最新新北师大版七年级下数学期末拔高训练试题
北师大版七年级下册数学期末考试试题含答案
北师大版七年级下册数学期末考试试卷一、单选题1.下列运算正确的是()A.a+b=ab B.(x+1)2 =x2+1C.a10÷ a5=a2D.(﹣a3)2=a62.某种细胞直径是0.00000095米,将0.00000095用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣6D.95×10﹣83.以每组数为线段的长度,可以构成三角形三边的是()A.5,6,10B.5,6,11C.3,4,8D.4,4,84.下列图形是轴对称图形的是()A.B.C.D.5.下列事件中,是必然事件的是()A.内错角相等B.掷两枚硬币,必有一个正面朝上,一个反面朝上C.13人中至少有两个人的生肖相同D.打开电视,一定能看到三水新闻6.如果∠A=50°,那么∠A的余角是()A.30°B.40°C.90°D.130°7.如图,把一副三角板放在桌面上,当AB∠DC时,∠CAE等于()A.10°B.15°C.20°D.25°8.一个长方体的长、宽、高分别是3m-4,2m和m,则它的体积是()A.3m3-4m2B.3m2-4m3C.6m3-8m2D.6m2-8m39.为了应用平方差公式计算(a﹣b+c)(a+b﹣c),必须先适当变形,下列变形中,正确的是()A.[(a+c)﹣b] [(a﹣c)+b]B.[(a﹣b)+c][(a+b)﹣c]C.[a﹣(b+c)] [a+(b﹣c)]D.[a﹣(b﹣c)] [a+(b﹣c)]10.如图所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的有()∠体育场离张强家3.5千米∠张强在体育场锻炼了15分钟∠体育场离早餐店1.5千米∠张强从早餐店回家的平均速度是3千米/小时A.1个B.2个C.3个D.4个二、填空题11.计算:(﹣a)2•a3=_______.12.若a x=2,a y=3,则a x-y=______.13.如图所示,在∠ABC中,AB=AC,∠B=50°,则∠A=________.14.有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的概率为_____.15.已知等腰三角形的两边长为3和6,则它的周长为_____.16.三角形的底边长为8,高是x,那么三角形的面积y与高x之间的关系式是______.17.如图,已知∠ACB=90°,BC=6,AC=8,AB=10,点D在线段AB上运动,线段CD的最短距离是_____.三、解答题)﹣2+(﹣1)202018.﹣32+50﹣(1219.先化简再求值:[(x﹣y)2﹣(y﹣x)(y+x)]÷2x,其中x=2021,y=1.20.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?21.如图,AB=CD,AF=CE,∠A=∠C,那么BE=DF吗?请说明理由.22.三水区响应“绿色环保”号召,鼓励市民节约用电,对电费采用分段收费标准,若某户居民每月应交电费y(元)与用电量x(度)之间关系的图象如图所示:(1)当用电量不超过50度时,每度收费多少元?超过50度时,超过的部分每度收费多少元?(2)若某户居民某月交电费120元,该户居民用电多少度?23.如图,在∠ABC中,∠C=60°,∠A=40°.用尺规作图作边AB的垂直平分线,交AC于点D,交AB于点E(要求:不写作法,保留作图痕迹).24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图1可以得到完全平方公式(a+b)2=a2+2ab+b2,请利用这一方法解决下列问题:(1)观察图2,写出所表示的数学等式:_________________________=____________________________.(2)观察图3,写出所表示的数学等式:_________________________=____________________________.(3)已知(2)的等式中的三个字母可以取任何数,若a=7x-5,b=﹣4x+2,c=﹣3x+4,且a2+b2+c2=37.请利用(2)中的结论求ab+bc+ac的值.25.如图(1),AB=7cm,AC∠AB,BD∠AB,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上由点B向点D运动.它们运动的时间为t (s),当点P到达点B时,点Q也停止运动.(1)若点Q的运动速度与点P的运动速度相等,当t=1s时,∠ACP与∠BPQ全等,此时PC∠PQ吗?请说明理由.(2)将图(1)中的“AC∠AB,BD∠AB”为改“∠CAB=∠DBA=60°”后得到如图(2),其他条件不变.设点Q的运动速度为xcm/s.当点P、Q运动到某处时,有∠ACP与∠BPQ全等,求出相应的x、t的值.(3)在(2)成立的条件下且P、Q两点的运动速度相同时,∠CPQ=__________.(直接写出结果)参考答案1.D【分析】根据合并同类项法则、完全平方公式、同底数幂的的除法的运算法则、幂的乘方的运算法则进行计算后判断即可.【详解】解:A、a与b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(x+1)2=x2+2x+1,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、(-a3)2=a6,原计算正确,故此选项符合题意;故选:D.2.A【解析】【分析】用科学记数法表示较小数时的形式为10n a -⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0 的数字后面即可,确定n 的值时,n 等于该数从左起第一个不为0的数字前所有0的个数.【详解】易知9.5a =,从左起第一个不为0的数字前面有7个0,所以7n =∠70.000000959.510-=⨯ .故选:A .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.3.A【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A 、5+6=11>10,能组成三角形;B 、5+6=11,不能够组成三角形;C 、3+4=7<8,不能组成三角形;D 、4+4=8,不能组成三角形.故选:A .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.D【解析】【分析】一个图形的一部分,沿着一条直线对折后两部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、B、C不符合轴对称图形的定义,D符合轴对称图形的定义,故选D.【点睛】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.5.C【解析】【分析】直接利用随机事件的定义分别分析得出答案.【详解】解:A.内错角相等,是随机事件,不合题意;B.掷两枚硬币,必有一个正面朝上,一个反面朝上,是随机事件,不合题意;C.13人中至少有两个人的生肖相同,是必然事件,符合题意;D.打开电视,一定能看到三水新闻,是随机事件,不合题意;故选:C.【点睛】此题主要考查了随机事件,正确把握相关定义是解题关键.6.B【解析】【分析】和为90°的两个角是互为余角,∠A的余角为(90°-∠A),代入计算即可.【详解】解:90°-∠A=90°-50°=40°,故选:B.【点睛】本题主要考查余角的意义和计算方法,关键是掌握如果两个角的和为90°,那么这两个角互为余角.7.B【解析】【分析】根据三角形的内角和定理和平行线的性质定理可得结果.解:∠AB∠DC,∠∠EAB=∠AED=45°,∠∠BAC=30°,∠∠CAE=∠EAB-∠BAC=45°-30°=15°,故选:B.【点睛】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握性质定理.8.C【解析】【分析】根据长方体体积的计算方法,列出算式进行计算即可.【详解】解:根据长方体体积的计算公式得,(3m-4)•2m•m=6m3-8m2,故选:C.【点睛】本题考查单项式乘以多项式的计算方法,掌握计算方法是正确计算的前提.9.D【解析】【分析】由于平方差公式是把多项式分解为两个数的和与两个数的差的积的形式,所以根据这个特点即可判定选择项.【详解】解:(a-b+c)(a+b-c)=[a-(b-c)][a+(b-c)].选项A,B,C不符合平方差公式的结构特征,只有选项D是正确的,故选:D.【点睛】此题主要考查了因式分解的平方差公式的特点:两个数的和乘以两个数的差,此题解题关键是分别找出两个括号的符号相同的和符号不同的项,然后变形就比较简单.10.A【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【详解】解:∠由纵坐标看出,体育场离张强家3.5千米,故∠正确;∠由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故∠正确;∠由纵坐标看出,3.5-2.0=1.5千米,体育场离早餐店1.5千米,故∠正确;∠由纵坐标看出早餐店离家2千米,由横坐标看出从早餐店回家用了95-65=30分钟=0.5小=4千米/小时,故∠错误;时,2÷12故选:A.【点睛】本题考查了函数图象,观察函数图象获得有效信息是解题关键.11.a5【解析】【分析】先计算积的乘方,再根据“同底数幂相乘,底数不变,指数相加”进行计算即可.【详解】解:(﹣a)2•a3= a2•a3=a5,故答案是:a5.【点睛】本题考查了积的乘方、同底数幂的乘法,解题的关键是注意符号的确定..12.23【解析】【详解】试题解析:∠a x=2,a y=3,.∠a x-y=a x÷a y=2÷3=23考点:同底数幂的除法.13.80°【解析】略【详解】根据等腰三角形的性质,∠B=∠C=50°,然后根据三角形内角和定理就可推出∠A的度数解:∠在∠ABC中,AB=AC,∠B=50°∠∠C=50°∠∠A=180°﹣50°﹣50°=80°故答案为80°.【点睛】略14.3 5【解析】【分析】直接利用概率公式得出答案.【详解】解:有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的是2,4,6,故抽出标有数字为偶数的概率为:35.故答案为:35.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.15.15【解析】【分析】分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可.【详解】解:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,∠3+3=6,∠3,3,6不能组成三角形,综上所述,等腰三角形的三边长为3,3,6,周长为15;故答案为:15.【点睛】本题考查了等腰三角形的定义以及三角形的三边关系定理,是基础知识,要熟练掌握.注意分类讨论思想的应用.16.y=4x【解析】【分析】根据三角形的面积计算方法可得函数关系式.【详解】解:y=12×8x=4x ,故答案为:y=4x .【点睛】本题考查用函数关系式表示变量之间的关系,掌握三角形面积的计算方法是得出关系式的前提.17.4.8【解析】【分析】当CD∠AB 时,线段CD 的长度最短,依据三角形的面积即可得到CD 的长.【详解】解:∠点D 在线段AB 上运动,∠当CD∠AB 时,线段CD 的长度最短,又∠∠ACB=90°,BC=6,AC=8,AB=10, ∠12AC×BC=12AB×CD ,86 4.810AC BC CD AB ⨯⨯∴===, 故答案为:4.8.【点睛】本题主要考查了垂线段最短,垂线段最短指的是从直线外一点到这条直线所作的垂线段最短.18.-11【解析】【分析】先分别化简乘方,零指数幂,负整数指数幂,然后进行有理数的混合运算.【详解】解:原式=-9+1-4+1=-11.【点睛】本题考查乘方,零指数幂,负整数指数幂及有理数的混合运算,掌握法则和运算顺序正确计算是解题关键.19.x-y;2020【解析】【分析】原式中括号中利用完全平方公式,以及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【详解】解:[(x-y)2-(y-x)(y+x)]÷2x=(x2-2xy+y2-y2+x2)÷2x=(2x2-2xy)÷2x=x-y,当x=2021,y=1时,原式=2021-1=2020.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.(1)34;(2)125【解析】【分析】根据题意求出概率,进行简单计算即可求解.【详解】解:(1)指针指向1,2,3,5,6,8都获奖,∠获奖概率P=68=3,4(2)获得一等奖的概率为18, 100018⨯=125(人),∠获得一等奖的人数可能是125人.【点睛】本题考查了概率的简单应用,概率的求法,属于简单题,熟悉概率的实际含义是解题关键.21.见解析【解析】【分析】由“SAS”可证∠ABF∠∠CDE ,可得BF=DE ,可得BE=DF .【详解】解:BE=DF .理由如下:在∠ABF 和∠CDE 中,AB CDA CAF CE=⎧⎪∠=∠⎨⎪=⎩∠∠ABF∠∠CDE (SAS ),∠BF=DE ,∠BF -EF=DE -EF ,∠BE=DF .【点睛】本题考查了全等三角形的判定和性质,证明∠ABF∠∠CDE 是本题的关键.22.(1)0.6元;1元 (2)140度【解析】【分析】(1)根据图象上点的坐标进行列式计算即可;(2)根据(1)的结论求出超过50度部分的用电量即可求解.【详解】解:(1)不超过50度时每度收费:30÷50=0.6(元),超过50度时,超过的部分每度收费:(60-30)÷(80-50)=1(元);答:当用电量不超过50度时,每度收费0.6元,超过50度时,超过的部分每度收费1元.(2)120-0.6×50=90(元),90÷1=90(度),50+90=140(度).答:该户居民用电140度.【点睛】本题主要考查一次函数的应用,关键学会读懂图象信息,学会构建一次函数解决问题.23.作图见解析【解析】【分析】AB长为半径画弧,两弧交于点M,N,作直线MN交AC于分别以A.B为圆心,大于12D,交AB于E.【详解】解:如图,直线DE即为所求.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)(a+2b)(a+b);a2+3ab+2b2;(2)(a+b+c)2;a2+b2+c2+2ab+2ac+2bc;(3)-18【解析】【分析】(1)根据大矩形的面积=各矩形的面积之和求解即可;(2)根据正方形的面积=各矩形的面积之和求解即可;(3)先求出(a+b+c)2的值,再根据(2)中关系式求得结果.【详解】解:(1)大矩形的面积=(a+2b)(a+b),各部分面积和=a2+3ab+2b2,∠(a+2b)(a+b)=a2+3ab+2b2,故答案为:(a+2b)(a+b);a2+3ab+2b2;(2)正方形的面积可表示为=(a+b+c)2;各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca,∠(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.故答案为:(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(3)由(2)得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.∠(a+b+c)2=(7x-5-4x+2-3x+4)2=1,∠1=a2+b2+c2+2ab+2ac+2bc,∠a2+b2+c2=37,∠1=37+2(ab+bc+ac),∠2(ab+bc+ac)=-36,∠ab+bc+ac=-18.【点睛】本题考查了因式分解的应用,完全平方公式的几何背景,以及完全平方公式在几何图形相关计算中的应用,本题具有一定的综合性,难度中等略大.25.(1)PC∠PQ,理由见解析;(2)t=1,x=2或t=74,x=207;(3)60°【解析】【分析】(1)利用SAS证得∠ACP∠∠BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由∠ACP∠∠BPQ,分两种情况:∠AC=BP,AP=BQ,∠AC=BQ,AP=BP,建立方程组求得答案即可;(3)根据题意得P、Q两点的运动速度为2,得到BP=AC,根据全等三角形的性质得到∠C=∠BPQ,于是得到结论.【详解】解:(1)当t=1时,AP=BQ=2,BP=AC=5又∠AC∠AB,BD∠AB,∠∠A=∠B=90°在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS),∠ACP BPQ∠=∠,∠90APC BPQ APC ACP∠+∠=∠+∠=∠∠CPQ=90°,即线段PC与线段PQ垂直;(2)∠若∠ACP∠∠BPQ,则AC=BP,AP=BQ,7-2t=5,2t=xt,解得t=1,x=2,∠存在t=1,x=2,使得∠ACP与∠BPQ全等,∠若∠ACP∠∠BQP,则AC=BQ,AP=BP,5=xt,2t=7 2解得t=74,x=207,∠存在t=74,x=207,使得∠ACP与∠BPQ全等,综上所述,存在t=1,x=2或t=74,x=207使得∠ACP与∠BPQ全等(3)∠∠A=∠B=60°∠P、Q两点的运动速度相同,∠P、Q两点的运动速度为2,∠t=1,∠AP=BQ=2,∠BP=5,∠BP=AC,在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS);∠∠C=∠BPQ,∠∠C+∠APC=120°,∠∠APC+∠BPQ=120°,∠∠CPQ=60°.故答案为:60°.【点睛】本题考查了三角形的综合题,全等三角形的判定和性质,余角的性质,正确的识别图形是解题的关键.。
2020-2021学年北师大版七年级下册数学期末练习试题有答案
2020-2021学年北师大新版七年级下册数学期末练习试题一.选择题(共10小题,满分20分,每小题2分)1.计算(﹣)2018×(1.5)2019的结果是()A.﹣B.C.D.﹣2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列事件中,是随机事件的是()A.画一个三角形,其内角和是180°B.投掷一枚正六面体骰子,朝上一面的点数为5C.在只装了红色卡片的袋子里,摸出一张白色卡片D.明天太阳从东方升起4.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.1005.有两把不同的锁和三把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁,则一次打开锁的概率是()A.B.C.D.6.如图,在由边长为1的小正方形组成的5×5的网格中,点A,B在小方格的顶点上,要在小方格的顶点确定一点C,连接AC和BC,使△ABC是等腰三角形.则方格图中满足条件的点C的个数是()A.5B.6C.7D.87.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.8.下列运算中,不能用平方差公式运算的是()A.(﹣b﹣c)(﹣b+c)B.﹣(x+y)(﹣x﹣y)C.(x+y)(x﹣y)D.(x+y)(2x﹣2y)9.将一副三角板按照如图所示的方式摆放,DF∥AC,则∠AGF的度数为()A.105°B.90°C.75°D.60°10.如表是某校七~九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.课外小组活动总时间/h文艺小组活动次数科技小组活动次数七年级12.543八年级10.533九年级7☆☆则九年级文艺小组活动次数和科技小组活动次数(表中的两个五星)分别是()A.2,2B.1,3C.3,1D.1,2二.填空题(共6小题,满分18分,每小题3分)11.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为.12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=20°,∠2=25°,则∠3=.13.已知:x+=3,则x2+=.14.设等腰三角形的周长是60,腰长是x,底边长是y,则y与x之间的关系式是y=60﹣2x,其中x的取值范围是15.如图,在△ABC中,AB=AC,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E,在点D的运动过程中,△ADE的形状也在改变,当△ADE是等腰三角形时,∠BDA的度数是.16.如图1,为响应国家新能源建设,乐清市公交站亭装上了太阳能电池板.当地某一季节的太阳光(平行光线)与水平线最大夹角为62°,如图2,电池板AB与最大夹角时刻的太阳光线相垂直,此时电池板CD与水平线夹角为48°,要使AB∥CD,需将电池板CD 逆时针旋转α度,则α为.(0<α<90)三.解答题(共3小题,满分22分)17.先化简,再求值:(1)6x2y(﹣2xy+y3)÷xy2,其中x=2,y=﹣1;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y),其中x=﹣2,y=.18.如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若m+n=7,mn=5,求(m﹣n)2的值.19.如图,已知点D,E分别为AB,BC上的点,连接DE,∠BAC=70°,∠ADE=110°.(1)求证:∠C=∠BED;(2)画图:连接AE,过点D画DF∥AE,交BC于点F,若∠EAC=28°,∠C=62°,求∠DFC的度数.四.解答题(共2小题,满分16分,每小题8分)20.如图,AD∥BE,∠ACB=90°,∠CBE=40°,求∠CAD的度数.21.如图△ABC,求作直线MN,使△ABC沿该直线折叠后点A落在边BC上的点P处.(尺规作图,不写作法,保留作图痕迹)五.解答题(共1小题,满分10分,每小题10分)22.元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?六.解答题(共1小题,满分10分,每小题10分)23.在一个不透明的小布袋中装有4个质地、大小完全相同的小球,它们分别标有数字0,1,2,3,小明从布袋里随机摸出一个小球,记下数字为x,小红在剩下的3个小球中随机摸出一个小球,记下数字为y,这样确定了点M的坐标(x,y).(1)画树状图或列表,写出点M所有可能的坐标;(2)小明和小红约定做一个游戏,其规则为:若M在第一象限,则小明胜;否则,小红胜;这个游戏公平吗?请你作出判断并说明理由.七.解答题(共1小题,满分12分,每小题12分)24.已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)若∠A=60°,请直接写出图中面积等于△ODC面积3倍的所有三角形.八.解答题(共1小题,满分12分,每小题12分)25.如图,在△ABC中,AD平分∠BAC,AE⊥BC,若∠BAD=40°,∠C=70°,求∠DAE 的度数.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:(﹣)2018×(1.5)2019=()2018×(1.5)2018×1.5==.故选:B.2.解:根据轴对称的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形.A.不是轴对称图形;故此选项符合题意;B.是轴对称图形;故此选项不符合题意;C.是轴对称图形;故此选项不符合题意;D.是轴对称图形;故此选项不符合题意;故选:A.3.解:A、画一个三角形,其内角和是180°,是必然事件;B、投掷一枚正六面体骰子,朝上一面的点数为5,是随机事件;C、在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件;D、明天太阳从东方升起,是必然事件;故选:B.4.解:如图,延长AE交CD于点F,∵AB∥CD,∴∠BAE+∠EFC=180°,又∵∠BAE=120°,∴∠EFC=180°﹣∠BAE=180°﹣120°=60°,又∵∠DCE=30°,∴∠AEC=∠DCE+∠EFC=30°+60°=90°.故选:C.5.解:列表如下:(其中1,2,3分别表示三把钥匙,a,b表示两把锁,1能开启a,2能开启b),123a(1,a)(2,a)(3,a)b(1,b)(2,b)(3,b)所有等可能的情况有6种,任意取出一把钥匙去开任意一把锁,一次就能打开锁的情况有2种,(1,a),(2,b),则P=.故选:B.6.解:如图所示:C在C1,C2,C3,C4位置上时,AC=BC;C在C5,C6位置上时,AB=BC;即满足点C的个数是6,故选:B.7.解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.8.解:A、(﹣b﹣c)(﹣b+c)符合平方差公式的特点,能用平方差公式计算,故本选项不符合题意;B、﹣(x+y)(﹣x﹣y)=(x+y)(x+y),不符合平方差公式的特点,不能用平方差公式计算,故本选项符合题意;C、(x+y)(x﹣y)符合平方差公式的特点,能用平方差公式计算,故本选项不符合题意;D、(x+y)(2x﹣2y)=2(x+y)(x﹣y)符合平方差公式的特点,能用平方差公式计算,故本选项不符合题意.故选:B.9.解:由题意可得:∠F=45°,∠A=60°,∵DF∥AC,∴∠AEG=∠F=45°,∴∠AGF=∠AEG+∠A=45°+60°=105°.故选:A.10.解:设文艺小组每次活动时间为x小时,科技小组每次活动时间为y小时,由题意得,,解得,x=2,y=1.5,设九年级文艺小组活动次数为a、科技小组活动次数为b,则2a+1.5b=7,又∵a、b都是正整数,∴a=2,b=2;故选:A.二.填空题(共6小题,满分18分,每小题3分)11.解:设袋子中黄球有x个,根据题意,得:=,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为=,故答案为:.12.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠2=25°,∴∠3=∠1+∠ABD=25°+20°=45°.故答案为:45°.13.解:∵x+=3,∴(x+)2=x2+2+=9,∴x2+=7,故答案为:7.14.解:根据三角形的三边关系得:,解得:15<x<30.∴x的取值范围是15<x<30.故答案为:15<x<30.15.解:∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当△ADE是等腰三角形时,∠BDA的度数是110°或80°,故答案为:110°或80°.16.解:∵EF⊥AB,∴∠EFO=90°,∵∠OEF=62°,∴∠EOF=180°﹣90°﹣62°=28°,∵AB∥CD,∴∠MQD=∠EOF=28°,∵要使AB∥CD,需将电池板CD逆时针旋转α度,∴α°=48°﹣28°=20°,故答案为:20.三.解答题(共3小题,满分22分)17.解:(1)6x2y(﹣2xy+y3)÷xy2,=(﹣12x3y2+6x2y4)÷xy2=﹣12x2+6xy2,当x=2,y=﹣1时,原式=﹣12×22+6×2×(﹣1)2=﹣36;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y)=x2﹣4y2+x2﹣4xy+4y2﹣3x2+xy=﹣x2﹣3xy,当x=﹣2,y=时,原式=﹣(﹣2)2﹣3×(﹣2)×=﹣4+3=﹣1.18.解:(1)图②中画有阴影的小正方形的边长(m﹣n);(2)(m+n)2=(m﹣n)2+4mn;(3)由(2)得:(m+n)2=(m﹣n)2+4mn;∵m+n=7,mn=5,∴(m﹣n)2=(m+n)2﹣4mn=49﹣20=29;答:(m﹣n)2的值为29.19.解:(1)证明:∵∠BAC=70°,∠ADE=110°.∴∠BAC+∠ADE=180°.∴DE∥AC,∴∠C=∠BED;(2)如图所示,∵DF∥AE,∴∠AEC=∠DFC,△AEC中,∠EAC=28°,∠C=62°,∴∠DFC=∠AEC=180°﹣62°﹣28°=90°.四.解答题(共2小题,满分16分,每小题8分)20.解:过点C作CF∥AD,∵AD∥BE,∴CF∥BE,∴∠CAD=∠ACF,∠CBE=∠FCB,∴∠ACB=∠CAD+∠CBE,∴∠CAD=∠ACB﹣∠CBE=90°﹣40°=50°.21.解:如图,MN为所作.五.解答题(共1小题,满分10分,每小题10分)22.解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.六.解答题(共1小题,满分10分,每小题10分)23.解:(1)列表如下:0123 0﹣﹣﹣(1,0)(2,0)(3,0)1(0,1)﹣﹣﹣(2,1)(3,1)2(0,2)(1,2)﹣﹣﹣(3,2)3(0,3)(1,3)(2,3)﹣﹣﹣(2)游戏公平,∵小明获胜的概率为=,小红获胜的概率为,∴两人获胜的概率相等,故游戏是公平的.七.解答题(共1小题,满分12分,每小题12分)24.(1)证明:∵OB=OC,∴∠OBC=∠OCB,∵锐角△ABC的两条高BD、CE相交于点O,∴∠BEC=∠CDB=90°,∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,∴180°﹣∠BEC﹣∠BCE=180°﹣∠CDB﹣∠CBD,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.(2)解:如图,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∵BD,CE是△ABC的高,∴BD=CE,AE=EB,AD=DC,在△AEC和△BEC中,,∴△ACE ≌△BCE (SAS ),同理可得,△ADB ≌△CDB ,在△ECB 和△DBC 中,,∴△BCE ≌△CBD (SAS ),∵∠ACB =60°,CA =CB ,CE ⊥AB ,∴∠DCO =∠ACB =30°,∴OC =OB =2OD ,∴BD =3OD ,∴S △BDC =3S △ODC ,∴面积等于△ODC 面积3倍的三角形有:△ABD ,△BDC ,△AEC ,△BCE .八.解答题(共1小题,满分12分,每小题12分)25.解:∵AD 平分∠BAC ,∴∠BAC =2∠BAD =80°,∵∠C =70°,∴∠B =180°﹣∠BAC ﹣∠C =180°﹣70°﹣80°=30°,∴∠ADE =∠B +∠BAD =30°+40°=70°,∵AE ⊥BC ,∴∠AEB =90°,∴∠DAE =90°﹣∠ADE =90°﹣70°=20°.。
北师大版七年级数学下册期末测试题及参考答案
北师大版七年级数学下册期末测试题) 1. 下列事件是必然事件的是( )A. 小梅的数学考试将得99分B. 抛出去的铅笔将着地C. 明天会是晴天D. 2018年有370天 2. 下列计算正确的是( )A. a4·a4=a16B. (a3)4=a7C. 12a6b4÷3a2b -2=4a4b2D. (-a3b)2=a6b23.如图, 在△ABC 中, AB =AC, DE ∥BC, ∠ADE =48°, 则下列结论中不正确的是( )A. ∠B =48°B. ∠AED =66°C. ∠A =84°D. ∠B +∠C =96° 4.已知xy =9, x -y =-3, 则x2+3xy +y2的值为( ) A. 27 B. 9 C. 54 D. 185.为应对越来越严峻的交通形势, 某市对其主干道进行拓宽改造.工程队在工作了一段时间后, 因雨被迫停工几天, 随后工程队加快了施工进度, 按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的关系的大致图象是( )6. 如图, 在△ABC 中, D 是AB 上一点, DF 交AC 于点E, AE =EC, DE =EF, 则下列说法中: ①∠ADE =∠EFC ;②∠ADE +∠ECF +∠FEC =180°;③∠B +∠BCF =180°;④S △ABC =S 四边形DBCF, 正确说法的个数有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题, 每小题3分, 满分18分)7. 在不借助任何工具的情况下, 人的眼睛可以看到的最小物体的大小约为0.00003米, 将0.00003用科学记数法表示为____________.8. 汽车由吉安驶往相距220km的南昌,它的平均速度为100km/h,则汽车距南昌的路程s(km)与行驶的时间t(h)的关系式为__________________.9.四张质地、大小相同的卡片上, 分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张, 则抽取的卡片是轴对称图形的概率为________.10. 如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线分别交AC, AD, AB于点E, O, F, 则图中全等的三角形共有________对.第10题图第11题图11. 如图, 有一块边长为4的正方形塑料模板ABCD, 将一块足够大的直角三角板的直角顶点落在A点, 两条直角边分别与CD交于点F, 与CB的延长线交于点E, 则四边形AECF 的面积是________.12. 我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”. 如果等腰三角形的“内角正度值”为45°, 那么该等腰三角形的顶角度数为________.三、解答题(本大题共5小题, 每小题6分, 满分30分)13. (1)计算:43×0.259;(2)如图, 直线AB, CD相交于点O, OM⊥AB.若∠COB=135°, 求∠MOD的度数.14. 先化简, 再求值: 2a(a+2b)-(a+2b)2, 其中a=2, b=-1.15. 如图, ∠A=65°, ∠ABD=∠DCE=30°, 且CE平分∠ACB, 求∠DBC的度数.16. 如图, 在等边△ABC中, D是BC上一点, ∠BAD=40°, E是AC上一点, AD=AE,求∠AED的度数.17. 如图是由一个长方形和一个等腰三角形组成的轴对称图形, 请你用两种方法作出它的对称轴(要求: 只能用没有刻度的直尺, 可不写作法, 但要保留作图痕迹).四、(本大题共3小题, 每小题8分, 共24分)18.如图, 已知AB ∥CD, DA 平分∠BDC, ∠A =∠C. (1)试说明: CE ∥AD ;(2)若∠C =30°, 求∠B 的度数.19. 有四根小木棒长度分别是1, 3, 5, 7, 若从中任意抽出三根木棒组成三角形. (1)下列说法正确的序号是________; ①第一根抽出木棒长度是3的可能性是14;②抽出的三根木棒能组成三角形是必然事件; ③抽出的三根木棒能组成三角形是随机事件; ④抽出的三根木棒能组成三角形是不可能事件.(2)求抽出的三根木棒能组成三角形的概率.20. 对于任意有理数a, b, c, d, 我们规定符号(a, b)□(c, d)=ad-bc.例如: (1, 3)□(2, 4)=1×4-2×3=-2.(1)(-2, 3)□(4, 5)=________;(2)求(3a+1, a-2)□(a+2, a-3)的值, 其中a2-4a+1=0.五、(本大题共2小题, 每小题9分, 共18分)21. 如图, 在△ABC中, AB=AC, D, E, F分别在三边上, 且BE=CD, BD=CF, G为EF 的中点.(1)若∠A=40°, 求∠B的度数;(2)试说明: DG垂直平分EF.22. 一水果零售商在批发市场按每千克1.8元批发了若干千克西瓜进城出售, 为了方便, 他带了一些零钱备用. 他先按市场价售出一些后, 又降价出售. 售出西瓜的质量x(千克)与他手中持有的钱数y(元)(含备用零钱)的关系如图所示, 结合图象回答下列问题:(1)零售商自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完, 这时他手中的钱(含备用的钱)是450元, 问他一共批发了多少千克的西瓜?(4)这位水果零售商一共赚了多少钱?六、(本大题共12分)23. 如图①, 在△ABC中, ∠BAC=90°, AB=AC, 直线MN过点A, 且MN∥BC, 点D是直线MN上一点, 不与点A重合.(1)若点E是图①中线段AB上一点, 且DE=DA, 请判断线段DE与DA的位置关系, 并说明理由;(2)请在下面的A, B两题中任选一题解答.A: 如图②, 在(1)的条件下, 连接BD, 过点D作DP⊥DB交线段AC于点P, 请判断线段DB与DP的数量关系, 并说明理由;B:如图③, 在图①的基础上, 改变点D的位置后, 连接BD, 过点D作DP⊥DB交线段CA的延长线于点P, 请判断线段DB与DP的数量关系, 并说明理由.我选择: ________.参考答案与解析1. B2.D3.B4.C5.D6.A7. 3×10-58.s=220-100t9.10.411. 16解析: 根据题意可知∠BAE=∠DAF=90°-∠BAF, AB=AD, ∠ABE=∠ADF=90°, ∴△AEB≌△AFD(ASA), ∴S四边形AECF=S正方形ABCD=42=16.12.30°或90°解析: 设最小角的度数为x, 则最大角的度数为x+45°.当最小角是顶角时, 则x+x+45°+x+45°=180°, 解得x=30°, 此时三角形顶角的度数为30°.当最大角为顶角时, 则x+x+45°+x=180°, 解得x=45°, 此时三角形顶角的度数为90°.综上所述, 等腰三角形的顶角为30°或90°.13. 解: (1)43×0.259=43×0.253×0.256=(4×0.25)3×0.256=1×0.256=0.256.(3分)(2)∵∠COB=135°, ∴∠AOD=135°.∵OM⊥AB, ∴∠AOM=90°, ∴∠MOD=∠AOD-∠AOM=135°-90°=45°.(6分)14. 解: 原式=2a2+4ab-a2-4ab-4b2=a2-4b2.(3分)当a=2, b=-1时, 原式=4-4=0.(6分)15. 解: ∵∠DCE=30°, CE平分∠ACB, ∴∠ACB=2∠DCE=60°.(2分)∵∠A=65°, ∴∠ABC=180°-∠ACB-∠A=55°.(4分)∵∠ABD=30°, ∴∠DBC=∠ABC-∠ABD=25°.(6分)16. 解:∵△ABC是等边三角形, ∴∠BAC=60°.(2分)∵∠BAD=40°, ∴∠CAD=∠BAC-∠BAD=20°.(4分)∵AD=AE, ∴∠AED=(180°-∠CAD)=80°.(6分)17.解:如图所示, 直线AB即为所求.(6分)18. 解: (1)∵AB∥CD, ∴∠A=∠ADC.(1分)又∵∠A=∠C, ∴∠ADC=∠C, ∴CE∥AD.(3分)(2)由(1)可得∠ADC=∠C=30°.∵DA平分∠BDC, ∴∠CDB=2∠ADC=60°.(5分)∵AB∥DC, ∴∠B+∠CDB=180°, ∴∠B=180°-∠CDB=120°.(8分)19. 解: (1)①③(3分)(2)从1, 3, 5, 7中任意抽出三根木棒有1, 3, 5;1, 3, 7;3, 5, 7;1, 5, 7, 共四种情况, 而能组成三角形的只有3, 5, 7一种情况, (6分)∴抽出的三根木棒恰好能组成三角形的概率为.(8分)20. 解: (1)-22(2分)(2)原式=(3a+1)(a-3)-(a-2)(a+2)=3a2-9a+a-3-(a2-4)=3a2-9a+a-3-a2+4=2a2-8a+1.(5分)∵a2-4a+1=0, ∴a2=4a-1, ∴原式=2(4a-1)-8a+1=-1.(821. 解: (1)∵AB=AC, ∴∠C=∠B.∵∠A=40°, ∴∠B==70°.(3分)(2)连接DE, DF.在△BDE与△CFD中, ∴△BDE≌△CFD(SAS), ∴DE=DF.(7分)∵G 为EF的中点, ∴DG⊥EF, ∴DG垂直平分EF.(9分)22. 解: (1)零售商自带的零钱为50元. (2分)(2)(330-50)÷80=280÷80=3.5(元).答: 降价前他每千克西瓜出售的价格是3.5元. (4分)(3)(450-330)÷(3.5-0.5)=120÷3=40(千克), 80+40=120(千克).答: 他一共批发了120千克西瓜. (7分)(4)450-120×1.8-50=184(元).答: 这位水果零售商一共赚了184元. (9分)23. 解:(1)DE⊥DA.(1分)理由如下:∵∠BAC=90°, AB=AC, ∴∠B=∠C=45°.(2分)∵MN∥BC, ∴∠DAE=∠B=45°.(3分)∵DA=DE, ∴∠DEA=∠DAE=45°, ∴∠ADE=180°-∠DEA-∠DAE=90°, 即DE⊥DA.(5分)(2)选A DB=DP.(6分)理由如下:∵DP⊥DB, ∴∠BDE+∠EDP=90°.(7分)由(1)知DE⊥DA, ∴∠ADP+∠EDP=90°, ∴∠BDE=∠ADP.(9分)∵∠DEA=∠DAE=45°, ∴∠BED=∠DAE+∠BAC=135°, ∠DAP=∠DAE+∠BAC=135°, ∴∠BED=∠DAP.(10分)在△DEB和△DAP中, ∴△DEB≌△DAP(ASA), ∴DB=DP.(12分)或选B DB=DP.(6分)理由如下: 如图, 延长AB至F, 连接DF, 使DF=DA.(7分)同(1)得∠DFB=∠DAF=45°, ∴∠ADF=90°.∵DP⊥DB, ∴∠FDB=∠ADP.(9分)∵∠BAC=90°, ∠DAF=45°, ∴∠PAD=45°, ∴∠BFD=∠PAD.(10分)在△DFB和△DAP中, ∴△DFB≌△DAP(ASA),∴DB=DP.(12分)。
最新北师大版七年级下册数学期末复习压轴题练习试题以及答案
七年级下册数学期末压轴试题1、(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小;(2)如图2,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.(图1)(图2)2、已知:点C为线段AB上一点,△ACM,△CBN都是等边三角形,且AN、BM相交于O.①求证:AN=BM②求∠AOB的度数。
③若AN、MC相交于点P,BM、NC交于点Q,求证:PQ∥AB。
3、已知,如图1所示,在和中,,,,且点在一条直线上,连接分别为的中点.(1)求证:①;②AN AM =;(2)在图1的基础上,将绕点按顺时针方向旋转,其他条件不变,得到图2所示的图形.请直接写出(1)中的两个结论是否仍然成立.(图1)(图2)ABC △ADE △AB AC =AD AE =BAC DAE ∠=∠B A D ,,BE CD M N ,,,BE CD ,BE CD =ADE △A1804、如图,四边形ABCD和四边形AEFG均为正方形,连接BG与DE相交于点H.(1)证明:△ABG≌△ADE;(2)试猜想∠BHD的度数,并说明理由;(3)将图中正方形ABCD绕点A逆时针旋转(0°<∠BAE<180°),设△ABE的面积为S,△ADG的面积为2S,判断1S与2S的大小关系,并1给予证明。
5、已知:如图,ABC∥,交△是等边三角形,过AB边上的点D作DG BC,.AC于点G,在GD的延长线上取点E,使DE DB,连接AE CD(1)求证:AGE DAC△≌△;(2)过点E作EF DC△是怎∥,交BC于点F,请你连接AF,并判断AEF样的三角形,试证明你的结论.6、如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD;(2)若AC=12cm,求BD的长.7、已知BE,CF是△ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系8、如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:CD=BF;(2)求证:AD⊥CF;(3)连接AF,试判断△ACF的形状.9、如图所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.10、如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使E点落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.11、如图1,ABC ∆的边BC 在直线l 上,,AC BC ⊥且,AC BC =EFP ∆的边FP 也 在直线l 上,边EF 与边AC 重合,且EF FP =(1)在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的 数量关系和位置关系;(2)将EFP ∆沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连接 ,AP BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想; (3)将EFP ∆沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q,连结,AP BQ ,你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.12、如图,ABC ∆中,AB AC =,90BAC ∠=︒,D 是BC 中点,ED FD ⊥,ED 与AB 交于E ,FD 与AC 交于F .求证:BE=AF,AE=CF.13、两个全等的含30,60角的三角板ADE和三角板ABC,如图所示放置,E A C三点在一条直线上,连结BD,取BD的中点M,连结,ME MC.试判,,断EMC的形状,并说明理由.14、(1)已知Rt ABC ∆中,AC BC =,90C ∠=︒,D 为AB 边的中点,90EDF ∠=︒,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),证明12DEFCEFABCS S S ∆∆∆+=.(2)当EDF ∠绕D 点旋转到DE 和AC 不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEFS ∆,CEFS∆,ABCS ∆又有怎样的数量关系?请写出你的猜想,不需证明.15、已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE 相交于点G。
北师大版七年级下册数学期末考试试题附答案
北师大版七年级下册数学期末考试试卷一、单选题1.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆D.线段2.下列事件中,是随机事件的是()A.抛出的篮球会下落地B.汽车到达一个路口,遇到红灯C.任意三条线段可组成三角形D.13个同学中至少有两个同学的生日在同一个月3.下面四个图形中,1∠与2∠是对顶角的是()A B C D()a的正确结果是()4.计算23A.23a B.5a C.6a D.6a5.在我国,平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.将130000000用科学记数法表示为()A.1.3×108B.0.13×109C.1.3×109D.13×1076.如图,要测量河两岸相对的两点A、B的距离,先在河岸BF上取两点C、D,使CD=BC,再作DE⊥BF,垂足为D,使A、C、E三点在一条直线上,测得ED=30米,因此AB 的长是()A.10米B.20米C.30米D.40米7.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°8.小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象中哪一个表示哥哥离家时间与距离之间的关系()A.B.C.D.9.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正确的是()A.1个B.2个C.3个D.4个10.如图所示:AB∥CD,MN交CD于点E,交AB于F,BE⊥MN于点E,若∠DEM=55°,则∠ABE=()A.55°B.35°C.45°D.30°二、填空题11.计算732a a ÷=________________.12.如图,已知∠4=75°,∠3=105°,∠1=42°,则∠2=________________°.13.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.14.已知6x y +=-,8xy =,则22x y +=________________.15.某学校购书1000本,给初一年级学生送书,每人都可得到2本不同的书,某一时刻有x 人领到书,则此时剩下的书y =________________本.(x 为正整数)16.一个袋中有5个球,分别标有1,2,3,4,5这五个号码,这些球除号码外都相同,搅匀后任意摸出一个球,则摸出标有数字为奇数的球的概率为___.17.如图,AB ∥CD ,AE ⊥EF ,垂足为E ,∠GHC =70°,则∠A =___________三、解答题18.计算:202022(1)(5.5 4.5)4-+---19.已知:如图,∠DAE =∠E ,∠B =∠D .直线AD 与BE 平行吗?直线AB 与DC 平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由)解:直线AD 与BE ______________,直线AB 与DC ______________理由如下:∵∠DAE =∠E ,(已知)∴________//________,()∴∠D =∠DCE .()又∵∠B =∠D ,(已知)∴∠B =∠DCE ,()∴________//________.()20.先化简,再求值:[(2x +y )(2x ﹣y )﹣(2x ﹣3y )2]÷(﹣2y ),其中x =1,y =﹣2.21.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P(在客厅捉到小猫);(2)P(在小卧室捉到小猫);(3)P(在卫生间捉到小猫);(4)P(不在卧室捉到小猫).22.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点ABC ∆(顶点均在格点上)关于直线DE 对称的111A B C ∆;(2)在DE 上画出点Q ,使QA QC +最小.23.如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D .求证:(1)∠ECD =∠EDC ;(2)OC=OD.24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE与AC交于E.(1)当∠BDA=115°时,∠BAD=°,∠DEC=°;当点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.25.如图,已知CD平分ACB,DE∥BC,∠B=50°,∠ACB=30°,求∠BDC的度数.参考答案1.C【解析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【详解】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.【点睛】本题考查了轴对称图形的性质,解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.2.B【解析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.抛出的篮球会下落地,是必然事件,因此选项A不符合题意;B.汽车到达一个路口,可能遇到红灯,也可能不是红灯,因此是随机事件,所以选项B符合题意;C.任意三条线段可组成三角形,是不可能事件,所以选项C不符合题意;D.13个同学中至少有两个同学的生日在同一个月,是必然事件,所以选项D不符合题意;故选:B.本题考查必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.3.C【解析】【分析】根据对顶角的定义,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,分别判断即可.【详解】解:A、两角两边没有互为反向延长线,选项错误;B、两角两边没有互为反向延长线,选项错误;C、有公共顶点,且两角两边互为反向延长线,选项正确.D、没有公共顶点,两角没有互为反向延长线,选项错误.故选:C.【点睛】本题考查对顶角的定义,根据定义解题是关键.4.D【解析】【分析】根据幂的乘方法则计算即可解答.【详解】解:(a2)3=a6,故选:D.【点睛】本题考查了幂的乘方法则,理清指数的变化是解题的关键.5.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:把130000000用科学记数法可表示为1.3×108.故选:A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.C【解析】【分析】由已知可以得到∠ABC =∠BDE ,又CD =BC ,∠ACB =∠DCE ,由此根据角边角即可判定△EDC ≌△ABC ,则ED =AB .【详解】解:∵BF ⊥AB ,DE ⊥BF ,∴∠ABC =∠BDE在△EDC 和△ABC 中,ABC EDC BC DC ACB DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDC ≌△ABC (ASA ).∴ED =AB .∵ED =30米,∴AB =30米.故选:C .【点睛】本题考查了全等三角形的应用;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.7.A【解析】【分析】先根据∠CED =50°,DE ∥AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 8.D【解析】【详解】解:根据题意,从20分钟到40分钟哥哥在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选D.9.D【解析】【详解】分析:①根据角平分线的性质得出结论:DE=CD;②证明△ACD≌△AED,得AD平分∠CDE;③由四边形的内角和为360°得∠CDE+∠BAC=180°,再由平角的定义可得结论是正确的;④由△ACD≌△AED得AC=AE,再由AB=AE+BE,得出结论是正确的.详解:①∵∠C=90°,AD平分∠BAC,DE⊥AB,∴DE=CD;所以此选项结论正确;②∵DE=CD,AD=AD,∠ACD=∠AED=90°,∴△ACD≌△AED,∴∠ADC=∠ADE,∴AD平分∠CDE,所以此选项结论正确;③∵∠ACD=∠AED=90°,∴∠CDE+∠BAC=360°-90°-90°=180°,∵∠BDE+∠CDE=180°,∴∠BAC=∠BDE,所以此选项结论正确;④∵△ACD≌△AED,∴AC=AE,∵AB=AE+BE,∴BE+AC=AB,所以此选项结论正确;本题正确的结论有4个,故选D.点睛:考查了全等三角形性质和判定,同时运用角平分线的性质得出两条垂线段相等;本题难度不大,关键是根据HL证明两直角三角形全等,根据等量代换得出线段的和,并结合四边形的内角和与平角的定义得出角的关系.10.B【解析】【详解】∵AB∥CD,∴∠EFB=∠DEM=55°,∵BE⊥MN,∴∠ABE=90°-55°=35°.故选B.11.24a【解析】【分析】根据单项式除以单项式的运算法则进行计算求解.【详解】解:原式=2a7﹣3=2a4,故答案为:2a4.【点睛】本题考查整式的除法运算,掌握单项式除以单项式的运算法则是解题基础.12.138【解析】【分析】由同旁内角互补,两直线平行可得AB//CD,可得∠1+∠2=180°,即可求解.【详解】解:∵∠4=75°,∠3=105°,∴∠4+∠3=75°+105°=180°,∴AB//CD,∴∠1+∠2=180°,∵∠1=42°,∴∠2=180°﹣∠2=180°﹣42°=138°,故答案为:138.【点睛】本题考查了平行线的判定和性质,掌握平行线的判定是本题的关键.13.3【解析】【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为3.考点:概率公式;轴对称图形.14.20【解析】【分析】先把等式x+y=﹣6两边分别平方,得到x2+y2+2xy=36,再把xy=8代入,即可求出x2+y2的值.【详解】解:∵x+y=﹣6,∴(x+y)2=36,即x2+y2+2xy=36,∵xy=8,∴x2+y2+2×8=36,∴x2+y2=20,故答案为:20.【点睛】本题主要考查完全平方公式的应用,熟练掌握完全平方公式:(a±b)2=a2±2ab+b2,是本题解题关键.15.10002x【解析】【分析】根据剩下的书=总数1000本−送与学生的书的数量【详解】根据题意得到:y=1000−2x.故答案是:1000−2x.【点睛】本题主要考查了列代数式,解题的关键是读懂题意,找准等量关系.16.3 5【解析】【详解】∵奇数有3个,一共有5个球,∴摸出标有数字为奇数的球的概率为3 5 .17.20o【解析】【详解】∵AB∥CD,∠GHC=70°,∴∠ACE=∠GHC=70°,∵AE⊥EF,∴∠A=90°-70°=20°.18.7【解析】【分析】根据绝对值的定义、平方差公式的逆运用、乘方的意义以及有理数的混合运算解决此题.【详解】解:原式=1+(5.5+4.5)×(5.5﹣4.5)﹣4=1+10×1﹣4=1+10﹣4=7.【点睛】本题主要考查绝对值的定义、平方差公式的逆运用、乘方的意义以及有理数的混合运算,熟练掌握绝对值的定义、平方差公式的逆运用、乘方的意义是解决本题的关键.19.平行;平行;AD;BE;内错角相等,两直线平行;两直线平行,内错角相等;AB;DC;同位角相等,两直线平行【解析】【分析】因为∠DAE=∠E,所以根据内错角相等,两条直线平行,可以证明AD//BE;根据平行线的性质,可得∠D=∠DCE,结合已知条件,运用等量代换,可得∠B=∠DCE,可证明AB//DC.【详解】解:直线AD与BE平行,直线AB与DC平行.理由如下:∵∠DAE=∠E,(已知)∴AD//BE,(内错角相等,两条直线平行)∴∠D =∠DCE .(两条直线平行,内错角相等)又∵∠B =∠D ,(已知)∴∠B =∠DCE ,(等量代换)∴AB //DC .(同位角相等,两条直线平行)故答案为:平行;平行;AD ;BE ;内错角相等,两直线平行;两直线平行,内错角相等;AB ;DC ;同位角相等,两直线平行.【点睛】此题综合运用了平行线的性质和判定,关键是找准两条直线被第三条直线所截而形成的同位角、内错角.20.65x y -+;-16【解析】【分析】原式中括号中利用平方差公式及完全平方公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式2222(44129)(2)x y x xy y y =--+-÷-2(1210)(2)xy y y =-÷-65x y =-+,当1x =,2y =-时,原式61016=--=-.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.21.(1)13(2)16(3)1390(4)1930【解析】【详解】分析:根据题意,由相应房间的面积比上总面积90进行计算即可.详解:由题意可得:(1)P (在客厅捉到小猫)=301=903;(2)P (在小卧室捉到小猫)=151=906;(3)P (在卫生间捉到小猫)=9+413=9090;(4)P (不在卧室捉到小猫)=9018155719909030--==.点睛:知道:“在某个房间捉到小猫的概率=该房间的面积:米奇家住宅的总面积”是解答本题的关键.22.(1)见解析;(2)见解析.【解析】【分析】(1)根据网格结构找出点A 、B 、C 关于直线DE 对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据轴对称确定最短路线问题连接A1C 与DE 的交点即为所求点Q .【详解】(1)111A B C ∆如图所示;(2)连接1AC ,交DE 于点Q ,点Q 如图所示.【点睛】此题考查轴对称-最短路线问题,作图-轴对称变换,解题关键在于掌握作图法则.23.(1)见解析;(2)见解析【解析】【分析】(1)根据角平分线的性质可得ED =EC ,继而根据等边对等角的性质即可求证结论;(2)根据角平分线的性质和全等三角形的判定求证△OED ≌△OEC (AAS ),继而根据全等三角形的对应边相等得到结论.【详解】(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,又∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;【点睛】本题考查了角平分线的性质和垂直平分线的判定,全等三角形的判定与性质,熟记各性质是解题的关键.24.(1)25,115,小;(2)2,理由见解析;(3)能,110°或80°.【解析】【分析】(1)首先利用三角形内角和为180°可算出∠BAD=180°-40°-115°=25°;再利用邻补角的性质和三角形内角和定理可得∠DEC的度数;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【详解】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°-40°-115°=25°;∵∠ADE =40°,∠ADB =115°,∴∠EDC =180°-∠ADB -∠ADE =180°-115°-40°=25°.∴∠DEC =180°-40°-25°=115°,当点D 从B 向C 运动时,∠BDA 逐渐变小;故答案为:25,115,小;(2)当DC =2时,△ABD ≌△DCE ,理由:∵∠C =40°,∴∠DEC +∠EDC =140°,又∵∠ADE =40°,∴∠ADB +∠EDC =140°,∴∠ADB =∠DEC ,又∵AB =DC =2,在△ABD 和△DCE 中,ADB DECB C AB DC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△DCE (AAS );(3)当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形,∵∠BDA =110°时,∴∠ADC =70°,∵∠C =40°,∴∠DAC =70°,∴△ADE 的形状是等腰三角形;∵当∠BDA 的度数为80°时,∴∠ADC =100°,∵∠C =40°,∴∠DAC =40°,∴△ADE 的形状是等腰三角形.∴当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【点睛】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质,关键是要考虑全面,分情况讨论△ADE的形状是等腰三角形.25.115°【解析】【详解】∵DE∥BC∴∠ADE=∠B=50°,∠EDC=∠BCD∵CD平分∠ACB∴∠BCD=∠ECD=12∠ACB=12×30°=15°∴∠EDC=∠ECD=15°∴∠BDC=180°-∠ADE-∠EDC=180°-50°-15°=115°。
北师大版七年级下册数学期末考试试题及答案
北师大版七年级下册数学期末考试试题及答案北师大版七年级下册数学期末考试试卷一、单选题1.下面的图案中,不是轴对称图形的是()A。
B。
C。
D。
2.下列运算正确的是()A。
a^2*a^3=a^6B。
a^8/a^4=a^2C。
5a-3a=2D。
(-ab^2)/a^2b^43.绿色植物靠吸收光量子来进行光合作用,已知每个光量子的波长约为688纳米,1纳米=0.xxxxxxxx1米,则每个光量子的波长可用科学记数法表示为()米A。
6.88×10^-11B。
6.88×10^-7C。
0.688×10^-3D。
0.688×10^-64.下列说法正确的是()A。
“守株待兔”是必然事件B。
“概率为0.0001的事件”是不可能事件C。
“在一个只装有5个红球的袋中随机摸出1个球是红球”是必然事件D。
任意掷一枚质地均匀的硬币20次,正面向上的次数一定是10次5.变量x与y之间的关系是y=2x+1,当x=5时,函数值y 的值是()A。
2B。
3C。
11D。
126.若长度分别为a,3,5的三条线段能组成一个三角形,则a 的值可以是()A。
1B。
2C。
3D。
87.如图,用尺规作图作∠BAC的平分线AD,第一步是以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;第二步是分别以E,F为圆心,以大于EF长为半径画弧,两圆弧交于D点,连接AD,那么AD为所作,则说明∠CAD=∠BAD的依据是()A。
SSSB。
SASC。
ASAD。
AAS8.如图,直线a//b,直线l与直线a相交于点O,与直线b相交于点P,OM⊥l于点O.若∠1=55°,则∠2=()A。
35°B。
45°C。
55°D。
65°9.某班共有45名同学,其中有3名同研究惯用左手写字,其余同学都惯用右手写字,老师随机请1名同学解答问题,惯用左手写字的同学被选中的概率是()A。
1/3B。
1/15C。
北师大版数学七年级下册期末考试试题含答案
北师大版数学七年级下册期末考试试卷一、选择题1.下列艺术字中,可以看作是轴对称图形的是()A.B.C.D.2.下列各式运算正确的是()A.a2+a2=2a4B.a2•a3=a5C.(﹣3x)3÷(﹣3x)=﹣9x2D.(﹣ab2)2=﹣a2b43.下列事件中,属于必然事件的是()A.抛出的篮球会下落B.打开电视,正在播《新闻联播》C.任意买一张电影票,座位号是3的倍数D.校篮球队将夺得区冠军4.计算(x+3)(x﹣3)的结果为()A.x2+6x+9 B.x2﹣6x+9 C.x2+9 D.x2﹣95.如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=30°,则∠1的度数为()A.30°B.45°C.60°D.75°6.下列各组数据,能构成三角形的是()A.1cm,2cm,3cm B.2cm,2cm,5cmC.3cm,4cm,5cm D.7cm,5cm,1cm7.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S38.李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A.B.C.D.10.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上).11.化简(a+b)(a﹣b)=.12.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为.(不要求写出自变量x的取值范围)13.如图有一张直角三角形纸片,两直角边AC=4cm,BC=8cm,把纸片的部分折叠,使点B与点A重合,折痕为DE,则△ACD的周长为.14.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率为.三、解答题(本大题共6个题,共54分,解答过程写在答题卡上)15.(16分)(1)(﹣1)2020+(﹣)2﹣(3.14﹣π)0;(2)(a﹣1)(a+1)﹣(a﹣2)2;(3)(20x2y﹣10xy2)÷(﹣5xy);(4)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).16.先化简,再求值:(x+3y)2﹣2x(x+2y)+(x﹣3y)(x+3y),其中x=﹣1,y=2.17.如图所示,有两个村庄A,B在一公路CD的一侧,如果把A,B村庄的位置放在格点图中.(1)请作出A点关于CD的对称点A′;(2)若要在公路CD上修建一个菜鸟驿站P,使得驿站到两个村庄的线段距离和最小,请作出P点的位置.18.如图,E,F分别在AB,CD上,∠1=∠D,∠2+∠C=90°,EC⊥AF.求证:AB∥CD.(每一行都要写依据)19.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)20.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.求证:AD=AE.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡.上)21.若x2+2mx+9是完全平方式,则m=.22.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=.23.如图,在Rt△ABC中,AC⊥BC,∠A=30°,D为斜边AB的中点.若BC=2,则CD =.24.若(x﹣3)(x2+ax+b)的积中不含x的二次项和一次项,则a+b的值为.25.如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG的度数度,再沿BF折叠成图c.则图中的∠CFE的度数是度.五、解答题(共3个小题,共30分)26.如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:(1)AD=BE(2)△APC≌△BQC(3)△PCQ是等边三角形.27.如图1,∠FBD=90°,EB=EF,CB=CD.(1)求证:EF∥CD;(2)如图2所示,若将△EBF沿射线BF平移,即EG∥BC,∠FBD=90°,EG=EF,CB=CD,请问(1)中的结论是否仍成立?请证明.28.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F 分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.参考答案一、单选题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上).1.下列艺术字中,可以看作是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.2.下列各式运算正确的是()A.a2+a2=2a4B.a2•a3=a5C.(﹣3x)3÷(﹣3x)=﹣9x2D.(﹣ab2)2=﹣a2b4【分析】分别根据合并同类项法则,同底数幂的乘法法则,单项式除以单项式的运算法则以及积的乘方运算法则逐一判断即可.解:A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a5,故本选项符合题意;C.(﹣3x)3÷(﹣3x)=9x2,故本选项不合题意;D.(﹣ab2)2=a2b4,故本选项不合题意.故选:B.3.下列事件中,属于必然事件的是()A.抛出的篮球会下落B.打开电视,正在播《新闻联播》C.任意买一张电影票,座位号是3的倍数D.校篮球队将夺得区冠军【分析】根据事件发生的可能性大小判断即可.解:A、抛出的篮球会下落,是必然事件;B、打开电视,正在播《新闻联播》,是随机事件;C、任意买一张电影票,座位号是3的倍数,是随机事件;D、校篮球队将夺得区冠军,是随机事件;故选:A.4.计算(x+3)(x﹣3)的结果为()A.x2+6x+9 B.x2﹣6x+9 C.x2+9 D.x2﹣9【分析】根据平方差公式即可得出结果.解:(x+3)(x﹣3)=x2﹣32=x2﹣9.故选:D.5.如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=30°,则∠1的度数为()A.30°B.45°C.60°D.75°【分析】根据平行线的性质和直角的定义解答即可.解:如图,作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠2=∠AEF=30°,∠1=∠FEC,∵∠AEC=90°,∴∠1=90°﹣30°=60°,故选:C.6.下列各组数据,能构成三角形的是()A.1cm,2cm,3cm B.2cm,2cm,5cmC.3cm,4cm,5cm D.7cm,5cm,1cm【分析】看哪个选项中两条较小的边的和不大于最大的边即可.解:A、1+2=3,不能构成三角形;B、2+2<5,不能构成三角形;C、3+4>5,能构成三角形;D、1+5<7,不能构成三角形.故选:C.7.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S3【分析】根据同高三角形面积的比等于对应底边的比可得结论.解:∵BD=DE=EC,∴S△ABD=S△ADE=S△AEC,即S1=S2=S3,故选:C.8.李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据作图的过程知道:OE=OD,OC=OC,CE=CD,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC.解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,∵,∴△EOC≌△DOC(SSS).故选:A.9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A.B.C.D.【分析】根据匀速直线运动的路程、时间图象是一条过原点的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条直线,修车后为了赶时间,加大速度后再做匀速直线运动,其速度比原来变大,斜线的倾角变大,即可得出答案.解:小明骑自行车上学,开始以正常速度匀速行驶,正常匀速行驶的路程、时间图象是一条过原点O的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条平行于横坐标的水平线,修车后为了赶时间,他比修车前加快了速度继续匀速行驶,此时的路程、时间图象仍是一条斜线,只是斜线的倾角变大.因此选项A、B、D都不符合要求.故选:C.10.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°【分析】题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上).11.化简(a+b)(a﹣b)=a2﹣b2.【分析】根据平方差公式直接将(a+b)(a﹣b)展开即可.解:(a+b)(a﹣b)=a2﹣b2.故答案为a2﹣b2.12.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为y=﹣2x2+20x.(不要求写出自变量x的取值范围)【分析】根据AB的长为x米可以得出BC的长为(20﹣2x)米,然后根据矩形的面积公式即可求出函数关系式.解:∵AB的边长为x米,而菜园ABCD是矩形菜园,∴BC=20﹣2x,∵菜园的面积=AB×BC=x•(20﹣2x),∴y=﹣2x2+20x.故填空答案:y=﹣2x2+20x.13.如图有一张直角三角形纸片,两直角边AC=4cm,BC=8cm,把纸片的部分折叠,使点B与点A重合,折痕为DE,则△ACD的周长为12cm.【分析】根据折叠的性质得到AD=BD,根据三角形的周长公式计算,得到答案.解:由折叠的性质可知,AD=BD,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+BC=12(cm),故答案为:12cm.14.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率为.【分析】用阴影部分的面积除以正方形的总面积即可得.解:由图形知,S①=S②,∴阴影部分的面积为正方形面积的一半,∴蚂蚁停在阴影部分的概率为,故答案为:.三、解答题(本大题共6个题,共54分,解答过程写在答题卡上)15.(16分)(1)(﹣1)2020+(﹣)2﹣(3.14﹣π)0;(2)(a﹣1)(a+1)﹣(a﹣2)2;(3)(20x2y﹣10xy2)÷(﹣5xy);(4)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).【分析】(1)根据实数的运算法则即可求出答案.(2)根据整式的运算法则即可求出答案.(3)根据整式的运算法则即可求出答案.(4)根据整式的运算法则即可求出答案.解:(1)原式=1+﹣1=.(2)原式=a2﹣1﹣(a2﹣4a+4)=a2﹣1﹣a2+4a﹣4=4a﹣5.(3)原式=﹣4x+2y.(4)原式=4x6y2•(﹣2xy)+(﹣8x9y3)÷(2x2)=﹣8x7y3+4x7y3=﹣4x7y3.16.先化简,再求值:(x+3y)2﹣2x(x+2y)+(x﹣3y)(x+3y),其中x=﹣1,y=2.【分析】原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:原式=x2+6xy+9y2﹣2x2﹣4xy+x2﹣9y2=2xy,当x=﹣1,y=2时,原式=2×(﹣1)×2=﹣4.17.如图所示,有两个村庄A,B在一公路CD的一侧,如果把A,B村庄的位置放在格点图中.(1)请作出A点关于CD的对称点A′;(2)若要在公路CD上修建一个菜鸟驿站P,使得驿站到两个村庄的线段距离和最小,请作出P点的位置.【分析】(1)直接利用对称点的性质进而得出答案;(2)直接利用轴对称设计求最短路线的方法得出P点位置.解:(1)如图所示:A′点即为所求;(2)如图所示:点P即为所求.18.如图,E,F分别在AB,CD上,∠1=∠D,∠2+∠C=90°,EC⊥AF.求证:AB∥CD.(每一行都要写依据)【分析】直接利用互余的性质以及三角形内角和定理、平行线的判定方法进而分析得出答案.【解答】证明:∵EC⊥AF(已知),∴∠CHF=90°(垂直的定义),∴∠1+∠C=90°(三角形内角和定理),∵∠2+∠C=90°(已知),∴∠1=∠2(同角的余角相等),又∵∠1=∠D(已知),∴∠2=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).19.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)【分析】由AD∥CB,利用“两直线平行,内错角相等”可得出∠ADB=∠CBD,由等角的补角相等可得出∠ADE=∠CBF,结合DE=BF,∠E=∠F可证出△ADE≌△CBF(ASA),再利用全等三角形的性质可证出AE=CF.【解答】证明:∵AD∥CB(已知),∴∠ADB=∠CBD(两直线平行,内错角相等),∴∠ADE=∠CBF(等角的补角相等).在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等).20.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.求证:AD=AE.【分析】根据SAS证明△AFC与△AGB全等,进而利用全等三角形的性质得出∠AFC=∠AGC,进而利用AAS证明△ADF与△AEG全等解答即可.【解答】证明:在△AFC与△AGB中,∴△AFC≌△AGB(SAS),∴∠AFC=∠AGC,∴∠AFD=∠AGE,∵AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.∴∠ADF=∠AEG=90°,在△ADF与△AEG中,∴△ADF≌△AEG(AAS),∴AD=AE.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡.上)21.若x2+2mx+9是完全平方式,则m=±3.【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.解:∵x2+2mx+9是完全平方式,∴x2+2mx+9=(x±3)2=x2±6x+9,∴2m=±6,m=±3.故答案为:±3.22.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=60°.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解.解:∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣A,∴在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+A=120°,∴∠A=60°,故答案为:60°.23.如图,在Rt△ABC中,AC⊥BC,∠A=30°,D为斜边AB的中点.若BC=2,则CD =2.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AB=2BC,再根据直角三角形斜边上的中线等于斜边的一半可得CD=AB.解:∵AC⊥BC,∴∠ACB=90°,∵∠A=30°,∴AB=2BC=2×2=4,∵D为斜边AB的中点,∴CD=AB=×4=2.故答案为:2.24.若(x﹣3)(x2+ax+b)的积中不含x的二次项和一次项,则a+b的值为12.【分析】原式利用多项式乘多项式法则计算,合并后根据积中不含x的二次项和一次项,确定出a与b的值,即可求出a+b的值.解:原式=x3+ax2+bx﹣3x2﹣3ax﹣3b=x3+(a﹣3)x2+(b﹣3a)x﹣3b,由积中不含x的二次项和一次项,得到a﹣3=0,b﹣3a=0,解得:a=3,b=9,则a+b=3+9=12.故答案为:12.25.如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG的度数150度,再沿BF折叠成图c.则图中的∠CFE的度数是135度.【分析】根据长方形纸条的对边平行,利用平行线的性质和翻折不变性求出∠2=∠EFG,继而求出图b中∠GFC的度数,再减掉∠GFE即可得图c中∠CFE的度数.解:如图,延长AE到H,由于纸条是长方形,∴EH∥GF,∴∠1=∠EFG,根据翻折不变性得∠1=∠2=15°,∴∠2=∠EFG,∠AEG=180°﹣2×15°=150°,又∵∠DEF=15°,∴∠2=∠EFG=15°,∠FGD=15°+15°=30°.在梯形FCDG中,∠GFC=180°﹣30°=150°,根据翻折不变性,∠CFE=∠GFC﹣∠GFE=150°﹣15°=135°.故答案为:150;135.五、解答题(共3个小题,共30分)26.如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:(1)AD=BE(2)△APC≌△BQC(3)△PCQ是等边三角形.【分析】(1)根据全等三角形的判定和性质证明即可;(2)根据全等三角形的性质和判定证明即可;(3)根据全等三角形的性质和等边三角形的判定证明即可.【解答】证明:(1)∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE;(2)∵ADC≌△BEC,∴∠ACP=∠BCQ,AC=BC,∠CAP=∠CBQ,∴△APC≌△BQC(ASA);(3)∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形.27.如图1,∠FBD=90°,EB=EF,CB=CD.(1)求证:EF∥CD;(2)如图2所示,若将△EBF沿射线BF平移,即EG∥BC,∠FBD=90°,EG=EF,CB=CD,请问(1)中的结论是否仍成立?请证明.【分析】(1)连接FD,根据等腰三角形的性质和平角的定义得出∠EFB+∠CDB=90°,根据直角三角形两锐角互余得出∠BFD+∠BDF=90°,进一步得出∠EFD+∠CDF=180°,即可证得EF∥CD;(2)连接FD,延长CB到H,根据平移的性质,等腰三角形的性质,直角三角形两锐角互余的性质证得∠EFD+∠CDF=180°,即可证得EF∥CD.【解答】(1)证明:如图1,连接FD,∵EB=EF,CB=CD,∴∠EBF=∠EFB,∠CBD=∠CDB,∵∠FBD=90°,∴∠EBF+∠CBD=90°,∠BFD+∠BDF=90°,∴∠EFB+∠CDB=90°,∴∠EFD+∠CDF=180°,∴EF∥CD;(2)成立,证明:如图2,连接FD,延长CB到H,∵EG∥BC,∴∠EGF=∠HBF,∵∠FBD=90°,∴∠HBF+∠CBD=90°,∠BFD+∠BDF=90°,∴∠EGF+∠CBD=90°,∵EG=EF,CB=CD,∴∠EGF=∠EFB,∠CBD=∠CDB,∴∠EFB+∠CDB=90°,∴∠EFD+∠CDF=180°,∴EF∥CD.28.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F 分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是EF=BE+DF(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.【分析】(1)延长FD到点G.使DG=BE.连结AG,由“SAS”可证△ABE≌△ADG,可得AE=AG,∠BAE=∠DAG,再由“SAS”可证△AEF≌△AGF,可得EF=FG,即可解题;(2)延长EB到G,使BG=DF,连接AG,即可证明△ABG≌△ADF,可得AF=AG,再证明△AEF≌△AEG,可得EF=EG,即可解题;(3)延长EA到H,使AH=CF,连接BH,由“SAS”可证△ABH≌△CBF,可得BH=BF,∠ABH=∠CBF,由“SAS”可证△EBH≌△EBF,可得EF=EH,可得EF=EH=AE+CF,即可求解.【解答】证明:(1)延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAD=100°,∠EAF=50°,∴∠BAE+∠FAD=∠DAG+∠FAD=50°,∴∠EAF=∠FAG=50°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=BE+DF,故答案为:EF=BE+DF;(2)结论仍然成立,理由如下:如图2,延长EB到G,使BG=DF,连接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵2∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF,∴∠GAE=∠EAF,又AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG.∴EF=BE+FD;(3)如图,延长EA到H,使AH=CF,连接BH,∵四边形ABCD是正方形,∴AB=BC=7=AD=CD,∠BAD=∠BCD=90°,∴∠BAH=∠BCF=90°,又∵AH=CF,AB=BC,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=45°,∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,∴∠EBH=∠EBF,又∵BH=BF,BE=BE,∴△EBH≌△EBF(SAS),∴EF=EH,∴EF=EH=AE+CF,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.。
2022-2023学年北师大版七年级数学下册期末提高综合测试题
2022-2023学年北师大版七年级数学下册期末提高综合测试题一.单选题(共10题;共30分)1、下面有4个汽车标志图案,其中••是不轴对称图形的是( )2、下列运算正确的是( )A 、532a a a =⋅B 、1836a a a =⋅C 、()523a a =D 、1055a a a =+3、如图,已知∠1=∠2,其中能判定AB ∥CD 的是( )A. B. C.D.4、如果一个三角形的两边长分别为5,12,则第三边的长可以是( )A.18B.13C.7D.55、若3,3x y a b ==,则23x y +的值为 ( ) A .ab B .2a b C .2ab D .23a b6、投一个普通骰子,有下述说法:①朝上一面的点数是偶数;②朝上一面的点数是整数;③朝上一面的点数是3的倍数;④朝上一面的点数是5的倍数。
将上述事件按可能性的大小从大到小排列为( )A. ①②③④B. ①③②④ C. ④①③② D. ②①③④7、如图,已知B 、E 、C 、F 在同一直线上,BE=CF ,AB ∥DE ,则下列条件中,••能不判断△ABC≌△DEF 是的( )A 、AB=DEB 、∠A=∠DC 、AC ∥DFD 、AC=DF8、小强每天从家到学校上学行走的路程为900m ,某天他从家去上学时以每分30m 的速度行走了450m ,为了不迟到他加快了速度,以每分45m 的速度行走完剩下的路程,那么小强离学校的路程s (m )与他行走的时间t (min )之间的数量关系 用图象表示正确的是 ( )9、下列各题中正确的个数有( )个。
(1).两个角和其中一角的对边对应相等的两个三角形全等;( 2 ).两条边和其中一边的对角对应相等的两个三角形全等;( 3 ).三个角对应相等的两个三角形全等;( 4 ).成轴对称的两个图形全等;( 5 )三角形的最大角不小于60度.A 、1B 、2C 、3D 、410、如图,△ABC 中,D 、E 分别为AB 、AC 上两点,将△ABC 沿直线DE 折叠,使得点A 落在△ABC 右侧的点1A 处,则∠A 、∠1、∠2之间满足的关系式是( )A .∠A=∠1-∠2B .∠A=21∠1-∠2 C .∠A=∠1-2∠2 D .2∠A=∠1-∠2二.填空题(共6题;共18分)11、有5张纸签,分别标有数字-1, 0, -0.5, 1, 2,从中随机的抽取一张,则抽到标有的数字为正数的纸签的概率是____________.12、某人购进一批苹果,到市场零售,已知卖出苹果数量x (千克)与售价y (元)的关系如下表: 数量x (千克)2 3 4 5 售价y (元) 16.2 24.3 32.4 40.5用x 表示y 的关系式可表示为____________________。
北师大版七年级下学期期末检测数学试卷3
北师大版七年级下学期期末检测数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的。
每小题2分,共20分。
)1.下列运算中,正确的是(A.2a3•a4=2a7B.3x2÷2x=xC.(3m2)3=9m6D.(x﹣1)2=x2﹣12.在高海拔(1500~3500m为高海拔,3500~5500m为超高海拔,5500m以上为极高海拔)地区的人有缺氧的感觉,下面是有关海拔高度与空气含氧量之间的一组数据:海拔高度/m01000200030004000500060007000299.3265.5234.8209.63182.08159.71141.69123.16空气含氧量/(g/m3)在海拔高度3000m的地方空气含氧量是()g/m3.A.299.3B.209.63C.182.08D.159.713.下列说法错误的是()A.如果明天降水的概率是50%,那么明天有半天都在降雨B.“从一个只有红球的袋子里面摸出一个球是红球”是必然事件C.“度量三角形的内角和,结果是360°”是不可能事件D.随机事件发生的概率介于0和1之间4.如图,若∠1=∠2,则下列选项中可以判定AB∥CD的是()A .B .C .D .5.如图,在Rt△ACB中,∠C=90°,AD平分∠BAC,若BC=15,BD=10,则点D到AB的距离是()A.15B.10C.8D.56.如图,直线a//b,将一个直角三角尺按如图所示的位置摆放,若∠1=60°,则∠2余角的度数为()A.30°B.45°C.60°D.150°7.苹果熟了,从树上落下来,下面的选项中可以大致刻画出苹果下落过程中(即落地前)的速度变化情况的是()A.B.C.D.8.空气的密度是1.293×10﹣3g/cm3,用小数把它表示出来是()g/cm3.A.0.0001293B.0.001293C.0.01293D.0.12939.若2x=8,4y=16,则2x+2y的值为()A.B.﹣2C.64D.12810.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①②④B.②③④C.①②③D.①③④二、填空题(每小题3分,共18分)11.下列图案是轴对称图形的有个.12.一个可以自由转动的圆形转盘,转盘分三个扇形区域,分别涂上红、黄、白三种颜色,其中红色、黄色、白色区域的扇形圆心角度数分别为70°,80°,210°,则指针落在红色区域的概率是13.如图,△ABC中,已知底边BC上的高AD是8,动点2从点C沿CB向点B运动,设CQ长为x,△ACQ的面积为s,则S与x的关系式为14.已知∠A和∠B的两边分别平行,若∠A=70°,则∠B的度数为.15.计算:3(22+1)(24+1)…(232+1)﹣1,它的结果的个位数字是.16.如图,CA⊥AB于点A,AB=8,AC=4,射线BM⊥AB于点B,一动点E从A点出发以2个单位/秒沿射线AB运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,若点E 经过t秒(t>0),△DEB与△BCA全等,则的值为秒.三.解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:﹣12022+(π﹣2021)0+(﹣)﹣2﹣|﹣6|.18.先化简,再求值:[(10+x)(600﹣10x)﹣6000]÷5x.其中x=﹣1.19.如图,∠1=∠2,∠3=∠C,∠4=∠5.请说明BF/∥DE的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF∥BD()∴∠3+∠CAB=180°()∵∠3=∠C(已知)∴∠C+∠CAB=180°(等式的性质)∴AB∥CD()∴∠4=∠EGA(两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA(等量代换)∴ED∥FB()四、(每小题8分,共16分)20.如图所示有8张卡片,分别写有1,2,3,4,5,6,8,9这八个数字,将它们背面朝上洗匀后,任意抽出一张.(1)P(抽到数字9)=;(2)P(抽到两位数)=;(3)P(抽到的数大于5)=;(4)P(抽到偶数)=.21.尺规作图:(不写作法,保留作图痕迹)已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠BAC=∠a.五、(本题10分)22.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在点上)(1)在图中作出△ABC关于直线对称的△A1B1C1(点A的对应点是点A1,点B的对应点是点B1,点C的对应点是点C1);(2)在直线l上画出点P,使P A+PC最小;(3)直接写出△A1BC的面积为.六.(本题10分)23.如图,△ABC是等边三角形,点D是△ABC内一点,连接AD,BD,CD,∠BDC=100°,以AD 为一边在AD左侧作等边三角形ADE,连接CE.(1)△ABD与△ACE全等吗?说明你的理由;解:△ABD≌△ACE,理由如下:∵△ABC与△ADE都是等边三角形∴AB=ACAD=AE∠CAB=∠EAD=60°∴∠CAB﹣∠CAD=∠EAD﹣∠CAD∴∠DAB=∠EAC在△ABD与△ACE中,,∴.(2)当∠ADB=150°时,请判断△CDE的形状,并说明理由;(3)当△CDE是等腰三角形时,请直接写出∠ADB的度数为.七、(本题12分)24.某数学活动小组结合图象设计如下情景:已知家、书店、学校依次在同一条直线上,书店离家8km,学离家25km,小明从家出发,匀速骑行0.4h到达书店;在书店停留0.6h后,匀速骑行1h到达学校;在学校学习一段时间,然后回家;回家途中,匀速骑行1h后减速,继续匀速骑行回到家.给出的图象反映了这个过程中小明离家的距离与离开家的时间之间的对应关系.请根据相关信息解答下列问题:(1)填表:离开家的时间/h0.30.8 1.63 4.5 5.2离开家的距离/km(2)填空:①书店到学校的距离为km;②从学校回家途中减速前的骑行速度为;③当小明离家的距离为2km时,他离开家的时间为.八、(本题12分)25.如图,在△ABC中,AC=BC,点D在边AB上,AB=4BD,连接CD,点E,F在线段CD上,连接BF,AE,∠BFC=∠AEC=180°-∠ACB.(1)①∠FBC与∠ECA相等吗?说明你的理由;②△FBC与△ECA全等吗?说明你的理由;(2)若AE=11,EF=8,则请直接写出BF的长为;(3)若△ACE与△BDF的面积之和为12,则△ABC的面积为.。
北师大版七年级下册数学期末考试试题及答案
北师大版七年级下册数学期末考试试卷一、单选题1.下列四种网络运营商的徽标中,符合轴对称图形特征的为( )A .B .C .D . 2.一个不透明的袋子里装有1个白球,2个红球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出一个球是红球的概率为( )A .16B .13C .12D .56 3.在三条边都不相等的三角形中,同一条边上的中线、高和这边所对角的角平分线,最短的是( )A .角平分线B .高C .中线D .不能确定 4.如图,l 1∥l 2,点O 在直线l 1上,将三角板的直角顶点放在点O 处,三角板的两条直角边与l 2交于A ,B 两点,若∥1=35°,则∥2的度数为( )A .35°B .45°C .55°D .65°5.把0.00258写成10n a ⨯(110a ≤<,n 为整数)的形式,则a n +为( ) A .2.58 B .5.58 C .0.58- D .0.42- 6.如图所示的计算程序中,y 与x 之间的函数关系式是( )A .23y x =-+B .23y x =+C .23y x =--D .23y x =- 7.如图为6个边长相等的正方形组成的图形,则∥1+∥2+∥3的大小是( )A .90°B .120°C .135°D .150°8.一个长方形的面积是321624m m +,长是8m ,则宽是( )A .223m m -B .223m m +C .223m m -+D .22m m -- 9.如图,在四边形ABCD 中,AB=CD ,延长BA 和CD 交于点E ,若在∥BEC 的内部存在一点P ,使得PAB PCD S S ∆∆=,则满足此条件的点P ( )A .有且只有1个B .有且只有2个C .在∥BEC 的角平分线上(E 点除外)D .在线段BC 的垂直平分线上 10.一个寻宝游戏通道如图所示,通道在同一平面内由AB 、BC 、CD 、DA 、AC 、BD 组成.定位仪器放置在BC 的中点M 处,设寻宝者行进时间为x ,寻宝者与定位仪器之间的距离为y ,寻宝者匀速前进,y 与x 的函数关系图象如图所示,则寻宝者的行进路线可能是( )A .A→B→OB .A→D→OC .A→O→D D .B→O→C二、填空题11.计算:3(2)x x y ⋅-=____________.12.一个角比它的补角的2倍还少60°,则这个角的度数为______度.13.如图,已知AB=CB ,要使四边形ABCD 成为一个轴对称图形,还需添加一个条件,你添加的条件是_______________.(只需写一个,不添加辅助线)14.下列事件:∥打开电视,正在播放新闻;∥抛掷一枚硬币,正面向上;∥5张相同的小标签分别标有数字1~5,从中任意抽取1张,抽到0号签;∥在纸上画两条直线,这两条直线互相垂直.属于确定事件的是_______________(填序号).15.已知三角形ABC ,且AB=3厘米,BC=2厘米,A 、C 两点间的距离为x 厘米,那么x 的取值范围是________.16.如图,在∥ABC 中,AB 的垂直平分线DE 分别与AB 、BC 交于点D 、E ,AC 的垂直平分线FG 分别与BC 、AC 交于点F 、G ,BC =10,EF =3,则∥AEF 的周长是_____.三、解答题17.张大妈购进一批柚子,在集贸市场零售,已知卖出的柚子重量x (kg )与售价y (元)之间的关系如下表:根据表中数据可知,若卖出柚子10kg ,则售价为_____元.18.计算:822324()2m m m m m ÷-+⋅.19.如图,AD∥BE,BC∥BE,∥A=∥C,点C,D,E在同一条直线上.请说明AB与CD 平行.20.如图,方格纸中每个小正方形的边长都为1.在方格纸内将∥ABC经过一次轴对称变换''',图中标出了点C的对应点C'.后得到∥A B C''';(1)在给定方格纸中画出变换后的∥A B C(2)画出AC边上的中线BD和BC边上的高线AE.21.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)表中的a=________;(2)“摸到白球”的概率的估计值是___________(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少个?22.如图,已知AB=CD ,AB∥CD ,E 、F 是AC 上两点,且AF=CE .(1)说明:∥ABE∥∥CDF ;(2)连接BC ,若∥CFD=100°,∥BCE=30°,求∥CBE 的度数.23.如图所示,在一个边长为12cm 的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果小正方形的边长为xcm ,图中阴影部分的面积为ycm 2,请写出y 与x 的关系式;(3)当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积是怎样变化的?24.阅读理解:“若x 满足(70)(20)30x x --=,求22(70)(20)x x -+-的值”.解:设(70),(20)x a x b -=-=,则(70)(20)30x x ab --==,(70)(20)50a b x x +=-+-=,那么222222(70)(20)()2502302440x x a b a b ab -+-=+=+-=-⨯=.解决问题:(1)若x 满足(40)(10)10x x --=-,求22(40)(10)x x -+-的值;(2)若x 满足22(2021)(2020)4321x x -+-=,求(2021)(2020)x x --的值;(3)如图,正方形ABCD 的边长为x ,AE=14,CG=30,长方形EFGD 的面积是500,四边形NGDH 和MEDQ 都是正方形,四边形PQDH 是长方形,求图中阴影部分的面积.25.在∥ABC 中,AB =AC ,D 是BC 边的中点,E 、F 分别是AD 、AC 边上的点. (1)如图∥,连接BE 、EF ,若∥ABE =∥EFC ,求证:BE =EF ;(2)如图∥,若B 、E 、F 在一条直线上,且∥ABE =∥BAC =45°,探究BD 与AE 的数量之间有何等量关系,并证明你的结论;(3)如图∥,若AB =13,BC =10,AD =12,连接EC 、EF ,直接写出EC+EF 的最小值.参考答案1.D【详解】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意;故选:D.2.B【详解】解:由题意可得,从袋中任意摸出一个球是红球的概率为21 1233=++,故选:B.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.3.B【解析】【分析】根据垂线段最短解答.【详解】∥是三条边都不相等的三角形的同一条边上的中线、高和这边所对角的角平分线,∥最短的是高线.故选:B.【点睛】本题考查了三角形的角平分线、中线和高,理解垂线段最短是解题的关键.4.C【解析】【分析】先求出∥OBA,然后根据对顶角相等即可得出∥2.【详解】∥l1∥l2,∥∥1+∥BOA+∥OBA=180°,∥∥1=35°,∥BOA=90°,∥∥OBA=55°,∥∥2=∥OBA=55°,故选:C.【点睛】本题考查了平行线的性质,对顶角相等,求出∥OBA是解题关键.5.D【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.00258用科学记数法表示为:2.58×10-3.故a=2.58,n=-3,则a+n=-0.42.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.A【解析】【分析】根据程序框图列出正确的函数关系式.【详解】解:根据程序框图可得y=-x×2+3=-2x+3,【点睛】本题考查了函数关系式,解题的关键是根据框图写出正确的解析式.7.C【解析】【分析】标注字母,利用“边角边”判断出ABC ∆和DEA ∆全等,根据全等三角形对应角相等可得14∠=∠(或观察图形得到14)∠=∠,然后求出1390∠+∠=︒,再判断出245∠=︒,然后计算即可得解.【详解】解:如图,在ABC ∆和DEA ∆中,90AB DE ABC DEA BC AE =⎧⎪∠=∠=︒⎨⎪=⎩, ()ABC DEA SAS ∴∆≅∆,14∴∠=∠(或观察图形得到14)∠=∠,3490∠+∠=︒,1390∴∠+∠=︒,又245∠=︒,1239045135∴∠+∠+∠=︒+︒=︒.故选:C .【点睛】本题考查了全等图形,网格结构,解题的关键是准确识图判断出全等的三角形. 8.B【解析】【分析】】直接利用整式的除法运算法则计算得出答案.∥一个长方形的面积是321624m m +,长是8m ,∥宽为322)((18)23624m m m m m ÷=++故选:B【点睛】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.9.C【解析】【分析】如图所示,连接AP 、BP 、CP 、DP 、EP ,作PM AB ⊥于M ,PN CD ⊥于N ,由PAB PCD SS =即1122AB PM CD PN ⨯=⨯,AB CD =,可得PM PN =,根据角平分线上的点到角两边的距离相等,可判断P 的位置,进而可得答案.【详解】解:如图所示,连接AP 、BP 、CP 、DP 、EP ,作PM AB ⊥于M ,PN CD ⊥于N∥PAB PCD SS = ∥1122AB PM CD PN ⨯=⨯ ∥AB CD =∥PM PN =∥由角平分线的性质可知,P 在BEC ∠的角平分线上(E 点除外)故选C .【点睛】本题考查了角平分线的性质定理.解题的关键在于确定P 到AB 与CD 的距离相等. 10.D【解析】【分析】将选项中的运动顺序代入分析,即可得出寻宝者随时间的增长与定位仪器点M 之间的距离变化规律,此题得解.【详解】解:A 、从A 点到B 点,y 随x 的增大而减小,从B 点到O 点,y 随x 的增大先减小后增大,故本选项不合题意;B 、从A 点到D 点,y 随x 的增大先减小后增大,从D 点到O 点,y 随x 的增大而减小,故本选项不合题意;C 、从A 点到O 点,y 随x 的增大而减小,从O 点到D 点,y 随x 的增大而增大,故本选项不合题意;D 、从B 点到O 点,y 随x 的增大先减小后增大,从O 点到C 点,y 随x 的增大先减小后增大,故本选项符合题意;故选:D .【点睛】本题主要考察自变量与因变量之间的关系,仔细审题是解决本题的关键.11.263x xy -【解析】【分析】直接利用单项式与多项式相乘的运算法则计算即可.【详解】解:3x∥(2x−y)=6x 2−3xy .故答案为:263x xy -.【点睛】此题考查了单项式乘多项式,解题的关键是熟记单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.12.100【解析】【分析】若两个角的和等于180°,则这两个角互补.结合已知条件列方程求解.【详解】解:设这个角是x°,根据题意,得x =2(180﹣x )﹣60解得:x =100即这个角的度数为100°故答案为:100【点睛】本题主要考查了补角的知识及一元一次方程的应用,解答本题的关键是掌握互补两角之和为180°.13.∥ABD=∥CBD (或AD=CD )【解析】【分析】根据全等三角形的判定定理求解即可.【详解】解:已知AB CB =,BD=BD ,要使四边形ABCD 成为一个轴对称图形,须使ABD CBD ≌△△, ∥可通过SAS 来证明,即添加的条件是ABD CBD ∠=∠;∥可通过SSS 来证明,即添加的条件是AD=CD ;故答案为:ABD CBD ∠=∠或AD=CD .【点睛】本题考查了全等三角形的问题,掌握全等三角形的判定定理是解题的关键.14.∥【解析】【分析】利用随机事件以及确定事件的定义分析得到答案即可.【详解】解:∥打开电视,正在播放新闻,是随机事件,不是确定事件,不符合题意;∥抛掷一枚硬币,正面向上,是随机事件,不是确定事件,不符合题意;∥5张相同的小标签分别标有数字1~5,从中任意抽取1张,抽到0号签,是不可能事件,是确定事件;∥在纸上画两条直线,这两条直线互相垂直,是随机事件,不是确定事件,不符合题意; 故选:∥.【点睛】此题主要考查了随机事件以及确定事件的定义,数量掌握定义是解题的关键.15.1<x <5【解析】【分析】直接根据三角形三边的关系进行求解即可;【详解】根据三角形三边关系可得:AB -BC <AC <AB+BC ,∥AB=3,BC=2∥1<x <5,故答案为:1<x <5.【点睛】本题考查了三角形的三边关系,正确理解题意是解题的关键.16.16【解析】【分析】根据线段垂直平分线的性质定理,得到EA EB =,FA FC =,再由三角形的周长公式计算即可.【详解】解:∥DE 是AB 的垂直平分线,FG 是AC 的垂直平分线∥EA EB =,FA FC =又∥BC FB FC =+,且10BC =,3EF =∥=16AEF C FA EA EF FC EB EF BC EF EF =++++=++=△故答案为:16【点睛】本题考查线段的垂直平分线性质定理,根据定理内容解题是关键.17.12.1【解析】【分析】根据表格求出x y 、的对应关系即可求解.【详解】当1x =时, 1.210.1y =⨯+,当2x =时, 1.220.1y =⨯+,当3x =时, 1.230.1y =⨯+,1.20.1y x ∴=+,∴当10x =时, 1.2100.112.1y =⨯+=,故答案为:12.1.【点睛】本题考查了函数的表示方法,能够根据题意列出x y 、的表达式是解题关键.18.62m【解析】【分析】根据幂的乘方、同底数幂的乘法和除法依次进行计算,最后再进行加减运算即可.【详解】解;原式=6662m m m -+=62m【点睛】本题考查了整式中幂的相关运算,能够准确运用计算法则进行计算是解答问题的关键.19.见解析【解析】【分析】结合题意,根据平行线的性质,推导得AD∥BC,从而得∥ADE=∥A,即可完成证明.【详解】∥AD∥BE,BC∥BE∥AD∥BC,∥∥ADE=∥C,∥∥A=∥C,∥∥ADE=∥A,∥AB∥CD.【点睛】本题考查了平行线的知识;解题的关键是熟练掌握平行线的性质,从而完成求解.20.(1)见解析;(2)见解析【解析】【分析】(1)连接CC′,线段CC′的垂直平分线即为对称轴,作出A,B的对应点A′,B′即可.(2)根据三角形中线,高的定义画出图形即可.(1)''''即为所求作;如图,∥A B C(2)如图,线段BD,AE即为所求作.【点睛】本题考查作图-轴对称变换知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(1)0.58;(2)0.6;(3)白球的个数约为20×0.6=12个,黑球有20-12=8个【解析】【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率和球的总数求得两种球的数量即可.(1)a=290÷500=0.58,故答案为:0.58;(2)由表可知,当n很大时,摸到白球的频率将会接近0.6,所以“摸到白球”的概率的估计值是0.6;故答案为:0.6;(3)因为当n很大时,摸到白球的频率将会接近0.6;所以白球的个数约为20×0.6=12个,黑球有20-12=8个.【点睛】本题主要考查了如何利用频率估计概率,在解题时要注意频率和概率之间的关系,属于中考22.(1)见解析;(2)70CBE ︒∠=【解析】【分析】(1)根据平行线的性质,得∥A=∥DCF ,再根据全等三角形的性质分析,即可完成证明; (2)根据(1)的结论,得∥AEB=∥CFD=100°;再根据三角形外角的性质计算,即可得到答案.(1)∥AB∥CD ,∥∥A=∥DCF ,∥AF=CE ,AF AE EF =+,CE CF EF =+∥AE=CF在∥ABE 和∥CDF 中,AB CD A DCF AE CF =⎧⎪∠=∠⎨⎪=⎩∥∥ABE∥∥CDF ;(2)∥∥ABE∥∥CDF ,∥∥AEB=∥CFD=100°∥∥BCE=30°∥∥CBE=100°-30°=70°.【点睛】本题考查了全等三角形、三角形外角的知识;解题的关键是熟练掌握全等三角形、三角形外角的性质,从而完成求解.23.(1)小正方形的边长是自变量,阴影部分的面积为因变量;(2)21444y x =-;(3)阴影部分的面积由140cm 2变到44cm 2【解析】(1)根据当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,则小正方形的边长是自变量,阴影部分的面积为因变量;(2)根据阴影部分的面积=大正方形的面积-4个小正方形的面积,即可解答;(3)根据当小正方形的边长由1cm 变化到5cm 时,x 增大,x 2也随之增大,-4x 2则随着x 的增大而减小,所以y 随着x 的增大而减小.(1)∥当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,∥小正方形的边长是自变量,阴影部分的面积为因变量;(2)由题意可得:2221241444y x x =-=-;(3)由(2)知:21444y x =-,当x=1cm 时,14441140y -⨯==(cm 2).当x=5cm 时,21444544y =-⨯=(cm 2).∥当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积由140cm 2变到44cm 2【点睛】本题考查了函数关系式,解决本题的关键是列出函数关系式.24.(1)920;(2)2160;(3)阴影部分的面积为:2256【解析】【分析】(1)设(40)x m -=,(10)x n -=,根据完全平方公式和代数式的性质计算,即可得到答案; (2)设2021x c -=,2020x d -=,根据完全平方公式和代数式的性质计算,即可得到答案; (3)根据题意,推导得()()1430500x x --=;设x -14=a ,x -30=b ,根据完全平方公式和代数式的性质计算,即可得到答案.(1)设(40)x m -=,(10)x n -=∥(40)(10)10x x mn --==-,∥(40)(10)30m n x x +=-+-=,∥22(40)(10)x x -+-22m n =+2()2m n mn =+-=2302(10)-⨯-920=;(2)设2021x c -=,2020x d -=,∥2222(2021)(2021)4321c d x x +=-+-=,∥(2021)(2020)1c d x x -=---=,∥2222()()4320cd c d c d =+--=,∥cd =2160,即(2021)(2020)2160x x --=;(3)∥正方形ABCD 的边长为x ,AE=14,CG=30,∥DE=x -14,DG=x -30,∥()()1430500x x --=设x -14=a ,x -30=b ,∥a -b=(x -14)-(x -30)=16,∥长方形EFGD 的面积是500∥ab=500,∥四边形NGDH 和MEDQ 都是正方形∥FN a b =+,MF a b =+∥阴影部分的面积=2()a b +,∥阴影部分的面积=22()()42256a b a b ab +=-+=,∥阴影部分的面积为:2256.【点睛】本题考查了完全平方公式、代数式的知识;解题的关键是熟练掌握完全平方公式的性质,从而完成求解.25.(1)证明见解析;(2)2AE BD =,证明见解析;(3)12013【解析】【分析】(1)连接CE ,根据等腰三角形的性质可得BE CE =、A ABC CB =∠∠,经过倒角及角的和差运算可得∥ABE =∥ACE ,利用等边对等角即可得证;(2)根据已知易得ABF 和CEF △都是等腰直角三角形,通过证明CBF EAF ≌即可得出结论;(3)由(1)可得EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,利用等面积法即可求解.【详解】解:(1)连接CE , ,∥AB =AC ,D 是BC 边的中点,∥AD 为线段BC 的垂直平分线,A ABC CB =∠∠,∥BE CE =,∥EBC ECB ∠=∠,∥ABC EBC ACB ECB ∠-∠=∠-∠,即∥ABE =∥ACE ,∥∥ABE =∥EFC ,∥∥ACE =∥EFC ,∥EF CE =,∥BE EF =;(2)连接CE ,由(1)可得∥ABE =∥ACE ,∥∥ABE =∥BAC =45°,∥ABF 和CEF △都是等腰直角三角形,∥AF BF =,CF EF =,∥CBF EAF ≌,∥BC AE =,∥2AE BD =;(3)由(1)可知BE CE =,∥EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,1122ABC S BC AD AC BP =⋅=⋅,解得12013 BP ,∥EC+EF的最小值为120 13.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、线段最值等内容,掌握等腰三角形的性质是解题的关键.。
北师大版七年级下册数学期末测试题
2021-2022学年七年级下学期期末考试数学测试题一、选择题(本大题共10小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.下列各图形中,不是轴对称图形的是( )2.下列运算正确的是( )A.(a 5)2=a 7B.a 5.a 2=a10C.(-a 2b)2=a4b2D.a 6÷a 2=a 33.如图,有4张形状、大小、质地均相同的卡片,正面印有第24届北京冬奥会的“短道速滑、速度滑冰、花样滑冰、冰球”四种不同的运动项目的图案,背面完全相同.现将这4张卡片洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面恰好是冰球的概率是( ) A.21 B.31 C.41 D.14.如图,在△ABC 中,∠A=90°,BD 平分LABC 交AC 于点D ,AB=4,BD=5,AD=3.若点P 是BC 上的动点,则线段DP 的最小值是( )A.3B.2.4C.4D.5 5.周末,小依骑车从家前往公园,中途休息了一段时间.设她从家出发后所用时间为(分钟),所走的路程为s(米),s 与之间的关系如图所示.对于下列结论:①小依中途休息了2分钟;②小依休息前骑车的平均速度为每分钟400米;③小依在上述过程中所走的路程为4400米;④小依休息前骑车的平均速度小于休息后骑车的平均速度.其中正确的有( )A.1个B.2个C.3个D.4个6.如图,直线l1∥l2,直线l1,l2被直线l3所截.若∠1=54°,则∠2的大小为()A.36°B.46°C.126°D.136°7.如图,AD是△ABC的角平分线,CE⊥AD,垂足为F.若∠CAB=40°,∠B=50°,则∠CDE的度数为( )A.135°B.140°C.145°D.150°8.如图1一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示的图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分)这两个图形能解释的等式是()A.(x-1)2=x2-2x+1B.(x+1)(x-1)=x2-1C.(x+1)2=x2+2x+1D.x(x-1)=x2-x9.如图,要测池塘两端A,B的距离,小明先在地上取一个可以直接到达A和B 的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE 并测量出它的长度,DE的长度就是A,B间的距离.那么判定△ABC和△DEC全等的依据是( )A.SSSB.ASAC.SASD.AAS10.如图,折叠直角三角形纸片ABC ,使得点A ,B 都与斜边AB 上的点F 重合,折痕分别为DE 和GH ,则下列结论不一定成立的是( ) A.DH=21AB B.EF=FG C.EF⊥FG D.DE∥GH二、填空题(本大题共6小题,每小题3分,共18分)11.在如图所示的部分棋盘中,“馬”的位置在“楚河汉界”的下方,“馬”移动一次能到达的位置已用“●”标记,则“馬”随机移动一次,到达的位置在“楚河汉界”上方的概率为指针对准对准________颜色区域的可能性最大. 12.若(2a+b)2=17,(a-2b)2=8,则3a 2+3b 2的值为_______.13.一副直角三角尺按图所示放置,有下列结论:①若∠2=30°,则有AC∥DE;②若BC∥AD,则有∠2=45°;③若∠4=45°,则有∠1=60°;④∠BAE+∠CAD 随着∠2的大小变化而变化.其中正确的是_______.(填序号) 14.小亮从家骑车上学,先经过一段平路到达A 地后,再上坡到达B 地,最后下坡到达学校,所行驶路程s(千米)与时间(分钟)的关系如图所示.如果返回时,上坡、下坡、平路的速度仍然保持不变,那么他从学校回到家需要的时间是_______分钟.15.如图,在△ABC中,直线1为边BC的垂直平分线,l交AC于点Q,∠ABC的平分线与l相交于点P.若∠BAC=60°,∠ACP=24°,则∠PQC的度数为______.16.程老师制作了如图①所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题.操作学具时,点Q在轨道槽AM上运动,点P既能在以点A为圆心,8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动.图②是操作学具时,所对应某个位置的图形示意图,有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ;②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ;③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ;④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ.其中正确的是___________.(填序号)三、解答题(本大题共9小题,共72分,解答应写出文字说明、证明或演算过程)17.(每小题2分,共6分)计算:(1)(3x2y)3.(-15xy3)÷(-9x4y2); (2)1022-101×99(用简便方法计算);(3)(2x-y-3)(2x+y+3).18.(5分)先化简,再求值:[(a-2b)2+(a-2b)(a+2b)-2a(2a-b)]÷2a,其中a=-1,b=2.19.(7分)五一期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费1O0元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准打折区域顾客就可以获得此项待遇(转盘等分成8份,指针停在每个区城的机会相等)(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?(3)丙顾客消费120元,获得五折待遇的概率是多少?20.(8分)如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)试说明:EF∥BC;(2)若FP⊥AC于点G,∠2+∠C=90°,试说明:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F-20°,求∠B的度数.21.(8分)某车间的甲、乙两名工人分别同时开始生产同一种零件,他们一天生产零件的个数y(个)与生产时间(小时)的关系如图所示.(1)甲、乙两人中,直接写出谁先完成一天的生产任务?(2)在生产过程中,直接写出甲、乙两人中谁因机器故障停止生产?并直接写出停止生产了几小时?(3)当=____小时时,甲、乙在生产过程中生产的零件个数相等;(4)直接写出谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数。
北师大版七年级下学期期末检测数学试卷及答案五
北师大版七年级下学期期末检测数学试卷及答案一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的。
每小题选对得分;不选、选错或选出的标号超过一个的不得分。
1.地铁是城市生活中的重要交通工具,地铁标志作为城市地铁的形象和符号,出现在城市的每个角落,它是城市文化的缩影.下列城市地铁的标志图案中(文字部分除外),是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.(﹣x)6÷x2=﹣x4C.x2y+xy2=x3y3D.(﹣2ab2)3=﹣8a3b63.如图,在四边形ABCD中,点E是AD延长线上一点,连接AC,BD,下列条件可以判定AB∥CD的是()A.∠BAD=∠CDE B.∠DAC=∠BCAC.∠DAB+∠ABC=180°D.∠DAB=∠DCB4.下列事件中,属于随机事件的是()A.在一个装有5个红球和3个黑球(每个球除颜色外都相同)的袋中任意摸出一个球是白球B.用长度分别是2cm,3cm,5cm的细木条首尾顺次相连可组成一个三角形C.掷一枚质地均匀的最子,掷出的点数是质数D.382个人中两个人的生日在同一天5.如图,在△ABC和△DEF中,点B、F、C、D在同条直线上,已知∠A=∠D,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠B=∠E B.AC=DF C.∠ACD=∠BFE D.BC=EF6.如图,一条公路修到湖边时,需拐弯绕道而过,第一次拐弯∠A的度数为α,第二次拐弯∠B的度数为β,到了点C后需要继续拐弯,若拐弯后与第一次拐弯之前的道路平行,则∠C的度数为()A.α﹣βB.180﹣β+αC.360﹣α﹣βD.180+β–α7.用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b之间存在的数量关系是()A.a=2b B.a=1.5b C.a=3b D.c=2.5b8.如图,∠BAD=∠CAE=90°,AB=4D,AE=AC,点D在线段CE上,点B在线段CF上,AF⊥CF,下列结论:①BC=DE;②∠F AB+∠BDC=45°;③若AC=10,则S四边形ABCE=50;④CE=2AF.其中一定正确的结论个数是()A.1B.2C.3D.4二、填空题(本题满分24分,共有8道小题,每小题3分)9.计算:(﹣0.125)2021×82020=.10.在高端材料和芯片制造的核心技术上,我国与国外还有较大差距.当前国际主流的芯片的特征尺寸是0.000000007m,而我国只能够实现0.0000000141m的芯片量产.0.000000014用科学记数法可以表示为.11.如图,△ABC中,AD为BC边上的中线,E、F分别是AD、CD的中点,连接BE、AF、EF,若△BEF的面积为6,则△ABC的面积是.12.如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为.13.如图,一位跑酷运动员准备以连续两次“跳跃”结束一次跑酷表演,即在水平面AB上跑至B点,向上跃起至最高点P,然后落在点C处,继续在水平面CD上跃起落在点D,若∠ABK和∠KCD的平分线的反向延长线刚好交于最高点P,∠BKC=78°,则∠P等于度.14.如图,小颖用正方形做了一套七巧板,拼成如图所示的一幅图案,且阴影部分的面积为36cm2,则制作七巧板用的正方形边长为cm.15.李华放学回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若李华骑车的速度始终不变,从出发开始计时,李华离家的距离s(m)与时间t(min)的对应关系如图所示,则文具店与李华家的距离为m.16.在△ABC内部任取一点P1(如图1),则图中互不重叠的所有角的和是540°.在图1中的任一小三角形内任取一点P2(如图2),则图中互不重叠的所有角的和是度;以此类推,当取到点P n时,图中互不重叠的所有角的和是度(用含n的代数式表示).三、作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹。
北师大版数学七年级下册《期末检测卷》(附答案)
北师大版数学七年级下学期期末测试卷时间:120分钟总分:120分一.选择题1.将0.00006用科学记数法表示为6×10n,则n的值是()A. ﹣4B. ﹣5C. ﹣6D. 52.下列是随机事件的是( )A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B. 平行于同一条直线的两条直线平行C. 掷一枚图钉,落地后图钉针尖朝上D. 掷一枚质地均匀的骰子,掷出的点数是73.下列图形中,不是轴对称图形的是()A. B. C. D. 4. 下列运算正确的是()A. 23326()()2x x x+=B. 233212()()2x x x⋅=C. 426(2)2x x x⋅=D. 325(2)()8x x x-=-5.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE 的是()A. BE=CFB. AB=DFC. ∠ACB=∠DEFD. AC=DE6.下列乘法运算中,能用平方差公式的是()A. (b +a )(a +b )B. (﹣x +y )(x +y )C. (1﹣x )(x ﹣1)D. (m +n )(﹣m ﹣n )7.在等腰三角形ABC 中,如果两边长分别为6cm ,10cm ,则这个等腰三角形的周长为( )A. 22cmB. 26cmC. 22cm 或26cmD. 24cm8.如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS9.如图所示,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为( )A. 15°B. 30°C. 45°D. 60°10.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A. 1B. 2C. 3D. 4二. 填空题11.计算:4a 2b ÷2ab =_____.12.已知,x +y =﹣5,xy =6,则(x ﹣y )2=_____;x ﹣y =_____.13.已知2m =4,2n =16,则m +n =_____.14.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.15.如图,AB ∥CD ,∠BAC 与∠ACD 的平分线交于点P ,过P 作PE ⊥AB 于E ,交CD 于F ,EF =10,则点P 到AC 的距离为_____.16.一个水库的水位在最近5h 内持续上涨.下表记录了这5h 内6个时间点的水位高度,其中x 表示时间,y 表示水位高度.x/h0 1 2 3 4 5 y/m33.3 3.6 3.94.2 4.5 根据表格中水位的变化规律,则y 与x 的函数表达式为_____.17.计算:(a +b )(a ﹣2b )﹣a (a ﹣b )+(3b )218.如图,在△ABC 中,已知∠CDB =110°,∠ABD =30°.(1)请用直尺和圆规在图中直接作出∠A 的平分线AE 交BD 于E ;(不写作法,保留作图痕迹) (2)在(1)的条件下,求出∠AED 的度数.19.用10个除颜色外均相同的球设计一个摸球游戏:(1)使摸到红球概率为15; (2)使摸到红球和白球的概率都是25. 20.先化简,再求值:[(2x ﹣y )2﹣(2x +y )(2x ﹣y )]÷y ,其中x =1,y =2. 21.已知:如图,A 、F 、C 、D 四点在一直线上,AF =CD ,AB ∥DE ,且AB =DE .求证:(1)△ABC≌△DEF;(2)BC∥EF.22.观察下列等式:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…利用你的发现的规律解决下列问题(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)=(直接填空);(2)(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2…+ab n﹣2+b n﹣1)=(直接填空);(3)利用(2)中得出的结论求62019+62018+…+62+6+1的值.23.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按相同路线从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S和时间t的关系.象回答下列问题:(1)甲和乙哪一个出发的更早?早出发多长时间?(2)甲和乙哪一个早到达B城?早多长时间?(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少?(4)请你根据图象上的数据,求出乙出发后多长时间追上甲?24.已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°(1)如图1,若∠ABE=63°,∠BAC=45°,求∠F AC 的度数;(2)如图1请探究线段EF和线段AD有何数量关系?并证明你的结论;(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G为线段EF的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.答案与解析一.选择题1.将0.00006用科学记数法表示为6×10n,则n 的值是()A. ﹣4 B. ﹣5 C. ﹣6 D. 5 【答案】B【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00006=6×10﹣5=6×10n.∴n=﹣5.故选B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列是随机事件的是( )A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B. 平行于同一条直线的两条直线平行C. 掷一枚图钉,落地后图钉针尖朝上D. 掷一枚质地均匀的骰子,掷出的点数是7【答案】C【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球,是不可能事件,故不符合题意;B. 平行于同一条直线的两条直线平行,是必然事件,故不符合题意;C. 掷一枚图钉,落地后图钉针尖朝上,是随机事件,故符合题意;D. 掷一枚质地均匀的骰子,掷出的点数是7,是不可能事件,故不符合题意,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列图形中,不是轴对称图形的是( ) A. B. C. D.【答案】A【解析】【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【详解】根据轴对称图形的概念,可知:选项A 中的图形不是轴对称图形.故选A .【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.4. 下列运算正确的是( )A. 23326()()2x x x +=B. 233212()()2x x x ⋅=C. 426(2)2x x x ⋅=D. 325(2)()8x x x -=-【答案】A【解析】试题分析:A .2332666()()2x x x x x +=+=,故A 正确;B .23326612()()x x x x x ⋅=⋅=,故B 错误;C .42426(2)44x x x x x ⋅=⋅=,故C 错误;D .32325(2)()88x x x x x -=⋅=,故D 错误;故选A .考点:1.单项式乘单项式;2.幂的乘方与积的乘方.5.如图,已知点B 、E 、C 、F 在一条直线上,∠A =∠D ,∠B =∠DFE ,添加以下条件,不能判定△ABC ≌△DFE 的是( )A. BE=CFB. AB=DFC. ∠ACB=∠DEFD. AC=DE【答案】C【解析】【分析】根据全等三角形的判定方法对各选项进行判断.【详解】∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选C.【点睛】本题考查了全等三角形的判定:灵活运用全等三角形的5种判定方法.若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.下列乘法运算中,能用平方差公式的是()A. (b+a)(a+b)B. (﹣x+y)(x+y)C. (1﹣x)(x﹣1)D. (m+n)(﹣m﹣n)【答案】B【解析】【分析】根据平方差公式(a+b)(a-b)=a2-b2判断即可.【详解】A、不能用平方差公式,故本选项错误;B、能用平方差公式,(﹣x+y)(x+y)=(y+x)(y﹣x)=y2﹣x2,故本选项正确;C、不能用平方差公式,故本选项错误;D、不能用平方差公式,故本选项错误;故选B.【点睛】本题考查了平方差公式的应用,注意:平方差公式:(a+b)(a-b)=a2-b2.7.在等腰三角形ABC中,如果两边长分别为6cm,10cm,则这个等腰三角形的周长为()A. 22cmB. 26cmC. 22cm 或26cmD. 24cm【答案】C【解析】【分析】 根据等腰三角形的性质,分两种情况:①当腰长为6cm 时,②当腰长为10cm 时,解答出即可.【详解】根据题意,①当腰长为6cm 时,周长=6+6+10=22(cm);②当腰长为10cm 时,周长=10+10+6=26(cm),即周长为22cm 或26cm ,故选C.【点睛】本题考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS【答案】B【解析】【分析】 我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS ,答案可得.【详解】解:作图的步骤:①以O 为圆心,任意长为半径画弧,分别交OA 、OB 于点C 、D ;②任意作一点O ',作射线O A '',以O '为圆心,OC 长为半径画弧,交O A ''于点C ';③以C '为圆心,CD 长为半径画弧,交前弧于点D ';④过点D '作射线O B ''.所以AOB ∠'''就是与AOB ∠相等的角; 在OCD ∆与△OCD ''',O C OC ''=,O D OD ''=,C D CD ''=,OCD ∴∆≅△()O C D SSS ''',AO B AOB ∴∠'''=∠,显然运用的判定方法是SSS .故选:B .【点睛】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.9.如图所示,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为( )A. 15°B. 30°C. 45°D. 60° 【答案】D【解析】因为△ABC 是等边三角形,所以∠ABD=∠BCE=60°,AB=BC. 因为BD =CE ,所以△ABD≌△BCE,所以∠1=∠CBE.因为∠CBE+∠ABE=60°,所以∠1+∠ABE=60°.因为∠2=∠1+∠ABE ,所以∠2=60°.故选D . 10.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A. 1B. 2C. 3D. 4【答案】C【解析】【分析】 由已知条件可知∠ABC+∠ACB=90°,又因为CD 、BE 分别是△ABC 的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB ,∠BAG=2∠ABF .所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF 故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB 故③正确.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.二. 填空题11.计算:4a2b÷2ab=_____.【答案】2a【解析】【分析】利用整式除法的运算法则,即可得出结论.【详解】4a2b÷2ab=(4÷2)a2﹣1b1﹣1=2a.故答案为2a .【点睛】本题考查了整式的除法,解题的关键是牢记整式除法的法则. 12.已知,x +y =﹣5,xy =6,则(x ﹣y )2=_____;x ﹣y =_____. 【答案】 (1). 1; (2). ±1. 【解析】 【分析】先根据完全平方公式进行变形,再代入求出即可,最后开平方计算即可. 【详解】∵x+y =5,xy =6,∴(x ﹣y )2=(x+y )2﹣4xy =52﹣4×6=1, ∴x ﹣y =±1, 故答案为1,±1. 【点睛】本题考查了完全平方公式和平方根的定义的运用,能灵活运用公式进行变形是解此题的关键. 13.已知2m =4,2n =16,则m +n =_____. 【答案】6 【解析】 【分析】根据2m =4,2n =16,求出2m+n 的值是多少,即可求出m+n 的值是多少. 【详解】∵2m =4,2n =16, ∴2m+n =4×16=64, ∴m+n =6. 故答案为6.【点睛】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加. 14.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.【答案】70 【解析】 【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.15.如图,AB∥CD,∠BAC与∠ACD的平分线交于点P,过P作PE⊥AB于E,交CD于F,EF=10,则点P到AC的距离为_____.【答案】5【解析】【分析】作PH⊥AC于H,根据角平分线的性质得到PE=PH,PF=PH,根据题意计算即可.【详解】作PH⊥AC于H,∵AP平分∠BAC,PE⊥AB,PH⊥AC,∴PE=PH,∵AB∥CD,PE⊥AB,∴PF⊥CD,∵CP平分∠ACD,PF⊥CD,PH⊥AC,∴PF=PH,∴PH=PE=PF=12EF=5,即点P到AC的距离为5,故答案为5.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 16.一个水库的水位在最近5h 内持续上涨.下表记录了这5h 内6个时间点的水位高度,其中x 表示时间,y 表示水位高度.根据表格中水位的变化规律,则y 与x 的函数表达式为_____. 【答案】y=0.3x+3 【解析】 【分析】根据记录表由待定系数法就可以求出y 与x 的函数表达式. 【详解】设y 与x 的函数表达式为y =kx +b , 把x =0,y =3和x =1,y =3.3代入得,33.3b k b =⎧⎨+=⎩ , 解得:0.33k b =⎧⎨=⎩. 故y 与x 的函数表达式为y =0.3x +3. 故答案为y =0.3x +3.【点睛】本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:(1)先设出函数解析式的一般形式,如求一次函数的解析式时,先设y =kx +b (k ≠0);(2)将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式. 17.计算:(a +b )(a ﹣2b )﹣a (a ﹣b )+(3b )2 【答案】7b 2 【解析】 【分析】直接利用多项式的乘法运算法则以及积的乘方运算法则分别计算得出答案. 【详解】原式=a 2﹣ab ﹣2b 2﹣a 2+ab+9b 2 =7b 2.【点睛】此题主要考查了整式的乘法运算及整式的加减运算,正确掌握相关运算法则是解题关键.18.如图,在△ABC中,已知∠CDB=110°,∠ABD=30°.(1)请用直尺和圆规在图中直接作出∠A的平分线AE交BD于E;(不写作法,保留作图痕迹)(2)在(1)的条件下,求出∠AED的度数.【答案】(1)见解析;(2)70°【解析】【分析】(1)首先以A为圆心,小于AC长为半径画弧,交AB、AC两点,再分别以两点为圆心,大于两点之间的距离的一半长为半径画弧,两弧交于一点M,然后作射线AM交BD于E;(2)利用三角形内角与外角的关系可得∠BAC的度数,再根据角平分线的定义计算出∠EAD的度数,再次利用外角的性质可得答案.【详解】解:(1)如图所示:(2)∵∠CDB=110°,∠ABD=30°.∴∠CAB=110°﹣30°=80°,∵AE平分∠CAB,∴∠DAE=40°,∴∠DEA=110°﹣40°=70°.【点睛】此题主要考查了基本作图,以及角的计算,关键是掌握角平分线的作法,以及三角形的外角等于与它不相邻的两个内角的和.19.用10个除颜色外均相同的球设计一个摸球游戏:(1)使摸到红球的概率为15;(2)使摸到红球和白球的概率都是25.【答案】(1)2个红球,8个黄球;(2)4个红球,4个白球,2个其他颜色球. 【解析】【分析】(1)利用概率公式,要使摸到红球的概率为15,则红球有2个,然后设计摸球游戏;(2)利用概率公式,要使摸到红球和白球的概率都是25.则红球有4个,白球有4个,然后设计摸球游戏.【详解】(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了概率公式.20.先化简,再求值:[(2x﹣y)2﹣(2x+y)(2x﹣y)]÷y,其中x=1,y=2.【答案】﹣4x+2y,当x=1,y=2时,原式=0.【解析】【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【详解】[(2x﹣y)2﹣(2x+y)(2x﹣y)]÷y=[4x2﹣4xy+y2﹣4x2+y2]÷y=[﹣4xy+2y2]÷y=﹣4x+2y,当x=1,y=2时,原式=﹣4+4=0.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.21.已知:如图,A、F、C、D四点在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)BC∥EF.【答案】(1)见解析;(2)见解析.【解析】(1)要证明△ABC ≌△DEF ,可以通过已知利用SAS 来进行判定,(2)由(1)可以得到对应角相等,然后利用内错角相等即可证明两直线平行. 【详解】证明:(1)∵AF =CD , ∴AF+FC =CD+FC 即AC =DF . ∵AB ∥DE , ∴∠A =∠D . ∵AB =DE ,∴在△ABC 和△DEF 中AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩. ∴△ABC ≌△DEF (SAS ). (2)∵△ABC ≌△DEF (已证), ∴∠ACB =∠DFE . ∴EF ∥BC .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 22.观察下列等式: (a ﹣b )(a +b )=a 2﹣b 2 (a ﹣b )(a 2+ab +b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4… 利用你的发现的规律解决下列问题(1)(a ﹣b )(a 4+a 3b +a 2b 2+ab 3+b 4)= (直接填空);(2)(a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2…+ab n ﹣2+b n ﹣1)= (直接填空); (3)利用(2)中得出的结论求62019+62018+…+62+6+1的值. 【答案】(1)a 5﹣b 5;(2)a n﹣b n;(3)62019+62018+…+62+6+1=2020615-.【解析】(1)(2)直接根据规律解答即可;(3)利用(2)的结论,把所求式子写成(6-1)(62019+62018+…+62+6)×15即可解答. 【详解】(1)(a ﹣b )(a 4+a 3b+a 2b 2+ab 3+b 4)=a 5﹣b 5 故答案为a 5﹣b 5;(2)(a ﹣b )(a n ﹣1+a n ﹣2b+a n ﹣3b 2…+ab n ﹣2+b n ﹣1)=a n ﹣b n 故答案为a n ﹣b n ; (3)62019+62018+…+62+6+1=(6﹣1)(62019+62018+…+62+6)×15=2020615.【点睛】此题主要考查了整式的混合运算,要熟练掌握,注意根据所给的算式总结出规律,并能利用总结出的规律解决实际问题.23.如图所示,A 、B 两地相距50千米,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车按相同路线从A 地出发驶往B 地,如图所示,图中的折线PQR 和线段MN 分别表示甲、乙所行驶的路程S 和时间t 的关系.象回答下列问题: (1)甲和乙哪一个出发的更早?早出发多长时间? (2)甲和乙哪一个早到达B 城?早多长时间?(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少? (4)请你根据图象上的数据,求出乙出发后多长时间追上甲?【答案】(1)甲更早,早出发1 h;(2)乙更早,早到2 h;(3)甲的平均速度12.5km/h, 乙的平均速度是50km/h;(4) 乙出发0.5 h 就追上甲 【解析】分析:(1)(2)读图可知;(3)从图中得:甲和乙所走的路程都是50千米,甲一共用了4小时,乙一共用了1小时,根据速度=路程时间,代入计算得出; (4)从图中得:甲在走完全程时,前1小时速度为20千米/小时,从第2小时开始,速度为502052--=10千米/小时,因此设乙出发x 小时就追上甲,则从图中看,是在甲速度为10千米/小时时与乙相遇,所以甲的路程为20+10x ,乙的路程为50x ,列方程解出即可. 详解:(1)甲下午1时出发,乙下午2时出发,所以甲更早,早出发1小时; (2)甲5时到达,乙3时到达,所以乙更早,早到2小时; (3)乙的速度=5032-=50(千米/时),甲的平均速度=5051-=12.5(千米/时); (4)设乙出发x 小时就追上甲,根据题意得:50x =20+10x ,x =0.5. 答:乙出发0.5小时就追上甲.点睛:本题是函数的图象,根据图象信息解决实际问题,存在两个变量:路程和时间;通过此类题目的练习,可以培养学生分析问题和运用所学知识解决问题的能力,同时还能使学生体会到函数知识的实用性.24.已知,如图AD 为△ABC 的中线,分别以AB 和AC 为一边在△ABC 的外部作等腰三角形ABE 和等腰三角形ACF ,且AE =AB ,AF =AC ,连接EF ,∠EAF +∠BAC =180° (1)如图1,若∠ABE =63°,∠BAC =45°,求∠F AC 的度数;(2)如图1请探究线段EF 和线段AD 有何数量关系?并证明你的结论;(3)如图2,设EF 交AB 于点G ,交AC 于点R ,延长FC ,EB 交于点M ,若点G 为线段EF 的中点,且∠BAE =70°,请探究∠ACB 和∠CAF 的数量关系,并证明你的结论.【答案】(1)36°;(2)EF =2AD,见解析;(3)1ACB CAF 552︒∠-∠=,见解析. 【解析】 分析】(1)由等腰三角形的性质得出∠AEB=∠ABE=63°,由三角形内角和定理得出∠EAB=54°,推出∠EAB+2∠BAC+∠FAC=180°,即可得出结果;(2)延长AD至H,使DH=AD,连接BH,由中线的性质得出BD=CD,由SAS证得△BDH≌△CDA得出HB=AC=AF,∠BHD=∠CAD,得出AC∥BH,由平行线的性质得出∠ABH+∠BAC=180°,证得∠EAF=∠ABH,由SAS证得△ABH≌△EAF,即可得出结论;(3)由(2)得,AD=12EF,又点G为EF中点,得出EG=AD,由(2)△ABH≌△EAF得出∠AEG=∠BAD,由SAS证得△EAG≌△ABD得出∠EAG=∠ABC=70°,由已知得出∠EAB+2∠BAC+∠CAF=180°,推出∠BAC=55°-12∠CAF,由三角形内角和定理得出∠BAC=180°-∠ABC-∠ACB=110°-∠ACB,即可得出结果.【详解】(1)∵AE=AB,∴∠AEB=∠ABE=63°,∴∠EAB=54°,∵∠BAC=45°,∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠FAC=180°,∴54°+2×45°+∠FAC=180°,∴∠FAC=36°;(2)EF=2AD;理由如下:延长AD至H,使DH=AD,连接BH,如图1所示:∵AD为△ABC的中线,∴BD=CD,在△BDH和△CDA中,BD CDBDH CDA DH AD=⎧⎪∠=∠⎨⎪=⎩,∴△BDH≌△CDA(SAS),∴HB=AC=AF,∠BHD=∠CAD,∴AC∥BH,∴∠ABH+∠BAC=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABH,在△ABH和△EAF中,AE ABEAF ABH AF BH=⎧⎪∠=∠⎨⎪=⎩,∴△ABH≌△EAF(SAS),∴EF=AH=2AD;(3)1ACB CAF552︒∠-∠=;理由如下:由(2)得,AD=12EF,又点G为EF中点,∴EG=AD,由(2)△ABH≌△EAF,∴∠AEG=∠BAD,在△EAG和△ABD中,AE ABABG BAD EG AD=⎧⎪∠=∠⎨⎪=⎩,∴△EAG≌△ABD(SAS),∴∠EAG=∠ABC=70°,∵∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠CAF=180°,即:70°+2∠BAC+∠CAF=180°,∴∠BAC+12∠CAF=55°,∴∠BAC=55°﹣12∠CAF,∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣∠ACB=110°﹣∠ACB,∴55°﹣12∠CAF=110°﹣∠ACB,∴∠ACB﹣12∠CAF=55°.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形内角和定理、等腰三角形的性质、平行线的判定与性质等知识,熟练掌握三角形内角和定理,证明三角形全等是解题的关键.。
七年级下学期期末数学测试题北师大版含答案共4套
七年级下学期期末数学测试题一.精心选一选 (以下每小题给出的四个选项中,只有一个选项是正确的,将正确选项前的字母填在题后的括号内.本题有10小题,每小题3分,共30分)1.下列各式计算结果正确的是( )A .2a a a =+B .()2263a a =C .()1122+=+a aD .2a a a =⋅2.2019年全年国内生产总值按可比价格计算,比上年增长9.5%,达到136515亿元,136515亿元用科学记数法表示(保留4个有效数字)为( )A .121.36510⨯元;B .131.365210⨯元;C .121.36510⨯元;D .121.36510⨯元3.下面有4个汽车标致图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个4.下列说法正确的是( )A .如果一件事不可能发生,那么它是必然事件,即发生的概率是1;B.概率很大的事情必然发生;C.若一件事情肯定发生,则其发生的概率1P;D.不太可能发生的事情的概率不为05.下列关于作图的语句中正确的是()A.画直线AB=10厘米;B.画射线OB=10厘米;C.已知A.B.C三点,过这三点画一条直线;D.过直线AB外一点画一条直线和直线AB平行6.如图,已知AB∥CD,直线l分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是()A.60° B.70° C.80°D.90°7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性 B.两点之间线段最短C.两点确定一条直线 D.垂线段最短8.下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x-a) B.(a+b)(-a-b) C.(-x-b)(x-b) D.(b+m)(m-b)9.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l.2l分别表示步行和1骑车的同学前往目的地所走的路程y(千米)及所用时间x(分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟; B.步行的速度是6千米/时;C.骑车的同学从出发到追上步行的同学用了20分钟;D.骑车的同学和步行的同学同时达到目的地10.如图,在△ABC及△DEF中,给出以下六个条件:(1)AB =DE,(2)BC=EF,(3)AC=DF ,(4)∠A=∠D,(5)∠B=∠E,(6)∠C=∠F,以其中三个作为已知条件,不能..判断△ABC及△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(2)(3)(4)D.(4)(6)(1)二、耐心填一填(请直接将答案填写在题中的横线上,每题3分,共24分)11.等腰三角形的一个角为100°,则它的底角为 . 12.()32+-m (_________)=942-m ; ()232+-ab =_____________.13.某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为__________.14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字3)= ,P(摸到偶数)= .(第15题) (第17题) (第18题)15.如图,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 及l 2相交及点E ,若∠1=43°,则∠2= 度.16.有一个多项式为a 8-a 7b +a 6b 2-a 5b 3+…,按照此规律写下去,这个多项式的第八项是_____________.17.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.18.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是 分钟.三、细心算一算: 19.(4分)①)()(2322c ab c ab ÷ (4分)②2)())((y x y x y x ++---20.(5分)先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a .21.(4分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?22.(6分)如图所示:ΔABC 的周长为24cm ,AB=10cm ,边AB的垂直平分线DE 交BC 边于点E ,垂足为D ,求ΔAEC 的周长.四、用心想一想23.(6分)如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DF ⊥AC ,垂足为F ,你能找出一对全等的三角形吗?为什么它们是全等的?24.(5分)如图是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的等式.25.(5分)已知如图,要测量水池的宽AB ,可过点A 作直线AC ⊥AB ,再由点C 观测,在BA 延长线上找一点B ’,使∠ACB ’= ∠AC B ,这时只要量出AB ’的长,就知道AB 的长,对吗?为什么?26.(6分)请你设计一个摸球游戏:在袋子中装有若干个黄球、绿球和红球,使摸到球的概率:P (摸到红球)=41;P (摸到黄球)=32;P (摸到绿球)=121,那么袋子中黄球、绿球和红球至少各需要多少个?五、识图及计算:27.(12分)如图所示,A 、B 两地相距50千米,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车按同路从A 地出发驶往B 地,如图所示,图中的折线PQR和线段MN 分别表示甲、乙所行驶的路程S 及该日下午时间t 之间的关系.根据图象回答下列问题:(1)甲和乙哪一个出发的更早?早出发多长时间?(2)甲和乙哪一个更早到达B 城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.28.(9分)下图是小明作的一周的零用钱开支的统计图(单位:元)分析上图,试回答以下问题:(1)周几小明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?(2)哪几天他花的零用钱是一样的?分别为多少?(3)你能帮小明算一算他一周平均每天花的零用钱吗?(4)你能够画出小明一周的零用钱开支的折线统计图吗?试一试.答 案1~10:DACDD BABDC11.40°; 12.32--m ,912422+-ab b a ; 13.E6395;14.101,21; 15.133°; 16.7ab -; 17.AB=DC 或∠A=∠D ; 18.37.2;19.①)c ab ()c ab (2322÷=)c ab (c b a 23242÷=ab ②xy y 222+20.a a 332+,值为6.21.21 22.ΔAEC 的周长=AE+EC+AC=BE+EC+AC=BC+AC=24-10=14cm .23.△AED ≌△AFD .理由: 因为∠AED=∠AFD ,∠EAD=∠FAD ,AD 是公共边,所以它们全等(AAS ).(或理由:因为角的平分线上的点到这个角的两边距离相等,所以DE=DF ,AD 是公共的斜边,所以它们全等(HL ).)24.()()ab b a b a 422+==+等.25.对,用ASA 可以证明三角形全等.26.红球3个,黄球8个,绿球1个.27.(1)甲比乙出发更早,要早1小时(2)乙比甲早到B 城,早了2个小时(3)乙出发半小时后追上甲(4)甲开始以较快的速度骑自行车前进,2点后速度减慢,但仍保持这一速度于下午5时抵达B 城(5)乙的速度为50千米/时,甲的平均速度为12.5千米/时.28.(1)周三,1元,10元,(2)周一及周五都是6元,周六和周日都是10元,(3)()67101065146=÷++++++(元);(4)略.七年级数学试题(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C .∠4=∠5D .∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x +=4.下列各式中,及2(1)a -相等的是A.21-- D.21a aa+ a-B.221a a-+C.2215.有一个两位数,它的十位数数字及个位数字之和为5,则符合条件的数有A.4个B.5个C.6个D.无数个6.下列语句不正确...的是A.能够完全重合的两个图形全等 B.两边和一角对应相等的两个三角形全等 C.三角形的外角等于不相邻两个内角的和 D.全等三角形对应边相等7.下列事件属于不确定事件的是A.太阳从东方升起 B.2019年世博会在上海举行C.在标准大气压下,温度低于0摄氏度时冰会融化 D.某班级里有2人生日相同8.请仔细观察用直尺和圆规.....作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是A.SAS B.ASA C.AAS D.SSS二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm.这个数量用科学记数法可表示为 cm.10.将方程2x+y=25写成用含x的代数式表示y的形式,则y= .11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E的大小是°.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是°.13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者试验次数n正面朝上的次数m正面朝上的频率nm 布丰404020480.5069德·摩根409220480.5005(第16题那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出及△ABC 全等且有一个公共顶点的格点△C B A ''';在图②中画出及△ABC 全等且有一条公共边的格点△C B A ''''''.18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2019 (2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x x -3 (2)-2x+x 2+120.解方程组:(每小题5分,本题共10分)O B(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b +的值. 22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么? 23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
D
C
B
A
N
M
D
G F
C
B E
A
D
C
B
N
M
A 七年级数学(下)期末拔高训练试题
一、细心填一填(每小题3分,共30分)
1、等腰三角形的三边长分别为:x+1、 2x+3 、9 。
则x = 2.正方形的面积是2a 2+2a +
21(a >-2
1
)的一半,则该正方形的边长为________. 3、 已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的
距离为x 厘米,那么x 的取值范围是 。
6.如图,ΔABC 中,AB 的垂直平分线交AC 于点M 。
若CM=3cm ,BC=4cm ,AM=5cm ,则ΔMBC 的周长=_____________cm 。
.
5、如图,ABC ∆沿DE 折叠后,点A 落在BC 边上的A '处,若点D 为AB 边的中点,
50=∠B ,则A BD '∠的度数为 .
9.如图2,有一个五角星的图案,那么图中的∠A +∠B +∠C +∠D
+∠
E= ° 10.如图3,先将正方形ABCD 对折,折痕为EF ,将这个正方形展平后,再分别将A 、B 对折,使点A 、点B 都与折痕EF 上的点G 重合,则∠NCG 的度数是 度.
图2 图3
13、 如图,平面镜A 与B 之间夹角为ll00
,光线经平面镜A 反射到平面镜B 上, 再反射出去,若∠1=∠2,则∠l 的度数为 .
14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的 中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 . 二、相信你的选择(每小题3分,共30分)
13.如图,向高为H 的圆柱形水杯中注水,已知水杯底面圆半径为 1,那 么注水量与水深的函数关系的图象是 ( )
14.如右上图所示,AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 与D ,则∠DBC=( )
A 、30°
B 、20°
C 、15°
D 、10°
18.若x 2
+mx+25是完全平方式,则m 的值是( )
A 、10或-10
B 、110
C 、–10
D 、110
三、试一试:(40分)
10、已知正方形ABCD 的边长为4cm ,有一动点P 以1cm/s 的速度沿A —B —C —D 的路径运动,设P 点运动的时间为x(s)(0<x <12),⊿ADP 的面积为y cm 2. (1)求y 与x 的关系式;
(3)点P 运动多长时间时,⊿ADP 是等腰三角形(只写结果)。
8.如图21,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FC
26、两个全等的含300,600角的三角板ADE 和三角板ABC 如图所示放置,E ,A ,C 三点在一条直线上,连结BD ,取BD 的中点M ,连结ME ,MC.试判断⊿EMC 的形状,并说明理由.
18如图,AD ⊥BC,BD=DC,点C 在AE 的垂直平分线上,AB+BD 与DE 的长度有什么关系?并加以证明.(本题8分)
18题图
A
B C E
D
19.如图,∆ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,求证:EF=BE+CF
20、如图,ABC ∆中,AB=AC ,两条角平分线BD 、CE 相交于点O 。
(8分)
(1)OB 与OC 相等吗?请说明你的理由;
(2)若连接AO ,并延长AO 交BC 边于F 点。
你有哪些发现?请写出两 条,并就其中的一条发现写出你的发现过
程。
20.如图22⑴,AB=CD ,AD=BC ,O 为AC 中点,过O 点的直线分别与AD 、BC 相交于点
M 、N ,那么∠1与∠2有什么关系?请说明理由。
若过O 点的直线旋转至图⑵、⑶的情况,其余条件不变,那么图⑴中的∠1与∠2的关系成立吗?请说明理由。
(12分)
2.在△ABC 中,AB=AC, ∠A=120°,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N,交AC 于F ,求证:BM=MN=NC. 20题图
D
E
O
C
B A
19题图
C B A
A
公路
21.乘法公式的探究及应用.(10分)
(1)如右图,可以求出阴影部分的面积是 (写成两数平方差的形式);
(2)如右图,若将阴影部分裁剪下来,重新拼成一个矩形, 它的宽是 ,长是 , 面积是 (写成多项式乘法的形式)
(3)比较左、右两图的阴影部分面积,可得乘法公式 (用式子表达) (4)运用你所得到的公式,计算下列各题:(10分)
①7.93.10⨯ ② (2m + n- p )(2m - n + p)
22.化简求值:[]x y
y x y x y x 25)3)(()2(2
2
÷--+-+,其中2
1,2=-=
y x .(7分)
21、作图题(保留作图过程,共10分) (1)如图,作出△ABC 关于直线l 的对称图形;
(2)“西气东输”是造福子孙后代的创世纪工程。
现有两条高速公路和A 、B 两个城镇(如图),准备建立一个燃气中心站P ,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置。
A
B
C
E
C
D
B
A
B
C
O
P
A
23、根据下列语句,用三角板、圆规或直尺作图,不要求写作法:(6分) (1)过点C 作直线MN//AB ; (2)作△ABC 的高CD ; (3)以CD 所在直线为对称轴,
作与△ABC 关于直线CD 对称 的△A'B'C',并说明完成后的图
形可能代表什么含义.
23、(11分)如图,AP ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的延长线交AP 于D , 求证:(1)AB=AD+BC; (2)若BE=3,AE=4,求四边形ABCD 的面积?
P E
D
C
B
A
24.已知:如图,AB//CD ,∠ABE=∠DCF ,请说明∠E=∠F 的理由.(5分)
23、如图,已知点B 、D 、E 、C 在同一直线上,AED ADE ∠=∠,CE BD =
求证:AC AB =
24.已知,x ∶y ∶z =2∶3∶4,且xy +yz +xz =104,求2x 2+12y 2-9z 2的值. (6分)
25、如图,O 为△ABC 中ABC ∠与ACB ∠的平分线的交点,分别过点B 、C 作BO PB ⊥, CO PC ⊥,若70=∠A °,你能够求出P ∠的度数吗?若能请写出解答过程。
(6分)
26、为了解某种车的耗油量,我们对这种车做了试验,并把试验的数据记录下来,制成下表:(8分) F
E
D
C
B
A
(1)根据上表的数据,能用t表示Q吗?试一试
(2)汽车行驶5h后,油箱中的剩余油量四多少?
(3)若汽车油箱中剩余油量为14L,则汽车行使了多少小时?(4)贮满50L汽油的汽车,最多行驶几小时?。