栈与队列(java版)
Java数据结构和算法
Java数据结构和算法一、数组于简单排序 (1)二、栈与队列 (4)三、链表 (7)四、递归 (22)五、哈希表 (25)六、高级排序 (25)七、二叉树 (25)八、红—黑树 (26)九、堆 (36)十、带权图 (39)一、数组于简单排序数组数组(array)是相同类型变量的集合,可以使用共同的名字引用它。
数组可被定义为任何类型,可以是一维或多维。
数组中的一个特别要素是通过下标来访问它。
数组提供了一种将有联系的信息分组的便利方法。
一维数组一维数组(one-dimensional array )实质上是相同类型变量列表。
要创建一个数组,你必须首先定义数组变量所需的类型。
通用的一维数组的声明格式是:type var-name[ ];获得一个数组需要2步。
第一步,你必须定义变量所需的类型。
第二步,你必须使用运算符new来为数组所要存储的数据分配内存,并把它们分配给数组变量。
这样Java 中的数组被动态地分配。
如果动态分配的概念对你陌生,别担心,它将在本书的后面详细讨论。
数组的初始化(array initializer )就是包括在花括号之内用逗号分开的表达式的列表。
逗号分开了数组元素的值。
Java 会自动地分配一个足够大的空间来保存你指定的初始化元素的个数,而不必使用运算符new。
Java 严格地检查以保证你不会意外地去存储或引用在数组范围以外的值。
Java 的运行系统会检查以确保所有的数组下标都在正确的范围以内(在这方面,Java 与C/C++ 从根本上不同,C/C++ 不提供运行边界检查)。
多维数组在Java 中,多维数组(multidimensional arrays )实际上是数组的数组。
你可能期望,这些数组形式上和行动上和一般的多维数组一样。
然而,你将看到,有一些微妙的差别。
定义多维数组变量要将每个维数放在它们各自的方括号中。
例如,下面语句定义了一个名为twoD 的二维数组变量。
int twoD[][] = new int[4][5];简单排序简单排序中包括了:冒泡排序、选择排序、插入排序;1.冒泡排序的思想:假设有N个数据需要排序,则从第0个数开始,依次比较第0和第1个数据,如果第0个大于第1个则两者交换,否则什么动作都不做,继续比较第1个第2个…,这样依次类推,直至所有数据都“冒泡”到数据顶上。
数据结构-Java语言描述 第三章 栈和队列
System.exit(1);
}
栈顶指针top的初始值决
top=-1;
定了后续其他方法的实现
stackArray=(T[])new Object[n];
}
【算法3-2】入栈
public void push(T obj)
{
if(top==stackArray.length-1){
T []p=(T[])new Object [top*2];
(b)元素a2入栈
an … … a2 a1
(c)元素an入栈
an-1 … a2 a1
(d)元素an出栈
a2 a1
(e)元素a3出栈
a1
(f)元素a2出栈
【例3-1】一个栈的输入序列是1、2、3、4、5,若在 入栈的过程中允许出栈,则栈的输出序列4、3、5、1、 2可能实现吗?1、2、3、4、5的输出呢?
型 正序遍历:依次访问栈中每个元素并输出
3.1.2 顺序栈
顺序栈泛型类的定义如下:
public class sequenceStack<T> {
顺序栈中一维数组 的初始长度
final int MaxSize=10;
private T[] stackArray; 存储元素的数组对象
private int top;
public void nextOrder() {
for(int i=top;i>=0;i--) System.out.println(stackArray[i]);
}
【算法3-8】清空栈操作
public void clear() {
top=-1; }
3.1.3 链栈
栈的链接存储结构称为链栈。结点类的定义,同 第二章Node类。
栈和队列数据结构的特点
栈和队列数据结构的特点栈和队列是常用的数据结构,它们在程序设计和算法实现中有着重要的作用。
下面将分别介绍栈和队列的特点。
一、栈(Stack)的特点:1.先进后出(FILO):栈是一种只允许在栈顶进行插入和删除操作的线性数据结构。
元素的插入和删除都只能在栈顶进行,最后插入的元素是第一个被删除的元素。
2.后进先出(LIFO):栈中最后一个进栈的元素是第一个出栈的元素。
3.只能在栈顶进行操作:栈的操作局限于栈顶,在栈顶可以执行的操作有入栈和出栈操作,其他位置的元素无法直接访问和操作。
4.压入和弹出操作:在栈中,我们只能在栈的一端(通常是栈顶)进行数据的插入和删除操作,分别称为“压入”和“弹出”。
5.递归的应用:栈的结构特点使得它在递归算法的实现中非常有用。
递归函数调用时,每次进入一层递归都需要保存当前的状态,包括参数、局部变量等信息,在递归返回时再恢复状态。
6.存储空间的限制:栈的存储空间是有限的,当栈的元素数量超过了栈的容量时,就会发生栈溢出错误。
7.实现方式:栈可以使用数组或链表来实现。
栈的典型应用场景包括函数调用、表达式求值、括号匹配、迷宫求解等。
二、队列(Queue)的特点:1.先进先出(FIFO):队列是一种只允许在队尾插入操作,在队头删除操作的线性数据结构。
最先插入的元素是第一个被删除的元素,最后插入的元素是最后被删除的元素。
2.队头和队尾操作:队列的操作局限于队头和队尾,在队头可以执行的操作有删除,称为“出队”操作;在队尾可以执行的操作有插入,称为“入队”操作。
3.可用空间有限:队列的存储空间是有限的,当队列的元素数量超过了队列的容量时,就会无法再插入新的元素,即发生队列溢出错误。
4.实现方式:队列可以使用数组或链表来实现。
若使用链表实现的队列,可实现动态调整队列的大小。
队列的典型应用场景包括多线程任务调度、缓冲队列、消息队列等。
栈和队列都是特殊的线性数据结构,它们各自的特点使它们在不同的应用场景下得到广泛的应用。
java中常用的数据结构
java中常用的数据结构
Java中常用的数据结构有:
1. 数组(Array):一组具有相同类型的数据元素的集合,通
过索引来访问元素。
2. 链表(LinkedList):由若干个节点组成,每个节点包含数
据和指向下一个节点的指针。
3. 栈(Stack):一种后进先出(LIFO)的数据结构,只允许
在栈顶进行插入和删除操作。
4. 队列(Queue):一种先进先出(FIFO)的数据结构,只允
许在队头和队尾进行插入和删除操作。
5. 集合(Set):一种不允许重复元素的数据结构,常见的实
现类有HashSet和TreeSet。
6. 列表(List):一种有序的数据结构,允许重复元素,常见
的实现类有ArrayList和LinkedList。
7. 字典(Map):一种键值对的数据结构,以键作为唯一标识
符来存储和访问元素,常见的实现类有HashMap和TreeMap。
8. 堆(Heap):一种可以快速找到最大值(或最小值)的数
据结构,常用于优先队列的实现。
9. 树(Tree):一种层次关系的数据结构,包含根节点、子节
点和叶子节点等。
10. 图(Graph):由节点和节点之间的关系(边)组成的数据结构,常用于描述网络等复杂关系。
这些数据结构在Java中都有对应的类或接口,可以根据具体
的需求选择合适的数据结构来使用。
信息学奥赛知识点(十二)—栈和队列
栈和队列是信息学竞赛中经常涉及的数据结构,它们在算法和程序设计中有着广泛的应用。
掌握栈和队列的基本原理和操作方法,对于参加信息学竞赛的同学来说是非常重要的。
本文将深入探讨栈和队列的相关知识点,帮助大家更好地理解和掌握这两种数据结构。
一、栈的定义与特点栈是一种先进后出(LIFO)的数据结构,它的特点是只允许在栈顶进行插入和删除操作。
栈可以用数组或链表来实现,常见的操作包括压栈(push)、出栈(pop)、获取栈顶元素(top)等。
栈的应用非常广泛,比如在计算机程序中,函数的调用和返回值的存储就是通过栈来实现的。
二、栈的基本操作1. 压栈(push):将元素压入栈顶2. 出栈(pop):将栈顶元素弹出3. 获取栈顶元素(top):返回栈顶元素的值,但不把它从栈中移除4. 判空:判断栈是否为空5. 获取栈的大小:返回栈中元素的个数三、栈的应用1. 括号匹配:利用栈来检查表达式中的括号是否匹配2. 表达式求值:利用栈来实现中缀表达式转换为后缀表达式,并进行求值3. 迷宫求解:利用栈来实现迷宫的路径搜索4. 回溯算法:在深度优先搜索和递归算法中,通常会用到栈来保存状态信息四、队列的定义与特点队列是一种先进先出(FIFO)的数据结构,它的特点是只允许在队尾进行插入操作,在队首进行删除操作。
队列同样可以用数组或链表来实现,常见的操作包括入队(enqueue)、出队(dequeue)、获取队首元素(front)、获取队尾元素(rear)等。
队列在计算机领域也有着广泛的应用,比如线程池、消息队列等都可以用队列来实现。
五、队列的基本操作1. 入队(enqueue):将元素插入到队列的末尾2. 出队(dequeue):从队列的头部删除一个元素3. 获取队首元素(front):返回队列的头部元素的值4. 获取队尾元素(rear):返回队列的尾部元素的值5. 判空:判断队列是否为空6. 获取队列的大小:返回队列中元素的个数六、队列的应用1. 广度优先搜索算法(BFS):在图的搜索中,通常会用队列来实现BFS算法2. 线程池:利用队列来实现任务的调度3. 消息队列:在分布式系统中,常常会用队列来进行消息的传递4. 最近最少使用(LRU)缓存算法:利用队列实现LRU缓存淘汰在信息学竞赛中,栈和队列的相关题目经常出现,并且有一定的难度。
数据结构总复习题(JAVA)
一、填空题1. 栈和队列的共同特点是(只允许在端点处插入和删除元素)。
2. 在深度为5的满二叉树中,叶子结点的个数为(31)3. 算法分析的目的是(分析算法的效率以求改进)。
4. 由两个栈共享一个存储空间的好处是(节省存储空间,降低上溢发生的机率)。
5.串的长度是(串中所含字符的个数)。
6.设有两个串p和q,求q在p中首次出现位置的运算称做(模式匹配)7. N个顶点的连通图中边的条数至少为(N-1)。
8.N个顶点的强连通图的边数至少有(N)。
9.对长度为n的线性表进行顺序查找,在最坏情况下所需要的比较次数为(N)。
P25910.假设线性表的长度为n,则在最坏情况下,冒泡排序需要的比较次数为(n(n-1)/2)。
P29211. 在n个结点的单链表中要删除已知结点*p,需找到它的前驱结点的地址,其时间复杂度为O(n)。
12. 在具有n个单元的循环队列中,队满时共有 n-1 个元素。
13. 有向图G用邻接表矩阵存储,其第i行的所有元素之和等于顶点i的出度。
14. 用Dijkstra算法求某一顶点到其余各顶点间的最短路径是按路径长度递增的次序来得到最短路径的。
15. 在图形结构中,每个结点的前驱结点数和后续结点数可以任意多个。
16.在一个循环队列中,队首指针指向队首元素的前一个位置。
17.在顺序表中插入或删除一个元素,需要平均移动表中一半元素,具体移动的元素个数与表长和该元素在表中的位置有关。
18. 线性表中结点的集合是有限的,结点间的关系是一对一的。
19.数据结构被形式地定义为(D, R),其中D是数据元素的有限集合,R是D上的关系有限集合。
20. 线性结构中元素之间存在一对一关系,树形结构中元素之间存在一对多关系,图形结构中元素之间存在多对多关系。
21. 一个算法的效率可分为时间效率和空间效率。
22. 在顺序表中访问任意一结点的时间复杂度均为 O(1) ,因此,顺序表也称为随机存取的数据结构。
23. 在n个结点的单链表中要删除已知结点*p,需找到它的前驱结点的地址,其时间复杂度为O(n)。
栈和队列的应用
栈和队列的应用栈和队列是计算机科学中非常重要的数据结构,它们在各种应用中被广泛使用。
本文将探讨栈和队列的应用,并讨论它们在不同场景下的具体用途。
一、栈的应用1. 浏览器的前进后退功能在使用浏览器时,我们可以通过点击前进按钮或后退按钮来切换网页。
这种功能实际上是由一个栈来实现的。
当我们访问新的网页时,当前页面被推入栈中,当我们点击后退按钮时,栈顶的页面被弹出并显示在浏览器中。
2. 函数调用栈在编写程序时,函数的调用和返回也是通过栈来管理的。
每当一个函数被调用时,相关的信息(例如参数、返回地址等)会被推入栈中,当函数执行完毕后,这些信息会从栈中弹出,程序会回到函数调用的地方继续执行。
3. 括号匹配在编写编译器或表达式计算器时,需要检查括号是否正确匹配。
这个问题可以使用栈来解决。
遍历表达式时,遇到左括号将其推入栈中,遇到右括号时,若栈顶元素是对应的左括号,则将栈顶元素弹出,继续处理下一个字符;若栈为空或栈顶元素不是对应的左括号,则括号不匹配。
二、队列的应用1. 消息队列消息队列是一种在分布式系统中实现异步通信的机制。
它常用于解耦系统中的组件,例如,一个组件将消息发送到队列中,而另一个组件则从队列中接收消息并处理。
这种方式可以提高系统的可伸缩性和可靠性。
2. 打印队列在打印机系统中,多个任务需要按照先后顺序进行打印。
这时可以使用队列来管理打印任务的顺序。
每当一个任务到达时,将其加入到队列的末尾,打印机从队列的头部取出任务进行打印,直到队列为空。
3. 广度优先搜索广度优先搜索(BFS)是一种常用的图搜索算法,它使用队列来辅助实现。
在BFS中,首先将起始节点加入队列中,然后依次将与当前节点相邻且未访问过的节点入队,直到遍历完所有节点。
结论栈和队列作为常用的数据结构,在计算机科学中有着广泛的应用。
本文只介绍了它们部分的应用场景,实际上它们还可以用于解决其他许多问题,如迷宫路径搜索、计算器计算等。
因此,了解和熟练运用栈和队列是程序员和计算机科学家的基本素养之一。
java栈的用法
java栈的用法Java栈的用法Java栈是一种非常重要的数据结构,它在Java语言中广泛应用于各种场景,例如方法调用、异常处理、表达式求值等。
本文将介绍Java栈的基本概念、常见操作以及实现方式等内容。
一、基本概念1. 栈的定义栈是一种线性数据结构,它具有后进先出(Last In First Out,LIFO)的特点。
栈可以看作是一个容器,只能在容器的一端进行插入和删除操作。
插入操作称为“进栈”或“压栈”,删除操作称为“出栈”。
2. 栈的实现方式Java中可以使用数组或链表来实现栈。
使用数组实现时,需要定义一个固定大小的数组,并记录当前栈顶元素位置;使用链表实现时,则需要定义一个头节点和一个指向当前节点的指针。
3. 栈的应用场景Java栈在很多场景下都有着重要的应用,例如:- 方法调用:每当调用一个方法时,都会创建一个新的栈帧并压入当前线程对应的虚拟机栈中。
- 异常处理:当抛出异常时,JVM会创建一个异常对象,并将其压入当前线程对应的虚拟机栈中。
- 表达式求值:通过使用两个栈,一个存放操作数,一个存放运算符,可以实现表达式的求值。
二、常见操作1. 压栈(push)将一个元素压入栈顶。
Java代码示例:```public void push(E item) {ensureCapacity(size + 1);elements[size++] = item;}```2. 出栈(pop)弹出栈顶元素,并返回该元素。
Java代码示例:```public E pop() {if (size == 0)throw new EmptyStackException();E result = elements[--size];elements[size] = null; // 避免内存泄漏 return result;}```3. 查看栈顶元素(peek)返回当前栈顶元素,但不弹出该元素。
Java代码示例:```public E peek() {if (size == 0)throw new EmptyStackException(); return elements[size - 1];}```4. 判断是否为空(isEmpty)判断当前栈是否为空。
队列,栈,堆栈,数组,链表特点与区别
队列,栈,堆栈,数组,链表特点与区别1. 队列可以看成是有2个口的集合一个口叫队头一个叫队尾,只能在对头进行删除操作,在队尾做插入。
根据这样的操作。
队列特点是先进先出2.堆栈可以看成是有1个口的集合,这个口叫栈顶。
插入和删除操作只能在栈顶操作。
根据这样的操作。
堆栈的特点是是后进先出.3.链表是一种存储方式,它可以在非连续的内存空间里面存储一个集合的元素。
4.和它对应的是数组,数组要在连续的空间里存储集合的元素队列、栈是线性数据结构的典型代表,而数组、链表是常用的两种数据存储结构;队列和栈均可以用数组或链表的存储方式实现它的功能数组与链表:数组属于顺序存储中,由于每个元素的存储位置都可以通过简单计算得到,所以访问元素的时间都相同(直接访问数组下标);链表属于数据的链接存储,由于每个元素的存储位置是保存在它的前驱或后继结点中的,所以只有当访问到其前驱结点或后继结点后才能够按指针访问到自己,访问任一元素的时间与该元素结点在链接存储中的位置有关。
链表和数组是常用的两种数据存储结构,都能用来保存特定类型的数据。
1.占用的内存空间链表存放的内存空间可以是连续的,也可以是不连续的,数组则是连续的一段内存空间。
一般情况下存放相同多的数据数组占用较小的内存,而链表还需要存放其前驱和后继的空间。
2.长度的可变性链表的长度是按实际需要可以伸缩的,而数组的长度是在定义时要给定的,如果存放的数据个数超过了数组的初始大小,则会出现溢出现象。
3.对数据的访问链表方便数据的移动而访问数据比较麻烦;数组访问数据很快捷而移动数据比较麻烦。
链表和数组的差异决定了它们的不同使用场景,如果需要很多对数据的访问,则适合使用数组;如果需要对数据进行很多移位操作,则设和使用链表。
堆和栈有什么区别:1. 栈具有数据结构中栈的特点,后进先出,所有存放在它里面的数据都是生命周期很明确(当然要求它不能存放太久,占有的空间确定而且占用空间小),能够快速反应的!所有在Java中它存放的是8个基本数据类型和引用变量的,用完就马上销毁2.堆可以理解它就是个一个可大可小,任你分配的听话的内存操作单元;因此它的特点就是动态的分配内存,适合存放大的数据量!比如一个对象的所有信息,虽然它的引用指向栈中的某个引用变量;所有Java中堆是存放new 出来的对象的。
Java常见数据结构面试题(带答案)
Java常见数据结构⾯试题(带答案)1.栈和队列的共同特点是(只允许在端点处插⼊和删除元素)4.栈通常采⽤的两种存储结构是(线性存储结构和链表存储结构)5.下列关于栈的叙述正确的是(D)A.栈是⾮线性结构B.栈是⼀种树状结构C.栈具有先进先出的特征D.栈有后进先出的特征6.链表不具有的特点是(B)A.不必事先估计存储空间 B.可随机访问任⼀元素C.插⼊删除不需要移动元素D.所需空间与线性表长度成正⽐7.⽤链表表⽰线性表的优点是(便于插⼊和删除操作)8.在单链表中,增加头结点的⽬的是(⽅便运算的实现)9.循环链表的主要优点是(从表中任⼀结点出发都能访问到整个链表)10.线性表L=(a1,a2,a3,……ai,……an),下列说法正确的是(D)A.每个元素都有⼀个直接前件和直接后件B.线性表中⾄少要有⼀个元素C.表中诸元素的排列顺序必须是由⼩到⼤或由⼤到⼩D.除第⼀个和最后⼀个元素外,其余每个元素都有⼀个且只有⼀个直接前件和直接后件11.线性表若采⽤链式存储结构时,要求内存中可⽤存储单元的地址(D)A.必须是连续的B.部分地址必须是连续的C.⼀定是不连续的D.连续不连续都可以12.线性表的顺序存储结构和线性表的链式存储结构分别是(随机存取的存储结构、顺序存取的存储结构)13.树是结点的集合,它的根结点数⽬是(有且只有1)14.在深度为5的满⼆叉树中,叶⼦结点的个数为(31)15.具有3个结点的⼆叉树有(5种形态)16.设⼀棵⼆叉树中有3个叶⼦结点,有8个度为1的结点,则该⼆叉树中总的结点数为(13)17.已知⼆叉树后序遍历序列是dabec,中序遍历序列是debac,它的前序遍历序列是(cedba)18.已知⼀棵⼆叉树前序遍历和中序遍历分别为ABDEGCFH和DBGEACHF,则该⼆叉树的后序遍历为(DGEBHFCA)19.若某⼆叉树的前序遍历访问顺序是abdgcefh,中序遍历访问顺序是dgbaechf,则其后序遍历的结点访问顺序是(gdbehfca)20.数据库保护分为:安全性控制、完整性控制、并发性控制和数据的恢复。
栈和队列的应用实例
栈和队列的应用实例栈和队列都是常用的数据结构,在计算机科学中有着广泛的应用。
以下是一些常见的应用实例:1. 栈的应用实例●表达式求值:使用栈可以方便地对表达式进行求值,如逆波兰表达式求值。
●函数调用:函数调用时,每当进入一个函数,都会将上一个函数的现场信息压入栈中,然后在函数返回时再将其弹出,以便恢复上一个函数的执行现场。
●括号匹配:使用栈可以很方便地检查输入序列中括号的匹配情况。
2. 队列的应用实例●广度优先搜索:在图中进行广度优先搜索时常使用队列,因为它满足“先进先出”的特点,可以确保搜索的顺序是按层次来进行的。
●消息队列:在分布式系统中,消息队列经常用于实现进程之间的通信,以及任务的异步处理。
●缓冲区:在计算机中,经常需要通过使用缓冲区来平衡生产者和消费者之间的速度差异,队列就是一种常用的缓冲区实现方式。
以下是具体的应用实例:栈逆波兰表达式求值逆波兰表达式是一种不需要括号的算术表达式表示方法,它将运算符写在操作数的后面,因此也被称为“后缀表达式”。
例如,中缀表达式“3 + 4 * 2 / (1 - 5)”的逆波兰表达式为“3 4 2 * 1 5 - / +”。
逆波兰表达式求值时,可以使用栈来存储数字和运算符,具体过程如下:1. 遍历逆波兰表达式中的每个元素。
2. 如果当前元素是数字,则压入栈中。
3. 如果当前元素是运算符,则从栈中弹出两个操作数进行运算,并将结果压入栈中。
4. 遍历完逆波兰表达式后,栈顶即为表达式的值。
以下是Python语言实现逆波兰表达式求值的代码:def evalRPN(tokens: List[str]) -> int:stack = []for token in tokens:if token in '+-*/': # 运算符num2 = stack.pop()num1 = stack.pop()if token == '+':stack.append(num1 + num2)elif token == '-':stack.append(num1 - num2)elif token == '*':stack.append(num1 * num2)else:stack.append(int(num1 / num2))else: # 数字stack.append(int(token))return stack[0]该函数接受一个字符串列表tokens,其中包含了逆波兰表达式的所有元素。
Java中栈和队列的使用及区别
poll() :检索并删除此队列的头部,如果此队列为空,则返回null。
E
remove() :检索并删除此队列的头。
3、 Deque(双端队列 /栈)
Deque是双端队列的接口,也是我们使用最多的队列,既可以当作栈也可以当作队列使用。
Deque是支持在两端插入和删除元素的线性集合,双端队列是“双端队列”(double ended queue)的缩写。大多数Deque对它们可能包含 的元素数量没有固定的限制,但是此接口支持容量受限的双端队列以及没有固定大小限制的双端队列。此接口定义访问双端队列两端的元素 的方,提供了用于插入,删除和检查元素的方法。这些方法中的每一种都以两种形式存在:一种在操作失败时引发异常,另一种返回一个特 殊值(根据操作为null或false)。插入操作的后一种形式是专为容量受限的Deque实现而设计的。在大多数实现中,插入操作不会失败。
简单来说,PriorityQueue就是一个优先级队列,在我们需要堆的时候可以使用PriorityQueue当作堆进行使用,因为PriorityQueue继承
自AbstractQueue,而AbstractQueue实现Queue,所以PriorityQueue的方法和Queue差不多,使用起来也比较方便。
5.3 适 用 场 景 不 同
栈:具有记忆能力,使用于括号求解、表达式转换、函数递归和调用的实现、深度优先搜索遍历、浏览器后退功能等,需要记忆原来数 据内容的场景。 队列:可以进行有顺序的处理,如计算机系统中各种资源的管理、消息缓冲器的管理、广度优先搜索等场景。
6、 总 结
在不考虑多线程的情况下 使用栈就是使用Deque的实现类 使用队列就使用Deque的实现类 使用堆就使用PriorityQueue。
java queue 使用场景
java queue 使用场景Java中的Queue(队列)是一种常用的数据结构,用于存储和操作元素。
它遵循先进先出(FIFO)的原则,即最先进入队列的元素最先被移除。
Queue接口是Java集合框架中的一部分,它提供了一些特殊的方法来处理队列中的元素。
在下面的文章中,我们将探讨一些使用Java Queue的常见场景。
1. 线程同步在多线程应用程序中,队列可用于实现线程安全的数据传输。
例如,一个线程可以将数据放入队列中,而另一个线程可以从队列中获取数据。
由于Queue是线程安全的,它可以确保数据的正确传输和同步。
2. 任务调度队列可以用于实现任务调度机制。
例如,一个应用程序可能需要处理多个任务,每个任务都有不同的优先级和执行时间。
通过使用队列,可以将这些任务按照优先级顺序放入队列中,然后按照顺序执行。
3. 缓存管理队列可以用于实现缓存管理。
当系统需要处理大量的数据时,可以将数据存储在队列中,然后按需获取。
这样可以避免数据的丢失和混乱,并提高系统的性能。
4. 消息传递队列可以用于实现消息传递机制。
例如,一个应用程序可能需要从一个模块发送消息到另一个模块。
通过使用队列,可以将消息存储在队列中,然后由目标模块从队列中获取并处理。
5. 事件驱动模型队列可以用于实现事件驱动的编程模型。
例如,一个应用程序可能需要处理多个事件,每个事件都有不同的优先级和处理方式。
通过使用队列,可以将这些事件按照优先级顺序放入队列中,然后按照顺序处理。
6. 数据结构队列本身就是一种常用的数据结构。
它可以用于解决各种问题,如图的广度优先搜索、迷宫求解等。
通过使用队列,可以将问题的解决过程按照顺序进行,从而得到正确的结果。
总结起来,Java中的Queue是一种非常实用的数据结构,可以应用于各种场景。
无论是线程同步、任务调度、缓存管理、消息传递、事件驱动模型还是解决复杂问题,队列都可以发挥重要作用。
在实际应用中,我们可以根据具体的需求选择合适的Queue实现类,如LinkedList、ArrayBlockingQueue等。
第3章栈和队列
3.1.2 栈的表示和算法实现
1.顺序栈 2.链栈
第3章栈和队列
1. 顺序栈 顺序栈是用顺序存储结构实现的栈,即利 用一组地址连续的存储单元依次存放自栈 底到栈顶的数据元素,同时由于栈的操作 的特殊性,还必须附设一个位置指针top( 栈顶指针)来动态地指示栈顶元素在顺序 栈中的位置。通常以top=-1表示空栈。
第 3 章 栈和队列
3.1 栈 3.2 队列 3.3 栈和队列的应用
第3章栈和队列
3.1 栈
3.1.1 栈的抽象数据类型定义 3.1.2 栈的表示和算法实现
第3章栈和队列
3.1.1 栈的定义
1.栈的定义 栈(stack)是一种只允许在一端进行插入和删除的线 性表,它是一种操作受限的线性表。在表中只允许进
行插入和删除的一端称为栈顶(top),另一端称为 栈 底 (bottom) 。 栈 的 插 入 操 作 通 常 称 为 入 栈 或 进 栈 (push),而栈的删除操作则称为出栈或退栈(pop)。 当栈中无数据元素时,称为空栈。
栈是按照后进先出 (LIFO)的原则组 织数据的,因此, 栈也被称为“后进 先出”的线性表。
第3章栈和队列
(2)入栈操作
Status Push(SqStack &S, Elemtype e)
【算法3.2 栈的入栈操作】
{ /*将元素e插入到栈S中,作为S的新栈顶*/
if (S->top>= Stack_Size -1) return ERROR;
else { S->top++;
S->elem[S->top]=e;
return OK;}
Push(S,’you’)
第04章 栈和队列(Java版)
图4.5 表达式中圆括号匹配的语法检查
《数据结构(Java版)(第4版)》第4章 12
【例4.2】 使用栈计算算术表达式值
中缀表达式:1+2*(3-4)+5
《数据结构(Java版)(第4版)》第4章 13
பைடு நூலகம்
习题4-5
习4-5 中缀表达式如下, 写出后缀表达式。
A+B*(C-D*(E+F)/G+H)-(I+J)*K
《数据结构(Java版)(第4版)》第4章 8
链式栈类LinkedStack<T>
//链式栈类,最终类,实现栈接口,T表示元素类型 public final class LinkedStack<T> implements Stack<T> { private SinglyList<T> list; //单链表
《数据结构(Java版)(第4版)》第4章 16
Expression
public class Expression { StringBuffer toPostfix(String infix) //返回将infix中缀表达式转换成的后缀表达式 int toValue(StringBuffer postfix) //计算后缀表达式的值 } 【思考题4-2】
第 4章
栈和队列
4.1 4.2 4.3
栈 队列 递归
目的:使用栈或队列求解应用问题。 要求:栈和队列的顺序和链式存储结构实现。 重点:栈和队列的设计和应用。 难点:栈或队列的使用场合,以及如何使用 栈和队列求解应用问题。
《数据结构(Java版)(第4版)》第4章 1
栈和队列区别及应用场景
栈和队列区别及应用场景栈(Stack)和队列(Queue)是两种常见的数据结构,它们在计算机科学领域有广泛的应用。
本文将从定义、特点和基本操作等方面详细介绍栈和队列的区别,并分析它们各自的应用场景。
一、栈的定义及特点:栈是一种线性数据结构,其特点是“先进后出”(Last In First Out,LIFO)。
即在栈中最后一个进入的元素,也是第一个出栈的元素。
栈的基本操作包括入栈和出栈。
入栈(Push)是将一个元素追加到栈的顶部,出栈(Pop)是将栈顶元素移除。
栈的应用场景:1.函数调用:在函数调用时,每遇到一个新的函数调用就将当前的上下文(包括局部变量和返回地址)压入栈中,当函数调用完毕后,再弹出栈顶元素,恢复上一个函数的上下文。
2.表达式求值:栈可以用于进行中缀表达式到后缀表达式的转换,并通过栈来计算后缀表达式的值。
3.递归:递归算法的实现中通常会使用栈来保存递归调用的上下文。
4.撤销操作:在很多应用程序中,比如文本编辑器和图像处理软件中,通过栈来存储用户操作,以便可以撤销之前的操作。
5.浏览器历史记录:浏览器通常使用栈来实现历史记录的功能,每当用户浏览一个新的页面时,就将该页面的URL入栈,当用户点击后退按钮时,再依次出栈。
6.二叉树的遍历:用栈可以实现二叉树的深度优先遍历,具体的实现是使用非递归的方式进行前序、中序、后序遍历。
二、队列的定义及特点:队列也是一种线性数据结构,其特点是“先进先出”(First In First Out,FIFO)。
即在队列中最先进入的元素,也是第一个出队列的元素。
队列的基本操作包括入队和出队。
入队(Enqueue)是将元素放入队列的尾部,出队(Dequeue)是将队列的头部元素移除。
队列的应用场景:1.广度优先搜索:在图论中,广度优先搜索(Breadth First Search,BFS)通常会使用队列来实现,按照层次的顺序进行搜索。
2.缓冲区:队列可以用作缓冲区,在生产者和消费者模型中,生产者将数据放入队列的尾部,消费者从队列的头部取出数据进行处理。
栈和队列的应用实例
栈和队列的应用实例一、栈的应用实例1.计算器程序计算器程序是栈的一个经典应用,它可以通过将表达式转换成后缀表达式,再利用栈进行运算得出结果。
具体实现过程如下:(1)将中缀表达式转换为后缀表达式。
(2)利用栈进行后缀表达式的运算。
2.浏览器前进后退功能浏览器前进后退功能也是栈的一个应用。
当用户点击浏览器的前进或后退按钮时,浏览器会将当前页面的URL压入一个栈中。
当用户点击前进或后退按钮时,浏览器会从栈中弹出上一个或下一个URL并加载。
3.括号匹配问题括号匹配问题也是栈的一个常见应用。
当我们需要判断一段代码中括号是否匹配时,可以使用栈来实现。
遍历代码中每个字符,如果是左括号,则将其压入栈中;如果是右括号,则从栈顶弹出一个左括号进行匹配。
如果最终栈为空,则说明所有括号都匹配成功。
二、队列的应用实例1.打印队列打印队列是队列的一个典型应用。
在打印机资源有限且多人共享的情况下,打印队列可以帮助我们管理打印任务的顺序。
每当有一个新的打印任务到达时,就将其加入队列中。
当打印机空闲时,从队列中取出第一个任务进行打印,直到队列为空。
2.消息队列消息队列也是队列的一个重要应用。
在分布式系统中,不同节点之间需要传递消息进行通信。
为了保证消息传递的可靠性和顺序性,可以使用消息队列来实现。
每当一个节点发送一条消息时,就将其加入到消息队列中。
接收方从消息队列中取出最早的一条消息进行处理。
3.广度优先搜索广度优先搜索也是队列的一个常见应用。
在图论和网络分析中,广度优先搜索可以帮助我们寻找最短路径和连通性等问题。
具体实现过程如下:(1)将起点加入到队列中。
(2)从队首取出一个节点,并将与其相邻且未访问过的节点加入到队尾。
(3)重复步骤(2),直到找到终点或者遍历完所有节点。
以上是栈和队列的一些应用实例,在实际编程过程中需要根据具体情况选择合适的数据结构来解决问题。
数据结构栈和队列知识点总结
数据结构栈和队列知识点总结一、栈的基本概念栈是一种线性数据结构,具有后进先出(LIFO)的特点。
栈有两个基本操作:入栈(push)和出栈(pop)。
入栈指将元素压入栈中,出栈指将最近压入的元素弹出。
二、栈的实现方式1. 数组实现:利用数组来存储元素,通过一个变量来记录当前栈顶位置。
2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。
三、应用场景1. 表达式求值:使用两个栈分别存储操作数和运算符,按照优先级依次进行计算。
2. 函数调用:每当调用一个函数时,就将当前函数的上下文信息压入调用栈中,在函数返回时再弹出。
3. 浏览器历史记录:使用两个栈分别存储浏览器前进和后退的网页地址。
四、队列的基本概念队列是一种线性数据结构,具有先进先出(FIFO)的特点。
队列有两个基本操作:入队(enqueue)和出队(dequeue)。
入队指将元素加入到队列尾部,出队指从队列头部删除元素。
五、队列的实现方式1. 数组实现:利用数组来存储元素,通过两个变量分别记录队列头和队列尾的位置。
2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。
六、应用场景1. 广度优先搜索:使用队列来保存待访问的节点,按照层次依次访问。
2. 线程池:使用队列来保存任务,线程从队列中取出任务进行处理。
3. 缓存淘汰策略:使用队列来维护缓存中元素的顺序,根据一定策略选择删除队首或队尾元素。
七、栈和队列的比较1. 栈是一种后进先出的数据结构,而队列是一种先进先出的数据结构。
2. 栈只能在栈顶进行插入和删除操作,而队列可以在两端进行操作。
3. 栈可以用于回溯、函数调用等场景,而队列适合于广度优先搜索、缓存淘汰等场景。
八、常见问题及解决方法1. 栈溢出:当栈空间不够时,会发生栈溢出。
解决方法包括增加栈空间大小、减少递归深度等。
2. 队列空间浪费:当使用数组实现队列时,可能会出现队列空间不足的情况。
java中队列的方法
java中队列的方法Java中队列是一种常用的数据结构,它遵循先进先出(FIFO)的原则,即最先进队列的元素最先被取出。
在Java中,队列是通过接口Queue和它的实现类来实现的。
本文将介绍Java中队列的常用方法,包括添加元素、删除元素、获取队首元素、判断队列是否为空以及获取队列的大小等。
1. 添加元素:队列的添加元素操作是通过add或offer方法来实现的。
add方法在队列满时,会抛出异常;而offer方法则会返回特殊值来表示添加是否成功。
例如:```javaQueue<String> queue = new LinkedList<>();queue.add("element1");queue.offer("element2");```2. 删除元素:队列的删除元素操作是通过remove或poll方法来实现的。
remove方法在队列为空时,会抛出异常;而poll方法则会返回特殊值来表示删除的元素,如果队列为空则返回null。
例如:```javaQueue<String> queue = new LinkedList<>();queue.add("element1");queue.add("element2");String element = queue.remove();String element = queue.poll();```3. 获取队首元素:队列的获取队首元素操作是通过element或peek方法来实现的。
element方法在队列为空时,会抛出异常;而peek方法则会返回特殊值来表示队首元素,如果队列为空则返回null。
例如:```javaQueue<String> queue = new LinkedList<>();queue.add("element1");queue.add("element2");String element = queue.element();String element = queue.peek();```4. 判断队列是否为空:队列的判断是否为空操作是通过isEmpty方法来实现的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
队列
Insert(n, x)
Delete(0)
栈和队列是两种操作受限的线性表, 是两种常用的数据类型。
3.1.1 栈的概念
(1) 栈是仅限制在表尾进行插入和删除操作的特 殊线性表,限制操作的表尾端称为“栈顶”, 另一 端称为“栈底”
(2) 栈是“后进先出”的线性表(LIFO)或 “先 进后出”的线性表(FILO)
return top== 0; } // 求栈数据元素个数函数 public int length( ) {
return top; } // 取栈顶元素的函数 public Object peek ( ) { if (!isEmpty()) // 栈非空
return stackElem[top-1]; // 栈顶元素 else
public Object pop();
}
顺序栈
实现此接口的方法有两种:
链栈
3.1.3 顺序栈及其基本操作的实现
1. 顺序栈
非空栈 0 1 …… n-1
stackElem a0 a1 … … an-1
maxSize-1
top=n
空栈 0 1 2 ……
maxSize-1
stackElem
……
top=0
3.1.1 栈的概念
解答:
四辆车出站的所有可能顺序为:
1)1、2、3、4; 2)1、2、4、3; 3)1、3、2、4; 4)1、3、4、2; 5)1、4、3、2;
6)2、1、3、4; 7)2、1、4、3; 8)2、3、4、1; 9)2、3、1、4 ; 10)2、4、3、1;
11)3、2、1、4; 12)3、2、4、1; 13)3、4、2、1; 14)4、3、2、1。
public interface IStack{
public void clear();
public boolean isEmpty();
public int length();
public Object peek();
public void push(Object x) throws Exception;
栈与队列(java版)
教学内容
3.1 栈 3.2 队列 3.3 栈与队列的比较 3.4 栈与队列的综合应用举例
教学重点与难点 重点:
栈、队列的特点; 栈、队列基本操作的实现算法
难点:
栈、队列的应用
通常称,栈和队列是限定插入和删 除只能在表的“端点”进行的线性表。
线性表
Insert(i, x) 0≤i≤n Delete(i) 0≤i≤n-1
进
a0 a1 a2 … an-1
出
栈底
栈顶
3.1.1 栈的概念
如下图所示的是铁路调度站形象地表 示栈的“后进先出”特点。
大家学习辛苦了,还是要坚持
继续保持安静
3.1.1 栈的概念
思考题:
设有编号为1,2,3,4的四辆 列车,顺序进一个栈式结构的站台 ,具体写出这四辆列车开出车站的 所有可能的顺序。
3.1.2 栈的抽象数据类型描述
1.基本操作
1)栈的置空操作: clear( )
2)栈的判空操作:
isEmpty( )
3)求栈的长度:
length( )
4)取栈顶元素操作: peek( )
5)入栈操作: 6)出栈操作:
push( x ) pop( )
3.1.2 栈的抽象数据类型描述
2.栈的抽象数据类型的Java接口描述
// 输出函数(从栈顶到栈底) public void display () {
for (int i = top - 1; i >= 0; i--) System.out.print(stackElem[i].toString() + " ");
}
}
3. 顺序栈基本操作的实现
1)顺序栈的入栈操作 push (x)的实现(算法 3.1)
3.1.3 顺序栈及其基本操作的实现 1. 顺序栈 0 1 …… n-1 stackElem a0 a1 … … an-1
思考 如下问题如何描述? 栈空条件? top==0
top=n
栈满条件? top==stackElem.length
栈的长度? top
栈顶元素? stackElem[top-1]
if (top == stackElem.length) throw new Exception("栈已满");
(1) 操作要求: 插入元素x使其成为顺序栈中新的栈
顶元素。
a0 a1 … …
an-1 x
top top
1)顺序栈的入栈操作 push (x)的实现(算法 3.1) (2) 算法步骤:
a.[判断顺序栈是否为满,若满则抛出异常]
if (top == stackElem.length) throw new Exception("栈已满")
return null;
…} …
}
2. 顺序栈类的描述(见教材P71)
public class SqStack implements IStack {
……
// 入栈操作的函数 public void push( Object x) { …… }
// 出栈操作的函数 public void pop ( ) { …… }
3.1.3 顺序栈及其基本操作的实现
2.顺序栈类的描述(书P71-与P33顺序表类对照学习)
public class SqStack implements IStack {
private Object[] stackElem; private int top;
//构造一个容量为maxSize的空栈
public SqStack (int maxSize) { stackElem = new Object[maxSize];
} top = 0;
// 栈置空
public void clear( ) {
top= 0; }
} ……
2. 顺序栈类的描述(见教材P71)
pub…lic c…lass SqStack implements IStack { // 栈判空 public boolean isEmpty( ) {
b.[若栈不满,则将新元素x 压入栈顶,并修 正栈顶指针]
statckElem[top]=x; top=top+1;
statckElem[top++]=x
1)顺序栈的入栈操作 push (x)的实现(算法 3.1) (3) 算法 public void push (Object x) throws Exception {