上海2015-2017中考数学分析

合集下载

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷答案与解析

2015 年上海市中考数学试卷答案与分析2015 年上海市中考数学试卷参照答案与试题分析一、选择题1.(4 分)(2015?上海)以下实数中,是有理数的为()A .B.C.πD.0考实数.点:分依占有理数能写成有限小数和无穷循环小析:数,而无理数只好写成无穷不循环小数进行判断即可.解解:是无理数,A不正确;答:是无理数,B不正确;π是无理数, C 不正确;0 是有理数, D 正确;应选: D.点本题主要考察了无理数和有理数的差别,解评:答本题的重点是要明确:有理数能写成有限小数和无穷循环小数,而无理数只好写成无穷不循环小数.2.(4 分)(2015?上海)当 a>0 时,以下对于幂的运算正确的选项是()A .a0=1B.a﹣1=﹣a C.(﹣a)D.a=2=﹣a2考负整数指数幂;有理数的乘方;分数指数点:幂;零指数幂.分分别利用零指数幂的性质以及负指数幂的析:性质和分数指数幂的性质分别剖析求出即可.解解: A 、a0=1(a>0),正确;答: B、a﹣1= ,故此选项错误;C、(﹣ a)2=a2,故此选项错误;D、a =(a>0),故此选项错误.应选: A.点本题主要考察了零指数幂的性质以及负指评:数幂的性质和分数指数幂的性质等知识,正确掌握有关性质是解题重点.3.(4 分)(2015?上海)以下 y 对于 x 的函数中,是正比率函数的为()3考正比率函数的定义.点:分依据正比率函数的定义来判断即可得出答析:案.解解:A、y 是 x 的二次函数,故 A 选项错误;答: B、y 是 x 的反比率函数,故B 选项错误;C、y 是 x 的正比率函数,故 C 选项正确;D、y是 x 的一次函数,故 D 选项错误;应选 C.点本题考察了正比率函数的定义:一般地,两评:个变量 x,y 之间的关系式能够表示成形如 y=kx (k 为常数,且 k ≠0)的函数,那么 y就叫做 x 的正比率函数.4.(4 分)(2015?上海)假如一个正多边形的中心角为 72°,那么这个多边形的边数是()A .4B.5C.6D.7考多边形内角与外角.点:分依据正多边形的中心角和为360°和正多边析:形的中心角相等,列式计算即可.解解:这个多边形的边数是360÷72=5,答:应选: B.点本题考察的是正多边形的中心角的有关计评:算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的重点.5.(4 分)(2015?上海)以下各统计量中,表示一组数据颠簸程度的量是()A .均匀数 B.众数C.方差D.频次考统计量的选择.点:分依据均匀数、众数、中位数反应一组数据的析:集中趋向,而方差、标准差反应一组数据的失散程度或颠簸大小进行选择.解解:能反应一组数据颠簸程度的是方差或标答:准差,应选 C.点本题考察了标准差的意义,颠簸越大,标准评:差越大,数据越不稳固,反之也建立.6.(4 分)(2015?上海)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D,要使四边形 OACB 为菱形,还需要增添一个条件,这个条件能够是()A.A D= B.OD= C.∠CAD= ∠ D.∠OCA= ∠BD CD CBD OCB考菱形的判断;垂径定理.点:分利用对角线相互垂直且相互均分的四边形析:是菱形,从而求出即可.解解:∵在⊙ O 中,AB 是弦,半径 OC⊥AB ,答:∴AD=DB ,当 DO=CD ,则 AD=BD ,DO=CD ,AB ⊥CO,故四边形 OACB 为菱形.应选: B.点本题主要考察了菱形的判断以及垂径定评:理,娴熟掌握菱形的判断方法是解题重点.二、填空题7.(4 分)(2015?上海)计算: |﹣2|+2= 4.考有理数的加法;绝对值.点:分先计算 |﹣2|,再加上 2 即可.析:解解:原式 =2+2答: =4.故答案为 4.点本题考察了有理数的加法,以及绝对值的求评:法,负数的绝对值等于它的相反数.8.(4 分)(2015?上海)方程=2 的解是x=2.考无理方程.点:分第一依据乘方法消去方程中的根号,而后根析:据一元一次方程的求解方法,求出 x 的值是多少,最后验根,求出方程=2 的解是多少即可.解解:∵=2,答:∴3x﹣2=4,∴x=2,当 x=2 时,左侧=,右侧 =2,∵左侧 =右侧,∴方程=2 的解是: x=2.故答案为: x=2.点本题主要考察了无理方程的求解,要娴熟掌评:握,解答本题的重点是要明确:(1)解无理方程的基本思想是把无理方程转变为有理方程来解,在变形时要注意依据方程的结构特色选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设协助元素法,利用比率性质法等.(2)注意:用乘方法(马上方程两边各自乘同次方来消去方程中的根号)来解无理方程,常常会产生增根,应注意验根.9.(4 分)(2015?上海)假如分式存心义,那么 x 的取值范围是 x≠﹣ 3 .考分式存心义的条件.点:分依据分式存心义的条件是分母不为0,列出析:算式,计算获得答案.解解:由题意得, x+3≠0,答:即 x≠﹣ 3,故答案为: x≠﹣ 3.点本题考察的是分式存心义的条件,从以下三评:个方面透辟理解分式的观点:(1)分式无心义? 分母为零;(2)分式存心义 ? 分母不为零;(3)分式值为零 ? 分子为零且分母不为零.10.(4 分)(2015?上海)假如对于 x 的一元二次方程 x2+4x﹣m=0 没有实数根,那么 m 的取值范围是 m<﹣ 4 .考根的鉴别式.点:分依据对于x 的一元二次方程x2+4x﹣m=0 没析:有实数根,得出△ =16﹣4(﹣ m)< 0,从而求出 m 的取值范围.解解:∵一元二次方程x2+4x﹣m=0 没有实数答:根,∴△ =16﹣4(﹣ m)< 0,∴m<﹣ 4,故答案为 m<﹣ 4.点本题考察了一元二次方程ax2+bx+c=0评:(a≠0)的根的鉴别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△< 0,方程没有实数根.11.(4 分)(2015?上海)同一温度的华氏度数y (℉)与摄氏度数x(℃)之间的函数关系是y= x+32,假如某一温度的摄氏度数是25℃,那么它的华氏度数是77℉.考函数值.点:分把 x 的值代入函数关系式计算求出y 值即析:可.解解:当 x=25°时,答: y= ×25+32=77,故答案为: 77.点本题考察的是求函数值,理解函数值的观评论:并正确代入正确计算是解题的重点.12.( 4 分)(2015?上海)假如将抛物线y=x 2+2x ﹣1 向上平移,使它经过点 A(0,3),那么所得新抛物线的表达式是 y=x 2+2x+3 .考二次函数图象与几何变换.点:分设平移后的抛物线分析式为 y=x2+2x﹣析:1+b,把点 A 的坐标代入进行求值即可获得b的值.解解:设平移后的抛物线分析式为y=x2+2x﹣答:1+b,把 A(0, 3)代入,得3=﹣1+b,解得 b=4,则该函数分析式为y=x2 +2x+3.故答案是: y=x2+2x+3.点主要考察了函数图象的平移,要求娴熟掌握评:平移的规律:左加右减,上加下减.并用规律求函数分析式.会利用方程求抛物线与坐标轴的交点.13.(4 分)(2015?上海)某校学生会倡导双休日到养老院参加服务活动,初次活动需要 7 位同学参加,现有包含小杰在内的 50 位同学报名,所以学生会将从这 50 位同学中随机抽取 7 位,小杰被抽到参加初次活动的概率是.考概率公式.点:分由某校学生会倡导双休日到养老院参加服析:务活动,初次活动需要7 位同学参加,现有包含小杰在内的 50 位同学报名,直接利用概率公式求解即可求得答案.解解:∵学生会将从这50 位同学中随机抽取答:7 位,∴小杰被抽到参加初次活动的概率是:.故答案为:.点本题考察了概率公式的应用.用到的知识评论:为:概率 =所讨状况数与总状况数之比.14.(4 分)(2015?上海)已知某校学生“科技创新社团”成员的年纪与人数状况以下表所示:年纪 11 12 13 14 15(岁)人数5516 1512那么“科技创新社团”成员年纪的中位数是14岁.考中位数.点:分一共有 53 个数据,依据中位数的定义,把析:它们按从小到大的次序摆列,第 27 名成员的年纪就是这个小构成员年纪的中位数.解解:从小到大摆列此数据,第27 名成员的答:年纪是 14 岁,所以这个小构成员年纪的中位数是14.故答案为 14.点本题属于基础题,考察了确立一组数据的中评:位数的能力.注意找中位数的时候必定要先排好次序,而后再依据奇数和偶数个来确立中位数,假如数占有奇数个,则正中间的数字即为所求,假如是偶数个则找中间两位数的均匀数.15.(4 分)(2015?上海)如图,已知在△ ABC 中, D、E 分别是边 AB 、边 AC 的中点, = ,= ,那么向量用向量,表示为﹣.考 * 平面向量.点:分由 = , = ,利用三角形法例求解即可求析:得,又由在△ ABC 中,D、E 分别是边 AB、边 AC 的中点,可得 DE 是△ ABC 的中位线,而后利用三角形中位线的性质求解即可求得答案.解解:∵ =, =,答:∴=﹣=﹣,∵在△ ABC 中,D、E 分别是边 AB、边 AC的中点,∴= =(﹣)= ﹣.故答案为:﹣.点本题考察了平面向量的知识以及三角形中评:位线的性质.注意掌握三角形法例的应用.16.(4 分)(2015?上海)已知 E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E作AC 的垂线,交边CD 于点F,那么∠FAD= 22.5 度.考正方形的性质;全等三角形的判断与性质.点:分依据正方形的性质可得∠DAC=45 °,再由析:AD=AE 易证△ADF ≌△AEF,求出∠FAD.解解:如图,答:在 Rt △AEF 和 Rt△ADF 中,∴R t △AEF ≌Rt △ADF ,∴∠ DAF= ∠EAF ,∵四边形 ABCD 为正方形,∴∠ CAD=45 °,∴∠ FAD=22.5°.故答案为: 22.5.点本题考察了正方形的性质,全等三角形的判评:定与性质,求证 Rt △AEF ≌Rt △ADF 是解本题的重点.17.(4 分)(2015?上海)在矩形ABCD 中,AB=5,BC=12,点 A 在⊙ B 上,假如⊙ D 与⊙ B 订交,且点B 在⊙ D 内,那么⊙ D 的半径长能够等于14(答案不独一).(只要写出一个切合要求的数)考圆与圆的地点关系;点与圆的地点关系.点:专开放型.题:分第一求得矩形的对角线的长,而后依据点A析:在⊙B 上获得⊙ B 的半径为 5,再依据⊙ D 与⊙ B 订交,获得⊙ D 的半径 R 知足 8<R<18,在此范围内找到一个值即可.解解:∵矩形 ABCD 中, AB=5 ,BC=12,答:∴AC=BD=13 ,∵点 A 在⊙B 上,∴⊙ B 的半径为 5,∵假如⊙ D 与⊙ B 订交,∴⊙ D 的半径 R 知足 8<R<18,∵点 B 在⊙D 内,∴R>13,∴13<R<18,∴14 切合要求,故答案为: 14(答案不独一).点本题考察了圆与圆的地点关系、点与圆的位评:置关系,解题的重点是第一确立⊙ B 的半径,而后确立⊙ D 的半径的取值范围,难度不大.18.(4 分)(2015?上海)已知在△ ABC 中,AB=AC=8 ,∠ BAC=30 °,将△ ABC 绕点 A 旋转,使点 B 落在原△ ABC 的点 C 处,此时点 C落在点 D 处,延伸线段 AD ,交原△ ABC 的边BC 的延伸线于点 E,那么线段 DE 的长等于4﹣4.考解直角三角形;等腰三角形的性质.点:专计算题.题:分作 CH ⊥AE 于 H ,依据等腰三角形的性质析:和三角形内角和定理可计算出∠ ACB=(180°﹣∠ BAC )=75°,再依据旋转的性质得 AD=AB=8 ,∠CAD= ∠BAC=30 °,则利用三角形外角性质可计算出∠E=45°,接着在 Rt△ACH 中利用含 30 度的直角三角形三边的关系得 CH= AC=4 ,AH= CH=4,所以DH=AD﹣AH=8﹣4,而后在Rt △CEH 中利用∠E=45°获得 EH=CH=4 ,于是可得 DE=EH ﹣DH=4﹣4.解解:作 CH ⊥AE 于 H,如图,答:∵AB=AC=8 ,∴∠ B=∠ACB= (180°﹣∠ BAC )=(180°﹣ 30°) =75°,∵△ ABC 绕点 A 旋转,使点 B 落在原△ABC 的点 C 处,此时点 C 落在点 D 处,∴A D=AB=8 ,∠CAD= ∠BAC=30 °,∵∠ ACB= ∠CAD+ ∠E,∴∠ E=75°﹣ 30° =45°,在 Rt △ACH 中,∵∠ CAH=30 °,∴CH= AC=4 ,AH= CH=4 ,∴DH=AD ﹣AH=8 ﹣4 ,在 Rt △CEH 中,∵∠ E=45°,∴EH=CH=4 ,∴DE=EH ﹣DH=4 ﹣( 8﹣4 )=4 ﹣4.故答案为 4 ﹣4.点本题考察认识直角三角形:在直角三角形评:中,由已知元素求未知元素的过程就是解直角三角形.也考察了等腰三角形的性质和旋转的性质.三、解答题19.(10 分)(2015?上海)先化简,再求值:÷﹣,此中x=﹣1.考分式的化简求值.点:分先依据分式混淆运算的法例把原式进行化析:简,再把 x 的值代入进行计算即可.解解:原式=? ﹣答:=﹣=,当 x= ﹣1 时,原式 == ﹣1.点本题考察的是分式的化简求值,熟知分式混评:合运算的法例是解答本题的重点.20.(10 分)(2015?上海)解不等式组:,并把解集在数轴上表示出来.考解一元一次不等式组;在数轴上表示不等式点:的解集.分先求出每个不等式的解集,再依据找不等式析:组解集的规律找出不等式组的解集即可.解解:答:∵解不等式①得: x>﹣ 3,解不等式②得: x≤2,∴不等式组的解集为﹣ 3<x≤2,在数轴上表示不等式组的解集为:.点本题考察认识一元一次不等式组,在数轴上评:表示不等式组的解集的应用,解本题的重点是能依据不等式的解集求出不等式组的解集,难度适中.21.(10 分)(2015?上海)已知:如图,在平面直角坐标系 xOy 中,正比率函数 y= x 的图象经过点 A ,点 A 的纵坐标为 4,反比率函数 y= 的图象也经过点 A,第一象限内的点 B 在这个反比率函数的图象上,过点 B 作 BC∥x 轴,交 y 轴于点C,且 AC=AB .求:(1)这个反比率函数的分析式;(2)直线 AB 的表达式.考反比率函数与一次函数的交点问题.点:分(1)依据正比率函数 y= x 的图象经过点析:A,点 A 的纵坐标为 4,求出点 A 的坐标,依据反比率函数y= 的图象经过点 A ,求出m的值;(2)依据点A 的坐标和等腰三角形的性质求出点 B 的坐标,运用待定系数法求出直线AB 的表达式.解解:∵正比率函数 y= x 的图象经过点 A,答:点 A 的纵坐标为 4,∴点 A 的坐标为( 3,4),∵反比率函数 y= 的图象经过点 A ,∴m=12,∴反比率函数的分析式为:y=;(2)如图,连结 AC 、AB ,作 AD ⊥BC 于D,∵A C=AB ,AD ⊥BC,∴B C=2CD=6 ,∴点 B 的坐标为:(6,2),设直线 AB 的表达式为: y=kx+b ,由题意得,,解得,,∴直线 AB 的表达式为: y=﹣ x+6.点本题主要考察了待定系数法求反比率函数评:与一次函数的分析式和一次函数与反比率函数的解得的求法,注意数形联合的思想在解题中的应用.22.(10 分)(2015?上海)如图, MN 表示一段笔挺的高架道路,线段 AB 表示高架道路旁的一排居民楼,已知点 A 到 MN 的距离为 15 米,BA 的延伸线与 MN 订交于点 D,且∠ BDN=30 °,假定汽车在高速道路上行驶时,四周 39 米之内会遇到噪音( XRS )的影响.(1)过点 A 作 MN 的垂线,垂足为点 H,假如汽车沿着从 M 到 N 的方向在 MN 上行驶,当汽车抵达点 P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点 H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点 Q 时,它与这一排居民楼的距离 QC 为 39 米,那么对于这一排居民楼,高架道路旁安装的隔音板起码需要多少米长?(精准到 1 米)(参照数据:≈1.7)考解直角三角形的应用;勾股定理的应用.点:分(1)连结 PA.在直角△ PAH 中利用勾股析:定理来求 PH 的长度;(2)由题意知,隔音板的长度是PQ 的长度.经过解 Rt △ADH 、Rt △CDQ 分别求得DH 、DQ 的长度,而后联合图形获得:PQ=PH+DQ ﹣ DH,把有关线段的长度代入求值即可.解解:(1)如图,连结 PA.由题意知,AP=39m.答:在直角△ APH 中, PH== =36 (米);(2)由题意知,隔音板的长度是 PQ 的长度.在 Rt △ADH 中, DH=AH ?cot30°=15(米).在 Rt △CDQ 中, DQ===78(米).则 PQ=PH+HQ=PH+DQ ﹣DH=36+78 ﹣15≈114﹣15×1.7=88.5≈89(米).答:高架道路旁安装的隔音板起码需要 89米.25点本题考察认识直角三角形的应用、勾股定理评:的应用.依据题目已知特色采用适合锐角三角函数或边角关系去解直角三角形,获得数学识题的答案,再转变获得实质问题的答案.23.(12 分)(2015?上海)已知,如图,平行四边形 ABCD 的对角线订交于点 O,点 E 在边BC 的延伸线上,且 OE=OB ,连结 DE.(1)求证: DE ⊥BE;(2)假如 OE⊥CD,求证: BD?CE=CD ?DE .考相像三角形的判断与性质;等腰三角形的性点:质;平行四边形的性质.专证明题.题:分(1)由平行四边形的性质获得 BO= BD,析:由等量代换推出 OE= BD,依据平行四边形的判断即可获得结论;26(2)依据等角的余角相等,获得∠CEO= ∠CDE,推出△ BDE ∽△ CDE,即可获得结论.解证明:(1)∵四边形 ABCD 是平行四边形,答:∴BO= BD,∵OE=OB ,∴OE= BD,∴∠ BED=90 °,∴DE⊥BE;(2)∵ OE⊥CD∴∠ CEO+ ∠DCE= ∠CDE+ ∠DCE=90 °,∴∠ CEO= ∠CDE ,∵OB=OE ,∴∠ DBE= ∠CDE ,∵∠ BED= ∠BED ,∴△ BDE ∽△ CDE ,∴,∴BD?CE=CD ?DE.点本题考察了相像三角形的判断和性质,直角评:三角形的判断和性质,平行四边形的性质,熟记定理是解题的重点.24.(12 分)(2015?上海)已知在平面直角坐标系 xOy 中(如图),抛物线 y=ax2﹣4 与 x 轴的负半轴( XRS)订交于点 A,与 y 轴订交于点 B,AB=2 ,点 P 在抛物线上,线段 AP 与 y 轴的正半轴交于点 C,线段 BP 与 x 轴订交于点 D,设点 P 的横坐标为 m.(1)求这条抛物线的分析式;(2)用含 m 的代数式表示线段 CO 的长;(3)当 tan∠ODC= 时,求∠ PAD 的正弦值.考二次函数综合题.点:分(1)依据已知条件先求出 OB 的长,再根析:据勾股定理得出 OA=2 ,求出点 A 的坐标,再把点 A 的坐标代入 y=ax2﹣4,求出 a 的值,从而求出分析式;(2)依据点P 的横坐标得出点P 的坐标,过点P 作PE⊥x 轴于点E,得出OE=m ,PE=m 2﹣4,从而求出 AE=2+m ,再依据=,求出 OC;(3)依据 tan ∠ODC= ,得出 = ,求出OD 和 OC ,再依据△ ODB ∽△ EDP,得出=,求出 OC,求出∠ PAD=45°,从而求出∠ PAD 的正弦值.解解:(1)∵抛物线 y=ax2﹣4 与 y 轴订交于答:点 B,∴点 B 的坐标是( 0,﹣ 4),∴O B=4 ,∵A B=2 ,∴OA==2,∴点 A 的坐标为(﹣ 2,0),把(﹣ 2,0)代入 y=ax2﹣4 得: 0=4a﹣4,解得: a=1,则抛物线的分析式是:y=x2﹣4;(2)∵点 P 的横坐标为 m,∴点P 的坐标为( m,m2﹣4),过点 P 作 PE⊥x 轴于点 E,∴OE=m ,PE=m 2﹣4,∴A E=2+m ,∵ = ,∴= ,∴CO=2m ﹣4;(3)∵ tan ∠ODC= ,∴ = ,∴OD= OC= ×( 2m﹣4)=,∵△ ODB ∽△ EDP ,∴= ,∴=,∴m1=﹣1(舍去),m2=3,∴O C=2×3﹣4=2,∵OA=2 ,∴O A=OC ,∴∠ PAD=45°,∴sin∠PAD=sin45°=.点本题考察了二次函数的综合,用到的知识评论:是相像三角形的判断与性质、勾股定理、特殊角的三角函数值,重点是依据题意作出协助线,结构相像三角形.25.(14 分)(2015?上海)已知,如图, AB 是半圆 O 的直径,弦 CD ∥AB ,动点 P,Q 分别在线段OC ,CD 上,且DQ=OP ,AP 的延伸线与射线 OQ 订交于点 E,与弦 CD 订交于点 F(点 F 与点 C,D 不重合),AB=20 ,cos∠AOC= ,设 OP=x ,△ CPF 的面积为y.(1)求证: AP=OQ ;(2)求 y 对于 x 的函数关系式,并写出它的定义域;(3)当△ OPE 是直角三角形时,求线段 OP 的长.考圆的综合题.点:分(1)连结 OD,证得△ AOP ≌△ ODQ 后即析:可证得 AP=OQ ;(2)作 PH⊥OA ,依据 cos∠AOC= 获得OH= PO= x,从而获得 S△AOP = AO ?PH=3x ,利用△ PFC ∽△ PAO 适合对应边的比相等即可获得函数分析式;(3)分当∠ POE=90°时、当∠ OPE=90°时、当∠ OEP=90°时三种状况议论即可获得正确的结论.解解:(1)连结 OD ,答:在△ AOP 和△ ODQ 中,,∴△ AOP ≌△ ODQ ,∴AP=OQ ;(2)作 PH⊥OA ,∵cos∠AOC= ,∴OH= PO= x,∴S△AOP = AO ?PH=3x ,又∵△ PFC ∽△ PAO,∴==()2,整理得: y=(<x<10);(3)当∠ POE=90°时, CQ== ,PO=DQ=CD ﹣CQ= (舍);当∠OPE=90°时,PO=AO ?cos∠COA=8 ;当∠ OEP=90°时,∠AOQ= ∠DQO= ∠APO ,∴∠ AOC= ∠AEO ,即∠ OEP= ∠COA ,此种状况不存在,∴线段 OP 的长为 8.点本题考察了圆的综合知识、相像三角形的判评:定及性质等知识,综合性较强,难度较大,特别是第三题的分类议论更是本题的难点.。

2015年上海市中考数学试卷-答案

2015年上海市中考数学试卷-答案

上海市2015年初中毕业生学业考试数学答案解析第Ⅰ卷【提示】本题考查了标准差的意义,波动越大,标准差越大,数据越不稳定,反之也成立.【考点】统计量的选择6.【答案】B【解析】∵在O 中,AB 是弦,半径OC AB ⊥,∴AD DB =,当DO CD =,则AD BD DO CD AB CO ==⊥,,,故四边形OACB 为菱形.故选:B.【提示】此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.【考点】菱形的判定,垂径定理第Ⅱ卷【考点】中位数11-nπ22【解析】∵AB πAC n ==,,∴BC AC AB n π=-=-,∵在点,∴1111DE BC (n π)n π2222==-=-. 11n π22-. 【考点】平面向量故答案为:22.5.在B 上,∴B 的半径为∵如果D 与B 相交,∴D 的半径在D 内,∴R 13>,∴13R <<符合要求,故答案为:14(答案不唯一)【提示】本题考查了圆与圆的位置关系、点与圆的位置关系,解题的关键是首先确定B 的半径,然后确定D 的半径的取值范围,难度不大.【考点】圆与圆的位置关系,点与圆的位置关系18.【答案】x 2x x x +-∵解不等式①得:x 3>-,解不等式②得:x 2≤,∴不等式组的解集为3x 2-<≤,在数轴上表示不等式组的解集为:.3AH cot3015︒=1sin302︒答:高架道路旁安装的隔音板至少需要89米.BD CE CD DE=. 2AO PH3x=,30050(13+<AO cos COA∠∴线段OP的长为8.。

数学中考试题分析

数学中考试题分析
点评:本题考查了单项式乘以多项式,完全平方公式,合并同类项,以及正确 运用括号进行整式基本运算。体现了义务教育阶段毕业考和升学选拔考 两考合一的中考考试性质
考点 阅读理解题意找出数量关系及等量关系,列出分式方程方程,解分式方程 分析: (1)由题意列出分式方程(2)利用不等量关系比较求解即可求得答
数学中考试题分析
2017年中考数学试卷很好地继承了往年中考 试题的特点,没有偏题、怪题,基础部分非常到 位,难易程度循序渐进。
此次试题的知识覆盖面广泛而全面,试题不
仅重视对基础知识、基本技能的检测,更加突出 对基本思想、基本活动经验的考查,比如函数的 考查,几何直观的理解,都可以通过知识点的性 质进行计算推理得出,也可以通过作出图像来建 模猜想得出;同时,不同难度的试题分布合理, 对不同的人在数学上能体现出得到不同的发展。
• 这些试题既强调重视生活、社会背景,又 考查数学对某些既定知识的掌握程度,启发学 生对社会热点重大事件的数学感知,体现数学 知识的社会功能。
• 2017年数学中考试卷中有大部分试题来源 于教材原型,比如二次函数图像的性质,不等 式组的解集,分式方程应用题,垂直平分线的 性质及线段之间的转换,三角函数的应用,阴 影面积的计算等等,这对课堂教学起到了很好 的导向作用,引导我们的课堂教学要回归教材, 深挖教材,不要靠刷题、猜题、押题来提高学 生的成绩。
• 在今后的教学中得到的启发:数学学习要 注重基础知识的理解和掌握,注重语言、书写 的规范性,注重答题的思维顺序和细节,注重 多角度、多方法的训练;只有掌握知识核心,才 能灵活运用。
答案:B
考点 一次函数图像上的点的坐标与表达式中自变量之间一一对应关系
分析:由坐标代入表达式,得到一元一次方程,求解a、b值,简单的代数运 算即可求得答案.

2015年上海市中考数学试卷和解析答案

2015年上海市中考数学试卷和解析答案

2015年上海市中考数学试卷一、选择题1.(4分)下列实数中,是有理数地为()A.B.C.πD.02.(4分)当a>0时,下列关于幂地运算正确地是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a=3.(4分)下列y关于x地函数中,是正比例函数地为()A.y=x2 B.y= C.y= D.y=4.(4分)如果一个正多边形地中心角为72°,那么这个多边形地边数是()A.4 B.5 C.6 D.75.(4分)下列各统计量中,表示一组数据波动程度地量是()A.平均数B.众数C.方差D.频率6.(4分)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB二、填空题7.(4分)计算:|﹣2|+2=.8.(4分)方程=2地解是.9.(4分)如果分式有意义,那么x地取值范围是.10.(4分)如果关于x地一元二次方程x2+4x﹣m=0没有实数根,那么m地取值范围是.11.(4分)同一温度地华氏度数y(℉)与摄氏度数x(℃)之间地函数关系是y=x+32,如果某一温度地摄氏度数是25℃,那么它地华氏度数是℉.12.(4分)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线地表达式是.13.(4分)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内地50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动地概率是.14.(4分)已知某校学生“科技创新社团”成员地年龄与人数情况如下表所示:那么“科技创新社团”成员年龄地中位数是岁.15.(4分)如图,已知在△ABC中,D、E分别是边AB、边AC地中点,=,=,那么向量用向量,表示为.16.(4分)已知E是正方形ABCD地对角线AC上一点,AE=AD,过点E作AC地垂线,交边CD于点F,那么∠FAD=度.17.(4分)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D地半径长可以等于.(只需写出一个符合要求地数)18.(4分)已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC地点C处,此时点C落在点D处,延长线段AD,交原△ABC 地边BC地延长线于点E,那么线段DE地长等于.三、解答题19.(10分)先化简,再求值:÷﹣,其中x=﹣1.20.(10分)解不等式组:,并把解集在数轴上表示出来.21.(10分)已知:如图,在平面直角坐标系xOy中,正比例函数y=x地图象经过点A,点A地纵坐标为4,反比例函数y=地图象也经过点A,第一象限内地点B在这个反比例函数地图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数地解析式;(2)直线AB地表达式.22.(10分)如图,MN表示一段笔直地高架道路,线段AB表示高架道路旁地一排居民楼,已知点A到MN地距离为15米,BA地延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音地影响.(1)过点A作MN地垂线,垂足为点H,如果汽车沿着从M到N地方向在MN 上行驶,当汽车到达点P处时,噪音开始影响这一排地居民楼,那么此时汽车与点H地距离为多少米?(2)降低噪音地一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼地距离QC为39米,那么对于这一排居民楼,高架道路旁安装地隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)23.(12分)已知,如图,平行四边形ABCD地对角线相交于点O,点E在边BC 地延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.24.(12分)已知在平面直角坐标系xOy中(如图),抛物线y=ax2﹣4与x轴地负半轴相交于点A,与y轴相交于点B,AB=2,点P在抛物线上,线段AP与y轴地正半轴交于点C,线段BP与x轴相交于点D,设点P地横坐标为m.(1)求这条抛物线地解析式;(2)用含m地代数式表示线段CO地长;(3)当tan∠ODC=时,求∠PAD地正弦值.25.(14分)已知,如图,AB是半圆O地直径,弦CD∥AB,动点P,Q分别在线段OC,CD上,且DQ=OP,AP地延长线与射线OQ相交于点E,与弦CD相交于点F(点F与点C,D不重合),AB=20,cos∠AOC=,设OP=x,△CPF地面积为y.(1)求证:AP=OQ;(2)求y关于x地函数关系式,并写出它地定义域;(3)当△OPE是直角三角形时,求线段OP地长.2015年上海市中考数学试卷参考答案与试题解析一、选择题1.(4分)下列实数中,是有理数地为()A.B.C.πD.0【分析】根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.【解答】解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.2.(4分)当a>0时,下列关于幂地运算正确地是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a=【分析】分别利用零指数幂地性质以及负指数幂地性质和分数指数幂地性质分别分析求出即可.【解答】解:A、a0=1(a>0),正确;B、a﹣1=,故此选项错误;C、(﹣a)2=a2,故此选项错误;D、a=(a>0),故此选项错误.故选:A.3.(4分)下列y关于x地函数中,是正比例函数地为()A.y=x2 B.y= C.y= D.y=【分析】根据正比例函数地定义来判断即可得出答案.【解答】解:A、y是x地二次函数,故A选项错误;B、y是x地反比例函数,故B选项错误;C、y是x地正比例函数,故C选项正确;D、y是x地一次函数,故D选项错误;故选:C.4.(4分)如果一个正多边形地中心角为72°,那么这个多边形地边数是()A.4 B.5 C.6 D.7【分析】根据正多边形地中心角和为360°和正多边形地中心角相等,列式计算即可.【解答】解:这个多边形地边数是360÷72=5,故选:B.5.(4分)下列各统计量中,表示一组数据波动程度地量是()A.平均数B.众数C.方差D.频率【分析】根据平均数、众数、中位数反映一组数据地集中趋势,而方差、标准差反映一组数据地离散程度或波动大小进行选择.【解答】解:能反映一组数据波动程度地是方差或标准差,故选:C.6.(4分)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB【分析】利用对角线互相垂直且互相平分地四边形是菱形,进而求出即可.【解答】解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.二、填空题7.(4分)计算:|﹣2|+2=4.【分析】先计算|﹣2|,再加上2即可.【解答】解:原式=2+2=4.故答案为4.8.(4分)方程=2地解是x=2.【分析】首先根据乘方法消去方程中地根号,然后根据一元一次方程地求解方法,求出x地值是多少,最后验根,求出方程=2地解是多少即可.【解答】解:∵=2,∴3x﹣2=4,∴x=2,当x=2时,左边=,右边=2,∵左边=右边,∴方程=2地解是:x=2.故答案为:x=2.9.(4分)如果分式有意义,那么x地取值范围是x≠﹣3.【分析】根据分式有意义地条件是分母不为0,列出算式,计算得到答案.【解答】解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.10.(4分)如果关于x地一元二次方程x2+4x﹣m=0没有实数根,那么m地取值范围是m<﹣4.【分析】根据关于x地一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m地取值范围.【解答】解:∵一元二次方程x2+4x﹣m=0没有实数根,∴△=16﹣4(﹣m)<0,∴m<﹣4,故答案为m<﹣4.11.(4分)同一温度地华氏度数y(℉)与摄氏度数x(℃)之间地函数关系是y=x+32,如果某一温度地摄氏度数是25℃,那么它地华氏度数是77℉.【分析】把x地值代入函数关系式计算求出y值即可.【解答】解:当x=25°时,y=×25+32=77,故答案为:77.12.(4分)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线地表达式是y=x2+2x+3.【分析】设平移后地抛物线解析式为y=x2+2x﹣1+b,把点A地坐标代入进行求值即可得到b地值.【解答】解:设平移后地抛物线解析式为y=x2+2x﹣1+b,把A(0,3)代入,得3=﹣1+b,解得b=4,则该函数解析式为y=x2+2x+3.故答案是:y=x2+2x+3.13.(4分)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内地50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动地概率是.【分析】由某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内地50位同学报名,直接利用概率公式求解即可求得答案.【解答】解:∵学生会将从这50位同学中随机抽取7位,∴小杰被抽到参加首次活动地概率是:.故答案为:.14.(4分)已知某校学生“科技创新社团”成员地年龄与人数情况如下表所示:那么“科技创新社团”成员年龄地中位数是14岁.【分析】一共有53个数据,根据中位数地定义,把它们按从小到大地顺序排列,第27名成员地年龄就是这个小组成员年龄地中位数.【解答】解:从小到大排列此数据,第27名成员地年龄是14岁,所以这个小组成员年龄地中位数是14.故答案为14.15.(4分)如图,已知在△ABC中,D、E分别是边AB、边AC地中点,=,=,那么向量用向量,表示为﹣.【分析】由=,=,利用三角形法则求解即可求得,又由在△ABC中,D、E分别是边AB、边AC地中点,可得DE是△ABC地中位线,然后利用三角形中位线地性质求解即可求得答案.【解答】解:∵=,=,∴=﹣=﹣,∵在△ABC中,D、E分别是边AB、边AC地中点,∴==(﹣)=﹣.故答案为:﹣.16.(4分)已知E是正方形ABCD地对角线AC上一点,AE=AD,过点E作AC地垂线,交边CD于点F,那么∠FAD=22.5度.【分析】根据正方形地性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.【解答】解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=22.5°.故答案为:22.5.17.(4分)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D地半径长可以等于14(答案不唯一).(只需写出一个符合要求地数)【分析】首先求得矩形地对角线地长,然后根据点A在⊙B上得到⊙B地半径为5,再根据⊙D与⊙B相交,得到⊙D地半径R满足8<R<18,在此范围内找到一个值即可.【解答】解:∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在⊙B上,∴⊙B地半径为5,∵如果⊙D与⊙B相交,∴⊙D地半径R满足8<R<18,∵点B在⊙D内,∴R>13,∴13<R<18,∴14符合要求,故答案为:14(答案不唯一).18.(4分)已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC地点C处,此时点C落在点D处,延长线段AD,交原△ABC 地边BC地延长线于点E,那么线段DE地长等于4﹣4.【分析】作CH⊥AE于H,根据等腰三角形地性质和三角形内角和定理可计算出∠ACB=(180°﹣∠BAC)=75°,再根据旋转地性质得AD=AB=8,∠CAD=∠BAC=30°,则利用三角形外角性质可计算出∠E=45°,接着在Rt△ACH中利用含30度地直角三角形三边地关系得CH=AC=4,AH=CH=4,所以DH=AD﹣AH=8﹣4,然后在Rt△CEH中利用∠E=45°得到EH=CH=4,于是可得DE=EH﹣DH=4﹣4.【解答】解:作CH⊥AE于H,如图,∵AB=AC=8,∴∠B=∠ACB=(180°﹣∠BAC)=(180°﹣30°)=75°,∵△ABC绕点A旋转,使点B落在原△ABC地点C处,此时点C落在点D处,∴AD=AB=8,∠CAD=∠BAC=30°,∵∠ACB=∠CAD+∠E,∴∠E=75°﹣30°=45°,在Rt△ACH中,∵∠CAH=30°,∴CH=AC=4,AH=CH=4,∴DH=AD﹣AH=8﹣4,在Rt△CEH中,∵∠E=45°,∴EH=CH=4,∴DE=EH﹣DH=4﹣(8﹣4)=4﹣4.故答案为4﹣4.三、解答题19.(10分)先化简,再求值:÷﹣,其中x=﹣1.【分析】先根据分式混合运算地法则把原式进行化简,再把x地值代入进行计算即可.【解答】解:原式=•﹣=﹣=,当x=﹣1时,原式==﹣1.20.(10分)解不等式组:,并把解集在数轴上表示出来.【分析】先求出每个不等式地解集,再根据找不等式组解集地规律找出不等式组地解集即可.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组地解集为﹣3<x≤2,在数轴上表示不等式组地解集为:.21.(10分)已知:如图,在平面直角坐标系xOy中,正比例函数y=x地图象经过点A,点A地纵坐标为4,反比例函数y=地图象也经过点A,第一象限内地点B在这个反比例函数地图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数地解析式;(2)直线AB地表达式.【分析】(1)根据正比例函数y=x地图象经过点A,点A地纵坐标为4,求出点A地坐标,根据反比例函数y=地图象经过点A,求出m地值;(2)根据点A地坐标和等腰三角形地性质求出点B地坐标,运用待定系数法求出直线AB地表达式.【解答】解:∵正比例函数y=x地图象经过点A,点A地纵坐标为4,∴点A地坐标为(3,4),∵反比例函数y=地图象经过点A,∴m=12,∴反比例函数地解析式为:y=;(2)如图,连接AC、AB,作AD⊥BC于D,∵AC=AB,AD⊥BC,∴BC=2CD=6,∴点B地坐标为:(6,2),设直线AB地表达式为:y=kx+b,由题意得,,解得,,∴直线AB地表达式为:y=﹣x+6.22.(10分)如图,MN表示一段笔直地高架道路,线段AB表示高架道路旁地一排居民楼,已知点A到MN地距离为15米,BA地延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音地影响.(1)过点A作MN地垂线,垂足为点H,如果汽车沿着从M到N地方向在MN 上行驶,当汽车到达点P处时,噪音开始影响这一排地居民楼,那么此时汽车与点H地距离为多少米?(2)降低噪音地一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼地距离QC为39米,那么对于这一排居民楼,高架道路旁安装地隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)【分析】(1)连接PA.在直角△PAH中利用勾股定理来求PH地长度;(2)由题意知,隔音板地长度是PQ地长度.通过解Rt△ADH、Rt△CDQ分别求得DH、DQ地长度,然后结合图形得到:PQ=PH+DQ﹣DH,把相关线段地长度代入求值即可.【解答】解:(1)如图,连接PA.由题意知,AP=39m.在直角△APH中,PH===36(米);(2)由题意知,隔音板地长度是PQ地长度.在Rt△ADH中,DH=AH•cot30°=15(米).在Rt△CDQ中,DQ===78(米).则PQ=PH+HQ=PH+DQ﹣DH=36+78﹣15≈114﹣15×1.7=88.5≈89(米).答:高架道路旁安装地隔音板至少需要89米.23.(12分)已知,如图,平行四边形ABCD地对角线相交于点O,点E在边BC 地延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.【分析】(1)由平行四边形地性质得到BO=BD,由等量代换推出OE=BD,根据平行四边形地判定即可得到结论;(2)根据等角地余角相等,得到∠CEO=∠CDE,推出△BDE∽△CDE,即可得到结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴BO=OD,∵OE=OB,∴OE=OD,∴∠OBE=∠OEB,∠OED=∠ODE,∵∠OBE+∠OEB+∠OED+∠ODE=180°,∴∠BEO+∠DEO=∠BED=90°,∴DE⊥BE;(2)∵OE⊥CD∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵OB=OE,∴∠DBE=∠CDE,∵∠BED=∠BED,∴△BDE∽△DCE,∴,∴BD•CE=CD•DE.24.(12分)已知在平面直角坐标系xOy中(如图),抛物线y=ax2﹣4与x轴地负半轴相交于点A,与y轴相交于点B,AB=2,点P在抛物线上,线段AP与y轴地正半轴交于点C,线段BP与x轴相交于点D,设点P地横坐标为m.(1)求这条抛物线地解析式;(2)用含m地代数式表示线段CO地长;(3)当tan∠ODC=时,求∠PAD地正弦值.【分析】(1)根据已知条件先求出OB地长,再根据勾股定理得出OA=2,求出点A地坐标,再把点A地坐标代入y=ax2﹣4,求出a地值,从而求出解析式;(2)根据点P地横坐标得出点P地坐标,过点P作PE⊥x轴于点E,得出OE=m,PE=m2﹣4,从而求出AE=2+m,再根据=,求出OC;(3)根据tan∠ODC=,得出=,求出OD和OC,再根据△ODB∽△EDP,得出=,求出OC,求出∠PAD=45°,从而求出∠PAD地正弦值.【解答】解:(1)∵抛物线y=ax2﹣4与y轴相交于点B,∴点B地坐标是(0,﹣4),∴OB=4,∵AB=2,∴OA==2,∴点A地坐标为(﹣2,0),把(﹣2,0)代入y=ax2﹣4得:0=4a﹣4,解得:a=1,则抛物线地解析式是:y=x2﹣4;(2)方法一:∵点P地横坐标为m,∴点P地坐标为(m,m2﹣4),过点P作PE⊥x轴于点E,∴OE=m,PE=m2﹣4,∴AE=2+m,∵=,∴=,∴CO=2m﹣4;方法二:∵点P在抛物线上,∴P(m,m2﹣4),设PA地直线方程为:y=kx+b,∴⇒,∴l PA:y=(m﹣2)x+2m﹣4,∴CO=2m﹣4;(3)方法一:∵tan∠ODC=,∴=,∴OD=OC=×(2m﹣4)=,∵△ODB∽△EDP,∴=,∴=,∴m1=﹣1(舍去),m2=3,∴OC=2×3﹣4=2,∵OA=2,∴OA=OC,∴∠PAD=45°,∴sin∠PAD=sin45°=.方法二:∵P(m,m2﹣4),B(0,﹣4),∴l PB:y=mx﹣4,∴D(,0),tan∠ODC=⇒,OC=2m﹣4,∴OD=,∵线段AP与y轴地正半轴交于点C,∴OC=2m﹣4(m>2),∴,经整理:m2﹣2m﹣3=0,∴m1=﹣1(舍去),m2=3,∴P(3,5),∴l PA:y=x+2,∴∠PAD=45°,∴sin∠PAD=.25.(14分)已知,如图,AB是半圆O地直径,弦CD∥AB,动点P,Q分别在线段OC,CD上,且DQ=OP,AP地延长线与射线OQ相交于点E,与弦CD相交于点F(点F与点C,D不重合),AB=20,cos∠AOC=,设OP=x,△CPF地面积为y.(1)求证:AP=OQ;(2)求y关于x地函数关系式,并写出它地定义域;(3)当△OPE是直角三角形时,求线段OP地长.【分析】(1)连接OD,证得△AOP≌△ODQ后即可证得AP=OQ;(2)作PH⊥OA,根据cos∠AOC=得到OH=PO=x,从而得到S△=AO•PH=3x,利用△PFC∽△PAO得当对应边地比相等即可得到函数解析式;AOP(3)分当∠POE=90°时、当∠OPE=90°时,当∠OEP=90°时三种情况讨论即可得到正确地结论.【解答】解:(1)连接OD,在△AOP和△ODQ中,,∴△AOP≌△ODQ,∴AP=OQ;(2)作PH⊥OA,∵cos∠AOC=,∴OH=PO=x,∴S=AO•PH=3x,△AOP又∵△PFC∽△PAO,∴==()2,整理得:y=,∵AP延长线与CD相交于点F,∴CF≤CD=16,易知△CPF∽△OPA,∴,∴x地定义域为:<x<10;(3)当∠POE=90°时,CQ==,PO=DQ=CD﹣CQ=(舍);当∠OPE=90°时,PO=AO•cos∠COA=8;当∠OEP=90°时,如图,由(1)知△AOP≌△ODQ,∴∠APO=∠OQD,∴∠AOQ=∠OQD=∠APO,∵∠AOQ<90°,∠APO>90°(矛盾),∴此种情况不存在,∴线段OP地长为8.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

上海中考数学试卷答案与解析

上海中考数学试卷答案与解析

上海中考数学试卷答案与解析Modified by JACK on the afternoon of December 26, 20202015年上海市中考数学试卷参考答案与试题解析一、选择题1.(4分)(2015?上海)下列实数中,是有理数的为()A.B.C.πD.0考点:实数.分析:根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.解答:解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.点评:此题主要考查了无理数和有理数的区别,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.(4分)(2015?上海)当a>0时,下列关于幂的运算正确的是()A.a0=1B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a =考点:负整数指数幂;有理数的乘方;分数指数幂;零指数幂.分析:分别利用零指数幂的性质以及负指数幂的性质和分数指数幂的性质分别分析求出即可.解答:解:A、a0=1(a>0),正确;B、a﹣1=,故此选项错误;C、(﹣a)2=a2,故此选项错误;D、a =(a>0),故此选项错误.故选:A.点评:此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识,正确把握相关性质是解题关键.3.(4分)(2015?上海)下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=考点:正比例函数的定义.分析:根据正比例函数的定义来判断即可得出答案.解答:解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.点评:本题考查了正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4.(4分)(2015?上海)如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4B.5C.6D.7考点:多边形内角与外角.分析:根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可.解答:解:这个多边形的边数是360÷72=5,故选:B.点评:本题考查的是正多边形的中心角的有关计算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的关键.5.(4分)(2015?上海)下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率考点:统计量的选择.分析:根据平均数、众数、中位数反映一组数据的集中趋势,而方差、标准差反映一组数据的离散程度或波动大小进行选择.解答:解:能反映一组数据波动程度的是方差或标准差,故选C.点评:本题考查了标准差的意义,波动越大,标准差越大,数据越不稳定,反之也成立.6.(4分)(2015?上海)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.A D=BD B.O D=CD C.∠CAD=∠CBD D.∠OCA=∠OCB考点:菱形的判定;垂径定理.分析:利用对角线互相垂直且互相平分的四边形是菱形,进而求出即可.解答:解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.点评:此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.二、填空题7.(4分)(2015?上海)计算:|﹣2|+2= 4 .考点:有理数的加法;绝对值.分析:先计算|﹣2|,再加上2即可.解答:解:原式=2+2=4.故答案为4.点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.8.(4分)(2015?上海)方程=2的解是x=2 .考点:无理方程.分析:首先根据乘方法消去方程中的根号,然后根据一元一次方程的求解方法,求出x的值是多少,最后验根,求出方程=2的解是多少即可.解答:解:∵=2,∴3x﹣2=4,∴x=2,当x=2时,左边=,右边=2,∵左边=右边,∴方程=2的解是:x=2.故答案为:x=2.点评:此题主要考查了无理方程的求解,要熟练掌握,解答此题的关键是要明确:(1)解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.(2)注意:用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.9.(4分)(2015?上海)如果分式有意义,那么x的取值范围是x≠﹣3 .考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0,列出算式,计算得到答案.解答:解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.点评:本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零.10.(4分)(2015?上海)如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是m<﹣4 .考根的判别式.点:分析:根据关于x的一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m的取值范围.解答:解:∵一元二次方程x2+4x﹣m=0没有实数根,∴△=16﹣4(﹣m)<0,∴m<﹣4,故答案为m<﹣4.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.(4分)(2015?上海)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是77 ℉.考点:函数值.分析:把x的值代入函数关系式计算求出y值即可.解答:解:当x=25°时,y=×25+32=77,故答案为:77.点评:本题考查的是求函数值,理解函数值的概念并正确代入准确计算是解题的关键.12.(4分)(2015?上海)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是y=x2+2x+3 .考点:二次函数图象与几何变换.分析:设平移后的抛物线解析式为y=x2+2x﹣1+b,把点A的坐标代入进行求值即可得到b的值.解答:解:设平移后的抛物线解析式为y=x2+2x﹣1+b,把A(0,3)代入,得3=﹣1+b,解得b=4,则该函数解析式为y=x2+2x+3.故答案是:y=x2+2x+3.点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.13.(4分)(2015?上海)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是.考点:概率公式.分由某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,直接利用概率公式求解即可求得答析:案.解答:解:∵学生会将从这50位同学中随机抽取7位,∴小杰被抽到参加首次活动的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2015?上海)已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁)1112131415人数55161512那么“科技创新社团”成员年龄的中位数是14 岁.考点:中位数.分析:一共有53个数据,根据中位数的定义,把它们按从小到大的顺序排列,第27名成员的年龄就是这个小组成员年龄的中位数.解答:解:从小到大排列此数据,第27名成员的年龄是14岁,所以这个小组成员年龄的中位数是14.故答案为14.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.(4分)(2015?上海)如图,已知在△ABC中,D、E分别是边AB、边AC的中点,=,=,那么向量用向量,表示为﹣.考点:*平面向量.分析:由=,=,利用三角形法则求解即可求得,又由在△ABC中,D、E分别是边AB、边AC的中点,可得DE是△ABC的中位线,然后利用三角形中位线的性质求解即可求得答案.解答:解:∵=,=,∴=﹣=﹣,∵在△ABC中,D、E分别是边AB、边AC的中点,∴==(﹣)=﹣.故答案为:﹣.点评:此题考查了平面向量的知识以及三角形中位线的性质.注意掌握三角形法则的应用.16.(4分)(2015?上海)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=度.考点:正方形的性质;全等三角形的判定与性质.分析:根据正方形的性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.解答:解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=°.故答案为:.点评:本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF是解本题的关键.17.(4分)(2015?上海)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于14(答案不唯一).(只需写出一个符合要求的数)考圆与圆的位置关系;点与圆的位置关系.点:专题:开放型.分析:首先求得矩形的对角线的长,然后根据点A在⊙B上得到⊙B的半径为5,再根据⊙D与⊙B相交,得到⊙D的半径R满足8<R<18,在此范围内找到一个值即可.解答:解:∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在⊙B上,∴⊙B的半径为5,∵如果⊙D与⊙B相交,∴⊙D的半径R满足8<R<18,∵点B在⊙D内,∴R>13,∴13<R<18,∴14符合要求,故答案为:14(答案不唯一).点评:本题考查了圆与圆的位置关系、点与圆的位置关系,解题的关键是首先确定⊙B的半径,然后确定⊙D的半径的取值范围,难度不大.18.(4分)(2015?上海)已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE 的长等于4﹣4 .考点:解直角三角形;等腰三角形的性质.专题:计算题.分析:作CH⊥AE于H,根据等腰三角形的性质和三角形内角和定理可计算出∠ACB=(180°﹣∠BAC)=75°,再根据旋转的性质得AD=AB=8,∠CAD=∠BAC=30°,则利用三角形外角性质可计算出∠E=45°,接着在Rt△ACH中利用含30度的直角三角形三边的关系得CH=AC=4,AH=CH=4,所以DH=AD﹣AH=8﹣4,然后在Rt△CEH中利用∠E=45°得到EH=CH=4,于是可得DE=EH﹣DH=4﹣4.解:作CH⊥AE于H,如图,解答:∵AB=AC=8,∴∠B=∠ACB=(180°﹣∠BAC)=(180°﹣30°)=75°,∵△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,∴AD=AB=8,∠CAD=∠BAC=30°,∵∠ACB=∠CAD+∠E,∴∠E=75°﹣30°=45°,在Rt△ACH中,∵∠CAH=30°,∴CH=AC=4,AH=CH=4,∴DH=AD﹣AH=8﹣4,在Rt△CEH中,∵∠E=45°,∴EH=CH=4,∴DE=EH﹣DH=4﹣(8﹣4)=4﹣4.故答案为4﹣4.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和旋转的性质.三、解答题19.(10分)(2015?上海)先化简,再求值:÷﹣,其中x=﹣1.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=﹣=﹣=,当x=﹣1时,原式==﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)(2015?上海)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.21.(10分)(2015?上海)已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.考点:反比例函数与一次函数的交点问题.分(1)根据正比例函数y=x的图象经过点A,点A的纵坐标为4,求出点A的析:坐标,根据反比例函数y=的图象经过点A,求出m的值;(2)根据点A的坐标和等腰三角形的性质求出点B的坐标,运用待定系数法求出直线AB的表达式.解解:∵正比例函数y=x的图象经过点A,点A的纵坐标为4,答:∴点A的坐标为(3,4),∵反比例函数y=的图象经过点A,∴m=12,∴反比例函数的解析式为:y=;(2)如图,连接AC、AB,作AD⊥BC于D,∵AC=AB,AD⊥BC,∴BC=2CD=6,∴点B的坐标为:(6,2),设直线AB的表达式为:y=kx+b,由题意得,,解得,,∴直线AB的表达式为:y=﹣x+6.点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数的解得的求法,注意数形结合的思想在解题中的应用.22.(10分)(2015?上海)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长(精确到1米)(参考数据:≈)考点:解直角三角形的应用;勾股定理的应用.分析:(1)连接PA.在直角△PAH中利用勾股定理来求PH的长度;(2)由题意知,隔音板的长度是PQ的长度.通过解Rt△ADH、Rt△CDQ分别求得DH、DQ的长度,然后结合图形得到:PQ=PH+DQ﹣DH,把相关线段的长度代入求值即可.解答:解:(1)如图,连接PA.由题意知,AP=39m.在直角△APH中,PH===36(米);(2)由题意知,隔音板的长度是PQ的长度.在Rt△ADH 中,DH=AH?cot30°=15(米).在Rt△CDQ中,DQ===78(米).则PQ=PH+HQ=PH+DQ﹣DH=36+78﹣15≈114﹣15×=≈89(米).答:高架道路旁安装的隔音板至少需要89米.点本题考查了解直角三角形的应用、勾股定理的应用.根据题目已知特点选用评:适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.23.(12分)(2015?上海)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BDCE=CDDE.考点:相似三角形的判定与性质;等腰三角形的性质;平行四边形的性质.专题:证明题.分析:(1)由平行四边形的性质得到BO=BD,由等量代换推出OE=BD,根据平行四边形的判定即可得到结论;(2)根据等角的余角相等,得到∠CEO=∠CDE,推出△BDE∽△CDE,即可得到结论.证明:(1)∵四边形ABCD是平行四边形,解答:∴BO=BD,∵OE=OB,∴OE=BD,∴∠BED=90°,∴DE⊥BE;(2)∵OE⊥CD∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵OB=OE,∴∠DBE=∠CDE,∵∠BED=∠BED,∴△BDE∽△CDE,∴,∴BDCE=CDDE.点评:本题考查了相似三角形的判定和性质,直角三角形的判定和性质,平行四边形的性质,熟记定理是解题的关键.24.(12分)(2015?上海)已知在平面直角坐标系xOy中(如图),抛物线y=ax2﹣4与x轴的负半轴(XRS)相交于点A,与y轴相交于点B,AB=2,点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P 的横坐标为m.(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长;(3)当tan∠ODC=时,求∠PAD的正弦值.考点:二次函数综合题.分(1)根据已知条件先求出OB的长,再根据勾股定理得出OA=2,求出点A的析:坐标,再把点A的坐标代入y=ax2﹣4,求出a的值,从而求出解析式;(2)根据点P的横坐标得出点P的坐标,过点P作PE⊥x轴于点E,得出OE=m,PE=m2﹣4,从而求出AE=2+m ,再根据=,求出OC;(3)根据tan∠ODC=,得出=,求出OD和OC,再根据△ODB∽△EDP,得出=,求出OC,求出∠PAD=45°,从而求出∠P AD的正弦值.解:(1)∵抛物线y=ax2﹣4与y轴相交于点B,解答:∴点B的坐标是(0,﹣4),∴OB=4,∵AB=2,∴OA==2,∴点A的坐标为(﹣2,0),把(﹣2,0)代入y=ax2﹣4得:0=4a﹣4,解得:a=1,则抛物线的解析式是:y=x2﹣4;(2)∵点P的横坐标为m,∴点P的坐标为(m,m2﹣4),过点P作PE⊥x轴于点E,∴OE=m,PE=m2﹣4,∴AE=2+m,∵=,∴=,∴CO=2m﹣4;(3)∵tan∠ODC=,∴=,∴OD=OC=×(2m﹣4)=,∵△ODB∽△EDP,∴=,∴=,∴m 1=﹣1(舍去),m 2=3,∴OC=2×3﹣4=2,∵OA=2,∴OA=OC,∴∠PAD=45°, ∴sin∠PAD=sin45°=.点评: 此题考查了二次函数的综合,用到的知识点是相似三角形的判定与性质、勾股定理、特殊角的三角函数值,关键是根据题意作出辅助线,构造相似三角形.25.(14分)(2015?上海)已知,如图,AB 是半圆O 的直径,弦CD∥AB,动点P ,Q 分别在线段OC ,CD 上,且DQ=OP ,AP 的延长线与射线OQ 相交于点E ,与弦CD 相交于点F (点F 与点C ,D 不重合),AB=20,cos∠AOC=,设OP=x ,△CPF 的面积为y .(1)求证:AP=OQ ;(2)求y关于x的函数关系式,并写出它的定义域;(3)当△OPE是直角三角形时,求线段OP的长.圆的综合题.考点:(1)连接OD,证得△AOP≌△ODQ后即可证得AP=OQ;分析:(2)作PH⊥OA,根据cos∠AOC=得到OH=PO=x,从而得到=AO?PH=3x,利用△PFC∽△PAO得当对应边的比相等即可得到函数解析S△AOP式;(3)分当∠POE=90°时、当∠OPE=90°时、当∠OEP=90°时三种情况讨论即可得到正确的结论.解:(1)连接OD,解答:在△AOP和△ODQ中,,∴AP=OQ;(2)作PH⊥OA,∵cos∠AOC=,∴OH=PO=x,=AO?PH=3x,∴S△AOP又∵△PFC∽△PAO,∴==()2,整理得:y=(<x<10);(3)当∠POE=90°时,CQ==,PO=DQ=CD﹣CQ=(舍);当∠OPE=90°时,PO=AO?cos∠COA=8;当∠OEP=90°时,∠AOQ=∠DQO=∠APO,即∠OEP=∠COA,此种情况不存在,∴线段OP的长为8.点评:本题考查了圆的综合知识、相似三角形的判定及性质等知识,综合性较强,难度较大,特别是第三题的分类讨论更是本题的难点.。

近五年中考数学试卷分析

近五年中考数学试卷分析

近五年中考数学试卷分析⼀、考点对⽐⼆、试卷分析数学中考主要考察学⽣对基本⽅法、基本知识、基本技能的考查,因此较少偏、怪、难的题⽬,⼤多数题⽬都来源于课本或者课本⽴体的改编,解法都能从课本上找到影⼦。

因此解题的关键就是要回归课本,掌握典型例题、课后习题的规律及解法,这样考试时才能得⼼应⼿,沉着应对。

把2015-2019这五年的中考数学试卷进⾏分析我们可得到以下结论:1、试卷满分都是150分,考试时间120分钟;2、题型的分布都是总共25道题,其中选择题10道(30分),填空题6道(18分),解答题9道(102分);3、试卷难度不⼤,基础题占有122分(82%),有难度拔⾼题占有28分(18%);4、代数部分考查分数⼤概是80~90分(),⼏何部分考查分数60~70分%);5、知识点的考查⽐较有规律,常规题型的变化不⼤三、题型探究1、代数部分(1)函数函数部分是代数部分的重点内容,也是难点内容,考查的对象主要是:⼀次函数、反⽐例函数、⼆次函数。

考查重点在于以下⼏点:函数解析式的求法,难度较低,熟悉待定系数法等⽅法即可;三种函数图像的基本性质的应⽤,难度中等;函数的实际应⽤,常出现在试卷难度最⼤的代数综合题、代⼏综合题中,分值在20-40分不等。

(2015)14.某⽔库的⽔位在5⼩时内持续上涨,初始的⽔位⾼度为6⽶,⽔位以每⼩时⽶的速度匀速上升,则⽔库的⽔位⾼度y ⽶与时间x ⼩时0≤x≤5的函数关系式为 . (2016?⼴州)⼀司机驾驶汽车从甲地去⼄地,他以平均80千⽶/⼩时的速度⽤了4个⼩时到达⼄地,当他按原路匀速返回时.汽车的速度v 千⽶/⼩时与时间t ⼩时的函数关系是()A .v=320tB .v=C .v=20tD .v=(2016)若⼀次函数y=ax+b 的图象经过第⼀、⼆、四象限,则下列不等式中总是成⽴的是() A .ab >0B .a ﹣b >0C .a 2+b >0 D .a+b >0(2017)关于的⼀元⼆次⽅程有两个不相等的实数根,则的取值范围是A.B.C. D.(2019)若点),1(1y A -,),2(2y B ,),3(3y C 在反⽐例函数xy 6=的图像上,则321,,y y y 的⼤⼩关系是()(A )123y y y << (B )312y y y << (C )231y y y << (D )321y y y << (2)不等式与⽅程不等式与⽅程的复习,要以基础为主,不要只研究难题,要注重过程以及⽅法的总结。

上海中考数学试卷分析

上海中考数学试卷分析

代数运算
函数及相关概 念代数
代数方程
平面向量
概率统计
三角形
【分析】 根据几年趋势,填空题中一定会考的知识点包括函数及相关概念(求函数解析式、函 数图像的平移为主,偶尔也会考察函数定义域等) 、代数计算、代数方程(无理方程) 、不 等式(组) 、统计初步、概率初步、平面向量、三角形相关概念等。
【例题】 1、函数及相关概念 1、 (2010 上海) 将直线 y=2x﹣4 向上平移 5 个单位后, 所得直线的表达式是 _________ . 2、 (2011•上海)如果反比例函数 个函数的解析式是 _________ . 2、平面向量 1、 (2013 上海)计算:2 ( a ─ b ) + 3 b = ___________. 2、 (2014 上海)如图,已知在平行四边形 ABCD 中,点 E 在边 AB 上, 且 AB=3EB.设 示) . = , = ,那么 = ﹣ (结果用 、 表 (k 是常数,k≠0)的图象经过点(﹣1,2) ,那么这
3、概率统计 1、 (2014 上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么 三人中成绩最稳定的是 乙 .
2、 (2015 上海)已知某校学生“科技创新社团”成员的年 年龄 龄与人数情况如下表所示:那么“科技创新社团”成员年 (岁) 龄的中位数是_______岁.[来源:Z+xx+] 人数 5 5 4、代数方程 2 1、 (2011•上海)如果关于 x 的方程 x ﹣2x+m=0(m 为常数)有两个相等实数根,那么 m= _________ . 16 15 12 源:] 11 12[来 13 14 15
数的整除
实数
整式与分式
二次根式

2015年上海市中考数学试卷和答案

2015年上海市中考数学试卷和答案

2015年上海市初中毕业统一学业考试数学试卷一、选择题:(每题4分,共24分) 1、下列实数中,是有理数的为………………………………………………………………( ) A 、2; B 、34; C 、π; D 、0.2、当a >0时,下列关于幂的运算正确的是………………………………………………( ) A 、a 0=1; B 、a -1=-a ; C 、(-a )2=-a 2; D 、2211aa=. 3、下列y 关于x 的函数中,是正比例函数的为…………………………………………( ) A 、y =x 2; B 、y =x 2; C 、y =2x ; D 、y =21+x . 4、如果一个正多边形的中心角为72°,那么这个正多边形的边数是……………………( )A 、4;B 、5;C 、6;D 、7.5、下列各统计量中,表示一组数据波动程度的量是……………………………………( ) A 、平均数; B 、众数; C 、方差; D 、频率.6、如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是………………………………………………( ) A 、AD =BD ; B 、OD =CD ;C 、∠CAD =∠CBD ; D 、∠OCA =∠OCB .二、填空题:(每题4分,共48分) 7、计算:=+-22_______.8、方程223=-x 的解是_______________. 9、如果分式32+x x有意义,那么x 的取值范围是____________. 10、如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是________. 11、同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数关系是y =59x +32.如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.12、如果将抛物线y =x 2+2x -1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是_______________.13、某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是__________.14那么“科技创新社团”成员年龄的中位数是_______岁.15、如图,已知在△ABC 中,D 、E 分别是边AB 、边AC 的中点,D CBAOEDA=,=,那么向量用向量、表示为______________.16、已知E 是正方形ABCD 的对角线AC 上一点,AE =AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠FAD =________度.17、在矩形ABCD 中,AB =5,BC =12,点A 在⊙B 上.如果⊙D 与⊙B 相交,且点B 在⊙D 内,那么⊙D 的半径长可以等于___________.(只需写出一个符合要求的数)18、已知在△ABC 中,AB =AC =8,∠BAC =30°.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于___________.三、解答题19、(本题满分10分)先化简,再求值:2124422+--+÷++x x x x x x x ,其中12-=x .20、(本题满分10分)解不等式组:⎪⎩⎪⎨⎧+≤-->9131624x x x x ,并把解集在数轴上表示出来.21、(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 已知:如图,在平面直角坐标系xOy 中,正比例函数y =34x 的图像经过点A ,点A 的纵坐标为4,反比例函数y =xm的图像也经过点A ,第一象限内的点B 在这个反比例函数的图像上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC =AB .y求:(1)这个反比例函数的解析式; (2)直线AB 的表达式.22、(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼.已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且∠BDN =30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为点H .如果汽车沿着从M 到N 的方向在MN 上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米? (2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q 时,它与这一排居民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米) (参考数据:3≈1.7)23、(本题满分12分,每小题满分各6分) 已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE =OB ,联结DE .(1)求证:DE ⊥BE ; (2)如果OE ⊥CD ,求证:BD ·CE =CD ·DE .OEDBA24、(本题满分12分,每小题满分各4分)已知在平面直角坐标系xOy 中(如图),抛物线y =ax 2-4与x 轴的负半轴相交于点A ,与y 轴相交于点B ,AB =25.点P 在抛物线上,线段AP 与y 轴的正半轴交于点C ,线段BP 与x 轴相交于点D .设点P 的横坐标为m . (1)求这条抛物线的解析式;(2)用含m 的代数式表示线段CO 的长; (3)当tan ∠ODC =23时,求∠PAD 的正弦值.25、(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦CD ∥AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ =OP ,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),AB =20,cos ∠AOC =54.设OP =x ,△CPF 的面积为y . (1)求证:AP =OQ ;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当△OPE 是直角三角形时,求线段OP 的长.Q F EDCDC。

上海市2015年中考数学真题试题(含解析)

上海市2015年中考数学真题试题(含解析)

D CBAO2015年上海市初中毕业统一学业考试数学试卷一、选择题:(每题4分,共24分)1、下列实数中,是有理数的为………………………………………………………………( ) A 、2; B 、34; C 、π; D 、0. 【答案】D【解析】整数或有限小数是有理数,无限不循环小数为无理数,故选D 。

2、当a >0时,下列关于幂的运算正确的是………………………………………………( ) A 、a 0=1; B 、a -1=-a ; C 、(-a )2=-a 2; D 、2211aa =. 【答案】A.【解析】除了0以外,任何数的0次都等于1,因为a >0,所以,a 0=13、下列y 关于x 的函数中,是正比例函数的为…………………………………………( ) A 、y =x 2; B 、y =x 2; C 、y =2x ; D 、y =21+x .【答案】C 【解析】122x y x ==,是正比例函数,选C 。

4、如果一个正多边形的中心角为72°,那么这个正多边形的边数是……………………( ) A 、4; B 、5; C 、6; D 、7. 【答案】B. 【解析】边数为36072n ==5。

5、下列各统计量中,表示一组数据波动程度的量是……………………………………( ) A 、平均数; B 、众数; C 、方差; D 、频率. 【答案】C【解析】方差反应数据波动程度,方差大,波动大,方差小,波动小,稳定。

6、如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是………………………………………………( ) A 、AD =BD ; B 、OD =CD ; C 、∠CAD =∠CBD ; D 、∠OCA =∠OCB . 【答案】B【解析】因OC ⊥AB ,由垂径定理,知AD =BD ,若OD =CD ,则对角线互相垂直且平分,所以,OACB为菱形。

2017年上海市中考数学试卷及答案解析

2017年上海市中考数学试卷及答案解析

2017年上海市中考数学试卷及答案解析一、选择题(本大题共6小题,每小题4分,共24分) 1.下列实数中,无理数是( ) A .0B .√2C .﹣2D .27解:0,﹣2,27是有理数, √2是无理数, 故选:B .2.下列方程中,没有实数根的是( ) A .x 2﹣2x =0B .x 2﹣2x ﹣1=0C .x 2﹣2x +1=0D .x 2﹣2x +2=0解:A 、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A 选项错误; B 、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B 选项错误;C 、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C 选项错误;D 、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D 选项正确. 故选:D .3.如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( ) A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <0解:∵一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限, ∴k <0,b >0, 故选:B .4.数据2、5、6、0、6、1、8的中位数和众数分别是( ) A .0和6B .0和8C .5和6D .5和8解:将2、5、6、0、6、1、8按照从小到大排列是: 0,1,2,5,6,6,8, 位于中间位置的数为5, 故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选:C.5.下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形解:A、菱形既是轴对称又是中心对称图形,故本选项正确;B、等边三角形是轴对称,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称,是中心对称图形,故本选项错误;D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.故选:A.6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.二、填空题(本大题共12小题,每小题4分,共48分)7.计算:2a•a2=2a3.解:2a•a2=2×1a•a2=2a3.故答案为:2a3.8.不等式组{2x>6x−2>0的解集是x>3.解:解不等式2x>6,得:x>3,解不等式x﹣2>0,得:x>2,则不等式组的解集为x>3,故答案为:x>3.9.方程√2x−3=1的解是x=2.解:√2x−3=1,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.10.如果反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小.(填“增大”或“减小”)解:∵反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴在这个函数图象所在的每个象限内,y的值随x的值增大而减小.故答案为:减小.11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是40.5微克/立方米.解:依题意有50×(1﹣10%)2=50×0.92=50×0.81=40.5(微克/立方米).答:今年PM2.5的年均浓度将是40.5微克/立方米.故答案为:40.5.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是310.解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:32+3+5=310.故答案为:310.13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是y=2x2﹣1.(只需写一个)解:∵抛物线的顶点坐标为(0,﹣1),∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y =2x 2﹣1, 故答案为:y =2x 2﹣1.14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 80 万元.解:第一季度的总产值是72÷(1﹣45%﹣25%)=240(万元), 则该企业第一季度月产值的平均值是13×240=80(万元).故答案是:80.15.如图,已知AB ∥CD ,CD =2AB ,AD 、BC 相交于点E ,设AE →=a →,CE →=b →,那么向量CD →用向量a →、b →表示为 b →+2a →.解:∵AB ∥CD , ∴AB CD=AE ED=12,∴ED =2AE , ∵AE →=a →, ∴ED →=2a →,∴CD →=CE →+ED →=b →+2a →.16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是45.解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360﹣135=225,∵0<n<180,∴此种情形不合题意,故答案为4517.如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是8<r<10.解:如图1,当C在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AC=AD=3,⊙B的半径为:r=AB+AD=5+3=8;如图2,当B在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AB=AD=5,⊙B的半径为:r=2AB=10;∴⊙B的半径长r的取值范围是:8<r<10.故答案为:8<r<10.18.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=√32.解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE 是正六边形最长的对角线,EC 是正六边形的最短的对角线, ∵△OBC 是等边三角形,∴∠OBC =∠OCB =∠BOC =60°, ∵OE =OC , ∴∠OEC =∠OCE , ∵∠BOC =∠OEC +∠OCE , ∴∠OEC =∠OCE =30°, ∴∠BCE =90°, ∴△BEC 是直角三角形, ∴EC BE=cos30°=√32,∴λ6=√32,故答案为√32. 三、解答题(本大题共7小题,共78分) 19.(10分)计算:√18+(√2−1)2−912+(12)﹣1.解:原式=3√2+2﹣2√2+1﹣3+2 =√2+2. 20.(10分)解方程:3x 2−3x−1x−3=1.解:两边乘x (x ﹣3)得到3﹣x =x 2﹣3x , ∴x 2﹣2x ﹣3=0, ∴(x ﹣3)(x +1)=0, ∴x =3或﹣1,经检验x =3是原方程的增根, ∴原方程的解为x =﹣1.21.(10分)如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC . (1)求sin B 的值;(2)现需要加装支架DE 、EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)在Rt △ABD 中,∵BD =DC =9m ,AD =6m , ∴AB =√BD 2+AD 2=√92+62=3√13m , ∴sin B =AD AB =313=2√1313.(2)∵EF ∥AD ,BE =2AE , ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23,∴EF =4m ,BF =6m , ∴DF =3m ,在Rt △DEF 中,DE =√EF 2+DF 2=√42+32=5m .22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案. 甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.解:(1)设y =kx +b ,则有{b =400100k +b =900,解得{k =5b =400,∴y =5x +400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元, ∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.23.(12分)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE :∠BCE =2:3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中, {AD =CD DE =DE EA =EC, ∴△ADE ≌△CDE , ∴∠ADE =∠CDE , ∵AD ∥BC , ∴∠ADE =∠CBD ,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×22+3+3=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P 平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.解:(1)∵抛物线的对称轴为x=1,∴x=−b2a=1,即−b2×(−1)=1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AG⊥BM,垂足为G,则AG=1,G(1,2).∵M(1,m),G(1,2),∴MG=m﹣2.∴cot∠AMB=GMAG=m﹣2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP ∥y 轴,∴点Q 与点P 关于x 轴对称.∴点Q 的纵坐标为−32.将y =−32代入y =﹣x 2+2x ﹣1得:﹣x 2+2x ﹣1=−32,解得:x =2+√62或x =2−√62. ∴点Q 的坐标为(2+√62,−32)或(2−√62,−32). 25.(14分)如图,已知⊙O 的半径长为1,AB 、AC 是⊙O 的两条弦,且AB =AC ,BO 的延长线交AC 于点D ,联结OA 、OC .(1)求证:△OAD ∽△ABD ;(2)当△OCD 是直角三角形时,求B 、C 两点的距离;(3)记△AOB 、△AOD 、△COD 的面积分别为S 1、S 2、S 3,如果S 2是S 1和S 3的比例中项,求OD 的长.(1)证明:如图1中,在△AOB 和△AOC 中,{OA =OA AB =AC OB =OC,∴△AOB ≌△AOC ,∴∠C =∠B ,∵OA =OC ,∴∠OAC =∠C =∠B ,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,①当∠ODC=90°时,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD=12OA=12,∴AD=2−OD2=√32,∴BC=AC=2AD=√3.②∠COD=90°,∠BOC=90°,BC=√12+12=√2,③∠OCD显然≠90°,不需要讨论.综上所述,BC=√3或√2.(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴AD DB =OD AD =OA AB , ∴AD x+1=x AD =1AB ,∴AD =√x(x +1),AB =√x(x+1)x ,∵S 2是S 1和S 3的比例中项,∴S 22=S 1•S 3,∵S 2=12AD •OH ,S 1=S △OAC =12•AC •OH ,S 3=12•CD •OH ,∴(12AD •OH )2=12•AC •OH •12•CD •OH , ∴AD 2=AC •CD ,∵AC =AB .CD =AC ﹣AD =√x(x+1)x −√x(x +1), ∴(√x(x +1))2=√x(x+1)x •(√x(x+1)x−√), 整理得x 2+x ﹣1=0,解得x =√5−12或−√5−12, 经检验:x =√5−12是分式方程的根,且符合题意, ∴OD =√5−12.(也可以利用角平分线的性质定理:AD AC =AD AB =DO OB ,黄金分割点的性质解决这个问题)方法2、设OD =x ,设△AOB 的边上的高为h ,则△AOD 的边OD 边上的高也为h , ∴S △AOBS △AOD =12BO×ℎ12DO×ℎ=BO DO =1x , 设S △AOB =a ,∴S △AOD =ax ,∵△AOB ≌△AOC ,∴S △AOC =S △AOB =a∴S △AOC =S △AOD +S △COD ,∴S △COD =a ﹣ax =a (1﹣x ),∵S 2是S 1和S 3的比例中项,∴S22=S1•S3,∴(ax)2=a×a(1﹣x),∴x=−1±√52,∵OD>0,∴OD=√5−1 2.。

2015年上海市中考数学试题解析

2015年上海市中考数学试题解析

2015年上海市初中毕业统一学业考试数学试卷、选择题: (每题4分,共24分) 1、下列实数中,是有理数的为C 、n;【答案】D【解析】整数或有限小数是有理数,无限不循环小数为无理数,故选 2、当a >0时,下列关于幕的运算正确的是【答案】A.【解析】除了 0以外,任何数的0次都等于1,因为a > 0,所以,a 0= 1 3、下列y 关于x 的函数中,是正比例函数的为 【答案】C4、如果一个正多边形的中心角为 72°,那么这个正多边形的边数是A 、平均数; 【答案】C【解析】方差反应数据波动程度,方差大,波动大,方差小,波动小,稳定。

AD = BD,若OD = CD,则对角线互相垂直且平分,所B 、D oA 、a 0=1 ;B 、a 1=— a ;C (— a)2= — a 2;1D 、a 2A 、y = x 2; B 、y =-;xc xC y =2D 、y =乞J2【解析】y1x ,是正比例函数,选 C oA 、4; 【答案】B.B 、5;C 、6;D 、7.【解析】边数为n360 =5 o725、下列各统计量中, 表示一组数据波动程度的量是C 方差;D 、频率.6、如图,已知在O O 中,AB 是弦,半径 OC 丄AB ,垂足为点 OACB 为菱形,还需要添加一个条件,这个A 、AD = BD;B 、 O D = CD;C 、/ CAD =Z CBD; 【答案】BD 、 / OCA =Z OCB.【解析】因OC 丄AB,由垂径定理,知以,OACB为菱形。

二、填空题:(每题4分,共48分)7、计算:2 2 _______ .【答案】4.【解析】考查绝对值的定义。

原式= 2+ 2= 4。

&方程J3X 2 2的解是_________________ .【答案】x=2【解析】两边平方,得:3x—2= 4,解得:x= 29、如果分式一丝有意义,那么x的取值范围是 ________________ .x 3【答案】|AT-3【解析】由x+ 3工0,即冥杏-310、如果关于x的一元二次方程x2+ 4x—m = 0没有实数根,那么m的取值范围是 __________ 【答案】w匚【解析】也二16+4沏uO・r. ^<-411、同一温度的华氏度数y( T )与摄氏度数x(C )之间的函数关系是y= 9x+ 32•如果某一5温度的摄氏度数是25 C,那么它的华氏度数是_____________【答案】779 9【解析】;y = —A +32=—x25+32 = 7712、如果将抛物线y = x2+ 2x—1向上平移,使它经过点A(0, 3),那么所得新抛物线的表达式是________________ •【答案】+【解析】抛物线方程配方,得:y=( x+1) 2—2,向上平移,得:y=( x+1) 2+ c,经过点 A (0,3),则:3 = 1 + c, c=2,所以,新抛物线的表达式是:y=( x+ 1) 2+ 2= x2+ 2x + 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称与中心对称
矩形 整式 不等式组 解方程 反比例函数 一元二次方程 概率 二次函数 平均数 向量 直角三角形 圆 正多边形 计算 解方程 直角三角形 一次函数与二次函数应用题 菱形与正方形 二次函数 圆与三角形
填 空 题
平移 概率 中位数 向量 正方形 矩形 三角形 多项式混合运算 解不等式组 反比例与一次函数 直角三角形 平行四边形与相似 二次函数与一次函数 圆、三角形全等相似综合题
下面以上海2015-2017年中考的第24题: 二次函数综合题为例子进行详细分析
【解题技巧】读懂题目隐含条件,注重数形结合
2016年二次函数题
【解题技巧】注重数形结合,根据图形上面关系运用相应知识
【解题】省略
2017年中考二次函数题 24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线 y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B. (1)求这条抛物线的表达式和点B的坐标; (2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM, 用含m的代数式表示∠AMB的余切值; (3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛 物线上一点P平移后的对应点ห้องสมุดไป่ตู้点Q,如果OP=OQ,求点Q的坐标.
解 答 题
分析2015-2017年的中考数学考点发现: (1)选择题主要考点:有理数数的概念,中位数、众数、平均数的理解, 一次函数或者反比例函数,一元二次方程,多边形(矩形、菱形、正多边 形),对称等。从2015年-2017年,考有理数的选择题减少,考函数和图形 的题量增加 (2)填空题主要考点:直角三角形、二次函数、一次函数、一元 二次方程或者方程组、(矩形、正方形、圆等图形题考一个)、概 率、(平均数、众数、中位数考一个)、整式。从2015年-2017年, 考函数、方程与图形的题增加,绝对值、平移、向量、中位数等占 比减少,整体难度增加。 (3)简答题主要考点:多项式混合运算或者化简计算、解方程或 者方程组、一次函数、二次函数、(平时四边形/矩形/菱形)、三角 形与其他图形结合。从2015年-2017年,考点并无太大变化,难度 也差不多
上海市2015-2017中考数学科目分析
上海中考数学
2015年
有理数 幂的运算 正比例函数 正多边形
2016年
倒数 同类项 平移 平均数
2017年
无理数 一元二次方程 一次函数 中位数与众数
选 择 题 考 点
方差
菱形 绝对值 解 取值范围 一元二次判别式 一次函数
角平分线
直角三角形与圆 整式计算 定义域 解方程 多项式 不等式组 一元二次方程 反比例函数 概率 相似比 统计图 直角三角形 旋转 计算 解方程 直角三角形 一次函数 平行四边形与圆 二次函数 梯形与三角形
总结:分析2015-2017年考的二次函数大题,都侧重于数形结合解题,要么 综合了直线方程的知识,要么就是综合三角形知识,或者两者皆有。所以 二次函数章节必须掌握画图,图像的平移以及二次函数解析式系数与图形 的关系
相关文档
最新文档