值.19.(本题满分14分)如图,在底面是正方形的四棱锥P —ABCD 中,PA ⊥面ABCD ,BD 交AC 于点E ,F 是PC 中点,G 为EC 中点. (1)求证:FG//平面PBD ;(2)当二面角B —PC —D 的大小为时,求FG 与平面PCD 所成角的正切值.20.(本题满分15分)已知数列满足)()1(2,1*11N n a a a n n n ∈-+==+.(1)若,求证:数列是等比数列并求其通项公式; (2)求数列的通项公式; (3)求证: ++…+.21.(本题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>经过点,离心率为.(1)求椭圆的方程;(2)直线与椭圆交于两点,点是椭圆的右顶点.直线与直线分别与轴交于点,试问以线段为直径的圆是否过轴上的定点?若是,求出定点坐标;若不是,说明理由.22.(本题满分15分)已知函数2()2||f x x x a =-+-. (1)若函数为偶函数,求的值; (2)若,求函数的单调递增区间;(3)当时,若对任意的,不等式恒成立,求实数的取值范围.2014学年第一学期高三期中考试 数学(理科)参考答案 2014.11的单调递减区间Z k k k ∈++],32,6[ππππ, ……… 7分 (2)31)62sin(2)(=++=πC C f是三角形内角,∴即: ………9分∴232cos 222=-+=ab c a b C 即:. ………10分 将代入可得:,解之得:, ………13分∴,. ………,14分 19.(本小题满分14分).(1) 连接PE ,G .、F 为EC 和PC 的中点,∴⊂⊄∴,平面,平面PBD PE PBD ,//FG PE FG FG//平面PBD ………(5分)(2)以AB 为x 轴,AD 为y 轴,AP 为z 轴,建立如图空间直角坐标系。
2021届四川省宜宾市高三上学期期中考试数学理试题Word版含解析
2021届四川省宜宾市高三上学期期中考试数学理试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x >1},B={x|x 2﹣x ﹣2<0},则A ∩B=( )A .{x|﹣1<x <2}B .{x|x >﹣1}C .{x|﹣1<x <1}D .{x|1<x <2} 2.若复数=2﹣i 其中a ,b 是实数,则复数a+bi 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.设命题P :“∀x 2<1,x <1”,﹣p 为( )A .∀x 2≥1,X <1B .∃x 2<1,x ≥1C .∀x 2<1,x ≥1 D .3x ≥1,x ≥14.已知向量=(1,﹣3),=(2,1),若(k +)∥(﹣2),则实数k 的取值为( ) A .﹣ B . C .﹣2 D .2 5.已知钝角△ABC 的面积是,AB=1,BC=,则AC=( )A .1B .C .或1D .2 6.已知命题p :“a >1”,命题q :“函数f (x )=ax ﹣sinx 在R 上是增函数”,则命题p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7.设函数f (x )=,则满足f (x )≤4的x 的取值范围是( )A .[﹣1,2]B .[0,2]C .[﹣1,+∞)D .[1,+∞)8.已知平面向量=(2cos 2x ,sin 2x ),=(cos 2x ,﹣2sin 2x ),若函数f (x )=•,要得到 y=sin2x+cos2x 的图象,只需要将函数y=f (x )的图象( )A .向左平移个单位B .向右平移个单位C .向左平移个单位D .向右平移个单位9.已知菱形ABCD 的边长为4,∠DAB=60°,=3,则的值为( )A .7B .8C .9D .1010.定义在R 上的奇函数f (x )满足:对任意的x 1,x 2∈(﹣∞,0),(x 1≠x 2),都有<0,则下列结论正确的是( )A .f (log 3π)>f (log 2)>f (log 3)B .f (log 2)>f (log 3)>f (log 3π)C .f (log 3)>f (log 2)>f (log 3π)D .f (log 2)>f (log 3π)>f (log 3)11.设f(x)=,g(x)=ax+3﹣3a(a>0),若对于任意x1∈[0,2],总存在x∈[0,2],使得g(x)=f(x1)成立,则a的取值范围是()A.[2,+∞)B.[1,2] C.[0,2] D.[1,+∞)12.已知函数f(x)=ax3+bx2+cx+d(a<b),在R上是单调递增函数,则的最小值是()A.3 B.4 C.5 D.6二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量,的夹角为45°,||=,||=3,则|2﹣|= .14.设函数f(x)=x3[ln(e x+1)+ax]是奇函数,那么a= .15.如图,要测量河对岸C,D两点间的距离,在河边一侧选定两点A,B,测出AB的距离为20m,∠DAB=75°,∠CAB=30°,AB⊥BC,∠ABD=60°.则C,D两点之间的距离为 m.16.在△ABC中,BC=2,AC=,AB=+1.设△ABC的外心为O,若=m+n,则m+n= .三、解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步聚.17.(10分)已知f(x)=2sinx(sinx+cosx),x∈R.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若=1+<a<,求cosa的值.18.(12分)已知函数f(x)=(x+a)e x+b(x﹣2)2,曲线y=f(x)在点(0,f(0))处的切线方程为:y=﹣5.(Ⅰ)求a,b的值;(Ⅱ)求f(x)的极值.19.(12分)如图,在圆内接四边形ABCD中,AB=1,AD=2.(I)若BD=,求角C;(II)若BC=3,CD=4,求四边形ABCD的面积.20.(12分)已知函数f(x)=++bx+c的图象经过坐标原点,且在x=1处取得极大值.(I)求实数a的取值范围;(II)若方程f(x)=0恰好有两个不同的根,求f(x)的解析式.21.(12分)若函数f(x)=Asin(ωx+φ)(A)>0,ω>0,﹣<φ<的部分图象如图所示,B,C 分别是图象的最低点和最高点,其中|BC|=.(I)求函数f(x)的解析式;(II)在锐角△ABC中,a,b,c分别是角A、B、C的对边,若f(A)=,a=2,求△ABC周长的取值范围.22.(12分)已知函数f(x)=lnx﹣,g(x)=﹣ax+b.(I)讨论函数h(x)=f(x)﹣g(x)单调区间;(II)若直线g(x)=﹣ax+b是函数f(x)=lnx﹣图象的切线,求b﹣a的最小值.2021届四川省宜宾市高三上学期期中考试数学理试题参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>1},B={x|x2﹣x﹣2<0},则A∩B=()A.{x|﹣1<x<2} B.{x|x>﹣1} C.{x|﹣1<x<1} D.{x|1<x<2}【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】求出B中不等式的解集,找出A与B的交集即可.【解答】解:x2﹣x﹣2<0,即为(x﹣2)(x+1)<0,解的﹣1<x<2,即A={x|﹣1<x<2},又A={x|x>1},则A∩B={x|1<x<2},故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若复数=2﹣i其中a,b是实数,则复数a+bi在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【专题】方程思想;转化思想;数系的扩充和复数.【分析】利用复数的运算法则、复数相等、几何意义即可得出.【解答】解:复数=2﹣i,其中a,b是实数,∴a+i=(2﹣i)(b﹣i)=2b﹣1﹣(2+b)i,∴,解得b=﹣3,a=﹣7.则复数a+bi在复平面内所对应的点(﹣7,﹣3)位于第三象限.故选:C.【点评】本题考查了复数的运算法则、复数相等、几何意义,考查了推理能力与计算能力,属于基础题.3.设命题P:“∀x2<1,x<1”,﹣p为()A.∀x2≥1,X<1 B.∃x2<1,x≥1 C.∀x2<1,x≥1 D.3x≥1,x≥1【考点】命题的否定.【专题】计算题;对应思想;定义法;简易逻辑.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题p:“∀x2<1,x<1,则命题¬p为:∃x2<1,x≥1;故选:B.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.4.已知向量=(1,﹣3),=(2,1),若(k+)∥(﹣2),则实数k的取值为()A.﹣ B.C.﹣2 D.2【考点】平行向量与共线向量.【专题】计算题;转化思想;综合法;平面向量及应用.【分析】首先要表示出向量,再代入向量平行的坐标形式的充要条件,得到关于字母系数的方程,解方程即可.【解答】解:∵=(1,﹣3),=(2,1),∴k+=k(1,﹣3)+(2,1)=(2+k,1﹣3k),﹣2=(﹣3,﹣5),∵(k+)∥(﹣2),∴﹣5(2+k)=﹣3(1﹣3k),∴解得:k=﹣.故选:A.【点评】此题主要考查了平面向量共线的坐标表示,同时考查学生的计算能力,要注意与向量垂直的坐标表示的区别,属于基础题.5.已知钝角△ABC的面积是,AB=1,BC=,则AC=()A.1 B.C.或1 D.2【考点】余弦定理.【专题】计算题;方程思想;演绎法;解三角形.【分析】由条件可得B,再由余弦定理可得 AC2=AB2+CB2﹣2AB•CB•cosB 的值,可得AC的值.【解答】解:由题意可得钝角△ABC的面积是•AB•BC•sinB=×sinB=,∴sinB=,∴B=.再由余弦定理可得 AC2=AB2+CB2﹣2AB•CB•cosB=1+3﹣2×=1,故选A.【点评】本题主要考查余弦定理的应用,考查学生的计算能力,属于基础题.6.已知命题p:“a>1”,命题q:“函数f(x)=ax﹣sinx在R上是增函数”,则命题p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】计算题;转化思想;定义法;简易逻辑.【分析】利用导数法求出f(x)=ax﹣sinx为R上的增函数等价命题,进而根据充要条件的定义,可判断【解答】解:当f(x)=ax﹣sinx时,f′(x)=a﹣cosx,当a≥1时,f′(x)≥0在R上恒成立,f(x)=ax﹣sinx为R上的增函数,由{a|a>1}⊊{a|a≥1},故“a>1”是“f(x)=ax﹣sinx为R上的增函数”的充分不必要条件,故选:A【点评】本题考查了充要条件,函数的单调性,属于基础题.7.设函数f(x)=,则满足f(x)≤4的x的取值范围是()A.[﹣1,2] B.[0,2] C.[﹣1,+∞)D.[1,+∞)【考点】分段函数的应用.【专题】计算题;函数思想;转化法;函数的性质及应用.【分析】根据分段函数的解析式,分别求出不等式的解集,解得即可【解答】解:由函数f(x)=,则满足f(x)≤4,当x≤1时,21﹣x≤4=22,解得﹣1≤x≤1,当x>1时,1﹣log2x≤4,即log2x≥﹣3=log2,解得x>1,综上所述x的取值范围为[﹣1,+∞),故选:C【点评】本题考查了分段函数的值域的问题,属于基础题.8.已知平面向量=(2cos2x,sin2x),=(cos2x,﹣2sin2x),若函数f(x)=•,要得到y=sin2x+cos2x的图象,只需要将函数y=f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换;平面向量数量积的运算.【专题】转化思想;综合法;三角函数的求值;平面向量及应用.【分析】利用两个向量的数量积公式,三角恒等变换,化简函数f(x)的解析式,再根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:函数f(x)=•=2cos2x•cos2x﹣2sin2x•sin2x=2(cos2x+sin2x)•(cos2x﹣sin2x)=2cos2x=2sin(2x+)=2sin2(x+),∴要得到y=sin2x+cos2x=2sin(2x+)=2sin2(x+)的图象,只需要将函数y=f(x)=2sin(2x+)的图象向右平移﹣=个单位即可,故选:B.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.9.已知菱形ABCD 的边长为4,∠DAB=60°,=3,则的值为( )A .7B .8C .9D .10 【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用. 【分析】由题意画出图形,把都用表示,则答案可求.【解答】解:如图,∵AB=AD=4,∠DAB=60°,=3, ∴=====9.故选:C .【点评】本题考查平面向量的数量积运算,是基础的计算题.10.定义在R 上的奇函数f (x )满足:对任意的x 1,x 2∈(﹣∞,0),(x 1≠x 2),都有<0,则下列结论正确的是( )A .f (log 3π)>f (log 2)>f (log 3)B .f (log 2)>f (log 3)>f (log 3π)C .f (log 3)>f (log 2)>f (log 3π)D .f (log 2)>f (log 3π)>f (log 3) 【考点】函数单调性的性质.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得函数f (x )在R 上单调递减,再根据log 3<log 2<log 3π,可得 f (log 3)、f (log 2)、f (log 3π)的大小关系. 【解答】解:定义在R 上的奇函数f (x )满足:对任意的x 1,x 2∈(﹣∞,0),(x 1≠x 2),都有<0,故函数f (x )在R 上单调递减,由于log 3<log 2<log 3π,∴f (log 3)>f (log 2)>f (log 3π), 故选:C .【点评】本题主要考查函数的单调性和奇偶性的应用,属于基础题.11.设f(x)=,g(x)=ax+3﹣3a(a>0),若对于任意x1∈[0,2],总存在x∈[0,2],使得g(x)=f(x1)成立,则a的取值范围是()A.[2,+∞)B.[1,2] C.[0,2] D.[1,+∞)【考点】函数的值.【专题】函数思想;转化法;函数的性质及应用.【分析】求解当x1∈[0,2],f(x)=的值域,x∈[0,2],g(x)=ax+3﹣3a(a>0)值域,根据题意可知f(x)的值域是g(x)的值域的子集.可得a的取值范围.【解答】解:当x1∈[0,2],函数f(x)=,则f′(x)=,令f′(x)=0,解得:x=1,当x在(0,1)时,f′(x)>0,∴函数f(x)在(0,1)上单调递增;当x在(1,2)时,f′(x)<0,∴函数f(x)在(1,)上单调递减;所以:当x=1时,f(x)取得最大值为1.当x=0时,f(x)取得最小值为0.故得函数f(x)的值域M∈[0,1].当x0∈[0,2],∵a>0函数g(x)=ax+3﹣3a在其定义域内是增函数当x=0时,函数g(x)取得取得最小值为:3﹣3a.当x=2时,函数g(x)取得取得最大值为:3﹣a.故得函数f(x)的值域N∈[3﹣3a,3﹣a].∵M⊆N,∴,解得:1≤a≤2.故选B.【点评】本题考查了函数的单调性的运用求函数的值域问题,恒成立问题转化为不等式问题.属于中档题.12.已知函数f(x)=ax3+bx2+cx+d(a<b),在R上是单调递增函数,则的最小值是()A.3 B.4 C.5 D.6【考点】利用导数研究函数的单调性.【专题】函数思想;转化法;导数的综合应用.【分析】求出函数的导数,得到c≥,a>0,根据基本不等式的性质求出代数式的最小值即可.【解答】解:f′(x)=3ax2+2bx+c,若函数f(x)在R上是单调递增函数,则,解得:c≥,a>0,故≥=≥=,当且仅当3a=2b﹣3a即b=3a时“=”成立,此时的最小值是==4,故选:B.【点评】本题考查了求函数的单调性问题,考查基本不等式的性质,是一道中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量,的夹角为45°,||=,||=3,则|2﹣|= .【考点】平面向量数量积的运算.【专题】转化思想;向量法;平面向量及应用.【分析】运用向量数量积的定义可得•,再由向量数量积的性质:向量的平方即为模的平方,化简计算即可得到所求值.【解答】解:向量,的夹角为45°,||=,||=3,可得•=•3•cos45°=3,则|2﹣|====.故答案为:.【点评】本题考查平面向量数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.14.设函数f(x)=x3[ln(e x+1)+ax]是奇函数,那么a= ﹣.【考点】函数奇偶性的性质.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】先求出f(x)=x3ln(e x+1)+ax4,并求出f(﹣x)=﹣x3ln(e x+1)+(a+1)x4,而根据f(x)为奇函数便可得出﹣x3ln(e x+1)+(a+1)x4=﹣x3ln(e x+1)﹣ax4,这样便可求出a的值.【解答】解:f(x)=x3ln(e x+1)+ax4,f(x)为奇函数;∴f(﹣x)=﹣f(x);∵f(﹣x)=﹣x3ln(e﹣x+1)+ax4==﹣x3[ln(e x+1)﹣x]+ax4=﹣x3ln(e x+1)+(a+1)x4=﹣x3ln(e x+1)﹣ax4;∴a+1=﹣a;∴.故答案为:.【点评】考查奇函数的定义,以及对数的运算,多项式相等的充要条件.15.如图,要测量河对岸C,D两点间的距离,在河边一侧选定两点A,B,测出AB的距离为20m,∠DAB=75°,∠CAB=30°,AB⊥BC,∠ABD=60°.则C,D两点之间的距离为10 m.【考点】解三角形的实际应用.【专题】转化思想;三角函数的求值;解三角形.【分析】在RT△ABC中,BC=ABtan∠CAB.在△ABD中,由正弦定理可得:=,解得BD.在△BCD中,利用余弦定理可得DC.【解答】解:在RT△ABC中,BC=ABtan∠CAB=20×tan30°=20.在△ABD中,∠ADB=180°﹣∠DAB﹣∠ABD=45°.由正弦定理可得:=,∴BD===10(3+).在△BCD中,由余弦定理可得:DC2=202+﹣2×20×10(3+)×cos30°=1000,解得DC=10.故答案为:10.【点评】本题考查了正弦定理余弦定理、直角三角形的边角关系,考查了推理能力与计算能力,属于中档题.16.在△ABC中,BC=2,AC=,AB=+1.设△ABC的外心为O,若=m+n,则m+n= ﹣1 .【考点】向量在几何中的应用.【专题】探究型;转化思想;转化法;平面向量及应用.【分析】设AB,AC中点分别为M,N,利用向量的三角形法则和三角形的外心的性质即可得出答案.【解答】解:设AB,AC中点分别为M,N,则=﹣=﹣(﹣n)=()﹣,=﹣=﹣(﹣n)=+(),由外心O的定义知,⊥,⊥,因此,•=0,•=0,∴[()﹣]•=0,[+()]•=0,即()2﹣•=0…①,•+()2=0…②,∵=﹣,∴2=2﹣2•+2,∴•=(2+2﹣2)=1+…③,将③代入①②得:,解得:∴m+n=﹣1,故答案为:﹣1【点评】本题以向量在平面几何中的应用为载体,考查了向量的三角形法则和三角形的外心的性质,属于难题.三、解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步聚.17.(10分)已知f(x)=2sinx(sinx+cosx),x∈R.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若=1+<a<,求cosa的值.【考点】正弦函数的图象;三角函数中的恒等变换应用.【专题】转化思想;综合法;三角函数的求值.【分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性求得函数f(x)的单调递增区间.(Ⅱ)根据=1+sin(a﹣)=1+,求得sin(a﹣)的值,可得cos(a﹣)的值,再根据 cosa=cos[(a﹣)+],利用两角和的余弦公式计算求得结果.【解答】解:(Ⅰ)∵f(x)=2sinx(sinx+cosx)=2sin2x+2sinxcosx=2•+sin2x=1+sin2x﹣cos2x=1+sin(2x﹣),令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+]k∈Z.(Ⅱ)∵=1+sin(a﹣)=1+,∴sin(a﹣)=,<a﹣<π,∴cos(a﹣)=﹣=﹣,∴cosa=cos[(a﹣)+]=cos(a﹣)cos﹣sin (a﹣)sin=﹣•﹣=﹣.【点评】本题主要考查三角恒等变换、正弦函数的单调性,同角三角函数的基本关系,两角和的余弦公式的应用,属于中档题.18.(12分)已知函数f(x)=(x+a)e x+b(x﹣2)2,曲线y=f(x)在点(0,f(0))处的切线方程为:y=﹣5.(Ⅰ)求a,b的值;(Ⅱ)求f(x)的极值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【专题】方程思想;转化法;导数的概念及应用;导数的综合应用.【分析】(Ⅰ)求得f(x)的导数,可得切线的斜率,结合切点,可得a,b的方程组,即可解得a,b的值;(Ⅱ)求出f(x)的解析式,求得导数,令导数为0,求得极值点,讨论当x<0时,当0<x<2时,当x >2时可得导数的符号,可得单调区间,进而得到极值.【解答】解:(Ⅰ)函数f(x)=(x+a)e x+b(x﹣2)2的导数为f′(x)=(x+a+1)e x+2b(x﹣2),曲线y=f(x)在点(0,f(0))处的切线斜率为(a+1)e0﹣4b=a+1﹣4b=0,①f(0)=﹣5即a+4b=﹣5②解方程组,可得a=﹣3,b=﹣;(Ⅱ)函数f(x)=(x﹣3)e x﹣(x﹣2)2,导数f′(x)=(x﹣2)e x﹣(x﹣2)=(x﹣2)(e x﹣1),由f′(x)=0可得x=0或x=2.当x<0时,x﹣2<0,e x﹣1<0,可得f′(x)>0;当0<x<2时,x﹣2<0,e x﹣1>0,可得f′(x)<0;当x>2时,x﹣2>0,e x﹣1>0,可得f′(x)>0;可得f(x)在(﹣∞,0),(2,+∞)递增;在(0,2)递减.即有f(x)的极小值为f(2)=﹣e2;极大值为f(0)=﹣5.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值,考查方程思想和不等式解法,考查化简整理的运算能力,属于中档题.19.(12分)如图,在圆内接四边形ABCD中,AB=1,AD=2.(I)若BD=,求角C;(II)若BC=3,CD=4,求四边形ABCD的面积.【考点】余弦定理.【专题】计算题;数形结合;数形结合法;解三角形.【分析】(I)在△ABD中,由余弦定理可求cosA=﹣,结合范围0<A<π,可求A,由四边形ABCD是圆的内接四边形,即可求C的值.(II)利用余弦定理可求BD2=5﹣4cosA=25+24cosA,解得cosA=﹣,结合范围0<A<π,利用同角三角函数基本关系式可求sinA,利用三角形面积公式即可计算得解.【解答】(本题满分为12分)解:(I)在△ABD中,由余弦定理得,cosA==﹣.又0<A<π,∴A=.∵四边形ABCD是圆的内接四边形,∴C=π﹣A=.…(6分)(II)因为BD2=AB2+AD2﹣2AB•AD•cosA=5﹣4cosA,且BD2=CB2+CD2﹣2CB•CD•cos(π﹣A)=25+24cosA,∴cosA=﹣.…(9分)又0<A<π,∴sinA==.∴S△BCD =S△ABD+S△CBD=+=2.…(12分)【点评】本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式的应用,考查了转化思想和数形结合思想的应用,属于中档题.20.(12分)已知函数f(x)=++bx+c的图象经过坐标原点,且在x=1处取得极大值.(I)求实数a的取值范围;(II)若方程f(x)=0恰好有两个不同的根,求f(x)的解析式.【考点】利用导数研究函数的极值;函数的零点与方程根的关系.【专题】函数思想;转化法;导数的综合应用.【分析】(Ⅰ)求出函数的导数,解关于导函数的方程,根据函数的极值,求出a的范围即可;(Ⅱ)解关于导函数的不等式,求出函数的单调区间,求出函数的极值,从而求出a的值,求出函数的解析式即可.【解答】解:(I)由f(0)=0,解得:c=0,故f′(x)=x2+ax+b,f′(1)=0,得:b=﹣a﹣1,∴f′(x)=(x﹣1)(x+a+1),由f′(x)=0,解得:x=1或x=﹣a﹣1,因为当x=1时取得极大值,所以﹣a﹣1>1,得:a<﹣2,所以a的范围是(﹣∞,﹣2);…(II)由下表:x (﹣∞,1) 1 (1,﹣a﹣1)﹣a﹣1 (﹣a﹣1,+∞)f′(x)+ 0 ﹣0 +f(x)递增极大值﹣a﹣递减极小值(a+)(a+1)2递增依题意得:(a+)(a+1)2=0,解得:a=﹣4,所以函数f(x)的解析式是:f(x)=x3﹣2x2+3x …(12分)【点评】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.21.(12分)若函数f(x)=Asin(ωx+φ)(A)>0,ω>0,﹣<φ<的部分图象如图所示,B,C 分别是图象的最低点和最高点,其中|BC|=.(I)求函数f(x)的解析式;(II)在锐角△ABC中,a,b,c分别是角A、B、C的对边,若f(A)=,a=2,求△ABC周长的取值范围.【考点】正弦定理;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】数形结合;待定系数法;三角函数的图像与性质.【分析】(I)由T=[﹣(﹣)]=π=可求得ω,再由B(﹣,﹣A),C(,A),|BC|==,可求得A,继而可求φ,于是可求得函数f(x)的解析式;(II)在锐角△ABC中,由f(A)=可求得A,又a=2,利用正弦定理及三角恒等变换可求得2<b+c ≤4,从而可求得△ABC周长的取值范围.【解答】解(Ⅰ)由图象可得:f(x)的周期T=[﹣(﹣)]=π,即:=π得ω,…(2分)又由于B(﹣,﹣A),C(,A),∴|BC|==,∴A=2,…(4分)又将C(,2)代入f(x)=2sin(2x+φ),2sin(2×+φ)=2,∵﹣<φ<解得φ=﹣,∴f(x)=2sin(2x﹣),…(6分)(Ⅱ)∵f(A)=2sin(2A﹣)=,∴2A﹣=或2A﹣=,解得A=或A=(舍去),…(8分)正弦定理===得:b+c=(sinB+sinC)=[sinB+sin(B+)]=4sin(B+),△ABC 是锐角三角形,∴B+C=,0<B<,0<C<,∴<B<,<B+<.…(10分)∴2<b+c≤4,∴求△ABC周长的取值范围为(2+2,6].…(12分)【点评】本题考查由f(x)=Asin(ωx+φ)的部分图象确定解析式,求得A与φ的值是关键,也是难点,考查正弦定理与三角恒等变换的综合运用,考查运算求解能力,属于难题.22.(12分)已知函数f(x)=lnx﹣,g(x)=﹣ax+b.(I)讨论函数h(x)=f(x)﹣g(x)单调区间;(II)若直线g(x)=﹣ax+b是函数f(x)=lnx﹣图象的切线,求b﹣a的最小值.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【专题】分类讨论;分类法;导数的概念及应用.【分析】(Ⅰ)求得h(x)的解析式和导数,讨论a=0,a>0,a<0,由导数大于0,可得增区间;导数小于0,可得减区间;(Ⅱ)设切点(m,lnm﹣),求得切线的方程,对照已知直线y=g(x),可得a,b的式子,令﹣a+b=φ(t)=﹣lnt+t2﹣t﹣1,t>0,求得导数和单调区间,即可得到所求最小值.【解答】解:(Ⅰ)h(x)=f(x)﹣g(x)=lnx﹣+ax﹣b(x>0),则h′(x)=++a=(x>0),令y=ax2+x+1 …(2分)(1)当a=0时,h′(x)>0,函数f(x)在(0,+∞)上单调递增.…(3分)(2)当a>0时,△=1﹣4a,若△≤0,即a≥时,h′(x)>0,函数f(x)在(0,+∞)上单调递增.=<0,△>0,即0<a<,由ax2+x+1=0,得x1,2函数f(x)在(0,+∞)上单调递增;(3)当a<0时,△=1﹣4a>1,由ax2+x+1=0,得x1=>0,x2=<0,所以函数f(x)在(0,)上单调递增;在(,+∞)上递减…综上,当a≥0时,f(x)的单调递增区间是(0,+∞);当a<0时,函数f(x)在(0,)上单调递增;在(,+∞)上递减.…(6分)(Ⅱ)设切点(m,lnm﹣),则切线方程为y﹣(lnm﹣)=(+)(x﹣m),即y=(+)x﹣(+)m+lnm﹣,亦即y=(+)x+lnm﹣﹣1,令=t>0,由题意得﹣a=+=t+t2,b=lnm﹣﹣1=﹣lnt﹣2t﹣1,…(8分)令﹣a+b=φ(t)=﹣lnt+t2﹣t﹣1,则φ′(t)=﹣+2t﹣1=,当t∈(0,1)时,φ′(t)<0,φ(t)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,φ(t)在(1,+∞)上单调递增,∴b﹣a=φ(t)≥φ(1)=﹣1,故b﹣a的最小值为﹣1.…(12分)【点评】本题考查导数的运用:求切线方程和单调区间,考查分类讨论的思想方法和构造函数法,考查化简整理的运算能力,属于中档题.。
无锡市2024-2025学年高三上学期期中教学质量调研测试数学试题
无锡市2024-2025学年高三上学期期中数学试题2024.11命题单位:无锡市教育科学研究院制卷单位:无锡市教育科学研究院注意事项及说明:本卷考试时间为120分钟,全卷满分为150分一、单项选择题:本题共8小题,每小题5分,共40分.1.若集合{}2{11},20A x xB x x x =-<<=-+≤∣∣,则A B = ()A.[0,1)B.(1,1)- C.(1,2]- D.(1,0]-2.若复数12i34iz +=-(i 为虚数单位),则在复平面内z 所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知函数1sin 25y x ⎛⎫=+ ⎪⎝⎭的图象为C ,为了得到函数1sin 25y x ⎛⎫=- ⎪⎝⎭的图象,只要把C 上所有的点()A.向右平行移动15个单位长度 B.向左平行移动15个单位长度C.向右平行移动25个单位长度 D.向左平行移动25个单位长度4.一家货物公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:每月土地占地费1y (单位:元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:元)与x 成正比;若在距离车站6km 处建仓库,则214y y =.要使这家公司的两项费用之和最小,则应该把仓库建在距离车站()A.2kmB.3kmC.4kmD.5km5.若等差数列{}n a 的前n 项和为n S ,则“20240S >且20250S <”是“101210130a a <”的()A .充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知函数2()ln 1x xf x xx -=+-,则下列函数是奇函数的是()A.(1)1f x ++B.(1)1f x -+C.(1)1f x -- D.(1)1f x +-7.若πππsin 24322θθ⎛⎫⎛⎫+=-<<⎪ ⎪⎝⎭⎝⎭,则tan 2θ的值为()A. B.5C.7-D.78.在ABC V 中,已知3,1,60BC AC ACB ︒==∠=,点D 是BC 的中点,点E 是线段AD 上一点,且13AE AD =,连接CE 并延长交边AB 于点P ,则线段CP 的长度为()A.75B.5C.65D.5二、多项选择题:本题共3小题,每小题6分,共18分.9.下列函数中,在区间π3π,24⎛⎫⎪⎝⎭上单调递增的函数是()A.πsin 24y x ⎛⎫=- ⎪⎝⎭B.2πcos 3y x ⎛⎫=+ ⎪⎝⎭C.|sin 2|y x = D.2sin y x=10.下列说法中正确的有()A.若0a b >>,0c d <<,则ac bd <B.若0a b >>,0c <,则c c a b>C.若13a <<,10b -<<,则23a b <-<D.若0a <,2ab a >,则22b a >11.函数32()1f x x ax bx =++-.下列说法中正确的有()A.当3,1a b ==时,有(2)()0f x f x --+=恒成立B.,a b ∃∈R ,使()f x 在(,1)-∞上单调递减C.当0b =时,存在唯一的实数a ,使()f x 恰有两个零点D.当0,[2,0]b x =∈-时,6()x f x x -≤≤恒成立,则1,14a ⎡⎤∈⎢⎥⎣⎦三、填空题:本题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上.12.已知(0,2),a b == ,则向量a 在向量b上的投影向量的坐标为______.13.已知实数,,a b c 满足924a b c ==且113a b+=,则c =__________.14.任何有理数m n 都可以化为有限小数或无限循环小数;反之,任一有限小数或无限循环小数也可以化为mn的形式,从而是有理数.则1.4=__________(写成m n的形式,m 与n 为互质的具体正整数);若1.4,1.44,1.444, 构成了数列{}n a ,设数列()()111011n n n b a +=-⋅-,求数列{}n b 的前n项和n S =__________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答,解答应写出必要的文字说明、证明过程或演算步骤.15.已知向量a 与b的夹角为135︒,且||1,||a b == (1),c a b λλλ=+-∈R .(1)当b c ⊥时,求实数λ的值;(2)当||c 取最小值时,求向量b 与c夹角的余弦值.16.已知函数2()ln(1),f x x a x a =++∈R .(1)若函数()f x 有两个不同的极值点,求a 的取值范围;(2)求函数()()22a g x f x x ⎛⎫=-+⎪⎝⎭的单调递减区间.17.在ABC V 中,已知)tan 114A B --=.(1)若ABC V 为锐角三角形,求角C 的值,并求22sin cos A B -的取值范围;(2)若AB =AB 的中垂线交边AC 于点D ,且1CD =,求A 的值.18.已知函数()e xf x =.(1)若x ∀∈R ,不等式()0mf x x ->恒成立,求实数m 的取值范围;(2)过点(,1)T t 可以作曲线()y f x =的两条切线,切点分别为()(),e ,,e abA aB b .①求实数t 的取值范围;②证明:若a b >,则||||AT BT >.19.在下面n 行、n 列()*Nn ∈的表格内填数:第一列所填各数自上而下构成首项为1,公差为2的等差数列;第一行所填各数自左向右构成首项为1,公比为2的等比数列;其余空格按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写.设第2行的数自左向右依次记为123,,,,n c c c c .第1列第2列第3列…第n 列第1行1222…12n -第2行359第3行510……第n 行21n -(1)求数列{}n c 通项公式;(2)对任意的m *∈N ,将数列中落入区间[],m m b c 内项的个数记为m d ,①求1d 和10d 的值;②设数列{}m m a d ⋅的前m 项和m T ;是否存在*m ∈N ,使得()19253m m T m -+=⋅,若存在,求出所有m 的值,若不存在,请说明理由.江苏省无锡市2024-2025学年高三上学期期中教学质量调研测试数学试题2024.11命题单位:无锡市教育科学研究院制卷单位:无锡市教育科学研究院注意事项及说明:本卷考试时间为120分钟,全卷满分为150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.若集合{}2{11},20A xx B x x x =-<<=-+≤∣∣,则A B = ()A.[0,1)B.(1,1)- C.(1,2]- D.(1,0]-【答案】D 【解析】【分析】解一元二次不等式可得集合B ,根据集合的交集运算,即可求得答案.【详解】由题意知(){}2{11}1,1,20(,0][2,)A x x B x x x =-<<=-=-+≤=-∞+∞ ∣∣,故(1,0]A B =- ,故选:D 2.若复数12i34iz +=-(i 为虚数单位),则在复平面内z 所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】根据复数除法化简12i 55z =-+,进而可得点的坐标,即可求解.【详解】复数2212i (12i)(34i)386i 4i 510i 12i 34i (34i)(34i)342555z +++-++-+=====---++,对应点为12,55⎛⎫- ⎪⎝⎭,位于第二象限,故选:B3.已知函数1sin 25y x ⎛⎫=+ ⎪⎝⎭的图象为C ,为了得到函数1sin 25y x ⎛⎫=- ⎪⎝⎭的图象,只要把C 上所有的点()A.向右平行移动15个单位长度 B.向左平行移动15个单位长度C.向右平行移动25个单位长度 D.向左平行移动25个单位长度【答案】A 【解析】【分析】根据三角函数的图象变换计算即可.【详解】易知1sin 25y x ⎛⎫=+ ⎪⎝⎭向右平行移动15个单位长度可得111sin 2sin 2555y x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选:A4.一家货物公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:每月土地占地费1y (单位:元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:元)与x 成正比;若在距离车站6km 处建仓库,则214y y =.要使这家公司的两项费用之和最小,则应该把仓库建在距离车站()A.2kmB.3kmC.4kmD.5km 【答案】B 【解析】【分析】设112212,,(0,0)k y y k x k k x==>>,结合题意求出129k k =,从而求出两项费用之和的表达式,利用基本不等式,即可求得答案.【详解】由题意设112212,,(0,0)ky y k x k k x==>>,仓库到车站的距离0x >,由于在距离车站6km 处建仓库,则214y y =,即121246,96k k k k =∴=,两项费用之和为2122296k y y y k x k x=+=+≥=,当且仅当229k k x x=,即3x =时等号成立,即要使这家公司的两项费用之和最小,则应该把仓库建在距离车站3km.故选:B 5.若等差数列{}n a 的前n 项和为n S ,则“20240S >且20250S <”是“101210130a a <”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据等差数列的单调性以及等差数列的性质即可判断101210130,0aa ><,说明充分性,由101210130,0a a <>时,即可说明不必要性.【详解】因为20240S >且20250S <,所以等差数列{}n a 单调递减,且公差小于0,故20230S >,()()120231202520232025202320250,022S a a a S a +⨯+⨯=>=<,则12023101212025101320,20a a a a a a +=>+=<,即101210130,0aa ><,所以101210130a a <,由101210130a a <,当101210130,0a a <>时,等差数列{}n a 单调递增,则不可能满足20240S >且20250S <,因此“20240S >且20250S <”是“101210130a a <”的充分不必要条件.故选:A.6.已知函数2()ln1x xf x xx -=+-,则下列函数是奇函数的是()A.(1)1f x ++ B.(1)1f x -+C.(1)1f x -- D.(1)1f x +-【答案】D 【解析】【分析】利用函数的奇偶性计算即可.【详解】易知()21111(1)lnln111x x xf x x x xx -++-+=+=++++,所以()()()()1111ln1,00,11x f x x x x-+-=+∈-+ ,令()11ln 1x g x x x -=++,则()11ln1x g x x x+-=--,显然()()0g x g x +-=,所以()g x 为奇函数,即D 正确.故选:D 7.若π3ππsin24322θθ⎛⎫⎛⎫+=-<< ⎪ ⎪⎝⎭⎝⎭,则tan 2θ的值为()A.5-B.5C.7-D.7【答案】C 【解析】【分析】利用倍角公式可求πcos 2θ⎛⎫+⎪⎝⎭,根据诱导公式得到sin θ,利用同角三角函数的基本关系求出cos θ和tanθ,进而求出tan 2θ.【详解】∵π3sin 243θ⎛⎫+= ⎪⎝⎭,∴22πππ31cos cos 212sin 122242433θθθ⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫+=+=-+=-⨯= ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭,∵πcos sin 2θθ⎛⎫+=-⎪⎝⎭,∴1sin3θ=-,∵ππ22θ-<<,∴222cos 1sin 3θθ=-=,∴sin 2tancos 4θθθ==-,∴22tan 42tan 21tan 7θθθ==--.故选:C.8.在ABC V 中,已知3,1,60BC AC ACB ︒==∠=,点D 是BC 的中点,点E 是线段AD 上一点,且13AE AD =,连接CE 并延长交边AB 于点P ,则线段CP 的长度为()A.75B.375C.65D.355【答案】B 【解析】【分析】首先根据平面向量基本定理的推论求得AB与AP 的关系,即可利用基底CA CB ,表示CP ,再两边平方,利用平面向量数量积公式,即可求解.【详解】11111332266AE AD AB AC AP AC λ⎛⎫==+=+ ⎪⎝⎭ ,因为点,,P E C 三点共线,所以1166λ+=,得5λ=,即5AB AP =,4155CP CA CB=+,两边平方2221618252525CP CA CB CA CB =++⋅ ,169817413252525250=++⨯⨯⨯=,所以375CP =.故选:B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列函数中,在区间π3π,24⎛⎫⎪⎝⎭上单调递增的函数是()A.πsin 24y x ⎛⎫=- ⎪⎝⎭B.2πcos 3y x ⎛⎫=+ ⎪⎝⎭C.|sin 2|y x = D.2sin y x=【答案】BC 【解析】【分析】利用正弦函数和余弦函数的性质判断;【详解】A.因为π3π,24x ⎛⎫∈ ⎪⎝⎭,所以π3π5π2,444x ⎛⎫-∈ ⎪⎝⎭,sin y t =在3π5π,44⎛⎫⎪⎝⎭上递减,故错误;B.因为π3π,24x ⎛⎫∈ ⎪⎝⎭,所以2π7π17π,3612x ⎛⎫+∈ ⎪⎝⎭,cos y t =在7π17π,612⎛⎫ ⎪⎝⎭上递增,故正确;C.因为π3π,24x ⎛⎫∈ ⎪⎝⎭,所以3π2π,2x ⎛⎫∈ ⎪⎝⎭,sin y t =在3ππ,2⎛⎫⎪⎝⎭上递增,故正确;D.21cos 2sin 2x y x -==,因为π3π,24x ⎛⎫∈ ⎪⎝⎭,所以3π2π,2x ⎛⎫∈ ⎪⎝⎭,cos 2y x =在3ππ,2⎛⎫ ⎪⎝⎭上递增,则2sin y x =在3ππ,2⎛⎫⎪⎝⎭上递减,故错误;故选:BC10.下列说法中正确的有()A.若0a b >>,0c d <<,则ac bd <B.若0ab >>,0c <,则c c a b>C.若13a <<,10b -<<,则23a b <-<D.若0a<,2ab a >,则22b a >【答案】ABD 【解析】【分析】利用不等式的基本性质逐项判断,可得出合适的选项.【详解】对于A 选项,因为0ab >>,0cd <<,则0c d ->->,由不等式的基本性质可得acbd ->-,则ac bd <,A 对;对于B 选项,因为0a b >>,不等式的两边同时除以ab 可得11a b<,因为0c <,由不等式的基本性质可得c ca b>,B 对;对于C 选项,因为13a <<,10b -<<,则01b <-<,由不等式的基本性质可得14a b <-<,C 错;对于D 选项,因为0a<,2ab a >,由不等式的基本性质可得0b a <<,则0b a ->->,由不等式的基本性质可得22a b <,D 对.故选:ABD.11.函数32()1f x x ax bx =++-.下列说法中正确的有()A.当3,1ab ==时,有(2)()0f x f x --+=恒成立B.,a b ∃∈R ,使()f x 在(,1)-∞上单调递减C.当0b=时,存在唯一的实数a ,使()f x 恰有两个零点D.当0,[2,0]bx =∈-时,6()x f x x -≤≤恒成立,则1,14a ⎡⎤∈⎢⎥⎣⎦【答案】ACD 解析】【分析】利用函数表达式计算(2)f x --,可得选项A 正确;求()f x ',可知()f x '为开口向上的二次函数,在(,1)-∞上()0f x '≤不可能恒成立,选项B 错误;零点问题转化为函数图象交点个数问题可得选项C 正确;分离参数a ,恒成立问题转化为a 大于等于函数的最大值或小于等于函数的最小值,分析函数即可得到选项D 正确.【详解】A.当3,1ab ==时,32()31f x x x x =++-,32(2)31f x x x x --=---+,∴(2)()0f x f x --+=,选项A 正确.B.由题意得,2()32f x x ax b '=++,为开口向上的二次函数,故0x ∃∈R ,使得0(,)x x ∈-∞时,()0f x '>,此时()f x 为增函数,所以不存在,a b ∈R ,使()f x 在(,1)-∞上单调递减.C.当0b =时,32()1f x x ax =+-,由(0)1f =-得,0不是函数()f x 的零点.当0x ≠时,由3210x ax +-=得,21a x x=-,令21()(0)g x x x x =-≠,则332()x g x x +'=-,由()0g x '=得32x =-,当3(,2)x ∈-∞-时,330,20,()0x x g x '<+<<,()g x 为减函数,当3(2,0)x ∈-时,330,20,()0x x g x '<+>>,()g x 为增函数,当(0,)x ∈+∞时,330,20,()0x x g x '>+><,()g x 为减函数,()g x 图象如图所示:由图象可知,存在唯一的实数a ,使直线y a =与()g x 图象恰有两个交点,即()f x 恰有两个零点,选项C 正确.D.当0b=时,32()1f x x ax =+-,∵[2,0]x ∈-,6()x f x x -≤≤恒成立,∴3250x ax x +-+≥恒成立且3210x ax x +--≤.对于不等式325[2,00,]x a x x x ≥∈-+-+,当0x =时,不等式成立,当[2,0)x ∈-时,215a x x x ≥-+-恒成立,即2max 15ax x x ⎛⎫≥-+- ⎪⎝⎭,令2)15(2,0)[,h x x x x x ∈-=-+-,则3310()x x h x x --+'=,∵[2,0)x ∈-,∴33100,0x x x --+><,∴()0h x '<,∴()h x 在[2,0)-上为减函数,max 1()(2)4h x h =-=,∴1a 4≥.对于不等式321[2,00,]x a x x x ≤∈-+--,当0x =时,不等式成立,当[2,0)x ∈-时,211a x x x ≤-++恒成立,即2min 11ax x x ⎛⎫≤-++ ⎪⎝⎭,令2)11[2(,),0x x x x x ϕ∈-=-++,则332()x x x x ϕ---'=,当(2,1)x ∈--时,3(2,10)x x --∈,3320,0x x x ---><,()0x ϕ'<,当(1,0)x ∈-时,3(0,2)x x --∈,3320,0x x x ---<<,()0x ϕ'>,∴()ϕx 在(2,1)--上为减函数,在(1,0)-上为增函数,∴min ()(1)1x ϕϕ=-=,∴1a ≤.综上得,1,14a ⎡⎤∈⎢⎥⎣⎦,选项D 正确.故选:ACD.【点睛】思路点睛:本题考查函数零点、函数与不等式综合问题,具体思路如下:(1)对于函数零点个数问题,先说明0不是函数()f x 的零点,再根据0x ≠时,由()0f x =分离出参数21a x x=-,问题转化为“存在唯一的实数a ,使得直线y a =与21()g x x x =-恰有两个交点”,通过求导分析单调性画出函数图象,通过图象即可得到结果.(2)对于不等式恒成立问题,分离参数a ,问题转化为max ()ah x ≥且min ()a x ϕ≤,对两个函数分别求导分析单调性,即可得到a 的取值集合.三、填空题:本题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上.12.已知(0,2),a b == ,则向量a 在向量b上的投影向量的坐标为______.【答案】1,22⎛⎫⎪ ⎪⎝⎭【解析】【分析】根据投影向量的定义计算即可求解.【详解】向量a 在向量b上的投影向量为)1,22a b b b b⎛⎫⋅⋅== ⎪ ⎪⎝⎭ .故答案为:31,22⎛⎫⎪ ⎪⎝⎭13.已知实数,,a b c 满足924a b c ==且113a b+=,则c =__________.【答案】6【解析】【分析】利用指数与对数的换算结合换底公式计算即可.【详解】由924ab c ==可知9240,log ,log c a c b c >==,所以11log 9log 24log 2163c c c a b+=+==,即332166c ==,所以6c=.故答案为:614.任何有理数m n都可以化为有限小数或无限循环小数;反之,任一有限小数或无限循环小数也可以化为m n的形式,从而是有理数.则1.4=__________(写成m n的形式,m 与n 为互质的具体正整数);若1.4,1.44,1.444, 构成了数列{}n a ,设数列()()111011n n n b a +=-⋅-,求数列{}n b 的前n 项和n S =__________.【答案】①.139②.()111364101n +--【解析】【分析】利用无限循环小数的性质设0.04t = ,然后建立等式求解即可;利用题中给出的规律先求出{}n a 的通项公式,然后得到{}n b 的通项公式,然后列项相消求解即可.【详解】令0.04t = ,则1.4110 1.4t t =+=+,解得245t =,所以131.41109t =+= 易知()()()23410.1410.1410.11 1.4,1 1.44,1 1.444,999---+=+=+=所以()410.11341199910n nn a-=+=-⨯所以()()()111191114101101410111013419910110110n n n n n n n n b +++⨯⎛⎫===- ⎪--⎛⎫--⎝⎭-⋅- ⎪-⎝⎭⨯所以1211231111111110110110110110110110110141nn n n n S -+-+-++-+---------⎛⎫= ⎪⎝⎭()111111101101414601113n n ++⎛⎫==-⎪⎝⎭----所以答案为:139;()114113601n +--【点睛】关键点点睛:若0.04t = ,则0.410t = ,借此建立等式;()()244440.40.910.1;0.440.9910.19999=⨯=⨯-=⨯=⨯- ,借此求得{}n a 的通项公式;同样的道理()()2444449101;44991019999=⨯=⨯-=⨯=⨯- .四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答,解答应写出必要的文字说明、证明过程或演算步骤.15.已知向量a 与b的夹角为135︒,且||1,||a b == (1),c a b λλλ=+-∈R.(1)当b c⊥ 时,求实数λ的值;(2)当||c 取最小值时,求向量b 与c 夹角的余弦值.【答案】(1)23(2)10【解析】【分析】(1)由b c ⊥ ,所以0b c ⋅= ,将(1)c a b λλ=+- 代入可得()210a b b λλ⋅+-= ,再由数量积的定义求得1a b ⋅=- ,代回即可求解;(2)根据向量的模和二次函数求最值的方法求出λ的值,再根据向量的夹角公式计算即可.【小问1详解】因为b c ⊥ ,所以0b c ⋅=,即(1)0b a b λλ⎡⎤⋅+-=⎣⎦ ,所以()210a b b λλ⋅+-=,因为向量a 与b 的夹角为135︒,且||1,||a b ==所以2cos135112a b a b ⎛⎫⋅=⋅⋅︒=⨯-=- ⎪ ⎪⎝⎭,所以()210λλ-+-=,所以23λ=.【小问2详解】因为(1)ca b λλ=+-,所以222222(1)2(1)(1)c a b a a b b λλλλλλ=+-=+-⋅+- ,由(1)知1a b ⋅=-,且||1,||a b == 所以222222(1)(1562a a b λλλλλλ+-⋅+-=-+ ,则2231562555λλλ⎛⎫-+=-+ ⎪⎝⎭,故当35λ=时,c最小为5,此时3255c a b =+ ,则232323415555555b cb a b a b b ⎛⎫⋅=⋅+=⋅+=-+= ⎪⎝⎭,又55c b ⋅==,所以1105cos ,105c b c b c b⋅===,所以向量b 与c夹角的余弦值为1010.16.已知函数2()ln(1),f x x a x a =++∈R .(1)若函数()f x 有两个不同的极值点,求a 的取值范围;(2)求函数()()22a g x f x x ⎛⎫=-+ ⎪⎝⎭的单调递减区间.【答案】(1)10,2⎛⎫ ⎪⎝⎭(2)答案见解析【解析】【分析】(1)求导222()1x x a f x x '++=+,可得2220x x a ++=有两个大于1-的不等实根,进而可得222122212(1)0Δ2420a a ⎧->-⎪⨯⎪⨯+⨯-+>⎨⎪=-⨯>⎪⎩,求解即可;(2)求导数,对a 分类讨论可求得单减区间.【小问1详解】函数2()ln(1)f x x a x =++的定义域为{|1}x x >-,求导得222()211a x x a f x x x x ++'=+=++,令()0f x '=,可得2220x x a ++=,因为函数()f x 有两个不同的极值点,所以2220x x a ++=有两个大于1-的不等实根,所以222122212(1)0Δ2420a a ⎧->-⎪⨯⎪⨯+⨯-+>⎨⎪=-⨯>⎪⎩,解得12a <.所以a 的取值范围为1(0,2;【小问2详解】2()()2ln(1)222a a g x f x x x a x x ⎛⎫⎛⎫=-+=++-+ ⎪ ⎪⎝⎭⎝⎭,求导得2442(1)4(1)()22122(1)a a x x a a x x g x x x x '++-+-+⎛⎫=+-+=⎪++⎝⎭244(44)(1)2(1)2(1)x ax a x a x x x -+-+--==++,令()0g x '=,解得14ax =-或1x =,当8a >时,114a ->,由()0g x '<,可得114ax <<-,函数()g x 在(1,1)4a-上单调递减,当8a =,114a-=,由()0g x '<,可得x ∈∅,函数()g x 无单调递减区间,当08a <<,1114a -<-<,由()0g x '<,可得114ax -<<,函数()g x 在(1,1)4a-上单调递减,当0a ≤时,114a-≤,由()0g x '<,可得11x -<<,函数()g x 在(1,1)-上单调递减,综上所述:当8a >时,函数()g x 在(1,1)4a-上单调递减,当8a =时,函数()g x 无单调递减区间,当08a <<时,函数()g x 在(1,1)4a-上单调递减,当0a ≤时,函数()g x 在(1,1)-上单调递减.17.在ABC V中,已知)114A B --=.(1)若ABC V为锐角三角形,求角C 的值,并求22sin cos A B -的取值范围;(2)若AB =,线段AB 的中垂线交边AC 于点D ,且1CD =,求A 的值.【答案】(1)π3C =;11,42⎛⎤⎥⎝⎦;(2)π18A =【解析】【分析】(1)利用正切的和角公式可得C ,再利用余弦的差角公式,辅助角公式结合三角函数的性质计算范围即可;(2)设AB 中点为E ,由正弦定理解三角形结合诱导公式计算即可.【小问1详解】由题意))tan 113tan tan tan tan 14A B A B A B --=-++=,)tan tan 1tan tan A B A B -=+,所以()()tan tan tantan π1tan tan A BA B C A B++===--,所以tan C =易知()0,πC ∈,所以π3C =,则2π3A B +=,因为ABCV 为锐角三角形,所以π2ππ0,,0,232A B A ⎛⎫⎛⎫∈=-∈ ⎪ ⎪⎝⎭⎝⎭,即ππ,62A ⎛⎫∈ ⎪⎝⎭,所以2222222π1sin cos sin cos sin cos sin 322A B A A A A A ⎛⎫⎛⎫-=--=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭2213113sin sin cos cos cos 2sin 242444A A A A A A =+-=-+1πsin 226A ⎛⎫=- ⎪⎝⎭,由ππ,62A ⎛⎫∈ ⎪⎝⎭知ππ5π2,666A ⎛⎫-∈ ⎪⎝⎭,所以1π11sin 2,2642A ⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦,即22sin cos A B -的取值范围为11,42⎛⎤⎥⎝⎦;【小问2详解】设AB 中点为E ,则2π3,2,3cos 2cos AEDBA A CBD A DB AD A A∠=∴∠=-===,在CBD △中,由正弦定理得π2πsin sin 233DBCD A =⎛⎫- ⎪⎝⎭,即112πcos sin 23A A =⎛⎫- ⎪⎝⎭,所以2ππsin 2cos sin 32A A A ⎛⎫⎛⎫-==-⎪ ⎪⎝⎭⎝⎭,因为线段AB 的中垂线交边AC 于点D ,可知A B <,所以π02A <<,则2ππ232A A -=-,解之得π6A =,此时π2B =,正切不存在,舍去;或2ππ2π32A A -+-=,解之得π18A =;综上π18A =.18.已知函数()e x f x =.(1)若x ∀∈R ,不等式()0mf x x ->恒成立,求实数m 的取值范围;(2)过点(,1)T t 可以作曲线()y f x =的两条切线,切点分别为()(),e ,,e a b A a B b .①求实数t 的取值范围;②证明:若ab >,则||||AT BT >.【答案】(1)1,e⎛⎫+∞ ⎪⎝⎭;(2)()0,∞+;证明见解析.【解析】【分析】(1)分离参数结合导数研究函数的单调性与最值计算即可;(2)①利用导数的几何意义,统一设切点(),e x x ,将问题转化为0011ex t x =+-有两个解,构造函数利用导数研究函数的单调性计算即可;②利用①的结论得出e e a b a b --+=+,根据极值点偏移证得0a b >->,再根据弦长公式得))221e 1e 1e e 1a a b bAT BT --⎧=+-⎪⎨=+-⎪⎩,构造函数())()21e 1e 0x x m x x -=+->判定其单调性即可证明.【小问1详解】易知e0e xxx m x m ->⇔>,令()e xx g x =,则()1e xxg x ='-,显然1x <时,()0g x '>,1x >时,()0g x '<,即()e xx g x =在(),1-∞上单调递增,在()1,+∞上单调递减,则()()max 11e g x g m ==<,即1,em ⎛⎫∈+∞ ⎪⎝⎭;【小问2详解】①设切点(),e x x ,易知0x t ≠,()e xf x '=,则有000e 1e x x x t-=-,即0011ex t x =+-,令()e 1x h x x -=+-,则(),y t y h x ==有两个交点,横坐标即分别为,a b ,易知()1e x h x -=-',显然0x >时,()0h x '>,0x <时,()0h x '<,则()hx 在(),0-∞上单调递减,在()0,∞+上单调递增,且x →-∞时有()h x →+∞,x →+∞时也有()h x →+∞,()()00h x h ≥=,则要满足题意需0t >,即()0,t ∈+∞;②由上可知:()e 10e 1a ba tb a b t--⎧+-=<<⎨+-=⎩,作差可得e e 0a b a b ---+-=,即e e a b a b --+=+,由①知:()h x 在(),0-∞上单调递减,在()0,∞+上单调递增,令()()()()()e e 22e e 0x x x x Hx h x h x x H x --'=--=-+⇒=-+≤,则()H x 始终单调递减,所以()()()()00H a h a h a H =--<=,即()()()h a h b h a =<-,所以b a >-,所以0a b >->,不难发现e 11e aaa t a t t --+-=⇒=+->,e eaAT bBT k k ⎧=⎨=⎩,所以由弦长公式可知))AT a t BT t b ⎧=-⎪⎨=-⎪⎩,所以))1e e 1a bAT BT --⎧=-⎪⎨=-⎪⎩,设())()()21e 0ex x xmx x m x --'=->⇒=⋅所以由))01e 1eabab ->->⇒--=)1e e 1ebb b --=+,即AT BT>,证毕.【点睛】思路点睛:对于切线个数问题,可设切点利用导数的几何意义建立方程,将问题转化为解的个数问题;对于最后一问,弦长的大小含有双变量,常有的想法是找到两者的等量关系,抑或是不等关系,结合图形容易想到化为极值点偏移来处理.19.在下面n 行、n 列()*N n ∈的表格内填数:第一列所填各数自上而下构成首项为1,公差为2的等差数列;第一行所填各数自左向右构成首项为1,公比为2的等比数列;其余空格按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写.设第2行的数自左向右依次记为123,,,,n c c c c .(1)求数列{}n c 通项公式;(2)对任意的m *∈N ,将数列中落入区间[],m m b c 内项的个数记为m d ,①求1d 和10d 的值;②设数列{}m m a d ⋅的前m 项和m T ;是否存在*m ∈N ,使得()19253m m T m -+=⋅,若存在,求出所有m 的值,若不存在,请说明理由.【答案】(1)21n n c =+;(2)①12d =,10257d =;②4m =.【解析】【分析】(1)移项得12n n n cc +-=,运用累加法即可得到{}n c 通项公式;(2)①令m n m b a c ≤≤,解得1212222m mn -++≤≤,代入1m =得12d =,当2m ≥时,作差得221m m d -=+,代入即可得到10d ;②()22,1(21)21,2m m m m a d m m +=⎧⎪=⎨-+≥⎪⎩,利用错位相减法得12(23)22m m T m m -=-⋅++,再验证m 值即可.【小问1详解】由题意知112,3n n n c c c +=+=,12n n n c c +∴-=,当2n≥时,()()()1211122112223n n n n n n n c c c c c c c c -----=-+-++-+=++++ ()121232112n n--=+=+-,而13c =也满足上式,21nn c ∴=+.【小问2详解】①111122,12(1)21,2,21n n m m nn m m ba n nbc ---=⋅==+-=-==+,令1121222212122m m m mmn m ba c n n --++≤≤⇒≤-≤+⇒≤≤,当1m =时,12n ≤≤,此时12d =,当2m ≥时,212121m m n --+≤≤+,此时1228102212121257m m m mdd ---=-+=+∴=+=,.②()22,1(21)21,2m m m m a d m m +=⎧⎪=⎨-+≥⎪⎩,记{}12m m -⋅从第2项到第m 项的和为m S ,12321223242(1)22m m m S m m --∴=⋅+⋅+⋅++-⋅+⋅ ,232122232(2)2(1)22m m m m S m m m --=⋅+⋅++-⋅+-⋅+⋅ ,上述两式作差得214222m mmSm --=+++-⋅ ()241242(1)212m mm m m --=+-⋅=-⋅-,(1)2m m S m ∴=-,当1m =时,2m T =;当2m ≥时,()1112(321)(1)2(1)2212m m m m m T m -⋅-+--=+-⋅+--12(23)22m m m -=-⋅++,1m =也满足上式,12(23)22m m T m m -∴=-⋅++,1211239(23)2453(23)2453m m m m m m m m m m ----⎡⎤∴-⋅++=⋅⇒-⋅++=⋅⎣⎦,()3125323240m m m m m --⇒⋅-+⋅--=,当1,2,3m=时,左边0<,舍去,当4m=时,经检验符合;当5m ≥时,左边恒0>,无解,综上:4m=.【点睛】关键点点睛:本题第二问的第二小问关键是利用错位相减法得(1)2m mSm =-,再计算得12(23)22m m T m m -=-⋅++.。
甘肃省兰州市西北师范大学附属中学2022-2023学年高三上学期期中考试理科数学试卷
西北师大附中2022—2023学年第一学期期中考试试题高三数学(理) 命题人:张丽娇 审题人:惠银东一、选择题(本题共12小题,每小题5分,共60项是符合题目要求的.)1.已知集合{}3,2,1,2A =---,{B x =2|56x x --≤}0,则A ⋂C R B =( )A .{}3-B .{}3,2,1---C .{}3,2--D .{}1,2- 2.集合{}{}201A x x ax a =++=⊆,则a 为( )A .12-B .()0,4a ∈C .()[),04,a ∈-∞⋃+∞D .()10,42a ⎧⎫∈-⋃⎨⎬⎩⎭ 3.已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( )A.充分不必要条件 B .必要不充分条件C.充要条件 D .既不充分也不必要条件4.已知命题000:,3sin 4cos p x x x ∃∈+=R ;命题 1:,1xq x e ⎛⎫∀∈≤ ⎪⎝⎭R ,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∨⌝D .()p q ⌝∨5.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝⎛⎭⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N叫作信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比S N从1000提升到8000,则C 大约增加了(lg 2≈0.301)( )A .10%B .20%C .30%D .50%6.已知,,m n l 是不同的直线,,αβ是不同的平面,以下命题正确的是( )①若m ∥n ,,m n αβ⊂⊂,则α∥β;②若,m n αβ⊂⊂,α∥l m β⊥,,则l n ⊥; ③若,,m n αβα⊥⊥∥β,则m ∥n ;④若αβ⊥,m ∥α,n ∥β,则m n ⊥;A .②③B .③④C .②④D .③7.已知非常数函数f(x)满足f (−x )f (x )=1(x ∈R),则下列函数中,不是奇函数的是( )A .f (x )−1f (x )+1B .f (x )+1f (x )−1C .f (x )−1f (x )D . f (x )+1f (x )8.已知3log 2a =,4log 3b =,23c =,则( ) A .a c b << B .c a b << C .b a c << D .b c a <<9.函数f (x )=3|x |·cos 2x x的部分图象大致是( )10.若()f x 的定义域为R ,对,x y R ∀∈,()()()()(),11f x y f x y f x f y f ++-== 则()221k f k ==∑( )A .-3B .-2C .0D .111.已知正四棱锥的侧棱长为l ,其各顶点都在同一个球面上,若该球的体积为36π, 且3≤l ≤3√3,则该正四棱锥体积的取值范围是( )A.[18,814]B.[274,643]C.[274,814]D.[18,27]12.定义在R 上的函数f(x)的导函数为f′(x),若f′(x)<f(x),则不等式e x f(x +1)<e 4f(2x -3)的解集是( )A .(-∞,2)B .(2,+∞)C .(4,+∞)D .(-∞,4)二、填空题(本题共4小题,每小题5分,共20分)13.若()3,01,0x x f x x x⎧≤⎪=⎨>⎪⎩,则()()2f f -=__________. 14.函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为__________. 15.∫(3−3sinx +√9−x 2)dx =__________.16.已知定义在R 上的偶函数f (x ),满足f (x +4)=f (x )+f (2),且在区间[0,2]上单调递增,则 ①函数f (x )的一个周期为4;②直线x =-4是函数f (x )图象的一条对称轴;③函数f (x )在[-6,-5)上单调递增,在[-5,-4)上单调递减;④函数f (x )在[0,100]上有25个零点.其中正确命题的序号是________.(注:把你认为正确的命题序号都填上)三、解答题(共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(14分)在以下三个条件中任选一个,补充在下面问题中,并进行解答.“①函数y =√x 2+2x −k 的定义域为R ,②∃x ∈R ,使得|x −1|+|x −2|+k ⩽0, ③方程x 2+k =0有一根在区间[1,+∞)内”问题:已知条件p :______,条件q :函数f(x)=2x 2−kx 在区间(−3,a)上不单调,若p 是q 的必要条件,求实数a 的最大值.18.(14分)已知函数f (x )=ln (m x x+1−1)(其中m ∈R 且m ≠0)是奇函数.(1)求m 的值;(2)若对任意的x ∈[ln2,ln4],都有不等式f (e x )−x +lnk ≥0恒成立, 求实数k 的取值范围.19.(14分)已知函数f (x )=x 2-2x +aln x(a ∈R).(1)若函数在x =1处的切线与直线x -4y -2=0垂直,求实数a 的值;(2)当a >0时,讨论函数f(x)的单调性.20.(14分)已知函数f (x )=2a+1a −1a 2x ,a >0 (1)证明:函数f (x )在(0,+∞)上单调递增;(2)设0<m <n ,若f (x )的定义域和值域都是[m,n ],求n −m 的最大值.21.(14分)已知函数()212x f x e x ax =--有两个极值点12x x ,, (1)求实数a 的取值范围;(2)求证:()()122f x f x +>.。
高三数学(理科)上学期期中考试试卷(含标准答案)
高三数学(理科)上学期期中考试试卷(含标准答案)满分:150 时间:120分钟一、选择题 (本大题共12小题。
每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.设i 为虚数单位,则复数34ii+的共轭复数为( ) A .43i --B .43i -+C .43i +D . 43i -2、设集合错误!未找到引用源。
,错误!未找到引用源。
则错误!未找到引用源。
( )A 、错误!未找到引用源。
B 、错误!未找到引用源。
C 、错误!未找到引用源。
D 、错误!未找到引用源。
3.已知向量21cos ,sin ,a b αα=-=(),(),且//,a b 4tan πα-()等于( ) A .-3 B .3 C .31 D .31-4、设函数)0(ln 31)(>-=x x x x f ,则)(x f y =( )A .在区间),1(),1,1(e e 内均有零点B .在区间),1(),1,1(e e 内均无零点C .在区间)1,1(e 内有零点,在区间),1(e 内无零点D .在区间)1,1(e内无零点,在区间),1(e 内有零点5.下列有关命题的说法正确的是A .命题“若0xy =错误!未找到引用源。
,则0x =错误!未找到引用源。
”的否命题为:“若0xy =错误!未找到引用源。
,则0x ≠错误!未找到引用源。
”B .“若0=+y x ,则x ,y 互为相反数错误!未找到引用源。
”的逆命题为真命题C .命题“R ∈∃x 错误!未找到引用源。
,使得2210x -<错误!未找到引用源。
”的否定是:“R ∈∀x 错误!未找到引用源。
,均有2210x -<错误!未找到引用源。
”D .命题“若cos cos x y =错误!未找到引用源。
,则x y =错误!未找到引用源。
”的逆否命题为真命题6、已知a 是实数,则函数ax a x f sin 1)(+=的图象不可能是( )7.已知函数1x y a-=(0a >,且1a ≠)的图象恒过定点,若点在一次函数y mx n=+的图象上,其中,0m n >,则11m n+的最小值为( ) A .4 B .2 C .2 D .18..如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”。
北京市朝阳区高三上期中考试数学试题(理)含答案
北京市朝阳区2022-2023高三年级第一学期期中统一考试数学试卷(理工类) .11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{3,}A x x x =≤∈R ,{10,}B x x x =-≥∈N ,则A B =( )A .{0,1}B .{0,12},C .{2,3}D . {1,2,3}2.已知(0,)α∈π,且3cos 5α=-,则tan α=( ) A .34 B .34- C .43 D .43-3. 已知等差数列{}n a 的公差为2,若124, , a a a 成等比数列,那么1a 等于( ) A. 2 B. 1 C. 1- D. 2-4. 给出下列命题:①若给定命题p :x ∃∈R ,使得210x x +-<,则p ⌝:,x ∀∈R 均有012≥-+x x ;②若q p ∧为假命题,则q p ,均为假命题;③命题“若0232=+-x x ,则2=x ”的否命题为“若 ,0232=+-x x 则2≠x ,其中正确的命题序号是( )A .① B. ①② C. ①③ D. ②③5.已知函数()sin()(00)2f x A x x A ωϕωϕπ=+∈>><R ,,,的图象(部分)如图所示,则()f x 的解析式是( )A .()2sin()6f x x π=π+B .()2sin(2)6f x x π=π+C .()2sin()3f x x π=π+D .()2sin(2)3f x x π=π+x-2y O231 656.设p :2101x x -≤-,q :2(21)(1)0x a x a a -+++<,若p 是q 的充分不必要条件,则实数a 的取值范围是( )A .1(0,)2B .1[0,)2C .1(0,]2D .1[,1)27.在ABC ∆中,已知4AB AC ⋅=,3=BC ,,M N 分别是BC 边上的三等分点,则AN AM ⋅的值是A .5B .421C .6D .88.已知定义在R 上的函数⎩⎨⎧-∈-∈+=),0 ,1[,2),1 ,0[,2)(22x x x x x f 且)()2(x f x f =+.若方程()2=0f x kx --有三个不相等的实数根,则实数k 的取值范围是( )A .1(,1)3B .11(,)34--C .11(,1)(1,)33--D .1111(,)(,)3443--第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知三个数π221(),log 3,log π2,其中最大的数是 .10.已知平面向量2113()(-),,,a =b =.若向量()λ⊥a a +b ,则实数λ的值是 . 11.如图,在ABCD 中,E 是CD 中点,BE xAB y AD =+,则x y += .12.若函数()2sin()f x x ωϕ=+(0,0ωϕ≠>)是偶函数,则ϕ的最小值为 .13. 若函数sin ()cos a x f x x -=在区间ππ(,)63上单调递增,则实数a 的取值范围是 .14. 如图,已知边长为4的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,作EF ⊥AE 交∠BCD 的外角平分线于F .设BE x =,记()f x EC CF =⋅,则函数()f x 的值域是 ;当ECF ∆面积最大时,EF = .E D CFEDCBA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分) 已知函数2()23sin cos2cos 222x x x f x =-. (Ⅰ)求π()3f 的值;(Ⅱ)求函数)(x f 的单调递减区间及对称轴方程.16. (本小题满分13分)已知等差数列{}n a 的首项11a =,公差1d =,前n 项和为n S ,且1n nb S =. (Ⅰ)求数列{}n b 的通项公式; (Ⅱ)求证:1232n b b b b ++++<.17.(本小题满分13分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.且21cos -=B . (Ⅰ)若322==b a ,,求角C ; (Ⅱ)求C A sin sin ⋅的取值范围.18. (本小题满分13分)已知函数2()ln (1)2x f x a x a x =+-+. (Ⅰ)当0a >时,求函数()f x 的单调区间; (Ⅱ)当1a =-时,证明1()2f x ≥.19. (本小题满分14分)已知函数2()e (1)xf x ax bx -=++(其中e 是常数,0a >,b ∈R ),函数()f x 的导函数为()f x ',且(1)0f '-=.(Ⅰ)若1a =,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当15a >时,若函数()f x 在区间[1,1]-上的最大值为4e ,试求,ab 的值.20. (本小题满分14分)已知实数数列}{n a 满足:),2,1(||12 =-=++n a a a n n n ,b a a a ==21,,记集合{|}.n M a n *=∈N(Ⅰ)若2,1==b a ,用列举法写出集合M ;(Ⅱ)若0,0<<b a ,判断数列}{n a 是否为周期数列,并说明理由; (Ⅲ)若0,0≥≥b a ,且0≠+b a ,求集合M 的元素个数的最小值.。
甘肃省兰州市第一中学2021届高三上学期期中考试 数学(理)
兰州一中2020-2021-1学期期中考试试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 请将答案填在答题卡上.第Ⅰ卷(选择题共60分)注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并请认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目标号涂黑,如需改动,用橡皮擦干净后,再选择其它答案标号,在试卷上答案无效.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( ) A.0B.1C.2D.32.已知z =11+i +i (i 为虚数单位),则|z |=( )A.12B.22C.32D.2 3.某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于( ) A.12B.18C.24D.364.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A.6B.5C.4D.35.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|2a -b |等于( ) A.2 2B.17C.15D.2 56. ( )A.a b c <<B.b c a <<C.c a b <<D.c b a <<7.已知命题p :x 2+2x -3>0;命题q :x >a ,且q ⌝的充分不必要条件是p ⌝,则a 的取值范围是( ) A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]8.函数y =2|x |·sin 2x 的图象可能是( )212(),52xx f x x x ⎧-≤⎪=⎨-+>⎪⎩9.函数若互不相等的实数a ,b ,c 满足f (a )=f (b )=f (c ),则2a +2b +2c 的取值范围是( ) A.(16,32)B.(18,34)C.(17,35)D.(6,7)10.函数f (x )的定义域为D ,若满足:①f (x )在D 内是单调函数;②存在[a ,b ]⊆D ,使f (x )在 [a ,b ]上的值域为⎣⎡⎦⎤a 2,b 2,那么就称y =f (x )为“半保值函数”,若函数f (x )=log a (a x +t 2)(a >0,且a ≠1)是“半保值函数”,则t 的取值范围为( ) A.⎝⎛⎭⎫0,14 B.⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-12,12 11.已知函数f (x )=kx +1,g (x )=e x +1(-1≤x ≤1),若f (x )与g (x )的图象上分别存在点M ,N ,使得点M ,N 关于直线y =1对称,则实数k 的取值范围是( ) A.⎣⎡⎭⎫1e ,+∞ B.⎣⎡⎦⎤-e ,1e C.[-e ,+∞) D.(]-∞,-e ∪⎣⎡⎭⎫1e ,+∞ 12.已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有()'()ln 2f x f x >成立,若f (-2)=2,则不等式f (x )>-2x-1的解集为( )A.(-2,+∞)B.(2,+∞)C.(-∞,2)D.(-∞,-2)第Ⅱ卷(非选择题 共90分)注意事项:本卷共10小题,用黑色碳素笔将答案答在答题卡上.答在试卷上的答案无效.二、填空题:本大题共4小题,每小题5分,共20分. ()2log 013.30x x x f x x >⎧=⎨≤⎩已知函数,则18f f ⎡⎤⎛⎫=⎪⎢⎥⎝⎭⎣⎦ ________.()22214.4=x x dx --+⎰定积分________.15.若,,a b c 均为正数, 且346a b c ==, 则2c ca b+的值是_______________. ()()1123116.21x a x a x f x R a x -⎧-+<=⎨≥⎩已知函数的值域为,则实数的取值范围是______. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本题满分12分)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足 (a +b +c )(sin B +sin C -sin A )=b sin C . (1)求角A 的大小;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值.18.(本题满分12分)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形, AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.序号 分组(分数段) 频数(人数) 频率 1 [0, 60) a 0.1 2[60, 75)15b19.(本题满分12分)为迎接我校建校120周年,某班开展了一次“校史知识”竞赛活动,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,成绩均为整数)进行统计,制成如右图的频率分布表: (1)求,,,a b c d 的值;(2)决赛规则如下:为每位参加决赛的选手准备四道题目,选手对其依次作答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对一道,则获得二等奖.某同学进入决赛,每道题答对的概率P 的值恰好与频率分布表中不少于90分的频率的值相同.设该同学决赛中答题个数为X ,求X 的分布列以及X 的数学期望.20.(本题满分12分)已知P 点坐标为(0,-2),点A ,B 分别为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,直线BP 交E 于点Q ,△ABP 是等腰直角三角形,且PQ →=32QB →.(1)求椭圆E 的方程;(2)设过点P 的动直线l 与E 相交于M ,N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.21.(本题满分12分)已知函数f (x )=-a ln x +x +1-ax .(1)讨论函数f (x )的单调性;(2)设g (x )=e x +mx 2-2e 2-3,当a =e 2+1时,对任意x 1∈[1,+∞),存在x 2∈[1,+∞),使g (x 2)≤ f (x 1),求实数m 的取值范围.选考题:(请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.请在答题卷上注明题号.)22.(本题满分10分)平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρ(cos θ-sin θ)=1.(1)求C 的普通方程和l 的直角坐标方程;(2)已知直线l 与y 轴交于点M ,且与曲线C 交于A ,B 两点,求⎪⎪⎪⎪1|MA |-1|MB |的值.23.(本题满分10分)已知函数()|21||23|f x x x =++-. (1)求不等式6)(≤x f 的解集;(2)若关于x 的不等式|1|)(-<a x f 的解集非空,求实数a 的取值范围.兰州一中2020-2021学年度高三第一学期期中数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分, 考试时间120分钟. 请将答案填在答题卡上.第Ⅰ卷(选择题共60分)注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并请认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目标号涂黑,如需改动,用橡皮擦干净后,再选择其它答案标号,在试卷上答案无效.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( C ) A.0B.1C.2D.32.已知z =11+i +i(i 为虚数单位),则|z |=( B )A.12B.22C.32D.23.某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于( D ) A.12B.18C.24D.364.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( C ) A.6B.5C.4D.35.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|2a -b |等于( A ) A.2 2B.17C.15D.25.6.6.设123log 2,ln 2,5a b c -===,则 ( C )A.a b c <<B.b c a <<C.c a b <<D.c b a <<7.已知命题p :x 2+2x -3>0;命题q :x >a ,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( A ) A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]8.函数y =2|x |·sin 2x 的图象可能是( D )9.函数f (x )=⎩⎪⎨⎪⎧|2x -1|,x ≤2,-x +5,x >2.若互不相等的实数a ,b ,c 满足f (a )=f (b )=f (c ),则2a +2b +2c 的取值范围是( B ) A.(16,32)B.(18,34)C.(17,35)D.(6,7)10.函数f (x )的定义域为D ,若满足:①f (x )在D 内是单调函数;②存在[a ,b ]⊆D ,使f (x )在 [a ,b ]上的值域为⎣⎡⎦⎤a 2,b 2,那么就称y =f (x )为“半保值函数”,若函数f (x )=log a (a x +t 2)(a >0,且a ≠1)是“半保值函数”,则t 的取值范围为( B ) A.⎝⎛⎭⎫0,14 B.⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫0,12D.⎝⎛⎭⎫-12,12 11.已知函数f (x )=kx +1,g (x )=e x +1(-1≤x ≤1),若f (x )与g (x )的图象上分别存在点M ,N ,使得点M ,N 关于直线y =1对称,则实数k 的取值范围是( D ) A.⎣⎡⎭⎫1e ,+∞B.⎣⎡⎦⎤-e ,1eC.[-e ,+∞)D.(]-∞,-e ∪⎣⎡⎭⎫1e ,+∞ 12.已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有f (x )>f ′(x )ln 2成立,若f (-2)=2,则不等式f (x )>-2x-1的解集为( C )A.(-2,+∞)B.(2,+∞)C.(-∞,2)D.(-∞,-2)第Ⅱ卷(非选择题 共90分)注意事项:本卷共10小题,用黑色碳素笔将答案答在答题卡上.答在试卷上的答案无效.二、填空题:本大题共4小题,每小题5分,共20分. 13. 已知函数()2log ,0,3,0x x x f x x >⎧=⎨≤⎩则18f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦ 127. 14.定积分⎠⎛-22(4-x 2+x )d x =___2π._____.15.若,,a b c 均为正数, 且346a b c ==, 则2c ca b+的值是___2____________. 16.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是_0≤a <12.___.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足(a +b +c )(sin B +sin C -sin A )=b sin C . (1)求角A 的大小;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值. 解 (1)∵(a +b +c )(sin B +sin C -sin A )=b sin C ,∴根据正弦定理,知(a +b +c )(b +c -a )=bc ,即b 2+c 2-a 2=-bc . ∴由余弦定理,得cos A =b 2+c 2-a 22bc =-12.又A ∈(0,π),所以A =23π.(2)根据a =3,A =23π及正弦定理得b sin B =c sin C =a sin A =332=2, ∴b =2sin B ,c =2sin C .∴S =12bc sin A =12×2sin B ×2sin C ×32=3sin B sin C .∴S +3cos B cos C =3sin B sin C +3cos B cos C =3cos(B -C ).故当B =C =π6时,S +3cos B cos C 取得最大值 3.18.(本题满分12分)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值. (1)证明 如图,连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1∥DC ,可得B 1C ∥A 1D ,故ME ∥ND , 因此四边形MNDE 为平行四边形,所以MN ∥ED . 又MN ⊄平面C 1DE ,DE ⊂平面C 1DE , 所以MN ∥平面C 1DE .(2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →,DE →,DD 1→的方向为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0,所以⎩⎨⎧-x +3y -2z =0,-4z =0,可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎨⎧-3q =0,-p -2r =0,可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,则sin 〈m ,n 〉=105,所以二面角A -MA 1-N 的正弦值为105. 19.(本题满分12分)为迎接我校建校110周年,某班开展了一次“校史知识”竞赛活动,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数为均匀整数)进行统计,制成如右图的频率分布表:(Ⅰ)求,,,a b c d 的值;(Ⅱ)决赛规则如下:为每位参加决赛的选手准备四道题目,选手对其依次作答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对一道,则获得二等奖.某同学进入决赛,每道题答对的概率P 的值恰好与频率分布表中不少于90分的频率的值相同.设该同学决赛中答题个数为X ,求X 的分布列以及X 的数学期望.解:(Ⅰ(Ⅱ)X 的可能取值为2,3,4.12(2)0.20.20.04,(3)0.20.80.20.064,P X P X C ==⨯===⨯⨯=1233(4)0.20.80.80.896P X C ==⨯+=所以分布列为:()20.0430.06440.896 3.856E X =⨯+⨯+⨯=20.(本题满分12分)已知P 点坐标为(0,-2),点A ,B 分别为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,直线BP 交E 于点Q ,△ABP 是等腰直角三角形,且PQ →=32QB →.(1)求椭圆E 的方程;(2)设过点P 的动直线l 与E 相交于M ,N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.解 (1)由△ABP 是等腰直角三角形,得a =2,B (2,0).设Q (x 0,y 0),则由PQ →=32QB →,得⎩⎨⎧x 0=65,y 0=-45,代入椭圆方程得b 2=1, 所以椭圆E 的方程为x 24+y 2=1. (2)依题意得,直线l 的斜率存在,方程设为y =kx -2.联立⎩⎪⎨⎪⎧y =kx -2,x 24+y 2=1,y 并整理得(1+4k 2)x 2-16kx +12=0.(*) 因直线l 与E 有两个交点,即方程(*)有不等的两实根,故Δ=(-16k )2-48(1+4k 2)>0,解得k 2>34. 设M (x 1,y 1),N (x 2,y 2),由根与系数的关系得⎩⎨⎧x 1+x 2=16k 1+4k 2,x 1x 2=121+4k 2,因坐标原点O 位于以MN 为直径的圆外,所以OM →·ON →>0,即x 1x 2+y 1y 2>0,又由x 1x 2+y 1y 2=x 1x 2+(kx 1-2)(kx 2-2)=(1+k 2)x 1x 2-2k (x 1+x 2)+4=(1+k 2)·121+4k 2-2k ·16k 1+4k 2+4>0,解得k 2<4,综上可得34<k 2<4, 则32<k <2或-2<k <-32. 则满足条件的斜率k 的取值范围为⎝⎛⎭⎫-2,-32∪⎝⎛⎭⎫32,2. 21.(本题满分12分)已知函数f (x )=-a ln x +x +1-a x.(1)讨论函数f(x)的单调性;(2)设g(x)=e x+mx2-2e2-3,当a=e2+1时,对任意x1∈[1,+∞),存在x2∈[1,+∞),使g(x2)≤f(x1),求实数m的取值范围.解(1)由题意知f(x)的定义域为(0,+∞),f′(x)=-ax+1+a-1x2=(x-1)(x-a+1)x2,令f′(x)=0,得x=1或x=a-1.当a≤1时,a-1≤0,由f′(x)<0得0<x<1,由f′(x)>0得x>1,所以函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.当1<a<2时,0<a-1<1,由f′(x)<0,得a-1<x<1,由f′(x)>0得0<x<a-1或x>1,所以函数f(x)在(a-1,1)上单调递减,在(0,a-1)和(1,+∞)上单调递增. 当a=2时,a-1=1,可得f′(x)≥0,此时函数f(x)在(0,+∞)上单调递增.当a>2时,a-1>1,由f′(x)<0得1<x<a-1,由f′(x)>0得0<x<1或x>a-1,所以函数f(x)在(1,a-1)上单调递减,在(0,1)和(a-1,+∞)上单调递增.(2)当a=e2+1时,由(1)得函数f(x)在(1,e2)上单调递减,在(0,1)和(e2,+∞)上单调递增,从而f(x)在[1,+∞)上的最小值为f(e2)=-e2-3.对任意x1∈[1,+∞),存在x2∈[1,+∞),使g(x2)≤f(x1),即存在x 2∈[1,+∞),使g (x 2)的函数值不超过f (x )在区间[1,+∞)上的最小值-e 2-3.由e x +mx 2-2e 2-3≤-e 2-3得e x +mx 2≤e 2,m ≤e 2-e xx 2. 记p (x )=e 2-e xx 2,则当x ∈[1,+∞)时,m ≤p (x )max . p ′(x )=-e x x 2-2(e 2-e x )x (x 2)2=-e x x +2(e 2-e x )x 3, 当x ∈[1,2]时,显然有e x x +2(e 2-e x )>0,p ′(x )<0,当x ∈(2,+∞)时,e x x +2(e 2-e x )>e x x -2e x >0,p ′(x )<0,故p (x )在区间[1,+∞)上单调递减,得p (x )max =p (1)=e 2-e ,从而m 的取值范围为(-∞,e 2-e].四.选考题:(请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.请在答题卷上注明题号.)22. (本题满分10分)坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρ(cos θ-sin θ)=1.(1)求C 的普通方程和l 的直角坐标方程;(2)已知直线l 与y 轴交于点M ,且与曲线C 交于A ,B 两点,求⎪⎪⎪⎪1|MA |-1|MB |的值.解 (1)将直线l 的极坐标方程ρ(cos θ-sin θ)=1化为直角坐标方程为x -y -1=0.将曲线C 的参数方程⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)化为普通方程为x 2+y 2=9. (2)由(1)知点M (0,-1),故直线l 的参数方程为⎩⎨⎧x =22t ,y =-1+22t(t 为参数),代入圆的方程为t 2-2t -8=0,设A ,B 对应的参数为t 1和t 2,所以t 1+t 2=2,t 1·t 2=-8.故⎪⎪⎪⎪1|MA |-1|MB |=|t 1+t 2||t 1t 2|=28. 23.(本题满分10分)已知函数()|21||23|f x x x =++-. (Ⅰ)求不等式6)(≤x f 的解集;(Ⅱ)若关于x 的不等式|1|)(-<a x f 的解集非空,求实数a 的取值范围. 解:(Ⅰ)原不等式等价于即不等式的解集为}21|{≤≤-x x .,解此不等式得53>-<a a 或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
………………6分
(2) ………………9分
∵ ,∴ ,…………10分
∴ ………………11分
∴ ∴函数 …………12分
18.解析:(1)∵当x=10时,y=9.2,即 ×10-a×102-ln 1=9.2,解得a= .
∴f(x)= x- -ln .( )…………4分
A. B.
C. D.
7.如图中阴影部分的面积是( )
A. B.
C. D.
8.若 ,则 ,则 的值为( )
A. B. C. D.
9.如图, 的外接圆的圆心为 , 则 等于( )
A. B. C. D.
10.已知函数 满足 ,且当 时, 成立,若 , 的大小关系是( )
A. B. C. D.
第Ⅱ卷(非选择题,共100分)
21.(本题满分14分).
已知函数 .
(1)当 时,函数 取得极大值,求实数 的值;
(2)已知函数 ,在区间 内存在唯一 ,使得 . 设函数 (其中 ),证明:对任意 ,都有 ;
(3)已知正数 满足 ,求证:对任意的实数 ,若 时,都有 .
2014—2015学年上学期高三期中考试
数学(理科)参考答案
17.(本题满分12分)
已知向量 .
(1)当 时,求 的值;
(2)求 在 上的值域.
18.(本题满分12分)
2014年国庆长假期间,各旅游景区人数发生“井喷”现象,给旅游区的管理提出了严峻的考验,国庆后,某旅游区管理部门对该区景点进一步改造升级,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x万元之间满足:y= x-ax2-ln ,x∈(1,t],当x=10时,y=9.2.
所以由 ,可知 ,…………10分
所以 .…………11分
综上可知, .…………12分
20.解:(1) ,所以 的周期为2………2分
所以 ,所以 为奇函数.……………4分
(2) …………6分
因为 ,所以当 时, …………8分
(3)任取 ……10分
所以不存在这样的 …………13分
21.(1)由题设,函数的定义域为 ,且
15.已知函数 ,且 是函数 的极值点。给出以下几个命题:
① ;② ;③ ;④
其中正确的命题是__________.(填出所有正确命题的序号)
三、解答题:本大题共6小题,共75分。解答应写出文字说明,证明过程或演算步骤.
16.(本题满分12分)
设命题 :函数 在区间[-1,1]上单调递减;命题 : 使等式 成立,如果命题 或 为真命题, 且 为假命题,求 的取值范围.
2015届高三上学期数学(理)试题
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题意要求的.
1.已知集合 , ,则集合 ( )
A. B. C. D.
2.下列有关命题的叙述,①若 为真命题,则 为真命题;②“ ”是“ ”的充分不必要条件;③命题 ,使得 ,则 ,使得 ;④命题“若 ,则 或 ”的逆否命题为“若 或 ,则 ”.其中错误的个数为( )
(1)求y=f(x)的解析式;
(2)求旅游增加值y取得最大值时对应的x值.
19.(本题满分12分)
在 中, 为角 所对的边,
(1)求角 的大小;
(2)若 ,且 , ,当 时, .
(1)证明: 为奇函数;
(2)求 在 上的表达式;
(3)是否存在正整数 ,使得 时, 有解,若存在求出 的值,若不存在说明理由.
故对任意 ,都有 .…………………………9分
(3)因为 且 , ,
同理 ,…………………………12分
由(Ⅱ)知对任意 ,都有 ,从而
.
…………………………14分
(解答题各题其他解法参考上述评分标准对应给分)
(2)对f(x)求导,得 .
令f′(x)=0,得x=50或x=1(舍去).…………6分
当x∈(1,50)时,f′(x)>0, f(x)在(1,50)上是增函数;
当x∈(50,+∞)时,f′(x)<0, f(x)在(50,+∞)上是减函数.…………8分
所以当t>50时,当x∈(1,50)时,f′(x)>0,,f(x)在(1,50)上是增函数;当x∈(50,t]时,f′(x)<0,f(x)在(50,t]上是减函数.∴当x=50时,y取得最大值;…………10分
A.1B.2C.3D.4
3.在 中, ,则角 等于( ).
A. B. 或 C. D. 或
4.已知 且 ,则函数 与 的图象可能是()
A B C D
5.若函数 ,则下列结论正确的是()
A. , 在 上是增函数B. , 在 上是减函数
C. , 是偶函数D. , 是奇函数
6.函数 的部分图象如图所示,则函数表达式为( )
所以当t 50时,当x∈(1,t)时,f′(x)>0,,f(x)在(1,t)上是增函数,∴当x=t时,y取得最大值;…………12分
19.解(1)由正弦定理得: …………2分
,(3分)又因为 …………5分
(2)由 ,
可得 .
所以 或 .…………7分
当 时, ,
此时 ;…………9分
当 时,由正弦定理得 ,
所以 ,得 ,此时. …………………2分
当 时, ,函数 在区间 上单调递增;
当 时, ,函数 在区间 上单调递减.
函数 在 处取得极大值,故 …………4分(不检验只扣一分)
(2)令 ,
则 .因为函数 在区间 上可导,则根据结论可知:存在 使得 …7分
又 ,
当 时, ,从而 单调递增, ;
当 时, ,从而 单调递减, ;
二.填空题:本大题共5小题,每小题5分,共25分.
11.已知集合 , ,且 ,则实数 的取值范围是
12.函数 在点( )处的切线方程是_______________.
13.已知函数 是 上的减函数,那么 的取值范围是_________.
14.定义在 上的函数 的图象如下图所示, , ,那么不等式 的解集是___________.