数学建模之钢管下料问题案例分析

合集下载

公选课数学建模论文钢管下料问题

公选课数学建模论文钢管下料问题

公选课-数学建模论文-钢管下料问题钢管下料问题摘要生产中常会遇到通过切割、剪裁、冲压等手段,将原材料加工成所需大小这种工艺过程,称为原料下料问题.按照进一步的工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题.针对钢管下料问题,我们采用数学中的线性规划模型.对模型进行了合理的理论证明和推导,然后借助于解决线性规划的专业软件Lingo 11.0,对题目所提供的数据进行计算,从而得出最优解.关键词线性规划最优解钢管下料1、问题的提出某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割出售.从钢管厂进货得到的原材料的钢管的长度都是1850mm ,现在一顾客需要15根290 mm ,28根315 mm ,21根350 mm 和30根455 mm 的钢管.为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原钢管最多生产5根产品),此外为了减少余料浪费,每种切割模式下的余料浪费不能超过100 mm ,为了使总费用最小,应该如何下料?2、问题的分析首先确定合理的切割模式,其次对于不同的分别进行计算得到加工费用,通过不同的切割模式进行比较,按照一定的排列组合,得最优的切割模式组,进而使工加工的总费用最少.3、基本假设假设每根钢管的长度相等且切割模式理想化.不考虑偶然因素导致的整个切割过程无法进行.4、定义符号说明(1)设每根钢管的价格为a ,为简化问题先不进行对a 的计算.(2)四种不同的切割模式:1x 、2x 、3x 、4x .(3)其对应的钢管数量分别为:i r 1、i r 2、i r 3、i r 4(非负整数).5、模型的建立由于不同的模式不能超过四种,可以用i x 表示i 按照第种模式(i =1,2,3,4)切割的原料钢管的根数,显然它们应当是非负整数.设所使用的第i 种切割模式下每根原料钢管生产290mm ,315mm,,350mm 和455mm 的钢管数量分别为i r 1,i r 2,i r 3,i r 4(非负整数). 决策目标 切割钢管总费用最小,目标为:Min=(1x ⨯1.1+2x ⨯1.2+3x ⨯1.3+4x ⨯1.4)⨯a (1)为简化问题先不带入a约束条件 为满足客户需求应有11r ⨯1x +12r ⨯2x +13r ⨯3x +14r ⨯4x ≧15 (2) 21r ⨯1x +22r ⨯2x +23r ⨯3x +24r ⨯4x ≧28 (3) 31r ⨯1x +32r ⨯2x +33r ⨯3x +34r ⨯4x ≧21 (4) 41r ⨯1x +42r ⨯2x +43r ⨯3x +44r ⨯4x ≧15 (5) 每一种切割模式必须可行、合理,所以每根钢管的成品量不能大于1850mm 也不能小于1750mm.于是:1750≦290⨯11r +315⨯21r +350⨯31r +455⨯41r ≦1850 (6) 1750≦290⨯12r +315⨯22r +350⨯32r +455⨯42r ≦1850 (7) 1750≦290⨯13r +315⨯23r +350⨯33r +455⨯43r ≦1850 (8) 1750≦290⨯14r +315⨯24r +350⨯34r +455⨯44r ≦1850 (9)由于排列顺序无关紧要因此有 1x ≧2x ≧3x ≧4x (10) 又由于总根数不能少于(15⨯290+28⨯315+21⨯350+30⨯455)/1850≧18.47 (11) 也不能大于(15⨯290+28⨯315+21⨯350+30⨯455)/1750≦19.525 (12) 由于一根原钢管最多生产5根产品,所以有i r 1+i r 2+i r 3+i r 4≦5 (13)7、模型的求解将(1)~(13)构建的模型输入Lingo11.0即取1x 切割模式14根及2x 切割模式5根,即可得到最优解:Min=(14⨯11/10+5⨯12/10)⨯a=21.4a6、结果分析、模型的评价与改进下料问题的建模主要有两部分组成,一是确定下料模式,二是构造优化模型.对于下料规格不太多时,可以采用枚举出下料模式,对规格太多的,则适用于本模型.而从本模型中可以看出尽管切割模式x3、x4的余料最少,但是其成本比较高因而舍弃.7、参考文献【1】姜启源,谢金星,叶俊,数学模型(第三版),清华大学出版社,第121页.8、附录模型求解的算法程序:model:min=x1*1.1+x2*1.2+x3*1.3+x4*1.4;r11*x1+r12*x2+r13*x3+r14*x4>=15;r21*x1+r22*x2+r23*x3+r24*x4>=28;r31*x1+r32*x2+r33*x3+r34*x4>=21;r41*x1+r42*x2+r43*x3+r44*x4>=15;290*r11+315*r21+350*r31+455*r41<=1850; 290*r12+315*r22+350*r32+455*r42<=1850; 290*r13+315*r23+350*r33+455*r43<=1850; 290*r14+315*r24+350*r34+455*r44<=1850;290*r11+315*r21+350*r31+455*r41>=1750; 290*r12+315*r22+350*r32+455*r42>=1750; 290*r13+315*r23+350*r33+455*r43>=1750; 290*r14+315*r24+350*r34+455*r44>=1750;x1+x2+x3+x4>=19;x1+x2+x3+x4<=20;x1>=x2;x2>=x3;x3>=x4;r11+r21+r31+r41<=5;r12+r22+r32+r42<=5;r13+r23+r33+r43<=5;r14+r24+r34+r44<=5;@gin(x1);@gin(x2);@gin(x2);@gin(x4);@gin(r11);@gin(r12);@gin(r13);@gin(r14); @gin(r21);@gin(r22);@gin(r23);@gin(r24); @gin(r31);@gin(r32);@gin(r33);@gin(r34); @gin(r41);@gin(r42);@gin(r43);@gin(r44); end经运行得到输出如下:Global optimal solution found.Objective value: 21.40000Objective bound: 21.40000Infeasibilities: 0.000000Extended solver steps: 1Total solver iterations: 34507Variable Value Reduced Cost X1 14.00000 -0.1000000 X2 5.000000 0.000000 X3 0.000000 0.1000000 X4 0.000000 0.2000000 R11 0.000000 0.000000 R12 3.000000 0.000000 R13 0.000000 0.000000 R14 0.000000 0.000000 R21 2.000000 0.000000 R22 0.000000 0.000000 R23 1.000000 0.000000 R24 0.000000 0.000000 R31 2.000000 0.000000 R32 0.000000 0.000000 R33 3.000000 0.000000 R34 0.000000 0.000000 R41 1.000000 0.000000 R42 2.000000 0.000000 R43 1.000000 0.000000 R44 4.000000 0.000000。

数学建模之钢管下料问题案例分析

数学建模之钢管下料问题案例分析

钢管下料问题某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料钢管都是 19m。

(1)现在一客户需要50 根 4m、 20 根 6m 和 15 根 8m 的钢管。

应如何下料最节省?(2)零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过 3 种。

此外,该客户除需要( 1)中的三种钢管外,还需要10 根 5m 的钢管。

应如何下料最节省。

问题( 1)分析与模型建立首先分析 1 根 19m 的钢管切割为 4m、6m、8m 的钢管的模式,所有模式相当于求解不等式方程:4k16k28k319的整数解。

但要求剩余材料 r 19 (4 k1 6k2 8k3 ) 4 。

容易得到所有模式见表1。

表 1钢管切割模式模式4m6m8m余料 (m)14003231013201340023503016111171203决策变量用 x i表示按照第i 种模式 (i=1,2, , 7)切割的原料钢管的根数。

以切割原料钢管的总根数最少为目标,则有min z x1 x2x3 x4 x5 x6x7约束条件为满足客户的需求, 4 米长的钢管至少50 根,有4x13x22x3x6x7 506 米长的钢管至少20 根,有x23x5x62x7208 米长的钢管至少15 根,有x32x4x615因此模型为:min z x1 x2 x3 x4x5x6 x74x13x2 2 x3x6x750x23x5x62x720st..x32x4x615x i取整 , i1,2,L ,7解得:x1 0, x212, x30, x40, x50, x6 15, x70目标值 z=27。

即 12 根钢管采用切割模式2: 3 根 4m, 1 根 6m,余料 1m。

15 根钢管采用切割模式6: 1 根 4m, 1 根 6m,1 根 8m,余料 1m。

切割模式只采用了 2 种,余料为 27m,使用钢管27 根。

下料问题数学建模(钢管)

下料问题数学建模(钢管)

防盗窗下料问题摘要本文针对寻找经济效果最优的钢管下料方案,建立了优化模型。

问题中的圆形管下料设定目标为切割原料圆形管数量尽可能少且在使用一定数量圆形管的过程中使被切割利用过的原料总进价尽可能低。

问题中的方形管原料不足以提供所需截得的所用钢管,故设目标为使截得后剩余方形管总余量最小。

模型的建立过程中,首先运用了C语言程序,利用逐层分析方法,罗列出针对一根钢材的截取模式;然后根据条件得出约束关系,写出函数关系并对圆形管下料建立了线性模型,对方形管下料建立了非线性模型;接着,在对模型按实际情况进行简化后,借助lingo程序对模型求解,得出了模型的最优解,并给出了最符合经济效果最优原则的截取方案。

关键词:钢管下料;最优化;lingo;问题提出某不锈钢装饰公司承接了一住宅小区的防盗窗安装工程,为此购进了一批型号为304的不锈钢管,分为方形管和圆形管两种,方管规格为25×25×1.2(mm),圆管规格Φ19×1.2(mm)。

每种管管长有4米和6米两种,其中4米圆形管5000根,6米圆形管9000根,4米方形管2000根,6米方形管2000根。

根据小区的实际情况,需要截取1.2m圆管8000根, 1.5m圆管16500根,1.8m圆管12000根,1.4m方形管6000根,1.7m方形管4200根,3m方形管2800根。

请根据上述的实际情况建立数学模型,寻找经济效果最优的下料方案。

基本假设和符号说明1、假设钢管切割过程中无原料损耗或损坏;2、假设余料不可焊接;3、假设同种钢材可采用的切割模式数量不限;4、假设不同长度钢管运费、存储资源价值没有区别;5、假设该304型号不锈钢管未经切割则价值不变,可在其它地方使用。

为便于描述问题,文中引入一些符号来代替基本变量,如表一所示:问题分析与模型建立问题中的圆形管原料足够,寻找经济效果最优的下料方案,即目标为切割原料圆形管数量尽可能少。

考虑到6米圆形管与4米圆形管的采购价格应该是不同的,所以我们寻求的是在使用一定数量6米圆形管与4米圆形管的过程中使被切割利用过的原料总进价尽可能低。

关于钢材下料问题的数学建模论文

关于钢材下料问题的数学建模论文

B 题 钢管下料问题摘要应客户要求,某钢厂用两类同规格但不同长度的钢管切割出四种不同长度的成品钢管。

故该原料下料问题为典型的优化模型。

钢厂在切割钢管时,又要求每种钢管的切割模式都不能超过5种,故我们先分别列出两种原料钢管出现频率较高的切割模式,每一问都需要针对不同钢管节约要求分别求出5种切割模式的最佳组合。

第一问要求余料最少,在切割模式的选择方面,我们尽量要求余料为零,并在此基础上要求切割得成品钢管除满足客户要求外,多余客户要求的钢管数也要尽可能的少,运用Lingo 软件求出余料最少时,需要65根A 类钢管采用4种切割模式切割,需要40根B 类钢管采用2种切割模式切割,总余料为20米。

第二问要求总根数最少,故我们只要求总根数最少,在这里我们分了两种情况:有余料时,需A 类钢管65根,采用5种切割模式,需B 类钢管38根,采用4种切割模式,余料各为2米;无余料时,需A 类钢管75根,采用3种切割模式,需B 类钢管39根,采用4种切割模式。

第三问我们运用Lingo 软件求出较优解为当m=0.4时最大收益h=a-159,具体切割模式见模型求解部分。

为了找到替代比例与最大收益的关系,我们分别给m 赋值为0、10%、20%、30%、40%时,用Lingo 解得各自的最大收益,并用四次拟合的方法大致算出了最大收益z 和替代比例m 的关系,为4322083.31416.7279.1715.833160h a m m m m =+-+--(a 为总售出额)。

第四问就是将钢厂下料问题一般化,将本文中模型进行推广,得出了可普遍应用的一般化模型。

关键词:优化模型、整数规划模型、线性规划模型、非线性规划模型、Lingo 、四次拟合问题重述某钢厂主要生产两种结构用无缝钢管,两类钢管除长度不同外规格无差别,A 类型钢管长度为19米,B 类型钢管长度为29米。

假设某单位要订购该钢厂的一批钢管,要求钢厂将原料钢管按照客户订单的要求进行切割成不同长度,具体如下:钢厂在切割钢管时,要求每种钢管的切割模式都不能超过5种,建立数学模型解决下列问题: (1)在满足订单要求的前提下,如何切割才能使余料最省;(2)在满足订单要求的前提下,如何切割才能使耗费原料钢管的数量最少;(3)如果B 类钢管的单价是A 类钢管的2.5倍,又目前钢厂B 类钢管产量不足,如果客户要求将B 类钢管中的5米、7米和8米三种长度的订货量必须全部满足,而B 类中3米的订货量中可以有不超过40%的部分用A 类代替,又该如何切割,才能使钢厂的收益最大,并给出替代比例与最大收益之间的关系。

数学建模合理下料问题

数学建模合理下料问题

数学建模合理下料问题某钢管零售商从钢管厂进货,然后将钢管按照顾客的要求切割后售出,从钢管厂进货时,每根钢管的长度都是19米①现在有一客户需要50根4米、20根6米、15根8米的钢管,应如何下料最节省?②零售商如果采用的不同切割方式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割方式不能超过3种。

此外,该客户除需要①中的三种钢管外,还需要10根5米的钢管,应如何下料最省?(一)模型假设:1,假设钢管可以任意分割一根钢管可以有以下7种分法:①②③④⑤⑥⑦4米 4 3 2 1 1 0 06米0 1 0 2 1 3 08米0 0 1 0 1 0 2余料 3 1 3 3 1 1 3符号说明:x1-x7,表示对应分割方法下4,6,8米钢管的根数w , 表示所用的19米钢管数h , 表示余料模型分析:要求下料最节省,也即是所用的19米钢管数w最少。

客户需要50根4米、20根6米、15根8米的钢管,可以得到以下方程式:4x1+3x2+2x3+x4+x5>=50x2+2x4+x5+3x6>=20x3+x5+x7>=15Min h=3x1+x2+3x3+3x4+x5+x6+3x7模型求解:上述问题属于线性规划,它可以用单纯形法方法求解,也可以用LINDO软件求解。

用LINDO求解如下:直接输入min 3x1+x2+3x3+3x4+x5+x6+3x7subject to4x1+3x2+2x3+x4+x5=50x2+2x4+x5+3x6=20x3+x5+x7=15end将文件存储并命名后,选择菜单“solve”,并对提示“DO RANGE(SENSITIVITY)ANALYSIS”回答“是”或“否”。

即可得输出结果。

LP OPTIMUM FOUND AT STEP 4OBJECTIVE FUNCTION V ALUE1) 35.00000VARIABLE V ALUE REDUCED COSTX1 0.000000 0.000000X2 10.000000 0.000000X3 5.000000 0.000000X4 0.000000 4.750000X5 10.000000 0.000000X6 0.000000 4.750000X7 0.000000 1.500000模型假设:一根钢管可以有以下15种分法:⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂44 3 3 2 2 2 1 1 1 0 0 0 0 0 0 米0 1 0 2 1 0 3 1 0 2 2 1 1 0 0 5米0 0 1 0 1 0 0 0 1 1 0 2 1 3 0 6米0 0 0 0 0 1 0 1 1 0 1 0 1 0 2 8米3 2 1 1 0 3 0 2 1 3 1 2 0 1 3 余料符号说明:x1-x15,表示对应分割方法下4,5,6,8米钢管的根数w , 表示所用的19米钢管数h , 表示余料模型分析:要求下料最节省,也即是所用的19米钢管数w最少。

钢管下料数学建模

钢管下料数学建模

钢管下料数学建模一、引言钢管下料是工业生产中常见的一项工艺,它涉及到如何将原始的钢管按照预定的尺寸进行切割,以便于后续加工和使用。

在进行钢管下料时,数学建模可以帮助我们计算出最佳的下料方案,以最大程度地减少浪费,提高生产效率。

本文将以钢管下料数学建模为主题,探讨如何利用数学方法求解钢管下料问题。

二、问题描述假设有一根长度为L的钢管,需要按照给定的尺寸进行切割。

切割时需要考虑以下几个因素:1. 切割后的钢管长度需要满足给定的要求;2. 切割时需要考虑钢管的浪费情况,即尽量减少剩余钢管的长度;3. 切割时需要考虑生产效率,即尽量减少切割次数。

三、数学建模钢管下料问题可以抽象为一个数学模型,通过建立数学模型,我们可以计算出最佳的下料方案。

下面将介绍两种常见的数学建模方法。

1. 贪心算法贪心算法是一种简单而常用的数学建模方法,它通过每一步都选择局部最优解来达到全局最优解。

在钢管下料问题中,贪心算法可以按照以下步骤进行:1)将钢管初始长度L赋值给一个变量remain;2)根据给定的尺寸要求,选择一个长度小于等于remain的最大钢管尺寸,将其切割出来;3)将remain减去切割出来的钢管长度,得到剩余的钢管长度;4)重复步骤2和3,直到remain小于等于0。

2. 动态规划动态规划是一种更加复杂但是更加精确的数学建模方法,它通过将原问题划分为多个子问题,并保存子问题的解来求解原问题。

在钢管下料问题中,动态规划可以按照以下步骤进行:1)建立一个长度为L+1的数组dp,dp[i]表示长度为i的钢管的最佳下料方案所需的最少切割次数;2)初始化dp数组,将dp[0]设置为0,其余元素设置为正无穷大;3)从长度为1开始,依次计算dp[1]、dp[2]、...、dp[L]的值;4)最终dp[L]即为所求的最佳下料方案所需的最少切割次数。

四、案例分析为了更好地理解钢管下料数学建模,我们以一个具体的案例进行分析。

假设有一根长度为9米的钢管,需要切割成长度分别为2米、3米和4米的三段钢管。

钢管下料的数学模型

钢管下料的数学模型

钢管下料一. 实验问题某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出。

从钢管厂进货时得到的原料钢管长度都是1850mm.现有一客户需要15根290mm,28根315mm,21根350mm 和30根455mm 的钢管。

为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的1/20增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品),此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm.为了使总费用最小,应如何下料。

二. 建立模型决策变量:xi ~按第i 种模式切割的原料钢管根数(i =1,2,3,4),r 1i , r 2i , r 3i , r 4i ~第i 种切割模式下,每根原料钢管生产290mm 、315mm 、350mm 和455mm 长的钢管的数量。

目标函数(总费用):(p 表示原料钢管价格)[])10/41()10/31()10/21()10/11(4321+++++++=x x x x p goal43214.13.12.11.1.x x x x goal Min +++=即约束条件:条件1:满足客户需求 x 1r 11+x 2r 21+x 3r 31+x 4r 41≥15x 1r 12+x 2r 22+x 3r 32+x 4r 42≥28x 1r 13+x 2r 23+x 3r 33+x 4r 43≥21 x 1r 14+x 2r 24+x 3r 34+x 4r 44≥30条件2:余料限制 0≤1850-290r 11-315r 12-350r 13-455r 14≤1000≤1850-290r 21-315r 22-350r 23-455r 24≤100 0≤1850-290r 31-315r 32-350r 33-455r 34≤100 0≤1850-290r 41-315r 42-350r 43-455r 44≤100条件3:四种模式下每根原料钢管切割次数的限制 r 11+r 12+r 13+r 14≤5 r 21+r 22+r 23+r 24≤5r 31+r 32+r 33+r 34≤5 r 41+r 42+r 43+r 44≤5条件4:四种切割模式使用频率的大小 x 1≥x 2,x 2≥x 3,x 3≥x 4条件5:决策变量非负约束 x i ≥0,r ij ≥0 (i,j=1,2,3,4) 条件6:决策变量整数约束 x i ,r ij ∈ z使用原料钢管数量的下限为(290×15+315×28+350×21+455×30)/1850=18.4 模式一:只切割290mm 的钢管需要3根原料钢管 模式二:只切割315mm 的钢管需要6根原料钢管 模式四:只切割350mm 的钢管需要5根原料钢管模式五:只切割455mm的钢管需要8根原料钢管所以使用原料钢管数量的上限为3+6+5+8=22条件7:18≤x1+x2+x3+x4≤22求出目标函数goal满足以上7个条件下的最小值,从而就能确定出决策变量x i,r ij 三.程序设计用Lingo编写程序如下:min=1.1*x1+1.2*x2+1.3*x3+1.4*x4;x1*r11+x2*r21+x3*r31+x4*r41>=15;x1*r12+x2*r22+x3*r32+x4*r42>=28;x1*r13+x2*r23+x3*r33+x4*r43>=21;x1*r14+x2*r24+x3*r34+x4*r44>=30;1850-290*r11-315*r12-350*r13-455*r14>=0;1850-290*r21-315*r22-350*r23-455*r24>=0;1850-290*r31-315*r32-350*r33-455*r34>=0;1850-290*r41-315*r42-350*r43-455*r44>=0;1850-290*r11-315*r12-350*r13-455*r14<=100;1850-290*r21-315*r22-350*r23-455*r24<=100;1850-290*r31-315*r32-350*r33-455*r34<=100;1850-290*r41-315*r42-350*r43-455*r44<=100;r11+r12+r13+r14<=5;r21+r22+r23+r24<=5;r31+r32+r33+r34<=5;r41+r42+r43+r44<=5;x1+x2+x3+x4>=18;x1+x2+x3+x4<=22;x1>=x2;x2>=x3;x3>=x4;@gin(x1);@gin(x2);@gin(x3);@gin(x4);@gin(r11);@gin(r12);@gin(r13);@gin(r14);@gin(r21);@gin(r22);@gin(r23);@gin(r24);@gin(r31);@gin(r32);@gin(r33);@gin(r34);@gin(r41);@gin(r42);@gin(r43);@gin(r44);end四.计算结果利用Lingo运行以上程序,得出如下结果:采取三种切割模式(x4=0),各切割模式如下表所示290 315 350 455x1=14 1 2 0 2x2=4 0 0 5 0x3=1 2 0 1 2x4=0 1 0 3 1。

钢管下料问题

钢管下料问题

2011西安文理学院数学建模竞赛论文钢管下料问题参赛人:建模:编程:写作:钢管下料问题摘要该问题在于确定钢管切割模式的安排上,是一个优化问题。

我们对题目中A 、B 两种不同钢管的各种限制因素进行分析后,并结合题目要求,找到目标函数和约束条件,建立模型,求解模型,最终结果可以作为零售商零售商采购——销售经营模式的初步参考。

问题一:这是一个INLP (整数线性规划)模型,我们根据订单的要求确立了约束条件,同时我们把所有合理的切割模式统计出来后,A 类和B 类原钢管余料为0m 切割方式分别有5种和13种,因此在不超过5种切割模式的前提下余料为0m 时最省,另外从零售商的利益出发,将所用原钢管的根数限制为最少,并以此为目标函数,通过对lingo 软件求解结果,统计出A 类和B 类原钢管切割模式分别为3种和4种、根数分别为75根和43根,具体切割模式见正文表一和表二。

问题二: 本问同问题一模型是一个INLP 模型,也以耗费原料钢管的数量最少为目标,我们只需在在问题一模型的基础上将余料约束加以修改,改为余料小于或等于客户需要钢管的最小尺寸,现对A 类和B 类钢管的约束为02,1,2,3,4,5i h i ≤≤=,通过对lingo 软件求解结果,统计出A 类和B 类原钢管切割模式分别为4种和5种、根数分别为65根和38根,具体切割模式见正文表三和表四。

问题三:显然这也是一个INLP 模型,该问题是在前两问的基础引进了替代比例k (00.4k ≤≤)和原钢管的价格,在这里为了计算方便可令每根A 类原钢管的单价为1,根据题目要求求钢厂的最大收益,假设A 类和B 类原钢管的单价不变,现将最大收益问题转化为最小花费最少问题,并以此为目标函数,此时的订单约束和余料约束也发生改变,列出新的订单,建立一个同前两问的模型,通过lingo 软件求解结果,通过结果分析钢厂最大收益为158.5,代替比例k 为0.4,具体的切割方式见表五。

数学建模--钢管下料问题

数学建模--钢管下料问题

钢管下料问题摘要:如何建立整数规划模型并得出整数规划模型的求解方法是本实验要点,本题建立最常见的线性整数规划,利用分支定界法和Lingo 软件进行求解原料下料类问题,即生产中通过切割、剪裁、冲压等手段,将原材料加工成所需大小;按照工艺要求,确定下料方案,使所用材料最省,或利润最大。

分支定界法可用于解纯整数或混合的整数规划问题,此方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。

Lingo 软件的功能是可以求解非线性规划(也可以做线性规划,整数规划等),特点是运算速度快,允许使用集合来描述大规模的优化问题。

大规模数学规划的描述分为四个部分: model:1.集合部分(如没有,可省略) SETS:集合名/元素1,元素2,…,元素n/:属性1,属性2,… ENDSETS2.目标函数与约束部分3.数据部分(如没有,可省略)4.初始化部分(如不需要初始值,可省略) end关键字:材料 Lingo 软件 整数规划问题描述:某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料都是19米。

(1)现有一顾客需要50根4米、20根6米和15根8 米的钢管。

应如何下料最节省?(2)零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。

此外,该客户除需要(1)中的三种钢管外,还需要10根5米的钢管。

应如何下料最节省。

(1)问题简化:问题1. 如何下料最节省 ? 节省的标准是什么?原料钢管:每根19米 4米50根 6米20根 8米15根问题2. 客户增加需求:由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种。

如何下料最节省?问题分析:切割模式,例如:按照客户需要在一根原料钢管上安排切割的一种组合。

为满足客户需要,按照哪些种合理模式,每种模式切割多少根原料钢管,最为节省?两种标准:1.原料钢管剩余总余量最小。

钢管下料问题

钢管下料问题

实验三钢管下料问题摘要:本文研究了原料钢管如何下料(切割)使得其总费用最小的问题,建模时主要考虑如何根据顾客的不同需求对原料钢管下料(切割)使得其总费用及余料浪费最少。

根据题意,本文为关于钢管下料的优化问题,因此本文建立了整数非线性规划模型,运用LINGO软件求解模型,获得对原料钢管的最佳下料方案。

一、问题重述某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出。

从钢管厂进货时得到的原料钢管长度都是1850mm.现有一客户需要15根290mm,28根315mm,21根350mm和30根455mm的钢管。

为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,依次类推,且每种切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品)。

此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm.为了使总费用最小,应如何下料?二、基本假设和符号说明基本假设:(1)在加工钢管时机器正常工作,且能按要求的规格切割;(2)加工的钢管不考虑因摩擦或加热而引起的变形,即所加工的钢管都是满足要求的;(3)余额不进行循环加工使用;(4)每根原料钢管的价格稳定;(5)忽略钢管切割处的废屑;(6)每根钢管都是合格的产品,不会再切割过程中产生多余的浪费。

符号说明x:按照第i种模式,原料钢管被切割的根数;(1)ir:第i种模式下,每根原料钢管中被切割为290mm规格的钢管根数; (2)1ir:第i种模式下,每根原料钢管中被切割为315mm规格的钢管根数; (3)2ir:第i种模式下,每根原料钢管中被切割为350mm规格的钢管根数;(4)3ir:第i种模式下,每根原料钢管中被切割为455mm规格的钢管根数. (5)4i三、问题分析在分体的解决过程中,第一步我们要根据客户的要求选择切割模式,并且选择的模式中使用料最省,同时钢管在进行切割后出售,不能只考虑材料的问题,还要考虑切割成本,因此本题应该是在切割模式选定中选择出浪费材料和成本的最优解,即本题建立一个优化的数学模型。

数学建模之钢管下料问题案例分析学习资料

数学建模之钢管下料问题案例分析学习资料

数学建模之钢管下料问题案例分析钢管下料问题某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料钢管都是19m 。

(1)现在一客户需要50根4m 、20根6m 和15根8m 的钢管。

应如何下料最节省?(2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。

此外,该客户除需要(1)中的三种钢管外,还需要10根5m 的钢管。

应如何下料最节省。

问题(1)分析与模型建立首先分析1根19m 的钢管切割为4m 、6m 、8m 的钢管的模式,所有模式相当于求解不等式方程: 12346819k k k ++≤的整数解。

但要求剩余材料12319(468)4r k k k =-++<。

容易得到所有模式见表1。

表1 钢管切割模式决策变量 用i x 表示按照第i 种模式(i=1,2,…,7)切割的原料钢管的根数。

以切割原料钢管的总根数最少为目标,则有 1234567min z x x x x x x x =++++++ 约束条件 为满足客户的需求,4米长的钢管至少50根,有 1236743250x x x x x ++++≥ 6米长的钢管至少20根,有 25673220x x x x +++≥ 8米长的钢管至少15根,有 346215x x x ++≥ 因此模型为:1234567min z x x x x x x x =++++++123672567346432503220..215,1,2,,7i x x x x x x x x x s t x x x x i ++++≥⎧⎪+++≥⎪⎨++≥⎪⎪=⎩取整 解得:12345670,12,0,0,0,15,0x x x x x x x =======目标值z=27。

即12根钢管采用切割模式2:3根4m ,1根6m ,余料1m 。

15根钢管采用切割模式6:1根4m ,1根6m ,1根8m ,余料1m 。

合理下料问题

合理下料问题

合理下料问题摘要节省原材料,提高材料的利用率,减少废料,降低成本,提高经济效益,对各工业领域来说都是一项有意义的事情。

本文提出了下料问题的一种使用数学模型,来研究钢管最合理的切割方法。

关键字:最优化线性规划 LINGO软件一、问题重述某钢管零售商从钢管厂进货,然后将钢管按照顾客的要求切割后售出,从钢管厂进货时,每根钢管的长度都是19米①现在有一客户需要50根4米、20根6米、15根8米的钢管,应如何下料最节省?②零售商如果采用的不同切割方式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割方式不能超过3种。

此外,该客户除需要①中的三种钢管外,还需要10根5米的钢管,应如何下料最省?二、问题分析1、现在的目标是确定一个合理的方案使得下料最省,获利最多。

2、①从题目给出的数据可知,客户所需要的三种不同长度的钢管都是由钢管厂19米长的钢管切割而来的,具体的切割方式有以下7种:方式4m钢管/根6m钢管/根8m钢管/根余料/米一 4 0 0 3二 3 1 0 1三 2 0 1 3四 1 2 0 3五 1 1 1 1六0 3 0 1七0 0 2 3②从题目给出的数据可知,客户所需要的四种不同长度的钢管都是由钢管厂19米长的钢管切割而来的,具体的切割方式有以下16种:方式4m钢管/根5m钢管/根6m钢管/根8m钢管/根余料/米一 4 0 0 0 3二 3 1 0 0 2三 3 0 1 0 1四 2 0 0 1 3五 2 2 0 0 1六 2 1 1 0 0七 1 0 2 0 3八 1 3 0 0 0九 1 1 0 1 2十 1 0 1 1 1 十一0 0 3 0 1 十二0 0 0 2 3 十三0 1 2 0 2 十四0 1 1 1 0 十五0 2 0 1 1 十六0 2 1 0 3三、模型假设(1)假设切割不损失钢管。

四、符号说明Xn表示采用方式n的次数;Z表示切割总根数。

数学建模——下料问题

数学建模——下料问题

运用 lingo 求解可得如下结果:
最优解仍然保持不变,为 23 根,同时,这也验证了优化模型的可行性。
4 模型的优缺点与推广 优点:本模型具有求解速度快,适应性好等优点,当客户改变要求时,通过修 改限制条件可快速得出结果,改变加工模式,减少不必要的损失。 缺点:该模型存在一定的局限性,局限性体现在,当客户提出时间要求时,无 法进行优化。 推广:可以解决类似下料问题的生产问题。 5 参考文献 [1]顾梦君, 利伟立, 陈秋晓.实用下料问题的最优算法[J].中山大学研究生学报, 2005,26(2):92-93 [2]李丹俊,曾锐等.实用下料优化问题模型建立及解法[J].数学的实践与认识, 2005,35(7):43-44 [3]姜启源.数学模型[M].北京:高等教育出版社,2012:252-253
下料问题
摘要
本文以最少投入成本和满足客户要求为目标,利用线性规划方法,建立了 数学优化模型。 根据题意,首先作出适当的假设,由假设和题目条件得到目标函数和限制 条件,再用 lingo 软件求得最优解。最后对模型进行检验和进一步分析可得到最 终最优的钢材切割模式分配为: 模式 1 将每根原料钢管切割 1 根 290mm, 1 根 215mm, 1 根 355mm, 2 根 455mm, 原料钢管共 16 根 模式 2 将每根原料钢管切割 2 根 215mm,3 根 455mm,原料钢管共 6 根 模式 3 将每根原料钢管切割 5 根 355mm,原料钢管共 1 根 模式 4 原料钢管总共为 0 根 本模型具有操作简便,运算速度快等优点,适合解决下料问题。 关键词:线性规划;下料;切割模式;费用 1 介绍 1.1 背景 在生产生活中,钢材下料是在机械、行业、造纸、服装、木材等行业、企业 都会遇到的实际难题, 这包括怎样最大限度的节省原材料以节省投入成本以及提 高原材料的利用率[1],企业为了使得自身利益的最大化,通常制定一系列的提高 效益的生产计划。所以如何优化下料问题是重中之重。一维下料问题是下料问题 中的基础问题[2],本文也是在此背景基础上,通过建立优化模型来解决下料的具 体问题。 1.2 问题重述 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出。从钢管厂 进货时得到的原料钢管长度是 1850mm。 现有一客户需要 15 根 290mm、 28 根 215mm、 21 根 350mm 和 30 根 455mm 的钢管.为了简化生产过程,规定所使用的切割模式的 种类不能超过 4 种, 使用频率最高的一种切割模式按照一根原料钢管价值的 1/10 增加费用,使用频率次之的切割模式按照一根原料钢管价值的 2/10 增加费用, 依次类推,且每次切割模式下的切割次数不能太多(一根原料钢管最多生产 5 根 产品)。此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过 100mm。

数学建模之下料问题

数学建模之下料问题

数学建模第三次作业下料问题摘要本文是针对如何对钢管进行下料问题,根据题目要求以及下料时有关问题进行建立切割费用最少以及切割总根数最少两个目标函数通过结果分析需要使用何种切割模式。

生产方式所花费的成本价格或多或少有所不同,如何选取合理的生产方式以节约成本成为了很多厂家的急需解决的问题。

这不仅仅关系到厂家的利益,也影响到一个国家甚至整个人类星球的可利用资源,人们的生活水平不断提高对物资的需求量也不断上升,制定有效合理的生产方式不仅可以为生产者节约成本也可以为社会节约资源,以达到资源利用最大化。

本文以用于切割钢管花费最省及切割总根数最少为优化目标,通过构建多元函数和建立线性整数规划模型,利用数学及相关方面的知识对钢管的切割方式进行优化求解最佳方案。

本文最大的特色在于通过求解出切割钢管花费最省及切割总根数最少时分别得出两种目标函数取最小值时的切割模式。

通过结果发现两种目标函数取最小值时所需切割根数都一样。

于是选择切割钢管花费最省为目标函数,此时的切割模式达到最少,这样既满足了总根数最小有满足了切割费用最小。

关键词:切割模式LINGO软件线性整数一、问题的提出某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后出售。

从钢管厂进货时得到的原料钢管的长度都是1850mm。

现有一客户需要15根290mm、28根315mm、21根350mm和30根455mm的钢管。

为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,依次类推,且每种切割模式下的切割次数不能太多(一根钢管最多生产5根产品)。

此外,为了减少余料浪费,每种切割模式下的余料不能超过100mm。

为了使总费用最小,应如何下料?二、基本假设1、假设所研究的每根钢管的长度均为1850mm的钢管。

2、假设每次切割都准确无误。

3、假设切割费用短时间内不会波动为固定值。

数学建模论文钢管下料

数学建模论文钢管下料

数学建模承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的电子文件名:所属学校(请填写完整的全名):广西教育学院参赛队员(打印并签名) :1. 陈夏玲2. 陈秋兰3. 熊明利指导教师或指导组负责人(打印并签名):日期:2013 年6月16日钢管下料问题的建模与求解问题:某钢管零售商从钢管厂进货将钢管按照顾客的要求切割后售出。

从钢管进货时,得到的原料钢管的原料都是1850mm。

现有一客户需要15根295mm、28根315mm、21根350mm和30根455mm的钢管。

为了简化生产过程规定所使用的切割模式的总类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值得1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品)。

此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm。

为了使总费用最小,应如何下料?二、摘要本文以钢管下料为背景,在尽量减少余料浪费,简化生产过程等约束条件下,应如何选取最优切割方案使总费用最小的问题进行了简要的分析。

首先通过提取问题中的有用信息,即所使用的切割模式的种类不能超过4种,且每种切割模式下的切割次数不能太多(一根原钢管最多生产5根产品)等,可以列出一系列约束条件。

由于切割模式使用频率可以有两种或两种以上相同,为了简便起见,对问题进行了一些简化假设,然后在这些假设下建立了数学规划模型,对问题进行了初步解答。

钢管下料的数学模型

钢管下料的数学模型

钢管下料一. 实验问题 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出。

从钢管厂进货时得到的原料钢管长度都是1850mm.现有一客户需要15根290mm,28根315mm,21根350mm 和30根455mm 的钢管。

为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的1/20增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品),此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm.为了使总费用最小,应如何下料。

二. 建立模型决策变量:xi ~按第i 种模式切割的原料钢管根数(i =1,2,3,4),r 1i , r 2i , r 3i , r 4i ~第i 种切割模式下,每根原料钢管生产290mm 、315mm 、350mm 和455mm 长的钢管的数量。

目标函数(总费用):(p 表示原料钢管价格)[])10/41()10/31()10/21()10/11(4321+++++++=x x x x p goal43214.13.12.11.1.x x x x goal Min +++=即约束条件:{条件1:满足客户需求 x 1r 11+x 2r 21+x 3r 31+x 4r 4115x 1r 12+x 2r 22+x 3r 32+x 4r 4228x 1r 13+x 2r 23+x 3r 33+x 4r 4321x 1r 14+x 2r 24+x 3r 34+x 4r 4430条件2:余料限制 01850-290r 11-315r 12-350r 13-455r 14100 01850-290r 21-315r 22-350r 23-455r 24100 01850-290r 31-315r 32-350r 33-455r 34100 01850-290r 41-315r 42-350r 43-455r 44100条件3:四种模式下每根原料钢管切割次数的限制 r 11+r 12+r 13+r 145r 21+r 22+r 23+r 245 $ r 31+r 32+r 33+r 345r 41+r 42+r 43+r 445条件4:四种切割模式使用频率的大小 x 1x 2,x 2x 3,x 3x 4条件5:决策变量非负约束 x i 0,r ij 0 (i,j=1,2,3,4)条件6:决策变量整数约束 x i ,r ij z使用原料钢管数量的下限为(290×15+315×28+350×21+455×30)/1850=模式一:只切割290mm 的钢管需要3根原料钢管模式二:只切割315mm 的钢管需要6根原料钢管模式四:只切割350mm 的钢管需要5根原料钢管模式五:只切割455mm的钢管需要8根原料钢管\所以使用原料钢管数量的上限为3+6+5+8=22条件7:18x1+x2+x3+x4求出目标函数goal满足以上7个条件下的最小值,从而就能确定出决策变量x i,r ij 三.程序设计用Lingo编写程序如下:min=*x1+*x2+*x3+*x4;x1*r11+x2*r21+x3*r31+x4*r41>=15;x1*r12+x2*r22+x3*r32+x4*r42>=28;x1*r13+x2*r23+x3*r33+x4*r43>=21;;x1*r14+x2*r24+x3*r34+x4*r44>=30;1850-290*r11-315*r12-350*r13-455*r14>=0;1850-290*r21-315*r22-350*r23-455*r24>=0;1850-290*r31-315*r32-350*r33-455*r34>=0;1850-290*r41-315*r42-350*r43-455*r44>=0;1850-290*r11-315*r12-350*r13-455*r14<=100;1850-290*r21-315*r22-350*r23-455*r24<=100;1850-290*r31-315*r32-350*r33-455*r34<=100;1850-290*r41-315*r42-350*r43-455*r44<=100;r11+r12+r13+r14<=5;/r21+r22+r23+r24<=5;r31+r32+r33+r34<=5;r41+r42+r43+r44<=5;x1+x2+x3+x4>=18;x1+x2+x3+x4<=22;x1>=x2;x2>=x3;x3>=x4;@gin(x1);@gin(x2);@gin(x3);@gin(x4);@gin(r11);@gin(r12);@gin(r13);@gin(r14);@gin(r21);@gin(r22);@gin(r23);@gin(r24);@gin(r31);@gin(r32);@gin(r33);@gin(r34);<@gin(r41);@gin(r42);@gin(r43);@gin(r44);end四.计算结果利用Lingo运行以上程序,得出如下结果:采取三种切割模式(x4=0),各切割模式如下表所示290315350《455x1=141202x2=4005:0 x3=12012 x4=01031。

关于钢材下料问题的数学建模论文

关于钢材下料问题的数学建模论文

B题钢管下料问题摘要应客户要求,某钢厂用两类同规格但不同长度的钢管切割出四种不同长度的成品钢管。

故该原料下料问题为典型的优化模型。

钢厂在切割钢管时,又要求每种钢管的切割模式都不能超过5种,故我们先分别列出两种原料钢管出现频率较高的切割模式,每一问都需要针对不同钢管节约要求分别求出5种切割模式的最佳组合。

第一问要求余料最少,在切割模式的选择方面,我们尽量要求余料为零,并在此基础上要求切割得成品钢管除满足客户要求外,多余客户要求的钢管数也要尽可能的少,运用Lingo软件求出余料最少时,需要65根A类钢管采用4种切割模式切割,需要40根B类钢管采用2种切割模式切割,总余料为20米。

第二问要求总根数最少,故我们只要求总根数最少,在这里我们分了两种情况:有余料时,需A类钢管65根,采用5种切割模式,需B类钢管38根,采用4种切割模式,余料各为2米;无余料时,需A类钢管75根,采用3种切割模式,需B类钢管39根,采用4种切割模式。

第三问我们运用Lingo软件求出较优解为当m=0.4时最大收益h=a-159,具体切割模式见模型求解部分。

为了找到替代比例与最大收益的关系,我们分别给m赋值为0、10%、20%、30%、40%时,用Lingo解得各自的最大收益,并用四次拟合的方法大致算出了最大收益z和替代比例m的关系,为432(a为总售出额)。

16385.13h=+-+--mma mm6.37382411.179.72第四问就是将钢厂下料问题一般化,将本文中模型进行推广,得出了可普遍应用的一般化模型。

关键词:优化模型、整数规划模型、线性规划模型、非线性规划模型、Lingo、四次拟合问题重述某钢厂主要生产两种结构用无缝钢管,两类钢管除长度不同外规格无差别,A 类型钢管长度为19米,B 类型钢管长度为29米。

假设某单位要订购该钢厂的一批钢管,要求钢厂将原料钢管按照客户订单的要求进行切割成不同长度,具体如下:钢厂在切割钢管时,要求每种钢管的切割模式都不能超过5种,建立数学模型解决下列问题:(1)在满足订单要求的前提下,如何切割才能使余料最省;(2)在满足订单要求的前提下,如何切割才能使耗费原料钢管的数量最少; (3)如果B 类钢管的单价是A 类钢管的2.5倍,又目前钢厂B 类钢管产量不足,如果客户要求将B 类钢管中的5米、7米和8米三种长度的订货量必须全部满足,而B 类中3米的订货量中可以有不超过40%的部分用A 类代替,又该如何切割,才能使钢厂的收益最大,并给出替代比例与最大收益之间的关系。

钢管下料

钢管下料

承诺书我们仔细阅读了西安铁路职业技术学院大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从C/D中选择一项填写): D我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):西安铁路职业技术学院参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012 年 6 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):交卷邮箱:longshoujianmo@交卷时间:截止2012年6月11日早8:30论文题目:关于钢管下料的最优解目录一.摘要……………………………………………………………………2.二.问题的提出 (3)三.问题的分析 (3)四.建模过程………………………………………………………(3至8)1.模型假设…………………………………………………….(3与4)2.定义符号和说明………………………………………….(4与5)3.模型建立……………………………………………………(5至7)4.模型求解…………………………………………………….(7与8)五. 结果分析、模型的评价与改进………………………………………………(8与9)六.参考文献 (9)七.附录……………………………………………………………………….(9至20)1.用Matlab求解切割模式种类的程序及解………………(9至10)2.用LINGO求解余料与根数最优解的程序及解………….(11至20)一. 摘要在生产中常常会遇到这样的问题,就是我们通过用切割、剪裁、冲压等手段将原材料加工成所需大小,这种工艺称为原料下料问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢管下料问题
某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料钢管都是19m 。

(1)现在一客户需要50根4m 、20根6m 和15根8m 的钢管。

应如何下料最节省?
(2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。

此外,该客户除需要(1)中的三种钢管外,还需要10根5m 的钢管。

应如何下料最节省。

问题(1)分析与模型建立
首先分析1根19m 的钢管切割为4m 、6m 、8m 的钢管的模式,所有模式相当于求解不等式方程:
12346819k k k ++≤
的整数解。

但要求剩余材料12319(468)4r k k k =-++<。

容易得到所有模式见表1。

决策变量 用i x 表示按照第i 种模式(i=1,2,…,7)切割的原料钢管的根数。

以切割原料钢管的总根数最少为目标,则有
1234567min z x x x x x x x =++++++ 约束条件 为满足客户的需求,4米长的钢管至少50根,有
1236743250x x x x x ++++≥ 6米长的钢管至少20根,有 25673220x x x x +++≥ 8米长的钢管至少15根,有 346215x x x ++≥ 因此模型为:
1234567min z x x x x x x x =++++++
123672567
346432503220..215,1,2,,7
i x x x x x x x x x s t x x x x i ++++≥⎧⎪+++≥⎪⎨
++≥⎪⎪=⎩取整 解得:
12345670,12,0,0,0,15,0x x x x x x x =======
目标值z=27。

即12根钢管采用切割模式2:3根4m ,1根6m ,余料1m 。

15根钢管采用切割模式6:1根4m ,1根6m ,1根8m ,余料1m 。

切割模式只采用了2种,余料为27m ,使用钢管27根。

LINGO 程序:
model: sets:
model/1..7/:x; endsets
min=x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7); 4*x(1)+3*x(2)+2*x(3)+x(6)+x(7)>=50; x(2)+3*x(5)+x(6)+2*x(7)>=20; x(3)+2*x(4)+x(6)>=15; @for(model(i):@gin(x(i))); end
问题(2)模型建立
首先分析1根19m 的钢管切割为4m 、6m 、8m 、5m 的钢管的模式,所有模式相当
于求解不等式方程: 1234468519k k k k +++≤
的整数解。

但要求剩余材料12319(468)4r k k k =-++<。

利用Matlab 程序求出所有模式见表2。

求出所有模式的Matlab 程序: number=0; for k1=0:4 for k2=0:3 for k3=0:2 for k4=0:3
r=19-(4*k1+6*k2+8*k3+5*k4); if(r>=0)&(r<4)
number=number+1;
fprintf('%2d %2d %2d %2d %2d %2d\n',number,k1,k2,k3,k4,r); end
end end end end
表2 钢管切割模式
决策变量 用i x 表示按照第i 种模式(i=1,2,…,16)切割的原料钢管的根数。

决策目标 以切割原料钢管的总根数最少为目标,则有 16
21
min i i z x ==

设第i 种切割模式下4米长的钢管i a 根,6米长的钢管i b 根,8米长的钢管i c 根,5米长的钢管i d 根。

则约束条件有:
为满足客户的需求,4米长的钢管至少50根,有
16
150i i
i a x
=≥∑
6米长的钢管至少20根,有
16
1
20i i
i b x
=≥∑
8米长的钢管至少15根,有
16
115i i
i c x
=≥∑
5米长的钢管至少10根,有
16
1
10i i
i d x
=≥∑
为实现最多使用3种切割模式,增设0-1变量,1,2,
,16i y i =。

当0i y =时,0i x =,表示不使用第i 种切割模式;当1i y =时,1i x ≥,表示使用第i 种切割模式。

因此有:
i i x y ≥,.i i x M y ≤,1,2,,16i =
其中M 足够大,如这里取100。

16
1
3i
i y
=≤∑
因此模型为:
16
1
min i i z x ==∑
16
116
116
116
1
16
1
50201510...,1,2,,16,1,2,,163,1,2,,1601,1,2,,16i i i i i i i i i i i i i i i i i i i
i a x b x c x d x s t x M y i x y i y x i y i M =====⎧≥⎪⎪⎪≥⎪⎪⎪≥⎪⎪⎪≥⎪⎨⎪≤=⎪
≥=⎪⎪⎪≤⎪⎪=⎪⎪==⎪
⎩∑∑∑∑∑取整或足大
解得:
当所用钢管z 最少时,求得的解为:
213158,10,10x x x ===,其余为0。

目标值z=28。

即8根钢管采用切割模式2:2根8m ,余料3m 。

10根钢管采用切割模式13:2根4m ,1根6m ,1根5m ,余料为0。

10根钢管采用切割模式15:3根4m ,1根6m ,余料1m 。

切割模式采用了3种,余料为34,使用钢管z=28根。

LINGO 程序为: model:
sets:
model/1..16/:a,b,c,d,r,x,y; endsets data:
a=0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,4; b=0,0,1,1,2,3,0,0,1,2,0,0,1,0,1,0; c=1,2,0,1,0,0,0,1,1,0,0,1,0,0,0,0; d=2,0,2,1,1,0,3,1,0,0,2,0,1,1,0,0; r=1,3,3,0,2,1,0,2,1,3,1,3,0,2,1,3; enddata min=z;
z1=@sum(model(i):r(i)*x(i));!余料;
z=@sum(model(i):x(i));!钢管总数;
@sum(model(i):a(i)*x(i))>=50;!4米长钢管约束; @sum(model(i):b(i)*x(i))>=20;!6米长钢管约束; @sum(model(i):c(i)*x(i))>=15;!8米长钢管约束; @sum(model(i):d(i)*x(i))>=10;!5米长钢管约束; @for(model(i):x(i)>=y(i));
@for(model(i):x(i)<=1000*y(i));
@sum(model(i):y(i))<=3;
@for(model(i):@gin(x(i)));
@for(model(i):@bin(y(i)));
end。

相关文档
最新文档