2017年河南省专升本高等数学真题及答案高清版
《2017年成人高考专升本《高等数学一》真题及答案
一、选择题:1~10 小题。每小题 4 分,共 40 分.在每个小题给出的四个选 项 中,只有一项是符合题目要求的。把所选项前的字母填在题后的括号内。
第1题
答案:C 第2题
答案:C
第 1 页 共 11 页
第3题
答案:D 第4题
答第 21 题
答案:
第 22 题 答案:
第 7 页 共 11 页
第 23 题 答案:
第 8 页 共 11 页
第 23 题 答案:
第 24 题 答案:
第 9 页 共 11 页
第 25 题 答案:
第 26 题 答案:
第 10 页 共 11 页
第 27 题 答案:
第 28 题 答案:
第 11 页 共 11 页
答案:0 第 15 题
答案: 第 16 题 答案:8
第 5 页 共 11 页
第 17 题 答案: 第 18 题 答案: 第 19 题
答案: 第 20 题 答案:
第 6 页 共 11 页
三、解答题:21~28 题,前 5 小题各 8 分,后 3 小题各 10 分。共 70 分.解答 应写出推理、演算步骤。
答案:B 第6题
答案:B 第7题
答案:A 第8题
答案:A
第 3 页 共 11 页
第9题
答案:C 第 10 题
答案:C 二、填空题:11~20 小题。每小题 4 分,共 40 分.把答案填在题中横线上。
第 11 题 答案:
第 4 页 共 11 页
第 12 题
答案:y=1 第 13 题
答案:f(-2)=28 第 14 题
2017河南高考真题数学
2017河南高考真题数学
2017年河南省高考数学试卷中,共分为第Ⅰ卷和第Ⅱ卷两部分,涵盖了考生对数学知识的全面考核。
让我们一起来看一下其中的一些题目。
第Ⅰ卷
1.已知函数f(x)=ax^2+bx+c,且f(1)=2,f(2)=5,f(3)=10,求a,b,c的值。
解析:根据已知条件列方程组得出a=1,b=2,c=1。
2.已知等比数列{an}中,a1=2,an=3+an-1,求a5。
解析:根据等比数列的性质,代入所给条件得出a5=38。
3.已知集合A={x|2<x<5},集合B={x|-1<x<2},若集合A∪B内的元素个数为7,求x的取值范围。
解析:根据集合的概念和并集运算,得出x∈(-1,5)。
第Ⅱ卷
1.已知直线l1过点A(1,2)且斜率为2,直线l2过点B(-1,4)且垂直于l1,求直线l2的方程。
解析:根据垂直直线的性质和斜率的关系,得出直线l2的方程为y=-1/2x+3。
2.已知函数y=2sin(πx/3),求在区间[-3,3]上的最大值和最小值。
解析:根据三角函数的性质和周期性,得出在区间[-3,3]上的最大值为2和最小值为-2。
3.已知集合A中元素的平均值为4,方差为5,集合B中元素的平均值为6,方差为7,求A与B的混合平均值和混合方差。
解析:根据均值和方差的定义和运算规则,得出A与B的混合平均值为5和混合方差为6。
通过以上题目的讲解,我们可以看到2017年河南高考数学试卷中的一些题目,涉及到了数学知识的多个方面,考验了考生的运算和推理能力。
希望考生们通过认真复习和练习,取得优异的成绩,实现自己的高考梦想。
河南省专升本高等数学真题(带答案详解)
2009年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学注意事项:答题前,考生务必将自己的姓名、座位号、考生号涂写在答题卡上。
本试卷的试卷答案在答题卡上,答试卷上无效。
一、选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,有铅笔把答题卡上对应的题目的标号涂黑。
如需改动,用橡皮擦干净后,再涂其他答案标号.1.下列函数相等的是 ( )A.2x y x=,y x = B. y =y x =C.x y =,2y =D. y x =,y =【答案】D.解:注意函数的定义范围、解读式,应选D.2.下列函数中为奇函数的是 ( )A.e e ()2x xf x -+= B. ()tan f x x x =C. ()ln(f x x =D. ()1x f x x=- 【答案】C.解:()ln(f x x -=-,()()ln(ln(ln10f x f x x x +-=-+==()()f x f x -=-,选C.3.极限11lim1x x x →--的值是( ) A.1B.1- C.0 D.不存在 【答案】D. 解:11lim 11x x x +→-=-,11lim 11x x x -→-=--,应选D.4.当0x →时,下列无穷小量中与x 等价是( )A.22x x - C. ln(1)x + D.2sin x【答案】C.解:由等价无穷小量公式,应选C.5.设e 1()x f x x-=,则0=x 是()f x 的 ( )A.连续点B.可去间断点C.跳跃间断点D.无穷间断点 【答案】B.解:00e 1lim ()lim1x x x f x x→→-==⇒0=x 是)(x f 的可去间断点,应选B. 6. 已知函数()f x 可导,且0(1)(1)lim12x f f x x→--=-,则(1)f '= ( )A. 2B. -1C.1D.-2 【答案】D. 解:0(1)(1)1lim(1)1(1)222x f f x f f x →--''==-⇒=-,应选D.7.设()f x 具有四阶导数且()f x ''=(4)()f x = ()AB C .1 D .3214x --【答案】D. 解:1(3)21()2fx x -=,(4)()f x =3214x --,应选D.8.曲线sin 2cos y t x t=⎧⎨=⎩在π4t =对应点处的法线方程( )A.2x =B.1y =C.1y x =+D.1y x =- 【答案】A.解:0d 2cos 20d sin 2y t k x x x t =⇒=⇒==切,应选A. 9.已知d e ()e d x xf x x -⎡⎤=⎣⎦,且(0)0f =,则()f x =( ) A .2e e x x + B. 2e e x x - C. 2e e x x -+ D. 2e e x x -- 【答案】B.解:由d e ()e d x x f x x -⎡⎤=⎣⎦得 2d e ()d(e )e ()e ()e e x x x x x x f x f x C f x C --⎡⎤=⇒=+⇒=+⎣⎦, 把(0)0f =代入得1C =-,所以2()e e x x f x =-,应选B. 10.函数在某点处连续是其在该点处可导的( )A. 必要条件B. 充分条件C. 充分必要条件D. 无关条件 【答案】A.解:根据可导与连续的关系知,应选A.11.曲线42246y x x x =-+的凸区间为 ( ) A.(2,2)- B.(,0)-∞ C.(0,)+∞ D. (,)-∞+∞ 【答案】A.解:34486y x x '=-+,212480(2,2)y x x ''=-<⇒∈-,应选A.12.设e xy x=( )A.仅有水平渐近线B.既有水平又有垂直渐近线C.仅有垂直渐近线D.既无水平又无垂直渐近线 【答案】B.解:e lim0x x x →-∞=,0e lim xx x→=∞,应选B. 13.下列说法正确的是 ( )A. 函数的极值点一定是函数的驻点B. 函数的驻点一定是函数的极值点C. 二阶导数非零的驻点一定是极值点D. 以上说法都不对 【 答案】D.解:根据极值点与驻点的关系和第二充分条件,应选D.14. 设函数()f x 在[,]a b 连续,且不是常数函数,若()()f a f b =,则在(,)a b 内 ( )A. 必有最大值或最小值B.既有最大值又有最小值C.既有极大值又有极小值D.至少存在一点ξ,使()0f ξ'= 【答案】A.解:根据连续函数在闭区间上的性质及()()f a f b =的条件,在对应的开区间内至少有一个最值,应选A.15.若()f x 的一个原函数为ln x ,则()f x '=( )A. 1xB.21x- C.ln x D.ln x x【答案】B.解:()1()ln f x x x '==⇒21()f x x'=-,应选B.16.若2()f x dx x C =+⎰,则2(1)xf x dx -=⎰( ) A. 222(1)x C --+ B. 222(1)x C -+C. 221(1)2x C --+D. 221(1)2x C -+【答案】C. 解:2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰=221(1)2x C --+,应选C. 17.下列不等式不成立的是( )A. 22211ln (ln )xdx x dx >⎰⎰ B. 220sin xdx xdx ππ<⎰⎰C. 220ln(1)x dx xdx +<⎰⎰ D.22(1)x e dx x dx <+⎰⎰【答案】D.解:根据定积分的保序性定理,应有22(1)x e dx x dx ≥+⎰⎰,应选D.18.1ln eex dx ⎰= ( )A.111ln ln e exdx xdx +⎰⎰ B.111ln ln eexdx xdx -⎰⎰C. 111ln ln e exdx xdx -+⎰⎰ D.111ln ln eexdx xdx --⎰⎰【答案】C.解:因1ln ,1|ln |ln ,1x x x ex x e⎧-≤≤⎪=⎨⎪≤≤⎩,考察积分的可加性有 1111ln ln ln eeeexdx xdx xdx =-+⎰⎰⎰,应选C.19.下列广义积分收敛的是( )A.ln ex dx x +∞⎰B.1ln e dx x x +∞⎰ C.21(ln )e dx x x +∞⎰D.e +∞⎰ 【答案】C.解:由广义积分性质和结论可知:21(ln )edx x x +∞⎰是2p =的积分,收敛的,应选C. 20.方程220x y z +-=在空间直角坐标系中表示的曲面是 ( ) A.球面 B.圆锥面C. 旋转抛物面D.圆柱面 【答案】C.解:根据方程的特点是抛物面,又因两个平方项的系数相等,从而方程220x y z +-=在空间直角坐标系中表示的曲面是旋转抛物面,应选C.21. 设{}1,1,2a =-,{}2,0,1b =,则a 与b 的夹角为 ( ) A .0 B .6π C .4π D .2π 【答案】D.解:0(,)2a b a b a b π=⇒⊥⇒=,应选D.22.直线34273x y z++==--与平面4223x y z --=的位置关系是 ( ) A.平行但直线不在平面内 B.直线在平面内 C. 垂直 D.相交但不垂直 【答案】A.解:因{}2,7,3s =--,{}4,2,20n s n s n =--⇒⋅=⇒⊥⇒直线在平面内或平行但直线不在平面内.又直线上点(3,4,0)--不在平面内.故直线与平面的位置关系是平行但直线不在平面内,应选A.23.设(,)f x y 在点(,)a b 处有偏导数,则0(,)(,)limh f a h b f a h b h→+--=( )A.0B.2(,)x f a b 'C.(,)x f a b 'D.(,)y f a b ' 【答案】B. 解:原式00(,)(,)(,)(,)limlimh h f a h b f a b f a h b f a b h h→→+---=- 00(,)(,)(,)(,)limlim 2(,)x h h f a h b f a b f a h b f a b f a b h h→-→+---'=+=- 应选B. 24.函数x yz x y+=-的全微dz =() A .22()()xdx ydy x y -- B .22()()ydy xdx x y -- C .22()()ydx xdy x y --D .22()()xdy ydx x y --【答案】D 解:22()()()()2()()()x y x y d x y x y d x y xdy ydx z dz x y x y x y +-+-+--=⇒==---,应选D25.0(,)ady f x y dx ⎰化为极坐标形式为( )A .20(cos ,sin )ad f r r rdr πθθθ⎰⎰B .2cos 0(cos ,sin )d f r r rdr πθθθθ⎰⎰C .sin 20(cos ,sin )a d f r r rdr πθθθθ⎰⎰D .20(cos ,sin )ad f r r rdrπθθθ⎰⎰【答案】D.解:积分区域{(,)|0,0(,)|0,02x y y a x r r a πθθ⎧⎫≤≤≤≤=≤≤≤≤⎨⎬⎩⎭有(,)ady f x y dx ⎰2(cos ,sin )ad f r r rdr πθθθ=⎰⎰,应选D.26.设L 是以A(-1,0),B(-3,2),C(3,0)为顶点的三角形区域的边界,方向为ABCA,则(3)(2)Lx y dx x y dy -+-=⎰A.-8B.0 C 8 D.20 【答案】A.解:由格林公式知,(3)(2)228LDx y dx x y dy d S σ∆-+-=-=-=-⎰⎰⎰,应选A.27.下列微分方程中,可分离变量的是 ( ) A .tan dy y ydx x x=+ B .22()20x y dx xydy +-= C .220x y x dx e dy y ++=D . 2x dyy e dx+= 【答案】C.解:根据可分离变量微分的特点,220x y x dx e dy y++=可化为 22y x ye dy xe dx -=-知,应选C.28.若级数1n n u ∞=∑收敛,则下列级数收敛的是( )A .110nn u ∞=∑ B .1(10)n n u ∞=+∑C .110n n u ∞=∑D . 1(10)n n u ∞=-∑【答案】A.解:由级数收敛的性质知,110nn u ∞=∑收敛,其他三个一定发散,应选A. 29.函数()ln(1)f x x =-的幂级数展开为( )A .23,1123x x x x +++-<≤ B .23,1123x x x x -+--<≤C .23,1123x x x x -----≤< D . 23,1123x x x x -+-+-≤<【答案】C.解:根据23ln(1),1123x x x x x +=-+--<≤可知,23ln(1),1123x x x x x -=-----≤<,应选C.30.级数1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处 ( )A .条件收敛B .绝对收敛C .发散D .无法确定 【答案】B.解:令1x t -=,级数1(1)nn n a x ∞=-∑化为1n n n a t ∞=∑,问题转化为:2t =-处收敛,确定1t =处是否收敛.由阿贝尔定理知是绝对收敛的,故应选B.二、填空题(每小题2分,共30分)31.已知()1xf x x=-,则[()]______f f x =. 解:()1[()](1,)1()122f x x f f x x x f x x ==≠≠--.32.当0x →时,()f x 与1cos x -等价,则0()lim_______sin x f x x x→=. 解:2211cos ()1cos 2220sin 00()1cos 12lim lim lim sin 2x x f x x x x x x x x f x x x x x x --→→→-==============. 33.若2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则_______a =. 解:因2223()221lim 12lim lim 1lim 1x xa axa x a x x a x x a a x a a x a e x x e x a e a a x x ⋅→∞-→∞→∞⋅--→∞⎛⎫⎛⎫++ ⎪ ⎪+⎛⎫⎝⎭⎝⎭==== ⎪-⎝⎭⎛⎫⎛⎫- ⎪- ⎪⎝⎭⎝⎭,所以有 38a e =ln 2a ⇒=.34.设函数sin ,0(),0xx f x x a x ⎧≠⎪=⎨⎪=⎩在(,)-∞+∞内处处连续,则_______a =.解:函数在(,)-∞+∞内处处连续,当然在0x =处一定连续,又因为0sin lim ()lim1;(0)x x x f x f a x→→===,所以0lim ()(0)1x f x f a →=⇒=.35.曲线31xy x=+在(2,2)点处的切线方程为___________. 解:因2231340(1)3x y k y x y x =''=⇒==⇒-+=+. 36.函数2()2f x x x =--在区间[0,2]上使用拉格朗日中值定理结论中____ξ=. 解:(2)(0)()2121120f f f x x ξξ-'=-⇒-=⇒=-.37.函数()f x x =的单调减少区间是 _________.解:1()100,4f x x ⎛⎫'=<⇒∈ ⎪⎝⎭,应填10,4⎛⎫ ⎪⎝⎭或10,4⎡⎤⎢⎥⎣⎦或10,4⎡⎫⎪⎢⎣⎭或10,4⎛⎤⎥⎝⎦. 38.已知(0)2,(2)3,(2)4,f f f '===则20()______xf x dx ''=⎰.解:222200()()()()2(2)(2)(0)7xf x dx xdf x xf x f x dx f f f ''''''==-=-+=⎰⎰⎰.39.设向量b 与}{1,2,3a =-共线,且56a b ⋅=,则b =_________. 解:因向量b 与a 共线,b 可设为{},2,3k k k -,5649564a b k k k k ⋅=⇒++=⇒=,所以{}4,8,12b =-.40.设22x y z e +=,则22zx∂=∂_______.解:22222222222(12)x y x y x y z z z exe x e x x+++∂∂=⇒=⇒=+∂∂. 41.函数22(,)22f x y x xy y =+-的驻点为________.解:40(,)(0,0)40fx y x x y f x y y∂⎧=+=⎪∂⎪⇒=⎨∂⎪=-=∂⎪⎩.42.区域D 为229x y +≤,则2______Dx yd σ=⎰⎰.解:利用对称性知其值为0或232420cos sin 0Dx yd d r dr πσθθθ==⎰⎰⎰⎰.43.交换积分次序后,1(,)_____________xdx f x y dy =⎰.解:积分区域{{}2(,)|01,(,)|01,D x y x x y x y y y x y =≤≤≤≤=≤≤≤≤,则有21100(,)(,)yxydx f x y dy dy f x y dx =⎰⎰⎰.44.14x y xe -=-是23x y y y e -'''--=的特解,则该方程的通解为_________.解:230y y y '''--=的通解为312x x y C e C e -=+,根据方程解的结构,原方程的通解为31214x x x y C e C e xe --=+-.45.已知级数1n n u ∞=∑的部分和3n S n =,则当2n ≥时,_______n u =.解:当2n ≥时,3321(1)331n n n u S S n n n n -=-=--=-+.三、计算题(每小题5分,共40分)46.求011lim 1x x x e →⎛⎫- ⎪-⎝⎭.解:20001111lim lim lim 1(1)x x x x x x x e x e x x e x e x →→→----⎛⎫-== ⎪--⎝⎭0011lim lim 222x x x e x x x →→-===. 47.设()y y x =是由方程ln sin 2xy e y x x +=确定的隐函数,求dxdy . 解:方程两边对x 求导得()ln 2cos 2xy ye xy y x x x''++= 即()ln 2cos 2xy e x y xy y y x x x x ''+++=2(ln )2cos 2xy xy x e x x y x x e xy y'+=--所以dydx=22cos 2ln xy xy x x e xy y y x e x x --'=+.48.已知2()x xf x dx e C -=+⎰,求1()dx f x ⎰. 解:方程2()x xf x dx e C -=+⎰两边对x 求导得2()2xxf x e-=-,即22()xe f x x--=,所以211()2x xe f x =-. 故22111()24x x dx xe dx xde f x =-=-⎰⎰⎰ 222211114448x x x x xe e dx xe e C =-+=-++⎰.49.求定积分44|(1)|x x dx --⎰.解:4014441|(1)||(1)||(1)||(1)|x x dx x x dx x x dx x x dx ---=-+-+-⎰⎰⎰⎰01441(1)(1)(1)x x dx x x dx x x dx -=-+-+-⎰⎰⎰14322332401322332x x x x x x -⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 641164118843323332=++-+--+=. 50.已知22x xy y z e +-= 求全微分dz .解:因222222()(2)x xy y x xy y x ze x xy y e x y x+-+-∂'=+-=+∂, 222222()(2)x xy y x xy y y ze x xy y e x y y+-+-∂'=+-=-∂, 且它们在定义域都连续,从而函数22xxy y z e +-=可微,并有z zdz dx dy x y∂∂=+∂∂22[(2)(2)]x xy y e x y dx x y dy +-=++-. 51.求(2)Dx y d σ+⎰⎰,其中区域D 由直线,2,2y x y x y ===围成.yx =解:积分区域D 如图所示: 把D 看作Y 型区域,且有(,)|02,2y D x y y x y ⎧⎫=≤≤≤≤⎨⎬⎩⎭故有202(2)(2)yy Dx y d dy x y dx σ+=+⎰⎰⎰⎰2222025()4yy x xy dy y dy =+=⎰⎰230510123y ==. 52.求微分方程22x y xy xe -'-=的通解. 解:这是一阶线性非齐次微分方程,它对应的齐次微分方程20y xy '-=的通解为2x y Ce =, 设原方程的解为2()x y C x e =代入方程得22()x x C x e xe -'=, 即有22()x C x xe -'=,所以222222211()(2)44x x x C x xe dx e d x e C ---==--=-+⎰⎰, 故原方程的通解为2214x x y e Ce -=-+.53.求幂级数212nnn n x ∞=∑的收敛区间(考虑区间端点). 解:这是规范缺项的幂级数,考察正项级数212nnn n x ∞=∑, 因221112lim lim 22n n n n n nu n x l x u n ++→∞→∞+==⨯=,当212x l =<,即||x <212n n n nx ∞=∑是绝对收敛的; 当212x l =>,即||x >212n n n nx ∞=∑是发散的; 当212x l ==,即x =212nn n n x ∞=∑化为1n n ∞=∑,显然是发散的。
2017成人高考专升本《高等数学》真题及参考答案评分标准
2017年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.当0→x 时,下列变量是无穷小量的为()A.21x B.x2 C.xsin D.()e x +ln 2.=⎪⎭⎫ ⎝⎛+→xx x 21lim 0()A.eB.1-e C.2e D.2-e 3.若函数()⎪⎩⎪⎨⎧=≠=-0,0,21x a x e x f x,在x=0处连续,则常数a=()A.0B.21 C.1 D.24.设函数()x x x f ln =,则()='e f ()A.-1B.0C.1D.25.函数()x x x f 33-=的极小值为()A.-2B.0C.2D.46.方程132222=++z y x 表示的二次曲面是()A.圆锥面B.旋转抛物面C.球面D.椭球面7.若()1210=+⎰dx k x ,则常数=k ()A.-2B.-1C.0D.18.设函数()x f 在[]b a ,上连续且()0>x f ,则()A.()0>dx x f ba ⎰ B.()0<dx x f ba ⎰C.()0=⎰dx x f ba D.()dx x f ba ⎰的符号无法确定9.空间直线231231-=-+=-z y x 的方向向量可取为()A.(3,-1,2)B.(1,-2,3)C.(1,1,-1)D.(1,-1,-1)10.一直a 为常数,则幂级数()∑∞=+-121n nan ()A.发散B.条件收敛C.绝对收敛D.敛散性与a 的取值有关二、填空题:11~20小题,每小题4分,共40分。
将答案填写在答题卡相应题号后。
11.()=--→2sin 2lim2x x x _________12.曲线121++=x x y 的水平渐进方程为_________13.若函数()x f 满足()21='f ,则()()=--→11lim 21x f x f x _________14.设函数()xx x f 1-=,则()='x f _______15.()⎰-=+22cos sin ππdx x x _______16.⎰+∞=+0211dx x __________17.一直曲线22-+=x x y 的切线l 斜率为3,则l 的方程为_________18.设二元函数()y x z +=2ln ,则=∂∂xz_________19.设()x f 为连续函数,则()='⎪⎭⎫ ⎝⎛⎰xdt t f 0__________20.幂级数∑∞=03n n nx 的收敛半径为_________三、解答题:21~28题,共70分,接答应写出推理、演算步骤21.求201sin limx x e x x --→22.设⎪⎩⎪⎨⎧+=+=3211ty tx ,求dx dy 23.已知x sin 是()x f 的一个原函数,求()⎰'dxx f x24.计算dx x⎰+41125.设二元函数122+-+=y x y x z ,求yx zx z ∂∂∂∂∂2及26.计算二重积分⎰⎰+Ddxdy y x 22,其中区域(){}4,22≤+=y x y x D27.求微分方程2x dxdyy的通解28.用铁皮做一个容积为V 的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小2017年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】C【解析】00sin sin lim 0==→x x 2.【答案】C【解析】222021lim 21lim e x x xx xx =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+⋅→→3.【答案】B【解析】因为函数()x f 在0=x 处连续,则()()21021lim lim 00====-→→f a e x f x x x 4.【答案】D【解析】因为()()1ln ln ln +='+='x x x x x f ,所以()21ln =+='e e f 5.【答案】A【解析】因为()332-='x x f ,令()0='x f ,得驻点11-=x ,12=x ,又()x x f 6=''()0<61-=-''f ,()0>61=''f ,所以()x f 在12=x 处取得极小值,且极小值()2311-=-=f 6.【答案】D【解析】可将原方程化为13121222=++z y x ,所以原方程表示的是椭球面。
2017年河南省普通高等学校专升本考试试题及答案
2017年河南省普通高等学校专升本考试试题及答案管理学一、选择题(每小题1分,共40分。
在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑)1.管理的核心是()A.处理组织内部资源的稀缺问题B.处理与组织外部的关系C.处理组织内部与组织外部的一致性关系D.处理各种人际关系2.首先提出目标管理的是()A.孔茨B.巴纳德C.德鲁克D.西蒙3.管理者必须因地制宜地将管理知识与具体管理活动相结合,这里强调的是()A.管理的科学性B.管理的艺术性C.管理学的历史性D.管理学的实用性4.管理层次产生的主要原因是()A.职能分工的要求B.部门划分的需要C.权责明确的需要D.管理宽度的限制5.有那样一些因素,如果得到满足则感到满意,得不到满足则没有满意感。
赫茨伯格将这类因素称为()A.保健因素B.精神因素C.物质因素D.激励因素6.下列按创新方式划分的领导类型是()A.民主式领导B.魅力型领导C.战略型领导D.事务型领导7.质量管理之父是()A.戴明和朱兰B.卢因C.马斯洛D.亚当斯8.管理人员选聘时不需要作为主要考虑标准的是()A.管理的欲望B.冒险的精神C.强健的体魄D.沟通的技能9.最早提出组织生命周期理论的是()A.葛瑞纳B.奎因C.卡梅隆D.佩罗10.内部招聘的最主要的缺点是()A.知识水平可能不够高B.引起同事不满C.要花很长时间重新了解企业状况D.有历史包袱,不能迅速展开工作11.规章制度属于企业文化中的()A.上层文化B.中层文化C.表层文化D.深层文化12.领导的核心是()A.协调B.能力C.控制D.权力13.头脑风暴法的创始人是心理学家()A.奥斯本B.西蒙C.纽曼D.卢桑斯14.科学管理理论是古典管理理论之一,科学管理的中心问题是()A.提高工人的劳动积极性B.提高劳动生产率C.制定科学的作业方法D.实行有差别的计件工资制15.在计划工作中,制定“弹性计划”是运用计划工作的()A.改变航道原理B.许诺原理C.限定因素原理D.灵活性原理16.以下和企业管理人员需要量无关的因素是()A.人员的流动率B.组织的规模C.企业的产品数量D.组织发展的需要17.我们通常所说的“小道消息”属于()A.下行沟通B.双向沟通C.非正式沟通D.用含蓄形式进行沟通18.质量处李处长在生产现场中发现一个工人没有按照作业规范操作,他立即上前去制止。
河南2017高考数学真题
河南2017高考数学真题
2017年,河南省的高中毕业生们经历了一场紧张的高考,其中数学科目一直是考生们普遍认为难度较大的科目之一。
在这次高考中,数学科目的试题设计依旧延续了高考的特点和难度,考查了考生们在数学知识点掌握和解题能力方面的综合运用。
第一部分是选择题部分,其中既有基础题也有较难题目,要求考生们在有限的时间内准确地选择出正确答案。
这部分试题主要考察考生对基本概念和基本计算方法的掌握情况,要求考生们具备较强的思维逻辑和计算能力。
第二部分是填空题部分,这一部分试题往往需要考生们比较深入的思考和逻辑推理,需要在较短的时间内给出问题的解决方案。
填空题的考查范围广泛,不仅需要掌握基本的计算方法,还需要考生们在解题过程中进行灵活的思维运用。
第三部分是解答题部分,这一部分包含了一些较为复杂和较难的问题,需要考生们在有限的时间内通过分析和推理来得出问题的解决方案。
解答题的考查点涉及到多个知识领域,要求考生们具备较强的综合运用和解题能力。
总体而言,河南2017年高考数学试题难度适中,对考生的综合素质要求较高。
考生们在备考过程中应多做真题和模拟题,提高解题速度和准确率,增强解题的逻辑思维和推理能力,以应对高考数学科目的挑战。
希望广大考生能够在高考中取得优异成绩,实现自己的人生梦想。
2017河南数学高考真题
2017河南数学高考真题2017年河南数学高考真题2017年河南省高考数学真题,一直备受关注。
在备战高考的道路上,数学一直是考生们最重要、最需要关注的科目之一。
下面,我们就一起来分析一下2017年河南数学高考的真题,希望对大家有所帮助。
题目一:已知点A(x, y)在直线3x - 4y + 7 = 0上,又点A与点B(7, 3)的距离为5,求点A的坐标。
解析:首先,根据题意,点A在直线3x - 4y + 7 = 0上,可得出点A的坐标应满足这个方程。
然后,点A与点B(7, 3)的距离为5,利用两点间距离公式,可以列出一个等式。
将两个条件联立,解方程可求出点A的坐标。
题目二:已知函数f(x) = 2x^2 + 3x - 5,g(x) = x^2 - 4x + 3,求函数f(x)与g(x)的和差积商。
解析:根据题目,分别计算函数f(x)与g(x)的和、差、积、商即可。
将两个函数相应的部分相加、相减、相乘、相除,最后得出结果。
题目三:一杯子内水平放置一根圆柱形磁铁,磁铁直径为4cm,高为8cm,磁铁的南极与杯底上一点的距离为6cm。
若该杯中注满水后,水面此点正上方的水平距离与水平面的夹角α满足tanα = 2/3,则α的弧度值为?解析:这道题考查圆柱形磁铁在水中的情况,需要运用三角函数知识。
首先,求出磁铁中心到杯底上一点的距离,然后求出该点到水平面的距离。
之后,利用给出的条件,结合三角函数的性质,计算出所求的角度的弧度值。
通过以上分析,我们可以看出2017年河南数学高考真题难度适中,考查了考生的基础知识和解题能力。
希望考生们认真复习,充分准备,取得优异的成绩!愿各位考生都能在高考中取得理想的成绩,实现自己的人生目标。
祝愿大家旗开得胜,前程似锦!。
(完整版)年河南专升本高等数学考试真题
2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上。
本试卷的试题答案必须答在答题卡上,答在试卷上无效。
一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标 号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
1.设函数)(x f 的定义域为区间(1,1]-,则函数(1)e f x -的定义域为A .[2,2]-B .(1, 1]-C .(2, 0]-D .(0, 2]2.若()f x ()x R ∈为奇函数,则下列函数为偶函数的是A .()y x =,[1, 1]x ∈-B .3()tan y xf x x =+,(π, π)x ∈-C .3sin ()y x x f x =-,[1, 1]x ∈-D .25()e sin x y f x x =,[π, π]x ∈- 3.当0→x 时,2e 1x -是sin3x 的A .低阶无穷小B .高阶无穷小C .等价无穷小D .同阶非等价无穷小4.设函数2511sin , 0()e , 0xx x x f x x ⎧>⎪=⎨⎪<⎩,则0x =是)(x f 的 A .可去间断点 B .跳跃间断点 C .连续点D .第二类间断点5.下列方程在区间(0, 1)内至少有一个实根的为A .220x +=B .sin 1πx =-C .32520x x +-=D .21arctan 0x x ++=6.函数)(x f 在点0x x =处可导,且1)(0-='x f ,则000()(3)lim 2h f x f x h h →-+=A .23B .23-C .32-D .327.曲线x x y ln =的平行于直线01=+-y x 的切线方程是A .1-=x yB .)1(+-=x yC .1y x =-+D .)1)(1(ln -+=x x y 8.设函数π2sin 5y =,则='y A.π2cos 5-B.CD.2πcos 55-9.若函数()f x 满足2d ()2sin d f x x x x =-,则()f x =A .2cos xB .2cos xC +C .2sin x C +D .2cos x C -+10.d e sin(12)d d b xa x x x--=⎰ A .e sin(12)x x -- B .e sin(12)d x x x -- C .e sin(12)x x C --+D .011.若()()f x f x -=,在区间(0, )+∞内,()0f x '>,()0f x ''>,则()f x 在区间(, 0)-∞内A .()0f x '<,()0f x ''<B .()0f x '>,()0f x ''>C .()0f x '>,()0f x ''<D .()0f x '<,()0f x ''>12.若函数()f x 在区间(, )a b 内连续,在点0x 处不可导,0(, )x a b ∈,则A .0x 是()f x 的极大值点B .0x 是()f x 的极小值点C .0x 不是()f x 的极值点D .0x 可能是()f x 的极值点13.曲线e x y x -=的拐点为A .1x =B .2x =C .222, e ⎛⎫ ⎪⎝⎭ D .11, e ⎛⎫ ⎪⎝⎭14.曲线2arctan 35xy x=+ A .仅有水平渐近线 B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线 15.若x cos 是)(x f 的一个原函数,则=⎰)(d x fA .sin x C -+B .sin xC +C .cos x C -+D .cos x C +16.设曲线()y f x =过点(0, 1),且在该曲线上任意一点(, )x y 处切线的斜率为e x x +,则=)(xf A .2e 2x x -B .2e 2x x +C .2e x x +D .2e x x -17.2 π4πsin d 1x xx x -=+⎰ A .2B .0C .1D .1-18.设)(x f 是连续函数,则2 ()d x af t t ⎰是A .)(x f 的一个原函数B .)(x f 的全体原函数C .)(22x xf 的一个原函数D .)(22x xf 的全体原函数19.下列广义积分收敛的是A. 1x +∞⎰B .2e ln d x x x +∞⎰C . 2e1d ln x x x+∞⎰D . 21d 1xx x+∞+⎰20.微分方程0)(224=-'+''y x y y x 的阶数是A .1B .2C .3D .421.已知向量{5, , 2}a x =-和{, 6, 4}b y =平行,则x 和y 的值分别为A .4-,5B .3-,10-C .4-,10-D .10-,3-22.平面1x y z ++=与平面2=-+z y x 的位置关系是A .重合B .平行C .垂直D .相交但不垂直23.下列方程在空间直角坐标系中表示的曲面为柱面的是A .221y z +=B .22z x y =+C .222z x y =+D .22z x y =-24.关于函数222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩下列表述错误的是A .(, )f x y 在点(0, 0)处连续B .(0, 0)0x f =C .(0, 0)0y f =D .(, )f x y 在点(0, 0)处不可微25.设函数)ln(y x y x z -=,则=∂∂yz A .)(y x y x - B .2ln()x x y y -- C .ln()()x y xy y x y -+- D .2ln()()x x y xy y x y ---- 26.累次积分 2d (, )d x f x y y ⎰⎰写成另一种次序的积分是A . 1 0 d (, )d yyy f x y x -⎰⎰B. 20 d (, )d y f x y x ⎰⎰C. 11d (,)d y f x y x -⎰⎰D. 1 1 11d (, )d y f x y x -⎰⎰27.设{(, )|D x y x =≤2, y ≤2},则⎰⎰=Dy x d dA .2B .16C .12D .428.若幂级数∑∞=0n nn x a 的收敛半径为R ,则幂级数∑∞=-02)2(n n n x a 的收敛区间为A.( B .(2, 2)R R -+C .(, )R R -D.(2 229.下列级数绝对收敛的是A .∑∞=-11)1(n nnB .∑∞=-1223)1(n n nnC .∑∞=-+-1121)1(n n n nD .∑∞=--1212)1(n nn n30.若幂级数0(3)n n n a x ∞=-∑在点1x =处发散,在点5x =处收敛,则在点0x =,2x =,4x =,6x =中使该级数发散的点的个数有A .0个B .1个C .2个D .3个二、填空题(每空2分,共20分)31.设(32)f x -的定义域为(3, 4]-,则)(x f 的定义域为________. 32.极限limx =________.33.设函数()(1)(2)(3)(4)f x x x x x =++--,则(4)()f x =________.34.设参数方程22 1 31x t y t =+⎧⎨=-⎩所确定的函数为()y y x =,则22d d yx =________. 35.(ln 1)d x x +=⎰________.36.点(3, 2, 1)-到平面10x y z ++-=的距离是________. 37.函数(1)x z y =+在点(1, 1)处的全微分d z =________.38.设L 为三个顶点分别为(0, 0),(1, 0)和(0, 1)的三角形边界,L 的方向为逆时针方向,则2322()d (3)d Lxy y x x y xy y -+-=⎰________.39.已知微分方程x ay y e =+'的一个特解为x x y e =,则a =________.40.级数03!nn n ∞=∑的和为________.三、计算题(每小题5分,共45分)41.求极限2040sin d (e 1)sin lim 1cos x x x t t x x x →⎛⎫- ⎪- ⎪- ⎪⎝⎭⎰.42.设由方程22e e y xy -=确定的函数为)(x y y =,求d d x yx=.43.求不定积分2xx . 44.求定积分( 2d x x ⎰.45.求过点(1, 2, 5)-且与直线213 3 x y z x y -+=⎧⎨-=⎩平行的直线方程.46.求函数x xy y x y x f 823),(22+-+=的极值. 47.将23()21xf x x x =+-展开成x 的幂级数. 48.计算二重积分Dσ,其中D 是由圆223x y +=所围成的闭区域. 49.求微分方程069=+'-''y y y 的通解. 四、应用题(每小题8分,共16分)50.要做一个容积为V 的圆柱形带盖容器,问它的高与底面半径的比值是多少时用料最省? 51.平面图形D 由曲线2x y =,直线x y -=2及x 轴所围成.求:(1)D 的面积;(2)D 绕x 轴旋转形成的旋转体的体积.五、证明题(9分)52.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且(0)0f =,(1)2f =.证明:在)1,0(内至少存在一点ξ,使得()21f ξξ'=+成立.新起点专升本提供。
河南省2017年专升本考试《高等数学》试题
河南省2017年普通高等学校专科毕业生进入本科阶段学习考试《高等数学》注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上。
本卷的试题答案必须答在答题卡上,答在卷上无效。
一、选择题(每小题2分,共60分。
在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。
不选、错选或多选者,该题无分1.函数x x y 3sin +=是()A.偶函数B.奇函数C.非奇非偶函数D.无法判断奇偶性2.函数()52-=x x f 的定义域是()A.()5,∞- B.()+∞,5 C.()()+∞⋃∞-,55, D.[)∞+,53.设函数x x y 3sin 5cos -=,则y '=()A.xx 3cos 35sin 5-- B.x x 3sin 35cos 5+C.x x 3sin 5cos - D.xx 3sin 5cos +4.设236y x z =,则yz∂∂=()A.2218y x B.y x 312 C.2318yx D.226yx 5.()⎥⎦⎤⎢⎣⎡+⎰x dt t t dx d 01ln =()A.()x x +1ln B.()x x +-1ln C.()1ln +x x D.()x x +1 6.设∑∞=1n n b 为正项级数,∑∞=12n na 收敛,则级数()nn n nb n a +-∑∞=211()A.条件收敛B.绝对收敛C.发散D.敛散性无法判断7.下列积分可以用牛顿-莱布尼茨公式进行计算的是()A.⎰20dxxe xB.⎰-2011dxxC.⎰e edx xx 1ln 1 D.dxx ⎰--112118.已知极限15sin lim 0=→xbxx ,则b 的值是()A.5B.1C.0D.519.定积分()⎰+12dx k x =2,则k 的值是()A.0B.1C.1- D.210.二元函数322xy x z +=,则yx z∂∂∂2=()A.x4 B.y2 C.23yD.23x11.极限3354lim x xx x +∞→的值是()A.4B.1C.2D.512.当0→x 时,下列无穷小量中阶数最高的是()A.2xB.xcos 1- C.11--x D.xx tan sin -13.函数3443xx y -=()A.在()1,∞-内是单调递减B.在()0,∞-内是单调递增C.在()∞+,0内是单调递减D.在()∞+,0内是单调递增14.x y cos =在闭区间⎥⎦⎤⎢⎣⎡-2,2ππ上符合罗尔中值定理结论的是ξ()题号一二三四五总分分值602050146150班级:姓名:准考证号:A.0B.4πC.2π D.4π-15.x 2cosπ的一个原函数是()A.x 2sin 2ππ B.x 2sin 2ππ C.x ππ2sin 2 D.2sin 2x π16.极限1cos 1lim 20--→x e x x =()A.∞B.2C.0D.2-17.⎪⎭⎫ ⎝⎛+→x x x x x 3sin 3sin lim 0()A.4B.2C.3D.118.设()11-=x xx f ,则1=x 是()x f 的()A.连续点B.无穷间断点C.跳跃间断点D.可去间断点19.当0→x 时,下列变量中与x 为等价无穷小量的是()A.x2sin B.()x 21ln + C.xx sin D.xx --+1120.向量→→+b a 2垂直于向量→→-b a 4,向量→→+b a 4垂直于向量→→-b a 2,则向量→a 与向量→b 之间的夹角是()A.0B.4π C.2π D.6π21.设()()0,0,<''<'<<x f x f b x a ,在区间()b a ,内,函数()x f y =的图形()A.沿x 轴正向下降且为凹的B.沿x 轴正向下降且为凸的C.沿x 轴正向上升且为凹的D.沿x 轴正向上升且为凸的22.“()x f ax →lim 存在”是“()x f 在a 连续”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也非必要条件23.曲线21x ey -=与直线1-=x 的交点为Q ,则曲线21x ey -=在点Q 处的切线方程是()A.022=--y xB.022=-+y x C.032=++y x D.032=+-y x 24.函数()1ln -=x x f 的导数是()A.()11-='x x f B.()11-='x x f C.()xx f -='11 D.不存在25.已知级数∑∞=1n na和级数∑∞=1n nb都是发散,则下列结论正确的是()A.()∑∞=+1n n nb a必发散 B.()∑∞=1n nn b a 必收敛C.()∑∞=+1n n nb a必发散D.()∑∞=+122n nn b a必发散26.设()⎪⎩⎪⎨⎧=≠=0,00,1sin 2x x xx x f ,则()x f 在0=x 处()A.极限不存在B.极限存在但不连续C.连续但不可导D.连续且可导27.设()x x x f cos =,则⎪⎭⎫⎝⎛'2πf =()A.21 B.1C.2π- D.π228.微分方程3x y y x +='的通解是()A.c x +33B.cx x +23C.cx x +43D.c x +4329.已知平面0131=+-+∏z y mx :与平面027:2=--∏z y x ,若21∏⊥∏,则m 的值是()A.71 B.71-C.7D.7-30.设0x 是函数()x f 的极值点,则下列命题正确的是()A.()00='x f B.()00≠'x f C.()00='x f 或()0x f '不存在 D.()0x f '不存在二、填空题(每小题2分,共20分)31.已知()212+=+x x f ,则()x f cos =_____________________________32.极限⎪⎪⎭⎫⎝⎛++++++∞→22212111lim n n n n n =_____________________33.已知函数x x y arctan =,则y ''=______________________34.设()12sin 3+=x y ,则y '=_________________________35.不定积分⎰xdx ex3cos 2=___________________________.36.定积分dx x ⎰3221=______________________________37.设直线pz y x 42311+=--=-与平面052=+--z y x 平行,则p =______________38.设xx ey cos =,则dy =________________________39.平行于向量()1,3,2=→u 的单位向量为__________________________40.设幂级数∑∞=1n nn x a 与nn n x b ∑∞=1的收敛半径分别是35与31,则幂级数nn nn x b a ∑∞=122的收敛半径是________________________三、计算题(每小题5分,共50分)41.求函数xye y x z +=22在点(1,1)处的全微分42.计算定积分dxe x ⎰1043.计算极限xx x 321lim ⎪⎭⎫⎝⎛+∞→44.计算不定积分dx x ⎰2cos245.求微分方程()y y x xy ='+2的通解46.求幂级数()111ln -∞=∑+n n x n n 的收敛域47.设函数()x f y =由方程()x y x y x sin ln 32+=+确定,求=x dxdy48.求曲线⎪⎩⎪⎨⎧==te y te x ttsin cos 在2π=t 处的法线方程49.设()0sin >=x xy x,求y '50.已知D 是由2x y =和2y x =所围成的闭区域,计算二重积分()⎰⎰+Ddxdyy x 四、应用题(每小题7分,共14分)51.欲围成一个面积为1502m 的矩形场地,所用材料的造价是正面6元/2m ,其余三面是3元/2m ,四面墙的高度相同,试问场地的长和宽各是多少米时,才能使所用材料费用最低?52.求由抛物线x y =22与直线42=-y x 所围成的平面图形的面积五、证明题(6分)53.已知函数()x f 在[]1,0上连续,在()1,0内可导,且()()11,00==f f ,证明:(1)存在()1,0∈ξ,使得()ξξ-=1f (2)存在两个不同的点()1,0∈μη,,使得()()1=''μηff。
2017河南专升本高等数学模拟试卷
BIL-2017年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试模拟试卷高等数学模拟题(一)A. x = l 为无穷间断点B. x = l,x = 2都是无穷间断点C. x = 2是可去间断点D. x = l 为可去间断点/ = 2为无穷间断点(凶,杷)说明:考试时间120分钟,试卷共150一、单项选择题(每小题2分,共60分。
在每个小题的备选答案中选出一个正 确答案,并将其代码写在题干后的括号内。
) 1.函数/(x ) = arcsin^-^--ln (4-x )定义域为()2A.[l,4)B.[l,5]C.[-2,2]D.[0,4]2.下列函数中为奇函数的是()A. f (x) - —sin 2 xB.y (x) = xtanx- cosxC. f (x) = ln(x + +1)D 项⑴=己1-x3.已知/'(/_:!)二§项,则<)A L 丄B.-X4.当XT O 时,下列是无穷小量的是(C.x-1 )D.-XA. sin —卩 sinx B.C.x xD.(3x 3-3x)sin-6.设 limXS '1一¥丫 =舟则^=()1 *丿A.3B. -3C.丄D.--337.下列方程在[0,1]有实根的有()A. sin x +J =。
B.x 2 +3x + l = 0C. arcsin x + 3 = 0D. x - sin x + — = 0 28.设7(x )是可导函数,且lim '3""g )=i,则尸(財=() 力一>ohA. 1B. 0C. 2D. S9.曲线x 2y + lny = l 在点(侦)处的切线斜率是() A. -2B. -1c ID. 010.下列函数在x = 0处可导的是( )A. ^ = |3sinx|B. y = 31nxC. y= 5xD. y = |6cosx| u *=”由参数方程c ,确定,则专=(X=1)33A. -B.-42C. f3 D. -e812. /W 在点气可导是/W 在点孔可微的()条件.A.充分B.必要c.充分必要D.以上都不对13,已知y = cosx ,则俨)=()5,设八中普%则下列说法正确的是()耶鲁专升本2017年高等数学模拟试卷A. sinxC. -sinxD. -cos%14.下列说法正确的是() A.函数的极值点一定是函数的驻点 B.函数的驻点一定是函数的极值点 C.二阶导数非零的驻点一定是极值点 D.以上说法都不对15.当*>此时,r (x )>o ;当工>气时,r (x )<o,则下列结论正确的是(A.JB. C. 1D-l22. 设乃疗2是y"+p (x )y+g (x )y = °的两个解,则y = =c x y v + c 2y 2 (冬。
河南省专升本高等数学真题(带答案详细讲解)
2009年省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学注意事项:答题前,考生务必将自己的、座位号、考生号涂写在答题卡上。
本试卷的试卷答案在答题卡上,答试卷上无效。
一、选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,有铅笔把答题卡上对应的题目的标号涂黑。
如需改动,用橡皮擦干净后,再涂其他答案标号.1.下列函数相等的是 ( )A.2x y x=,y x = B. y =y x =C.x y =,2y = D. y x =,y =【答案】D.解:注意函数的定义围、解读式,应选D.2.下列函数中为奇函数的是 ( )A.e e ()2x xf x -+= B. ()tan f x x x =C. ()ln(f x x =D. ()1x f x x=- 【答案】C.解:()ln(f x x -=-,()()ln(ln(ln10f x f x x x +-=-+==()()f x f x -=-,选C.3.极限11lim1x x x →--的值是( ) A.1B.1-C.0 D.不存在 【答案】D. 解:11lim 11x x x +→-=-,11lim 11x x x -→-=--,应选D.4.当0x →时,下列无穷小量中与x 等价是( )A.22x x - C. ln(1)x + D.2sin x【答案】C.解:由等价无穷小量公式,应选C.5.设e 1()x f x x-=,则0=x 是()f x 的 ( )A.连续点B.可去间断点C.跳跃间断点D.无穷间断点 【答案】B.解:00e 1lim ()lim1x x x f x x→→-==⇒0=x 是)(x f 的可去间断点,应选B. 6. 已知函数()f x 可导,且0(1)(1)lim12x f f x x→--=-,则(1)f '= ( )A. 2B. -1C.1D.-2 【答案】D. 解:0(1)(1)1lim(1)1(1)222x f f x f f x →--''==-⇒=-,应选D.7.设()f x 具有四阶导数且()f x ''=(4)()f x = ()AB .1 D .3214x --【答案】D. 解:1(3)21()2fx x -=,(4)()f x =3214x --,应选D.8.曲线sin 2cos y t x t=⎧⎨=⎩在π4t =对应点处的法线方程( )A.2x =B.1y =C.1y x =+D.1y x =- 【答案】A.解:0d 2cos 20d sin y t k x x x t =⇒=⇒==切,应选A. 9.已知d e ()e d x xf x x -⎡⎤=⎣⎦,且(0)0f =,则()f x =( )A .2e e x x + B. 2e e x x - C. 2e e x x -+ D. 2e e x x -- 【答案】B.解:由d e ()e d x x f x x -⎡⎤=⎣⎦得2d e ()d(e )e ()e ()e e x x x x x xf x f x C f x C --⎡⎤=⇒=+⇒=+⎣⎦, 把(0)0f =代入得1C =-,所以2()e e x x f x =-,应选B. 10.函数在某点处连续是其在该点处可导的( )A. 必要条件B. 充分条件C. 充分必要条件D. 无关条件 【答案】A.解:根据可导与连续的关系知,应选A.11.曲线42246y x x x =-+的凸区间为 ( ) A.(2,2)- B.(,0)-∞ C.(0,)+∞ D. (,)-∞+∞ 【答案】A.解:34486y x x '=-+,212480(2,2)y x x ''=-<⇒∈-,应选A.12.设e xy x=( )A.仅有水平渐近线B.既有水平又有垂直渐近线C.仅有垂直渐近线D.既无水平又无垂直渐近线 【答案】B.解:e lim0x x x →-∞=,0e lim xx x→=∞,应选B. 13.下列说确的是 ( ) A. 函数的极值点一定是函数的驻点 B. 函数的驻点一定是函数的极值点C. 二阶导数非零的驻点一定是极值点D. 以上说法都不对 【 答案】D.解:根据极值点与驻点的关系和第二充分条件,应选D.14. 设函数()f x 在[,]a b 连续,且不是常数函数,若()()f a f b =,则在(,)a b ( )A. 必有最大值或最小值B.既有最大值又有最小值C.既有极大值又有极小值D.至少存在一点ξ,使()0f ξ'= 【答案】A.解:根据连续函数在闭区间上的性质及()()f a f b =的条件,在对应的开区间至少有一个最值,应选A.15.若()f x 的一个原函数为ln x ,则()f x '=( )A.1x B.21x- C.ln x D.ln x x 【答案】B.解:()1()ln f x x x '==⇒21()f x x'=-,应选B.16.若2()f x dx x C =+⎰,则2(1)xf x dx -=⎰( ) A. 222(1)x C --+ B. 222(1)x C -+C. 221(1)2x C --+D. 221(1)2x C -+【答案】C. 解:2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰=221(1)2x C --+,应选C. 17.下列不等式不成立的是( )A. 22211ln (ln )xdx x dx >⎰⎰ B.220sin xdx xdx ππ<⎰⎰C.22ln(1)x dx xdx +<⎰⎰ D.22(1)x e dx x dx <+⎰⎰【答案】D.解:根据定积分的保序性定理,应有22(1)x e dx x dx ≥+⎰⎰,应选D.18.1ln eex dx ⎰= ( )A.111ln ln e exdx xdx +⎰⎰ B.111ln ln eexdx xdx -⎰⎰C. 111ln ln e exdx xdx -+⎰⎰ D.111ln ln eexdx xdx --⎰⎰【答案】C.解:因1ln ,1|ln |ln ,1x x x ex x e⎧-≤≤⎪=⎨⎪≤≤⎩,考察积分的可加性有 1111ln ln ln eeeexdx xdx xdx =-+⎰⎰⎰,应选C.19.下列广义积分收敛的是( )A.lnex dx x +∞⎰B.1ln e dx x x+∞⎰ C.21(ln )e dx x x +∞⎰ D.e +∞⎰ 【答案】C.解:由广义积分性质和结论可知:21(ln )edx x x +∞⎰是2p =的积分,收敛的,应选C.20.方程220x y z +-=在空间直角坐标系中表示的曲面是 ( ) A.球面 B.圆锥面C. 旋转抛物面D.圆柱面 【答案】C.解:根据方程的特点是抛物面,又因两个平方项的系数相等,从而方程220x y z +-=在空间直角坐标系中表示的曲面是旋转抛物面,应选C.21. 设{}1,1,2a =-r ,{}2,0,1b =r,则a r 与b r 的夹角为 ( )A .0B .6πC .4πD .2π 【答案】D.解:0(,)2a b a b a b π=⇒⊥⇒=r r r r r r g ,应选D.22.直线34273x y z++==--与平面4223x y z --=的位置关系是 ( ) A.平行但直线不在平面 B.直线在平面 C. 垂直 D.相交但不垂直 【答案】A.解:因{}2,7,3s =--r ,{}4,2,20n s n s n =--⇒⋅=⇒⊥⇒r r r r直线在平面或平行但直线不在平面.又直线上点(3,4,0)--不在平面.故直线与平面的位置关系是平行但直线不在平面,应选A.23.设(,)f x y 在点(,)a b 处有偏导数,则0(,)(,)limh f a h b f a h b h→+--=( )A.0B.2(,)x f a b 'C.(,)x f a b 'D.(,)y f a b ' 【答案】B. 解:原式00(,)(,)(,)(,)limlimh h f a h b f a b f a h b f a b h h→→+---=- 00(,)(,)(,)(,)limlim 2(,)x h h f a h b f a b f a h b f a b f a b h h→-→+---'=+=- 应选B. 24.函数x yz x y+=-的全微dz =() A .22()()xdx ydy x y -- B .22()()ydy xdx x y -- C .22()()ydx xdy x y --D .22()()xdy ydx x y --【答案】D 解:22()()()()2()()()x y x y d x y x y d x y xdy ydx z dz x y x y x y +-+-+--=⇒==---,应选D25.0(,)ady f x y dx ⎰化为极坐标形式为( )A .20(cos ,sin )ad f r r rdr πθθθ⎰⎰B .2cos 0(cos ,sin )d f r r rdr πθθθθ⎰⎰C .sin 20(cos ,sin )a d f r r rdr πθθθθ⎰⎰D .20(cos ,sin )ad f r r rdr πθθθ⎰⎰【答案】D.解:积分区域{(,)|0,0(,)|0,02x y y a x r r a πθθ⎧⎫≤≤≤≤=≤≤≤≤⎨⎬⎩⎭有(,)ady f x y dx ⎰2(cos ,sin )ad f r r rdr πθθθ=⎰⎰,应选D.26.设L 是以A(-1,0),B(-3,2),C(3,0)为顶点的三角形区域的边界,方向为ABCA,则(3)(2)Lx y dx x y dy -+-=⎰ÑA.-8B.0 C 8 D.20【答案】A.解:由格林公式知,(3)(2)228LDx y dx x y dy d S σ∆-+-=-=-=-⎰⎰⎰Ñ,应选A.27.下列微分方程中,可分离变量的是 ( ) A .tan dy y ydx x x=+ B .22()20x y dx xydy +-= C .220x y x dx e dy y ++=D . 2x dy y e dx+= 【答案】C.解:根据可分离变量微分的特点,220x y xdx e dy y++=可化为 22y x ye dy xe dx -=-知,应选C.28.若级数1n n u ∞=∑收敛,则下列级数收敛的是( )A .110nn u ∞=∑ B .1(10)n n u ∞=+∑C .110n nu ∞=∑D .1(10)nn u∞=-∑【答案】A.解:由级数收敛的性质知,110nn u ∞=∑收敛,其他三个一定发散,应选A. 29.函数()ln(1)f x x =-的幂级数展开为( )A .23,1123x x x x +++-<≤LB .23,1123x x x x -+--<≤LC .23,1123x x x x -----≤<LD . 23,1123x x x x -+-+-≤<L【答案】C.解:根据23ln(1),1123x x x x x +=-+--<≤L 可知,23ln(1),1123x x x x x -=-----≤<L ,应选C.30.级数1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处 ( )A .条件收敛B .绝对收敛C .发散D .无法确定 【答案】B.解:令1x t -=,级数1(1)nn n a x ∞=-∑化为1n n n a t ∞=∑,问题转化为:2t =-处收敛,确定1t =处是否收敛.由阿贝尔定理知是绝对收敛的,故应选B.二、填空题(每小题2分,共30分)31.已知()1xf x x=-,则[()]______f f x =. 解:()1[()](1,)1()122f x x f f x x x f x x ==≠≠--.32.当0x →时,()f x 与1cos x -等价,则0()lim_______sin x f x x x→=. 解:2211cos ()1cos 2220sin 00()1cos 12lim lim lim sin 2x x f x x x x x x x x f x x x x x x --→→→-==============:::. 33.若2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则_______a =. 解:因2223()221lim 12lim lim 1lim 1x xa axa x a x x a x x a a x a a x a e x x e x a e a a x x ⋅→∞-→∞→∞⋅--→∞⎛⎫⎛⎫++ ⎪ ⎪+⎛⎫⎝⎭⎝⎭==== ⎪-⎝⎭⎛⎫⎛⎫- ⎪- ⎪⎝⎭⎝⎭, 所以有 38a e =ln 2a ⇒=.34.设函数sin ,0(),0xx f x x a x ⎧≠⎪=⎨⎪=⎩在(,)-∞+∞处处连续,则_______a =.解:函数在(,)-∞+∞处处连续,当然在0x =处一定连续,又因为0sin lim ()lim1;(0)x x x f x f a x→→===,所以0lim ()(0)1x f x f a →=⇒=.35.曲线31xy x=+在(2,2)点处的切线方程为___________. 解:因2231340(1)3x y k y x y x =''=⇒==⇒-+=+. 36.函数2()2f x x x =--在区间[0,2]上使用拉格朗日中值定理结论中____ξ=. 解:(2)(0)()2121120f f f x x ξξ-'=-⇒-=⇒=-.37.函数()f x x =-的单调减少区间是 _________.解:1()100,4f x x ⎛⎫'=<⇒∈ ⎪⎝⎭,应填10,4⎛⎫ ⎪⎝⎭或10,4⎡⎤⎢⎥⎣⎦或10,4⎡⎫⎪⎢⎣⎭或10,4⎛⎤⎥⎝⎦. 38.已知(0)2,(2)3,(2)4,f f f '===则20()______xf x dx ''=⎰. 解:222200()()()()2(2)(2)(0)7xf x dx xdf x xf x f x dx f f f ''''''==-=-+=⎰⎰⎰.39.设向量b r 与}{1,2,3a =-r共线,且56a b ⋅=r r ,则b =r _________. 解:因向量b r 与a r共线,b r 可设为{},2,3k k k -,5649564a b k k k k ⋅=⇒++=⇒=rr ,所以{}4,8,12b =-r . 40.设22x y z e +=,则22zx∂=∂_______.解:22222222222(12)x y x y x y z z z exe x e x x+++∂∂=⇒=⇒=+∂∂. 41.函数22(,)22f x y x xy y =+-的驻点为________.解:40(,)(0,0)40fx y xx y f x y y∂⎧=+=⎪∂⎪⇒=⎨∂⎪=-=∂⎪⎩.42.区域D 为229x y +≤,则2______Dx yd σ=⎰⎰.解:利用对称性知其值为0或232420cos sin 0Dx yd d r dr πσθθθ==⎰⎰⎰⎰.43.交换积分次序后,10(,)_____________xdx f x y dy =⎰.解:积分区域{{}2(,)|01,(,)|01,D x y x x y x y y y x y =≤≤≤≤=≤≤≤≤,则有21100(,)(,)yxydx f x y dy dy f x y dx =⎰⎰⎰.44.14x y xe -=-是23x y y y e -'''--=的特解,则该方程的通解为_________.解:230y y y '''--=的通解为312x x y C e C e -=+,根据方程解的结构,原方程的通解为31214x x x y C e C e xe --=+-.45.已知级数1n n u ∞=∑的部分和3n S n =,则当2n ≥时,_______n u =.解:当2n ≥时,3321(1)331n n n u S S n n n n -=-=--=-+.三、计算题(每小题5分,共40分)46.求011lim 1x x x e →⎛⎫- ⎪-⎝⎭.解:20001111lim lim lim 1(1)x x x x x x x e x e x x e x e x →→→----⎛⎫-== ⎪--⎝⎭0011lim lim 222x x x e x x x →→-===. 47.设()y y x =是由方程ln sin 2xy e y x x +=确定的隐函数,求dxdy . 解:方程两边对x 求导得()ln 2cos 2xy ye xy y x x x''++= 即()ln 2cos 2xy e x y xy y y x x x x ''+++=2(ln )2cos 2xy xy x e x x y x x e xy y '+=--所以dydx=22cos 2ln xy xy x x e xy y y x e x x --'=+.48.已知2()x xf x dx e C -=+⎰,求1()dx f x ⎰. 解:方程2()x xf x dx e C -=+⎰两边对x 求导得2()2xxf x e-=-,即22()xe f x x--=,所以211()2x xe f x =-. 故22111()24x x dx xe dx xde f x =-=-⎰⎰⎰ 222211114448x x x x xe e dx xe e C =-+=-++⎰.49.求定积分44|(1)|x x dx --⎰.解:4014441|(1)||(1)||(1)||(1)|x x dx x x dx x x dx x x dx ---=-+-+-⎰⎰⎰⎰01441(1)(1)(1)x x dx x x dx x x dx -=-+-+-⎰⎰⎰14322332401322332x x x x x x -⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 641164118843323332=++-+--+=. 50.已知22x xy y z e +-= 求全微分dz .解:因222222()(2)x xy y x xy y x ze x xy y e x y x+-+-∂'=+-=+∂, 222222()(2)x xy y x xy y y ze x xy y e x y y+-+-∂'=+-=-∂, 且它们在定义域都连续,从而函数22xxy y z e +-=可微,并有z zdz dx dy x y∂∂=+∂∂22[(2)(2)]x xy y e x y dx x y dy +-=++-. 51.求(2)Dx y d σ+⎰⎰,其中区域D 由直线,2,2y x y x y ===围成.x x y =→=2yx =2解:积分区域D 如图所示: 把D 看作Y 型区域,且有(,)|02,2y D x y y x y ⎧⎫=≤≤≤≤⎨⎬⎩⎭故有22(2)(2)yy Dx y d dy x y dx σ+=+⎰⎰⎰⎰2222025()4yy x xy dy y dy =+=⎰⎰230510123y ==. 52.求微分方程22x y xy xe -'-=的通解. 解:这是一阶线性非齐次微分方程,它对应的齐次微分方程20y xy '-=的通解为2x y Ce =, 设原方程的解为2()x y C x e =代入方程得22()x x C x e xe -'=, 即有22()x C x xe -'=,所以222222211()(2)44x x x C x xe dx e d x e C ---==--=-+⎰⎰, 故原方程的通解为2214x x y e Ce -=-+.53.求幂级数212nn n n x ∞=∑的收敛区间(考虑区间端点). 解:这是规缺项的幂级数,考察正项级数212nn n n x ∞=∑, 因221112limlim 22n n n n n nu n x l x u n ++→∞→∞+==⨯=, 当212x l =<,即||x <212n n n nx ∞=∑是绝对收敛的; 当212x l =>,即||x >212n n n nx ∞=∑是发散的; 当212x l ==,即x =212nn n n x ∞=∑化为1n n ∞=∑,显然是发散的。
2017年河南省普通高等学校专升本考试试题及答案
2017年河南省普通高等学校专升本考试试题及答案管理学一、选择题(每小题1分,共40分。
在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑)1.管理的核心是()A.处理组织内部资源的稀缺问题B.处理与组织外部的关系C.处理组织内部与组织外部的一致性关系D.处理各种人际关系2.首先提出目标管理的是()A.孔茨B.巴纳德C.德鲁克D.西蒙3.管理者必须因地制宜地将管理知识与具体管理活动相结合,这里强调的是()A.管理的科学性B.管理的艺术性C.管理学的历史性D.管理学的实用性4.管理层次产生的主要原因是()A.职能分工的要求B.部门划分的需要C.权责明确的需要D.管理宽度的限制5.有那样一些因素,如果得到满足则感到满意,得不到满足则没有满意感。
赫茨伯格将这类因素称为()A.保健因素B.精神因素C.物质因素D.激励因素6.下列按创新方式划分的领导类型是()A.民主式领导B.魅力型领导C.战略型领导D.事务型领导7.质量管理之父是()A.戴明和朱兰B.卢因C.马斯洛D.亚当斯8.管理人员选聘时不需要作为主要考虑标准的是()A.管理的欲望B.冒险的精神C.强健的体魄D.沟通的技能9.最早提出组织生命周期理论的是()A.葛瑞纳B.奎因C.卡梅隆D.佩罗10.内部招聘的最主要的缺点是()A.知识水平可能不够高B.引起同事不满C.要花很长时间重新了解企业状况D.有历史包袱,不能迅速展开工作11.规章制度属于企业文化中的()A.上层文化B.中层文化C.表层文化D.深层文化12.领导的核心是()A.协调B.能力C.控制D.权力13.头脑风暴法的创始人是心理学家()A.奥斯本B.西蒙C.纽曼D.卢桑斯14.科学管理理论是古典管理理论之一,科学管理的中心问题是()A.提高工人的劳动积极性B.提高劳动生产率C.制定科学的作业方法D.实行有差别的计件工资制15.在计划工作中,制定“弹性计划”是运用计划工作的()A.改变航道原理B.许诺原理C.限定因素原理D.灵活性原理16.以下和企业管理人员需要量无关的因素是()A.人员的流动率B.组织的规模C.企业的产品数量D.组织发展的需要17.我们通常所说的“小道消息”属于()A.下行沟通B.双向沟通C.非正式沟通D.用含蓄形式进行沟通18.质量处李处长在生产现场中发现一个工人没有按照作业规范操作,他立即上前去制止。
2017年成人高考专升本高等数学(二)真题
12 0 2017 年成人高等学校招生全国统一考试专升本高等数学(二)一、选择题(1~10 小题,每小题 4 分,共 40 分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.当x → 0时,下列各无穷小量中与x 2等价的是()A. x sin 2xB. xcos 2xC. x sin xD. x cos x2.下列函数中,在x = 0处不可导的是( )A. y = 3√x 5B. y = 5√x 3C. y = sin x3.函数f (x ) = ln (x 2 + 2x + 2)的单调递减区间是 D. y = x 2()A .(−∞, −1)4.曲线y = x 3 − 3x 2 ( )A.(−∞, 1)5.曲线y = e 2x − 4x ( )A. 2x − y − 1 = 0 C. 2x − y + 1 = 06.∫ √x 3 dx =()C√x7.∫12x dx = ()A.ln2C.ln 2D.ln 28.设二元函数z = e x 2+y,则下列各式中正确的是()A.ðz = 2xe x2B.ðz = e yC.ðz= e x 2+yD. ðz= e x2+yðxðyðxðy9.二元函数z = x 2 + y 2 − 3x − 2y 的驻点坐标是( )3333A.(− 2 , −1)B. (− 2 , 1)C. (2 , −1)D. (2 , 1)10.甲、乙两人各自独立射击 1 次,甲射中目标的概率为 0.8,乙射中目标的概率为 0.9,则至少有一人射中目标的概率为 ( )A.0.98B.0.9C.0.8D.0.72二、填空题(11~20 小题,每小题 4 分,共 40 分)lim4x2+5x−8= 020.3x4+x2−211. .x→112. lim x= .x→0 ln (3x+1)13.曲线y = x+1的铅直渐近线方程是.2(x−1)14.设函数f(x) = sin (1 −x),则f"(1) = .π15.∫2 cos3xdx = .+∞ 116.∫1x2dx = .17.若tanx是f(x)的一个原函数,则∫f(x)dx = .18.由曲线y = x3,直线x=1,x 轴围成的平面有界区域的面积为.19.设二元函数z =设y = y(x)三、解答题(21.(本题满分8求lim xsinx.x→0 1−cosx22.(本题满分8 分)已知函数f(x) = cos (2x + 1),求f′′′(0).23.(本题满分 8 分)3(1+3√x ).24.(本题满分 8 分) 计算∫125.求 X 的数学期望 EX 及方差 DX.26.(本题满分 10 分) 已知函数f (x ) = x 4 − 4x + 1.计算(1)求f(x)的单调区间和极值;(2)求曲线y = f(x)的凹凸区间.27.(本题满分10 分)记曲线y = 1x2 + 1与直线y = 2所围成的平面图形2 2为D(如图中阴影部门所示).(1)求D 的面积S;(2)求D 绕y 轴旋转一周所得旋转体的体积V.28.(本题满分10 分)设z = u,其中u = x2y,v = x + y2 ,求ðz,ðz及dz.vðxðy122017 年成人高等学校招生全国统一考试专升本高等数学(二)参考答案一、选择题(每小题 4 分,共 40 分)1.C2.B3.A4.A5.B6.B7.C8.D9.D 10.A二、填空题(每小题 4 分,共 40 分)11.2112.313.x = 1 14.015.− 316.117.tanx + C1 18.419.2√2dx + √2 dy120.e y −1三、解答题(共21.limxsinxx→0 1−c o s x= limcosx +cosx−xsinxx→0= 2cosx22.因为f (x ) = cos (2x + 1),所以 f ′(x ) = −2sin (2x + 1), f ′′(x ) = −4cos (2x + 1), f ′′′(x ) = 8sin (2x + 1), f ′′′(0) = 8sin1 .23.令3√x = t ,x = t 3,dx = 3t 2dt .∫∫ ∫∫ ∫ 22 3(1+3√x )dx = 3t 23(1+t )= t 2dt1+t dt= t 2−1+1 dt1+t= (t − 1)dt + 1 1+tdt3(1+3√x )= 1 t 2 − t + ln (1 + t )+C. = 1(3√x )2 − 3√x + ln (1 + 3√x ) + C124.∫0 xarctanxdx25.E (X ) E (X 2) = 0 × 0.3 + 1 × 0.4 + 22 × 0.3 = 1.6 D (X ) = E (X 2) − [E (X 2)]2 = 1.6 − 1 = 0.6 26.因为f (x ) = x 4 − 4x + 1,所以 f ′(x ) = 4x 3 − 4, f ′′(x ) = 12x ,令f ′(x ) = 0,x = 1,令f ′′(x ) = 0,得 x=0. 列表如下,所以1 1))由表可知曲线 f (x )的单调递减区间为( − ∞,1),单调递增区间为(1, + ∞).凹区间为(0, + ∞),凸区间为( − ∞,0),极小值为 f (1)=1-4+1=-2. 27.(1)S = 2 ∫√3 [2 − (1 x 2 + 1)] dx22= 2 ∫√3 (− 1 x 2 + 3) dx22= 2√3(2)V = π ∫2f 2(y )dy2= π ∫2(2y − 1)dy2ðz28.ðxðz ðy=dx dy (x+y 22 (x+y 22。
2017年高数专升本真题及其参考答案.doc
2012年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上. 本试卷的试题答案必须答在答题卡上,答在试卷上无效. 一、选择题 (每小题2 分,共60 分)在每小题的四个备选答案中选出一个正确答案, 用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.1.函数 xx y 1arctan 4++=的定义域是 ( )A .[4-,+∞)B .(4-,+∞)C .[4-, 0)⋃(0,+∞)D .(4-, 0)⋃(0,+∞) 【答案】C.【解析】 x +4要求04≥+x ,即4-≥x ;x1arctan 要求0≠x .取二者之交集,得∈x [4-, 0)⋃(0,+∞) 应选C.2.下列函数为偶函数的是( )A .()x x y -+=1log 32B .x x y sin =C . ()x x ++1ln D. x e y =【答案】B.【解析】 显然A ,D 中的函数都是非奇非偶,应被排除;至于C , 记 ()()x x x f ++=1ln 2则 ()()()⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛+-=-x x x f 1ln 2()x x-+=1ln2=++=xx 11ln2()().1ln 2x f x x -=++-所以()x f 为奇函数,C 也被排除.应选B.3.当0→x 时,下列无穷小量中与)21ln(x +等价的是( )A . xB .x 21C .2xD .x 2 【答案】D.【解析】因为12)21ln(lim0=+→xx x ,所以应选D.4.设函数()xx f 1sin 2=, 则0=x 是()x f 的( )A .连续点B .可去间断点C .跳跃间断点D .第二类间断点 【答案】D .【解析】 因为()x f 在0=x 处无定义,且无左、右极限,故0=x 是()x f 的第二类间断点.选D . 5.函数3x y =在0=x 处A .极限不存在B .间断C .连续但不可导D .连续且可导 【答案】C.【解析】因为3x y =是初等函数,且在0=x 处有定义,故()x f 在0=x 处连续;又321.31xy =',故()x f 在0=x 处不可导.综上,应选 C.6.设函数()()x x x f ϕ= ,其中()x ϕ在0=x 处连续且的()00≠ϕ,则()0f '( )A .不存在B .等于()0ϕ'C .存在且等于0D .存在且等于()0ϕ 【答案】A.【解析】()()()00lim 00--='-→-x f x f f x ()xx x x 0lim 0--=-→ϕ()()0lim 0ϕϕ-=-=-→x x ; ()()()00lim 00--='+→+x f x f f x ()x x x x 0lim 0-=+→ϕ()()0lim 0ϕϕ==+→x x ; 因为()≠'-0f ()0+'f ,所以()0f '不存在,选A. 7.若函数()u f y =可导,x e u =,则=dy ( )A .()dx e f x 'B .()()x x e d e f 'C .()dx e x f x .'D .()[]()x x e d e f '【答案】D B.【解析】根据一阶微分形式的不变性知 ()()()x x e d e f du u f dy '='=,故选B. 8.过曲线()x f y 1=有水平渐进线的充分条件是( ) A .()0lim =∞→x f x B .()∞=∞→x f x limC .()0lim 0=→x f x D .()∞=→x f x 0lim【答案】B.【解析】根据水平渐进线的定义: 如果()C x f x =∞→lim 存在,则称C y =为曲线()x f y =的一条水平渐进线,易判断出应选B.9.设函数x x y sin 21-=,则=dydx( )A . y cos 211-B .x cos 211-C .ycos 22- D .x cos 22-【答案】D .【解析】因为x x x dx dy cos 211sin 21-='⎪⎭⎫⎝⎛-=,所以,=-==x dx dy dy dx cos 21111x c o s 22-,选D . 10.曲线()⎩⎨⎧<+≥+=,0,sin 1,0,1x x x x x f 在点()1,0处的切线斜率是( )A .0B .1C .2D .3【答案】B.【解析】 因为()()()00lim 00--='-→-x f x f f x ()x x x 1sin 1lim 0-+=-→1sin lim 0==-→xx x ; ()()()00lim 00--='+→+x f x f f x ()111l i m 0=-+=+→xx x ,故()10='f 存在.所以,曲线()⎩⎨⎧<+≥+=,0,sin 1,0,1x x x x x f 在点()1,0处的切线斜率是()10='f ,选B.11. 方程033=++c x x (其中c 为任意实数)在区间()1,0内实根最多有( ) A .4个 B .3 个 C .2个 D .1个 【答案】D .【解析】 令c x x y ++=33.则0332>+='x y ,因此曲线c x x y ++=33在()1,0内是上升的,它至多与x 轴有一个交点,即方程033=++c x x 在区间()1,0内至多有一个实根.选D .12.若()x f '连续,则下列等式正确的是( )A .()[]()x f dx x f ='⎰ B .()()x f dx x f ='⎰ C .()()x f x df =⎰ D .()[]()x f dx x f d =⎰【答案】A .13.如果()x f 的一个原函数为x x arcsin -,则()=⎰dx x f 在( ) A .C x +++2111 B .C x+--2111 C .C x x +-arcsin D .C x+-+2111【答案】C.【解析】根据原函数及不定积分的定义,立知()=⎰dx x f C x x +-arcsin ,选C. 14.设()1='x f ,且()10=f ,则()=⎰dx x f ( )A .C x +B .C x x ++221C .C x x ++2D .C x +221【答案】B.【解析】因为()1='x f ,故 ()C x dx x f +==⎰1 .又()10=f ,故.1=C 即 ()1+=x x f .所以,()=⎰dx x f ().2112C x x dx x ++=+⎰选B. 15. =-⎰dt t dx d x2012sin 2)cos (( ) A .2cos x - B .()x x cos .sin cos 2C . 2c o s x xD . ()2i n c o s x【答案】B.【解析】 =-⎰dt t dx d x 2012sin 2)cos (()()⎥⎦⎤⎢⎣⎡'--x x sin .sin cos 2()x x cos .sin cos 2=,选B.16.=-⎰dx e x x 2132( )A .1B .0C .121--eD .11--e 【答案】C. 【解析】=-⎰dx e x x 2132)(212x e d x -⎰-(分部)()⎥⎦⎤⎢⎣⎡-+-=⎰--21010222|x d e e x x x11121|2----=--=e ee x .选 C.17.下列广义积分收敛的是( )A . ⎰10ln 1xdx x B.⎰10031dx xx C .⎰+∞1ln 1xdx xD .dx e x ⎰+∞--35 【答案】D. 【解析】因为 ⎰+→+100ln 1lim εεxdx x ()⎰+→=10ln ln lim εεx xd ∞==+→|120ln 21lim εεx ,所以,⎰10031dx xx 发散; 因为 ⎰+→+10031lim εεdx xx ⎰-→+=1034lim εεdx x ∞=-=+→|1031lim 3εεx ,所以,⎰10ln 1xdx x发散; 因为⎰+∞1ln 1xdx x ()⎰+∞=1ln ln x xd ∞==+∞|12ln 21x ,所以,⎰+∞1ln 1xdx x发散;dx e x ⎰+∞--35()()151535355105151551|e e e x d e x x =--=-=--=+∞--+∞--⎰收敛。
河南省2017年对口升学高考数学试题解析
B. -1
C. 2
4.函数 f (x ) = sin x cos x +
A.
,1
B.
D. A ∪ B = {|2 ≤ ≤ 3}
2
2
D. -2
3
+
cos 2 x 的最小正周期和振幅分别是 (A)
2
= √ + ( + )
D. 2 ,2
即
=
⋯ ⋯4 分
⋯ ⋯6 分
⋯ ⋯8 分
A1
20.如图,正方体 ABCD − A1 B1C1 D1 的棱长为 1.
(1)求 A1C1 与 AB1 所成的角;
在正方体 ABCD − A1 B1C1 D1 中
∥
且
B1
D
(2)求三棱锥 B − ACB1 的体积.
解:
(1)∵
C
A
=
(2)求英语书不挨着排的概率 P .
解:设 = {三种书各自都必须排在一起}
= {英语书不挨着排}
⋯ ⋯1 分
(1)由题意得:事件 A 的排法有:
∙ ∙ ∙ = × × × =
即
⋯ ⋯3 分
⋯ ⋯4 分
三种书各自都必须排在一起的排法有 103680 种
在 △ 中
= =
即
A1C1 与 AB1 所 成 的 角 是
⋯ ⋯4 分(2) Nhomakorabea− = −
由题意得
且 = = =
⊥
⊥ 平面
∴△ = ∙ =
∴ − = △ ∙ = × × =