《用待定系数法求一次函数解析式》教案
《用待定系数法求一次函数的解析式》(公开课)教学设计
12.2 待定系数法求一次函数的解析式油坝乡中心中学宋若坤教学内容沪科版八年级数学(上)第十二章第二节一次函数第四课时。
教学目标1、待定系数法求一次函数的解析式。
2、学会利用一次函数解析式、性质、图象解决简单的实际问题。
情感目标1、充分让学生合作探究,培养学生自主学习的能力。
2、理论联系实际,让学生充分体验数学知识与生活实际的联系,从而激励学生热爱生活,热爱学习。
教学重点让学生能在不同的条件下运用待定系数法求出一次函数的解析式,从而解决生活中的实际问题。
教学过程一、旧知回顾1.一次函数的定义,性质?2. 我们在画函数y=2x,y=3x-1时,至少应选取几个点?为什么?前面我们学习了给定一次函数解析式,可以说出它的性质,反过来给出有关的信息,能否求出解析式呢?二、探索新知还记得一次函数关系式:通式y=kx+b(k,b为常数,k≠0),即要知道一次函数关系式就要知道解析式中的k,b这两个常数是什么数.这节课我们就进一步探索一次函数解析式的方法.x问题一: 利用图象求一次函数解析式例1 求右图中直线的解析式.解:图象是经过原点的直线,因此是正比例函数,设解析式为y=kx ,把(1,2)代入,得k=2,所以解析式为y=2x.例2 交于点B,与y 轴交于点A①写出AB 两点的坐标;②求直线AB 问题二: 利用坐标求一次函数解析式 例1 已知一次函数y=kx+b ,当x=0时,y=2;当x=4时,y=6.求这个一次函数的解析式.例2 已知一次函数的图象经过点(3,5)与(-4,-9).求这个一次函数的解析式.练习1、若一次函数y=ax+3的图象经过点A(1,-2),求一次函数的解析式? 2、直线y=2x+b 过点(1,-2),求一次函数的解析式 问题三: 利用表格信息求一次函数解析式例 某型号汽车进行耗油实验,y(耗油量)是t(时间)的一次函数,函数关系如下表,请确定函数解析式练习:小明根据某个一次函数关系式填写了下表:其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是多少?解释你的理由。
《待定系数法求一次函数的解析式》教学设计
河西中学“451学导讲练”《待定系数法求一次函数的解析式》教学设计(主备人:尹能文审核:河西中学数学组)一、教材分析本节课的内容是新人教版八年级下册数学第十九章第二节第三课时的内容,是整个初中阶段学习求解函数解析式的最基本的方法,贯穿到整个初中阶段的三种函数的教学。
本节课的内容,总体上难度不大,但是对学生数形结合思想、函数思想和方程组思想的要求比较高,是前面所学内容的应用,同时也是后续方法的基础。
【设计意图】清楚分析教材,有利于内容的准确把握和教学方法的正确设计,对教学过程作用很大。
二、学情分析乡村中学学生总体基础知识水平比较差,分层现象会比较明显。
本次课之前,学生已经有了一定的一次函数解析式和图像的相关知识,同时在初一的时候也学习了二元一次方程组的解法,故对本次课具有一定的自主探究能力。
同时,本班学生学优生对知识的理解和接受能力都比较强,可以对学习困难的学生进行帮扶,这也将是本次课中所要采用的一种重要策略。
【设计意图】根据对学生学情的全面分析,有利于设计出学生易于接受的内容和课堂组织方法,有助于本节课的展开。
三、教学方法根据学生情况,结合本节课内容特点,以我校“451学导讲练”教学模式为基础,决定采用“自学、引导、探究、分析、归纳、精讲、训练”相结合的方法进行教学,以当堂检测为达标检测评判标准,合理安排各项教学。
四、教学目标(目标引领)1.学会用待定系数法求解一次函数解析式;2.会根据所给条件找出点求解析式;3.会用待定系数法解答实际问题。
五、教学重点难点重点:能让学生学会用待定系数法求解一次函数解析式的一般方法。
难点:通过不同条件找出满足条件的点来求解一次函数解析式。
六、教学过程(一)课前预习(据案自学)复习正比例函数、一次函数解析式,图像及性质等相关知识点,并预习待定系数法。
1.复习正比例函数的解析式和图像特征;2.复习一次函数的解析式和图像特征;3.复习一次函数解析式的变量和常量。
【设计意图】学生复习正比例函数、一次函数解析式和图像,有利于对这两个函数进行区分,从而更好的将知识迁移到“正确设出函数解析式”上;学生复习一次函数的常量和变量,让学生将函数进行拆解,有利于找出什么是“待定系数”,以及k与x的关系,从而能够顺利的将点代入函数解析式中。
人教版数学八年级下册 用待定系数法求一次函数解析式(教案与反思)
第3课时用待定系数法求一次函数解析式路漫漫其修远兮,吾将上下而求索。
屈原《离骚》原创不容易,【关注】店铺,不迷路!前事不忘,后事之师。
《战国策·赵策》原创不容易,【关注】店铺,不迷路!原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!举世不师,故道益离。
柳宗元【知识与技能】1.学会用待定系数法确定一次函数解析式.2.了解两个条件确定一个一次函数,一个条件确定一个正比例函数. 【过程与方法】1.经历待定系数法的应用过程,提高解决数学问题的能力.2.体验一次函数中数形结合思想的运用.【情感态度】能把实际问题与数学问题相互转化,认识数学与生活的密切关系. 【教学重点】待定系数法确定一次函数解析式.【教学难点】灵活运用有关知识解决实际问题.一、情境导入,初步认识已知两个函数的图象如图所示,请根据图象写出每条直线的表达式.【教学说明】从图象知,图1中直线表示的是正比例函数,其解析式为y=kx形式,关键是如何求出k的值;由图可知图象过点(1,2),所以该点坐标必适合解析式,将坐标代入y=kx即可求出k的值.图2中直线表示的是一次函数,其解析式为y=kx+b形式,代入直线上两点坐标(2,0)与(0,3),通过解方程组即可求出k、b,确定解析式.学生讨论后,由教师小结.确定正比例函数解析式需要1个条件,确定一次函数的解析式需要2个条件,先设出相应的解析式,然后将条件代入得到方程或方程组,求解后确定解析式.二、典例精析,掌握新知先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.例1已知正比例函数的图象经过点(-4,3),求它的解析式.【分析】求解正比例函数的解析式,我们可以首先设它的解析式为y=kx,根据已知条件,求解出k的值即可.根据这个正比例函数图象经过点(-4,3),意味着当x=-4时,y=3,从而得到k的值.解:由题意可知3=-4k,k=-34所以,这个正比例函数解析式为y=-34x.例2问点A(-1,3),B(1,-1),C(3,-5)是否在同一条直线上. 解:设直线AB的解析式为y=kxb,由题意得3 1k b k b=-+⎧⎨-=+⎩解得错误!未找到引用源。
19.2.2第3课时用待定系数法求一次函数的解析式教案
1. 作业布置:
- 基础巩固题:请学生完成教材第 chapter 页的练习题,重点在于运用待定系数法求解一次函数的解析式。
- 实践应用题:选取生活中的实际问题,要求学生运用一次函数的知识建立模型并求解,如“某商品的成本价与销售价之间的关系”。
- 拓展思考题:针对学有余力的学生,设计一些需要运用一次函数及其图象性质的综合性问题,提高学生的逻辑思维和问题解决能力。
2. 加强基础知识巩固:针对学生对理论知识的掌握不足,可以通过设计前置学习任务、开展小组互帮互学等活动,帮助学生夯实基础。
3. 丰富教学资源:利用信息化手段,如教育平台、在线资源等,为学生提供更多学习材料和拓展阅读,拓宽知识视野。
4. 加强个别辅导:关注学习困难的学生,提供个性化辅导,帮助他们克服学习中的困难,提高学习效果。
(二)存在主要问题
1. 教学评价方式单一:本节课的教学评价主要依赖于课堂提问和课后作业,缺乏多元化的评价手段,不能全面反映学生的学习情况。
2. 部分学生对理论知识的掌握不够扎实:在小组讨论中发现,部分学生对一次函数的基本概念和待定系数法的理解不够深入。
(三)改进措施
1. 多元化教学评价:在今后的教学中,可以引入课堂观察、小组展示、项目作业等多种评价方式,更全面地了解学生的学习进度和掌握程度。
- 着重讲解待定系数法中的关键步骤,如选择合适的点、列出方程组、求解未知系数等。
- 强调求解过程中可能遇到的困难,如方程组求解方法、符号的注意事项等。
3. 巩固练习(15分钟)
- 设计具有代表性的习题,让学生独立完成,巩固待定系数法的应用。
- 分组讨论,让学生相互交流解题思路,培养合作解决问题的能力。
- 观看视频资料时,建议学生关注讲解者对待定系数法的解题思路和技巧,以及如何将一次函数应用于实际问题。
一次函数--用待定系数法求一次函数的解析式 初中八年级下册数学教案教学设计课后反思
课堂练习(难点巩固)例2.已知一次函数的图象如图所示 , 写出函数的解析式 .
(1)根据图象你能得到哪些信息 ?
(2)你能找到确定一次函数解析式的条件吗 ?
解 :(1)由图像可得:直线经过点(2 , 0) , (0 , 4)
(2)设所求的一次函数的解析式为y=kx+b(k≠0) .
因为直线经过点(2 , 0) , (0 , 4) ,
所以把这两点坐标代入解析式 , 得得 所以所求的一次函数的解析式是y=-2x+4 .
小结1. 确定正比例函数的解析式需要 1个条件, 确定一次函数的解析式需要 2 个条件。
2. 待定系数法求一次函数解析式的一般步骤:
(1)设出一次函数解析式y=kx+b(k≠0) ,
(2)将两个点的坐标代入 , 得二元一次方程组 ,
(3)解方程组求出k和b的值 ,
(4)写出答案 .
课后小测1.若一次函数y=3x-b的图象经过点P(1 , -1) , 则该函数图象必经过点( )
A. (-1 , 1)
B. (2 , 2)
C. (-2 , 2)
D. (2 , -2)
2.已知一次函数y=kx+b , 当x= -4时y=9 , 当x=6时y=-1 , 则此函数的解析式为 。
3.一条平行于直线y= -3x的直线交x轴于点(2 , 0) , 则该直线与y轴的交点是 .
4. 已知一次函数y=kx+b , 当x=5时 , y=4 ; 当x=-2
时 , y=-3 ,求这个一次函数的解析式 .。
用待定系数法求一下函数解析式
求一次函数解析式教案京山县石龙镇中学赖光彩教学目标:1、理解待定系数法,并会用待定系数法求一次函数的解析式;2、能结合一次函数的图象和性质,灵活运用待定系数法求一次函数解析式;3、能根据函数图象确定一次函数的表达式,并由此进一步体会数形结合的思想;4、通过引入待定系数法的过程,向学生渗透转化的思想,培养学生分析问题,解决问题的能力.教学重点与难点:1、重点:用待定系数法求一次函数的解析式;2、难点:结合一次函数的性质,用待定系数法确定一次函数的解析式.教学方法:引导探究法教学过程:一.创设情境,提出问题1.练一练:画出函数y= 2x与y= -3/2 x +3的图象反思:你在作这两个函数图象时,分别描了几个点?你为何选取这几个点?可以有不同取法吗?2.引入新课:上节课我们学习了给定解析式的前提下,可以画函数的图像,反之,如果给你图像,能否求出函数的解析式呢?这将是本节课我们要研究的问题。
二.提出问题,探究新知:1.求下图中直线的解析式考考你:1、已知一次函数解析式如何画它的函数图象?2、已知一次函数的图象怎样求它的函数解析式?形成概念:像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.三.应用举例,感悟新知:例1、已知一次函数的图象过点(3,5)与(-4,9)求这个一次函数的解析式.教师引导学生想一想:已知函数图像和点的坐标,怎样求函数的解析式,大家讨论以后再表述出来。
师生共同归纳:用待定系数法求一次函数关系的一般步骤:可归纳为:“一设、二列、三解、四写”一设:设出函数关系式的一般形式y=kx+b;二列:根据已知两点的坐标列出关于k、b的二元一次方程组;三解:解这个方程组,求出k、b的值;四写:把求得的k、b的值代入y=kx+b,写出函数关系式.四.综合运用:小试牛刀:1.已知y是x的一次函数,当x=-1时y=3,当x =2 时y=-3,求y关于x 的一次函数解析式.2.判断三点A(3,1)B(0,-2)C(4,2)是否在同一条直线上.[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上例2、若一次函数的图象经过点A(2,0),且与直线y=-x+3平行,求其解析式。
用待定系数法确定一次函数的表达式教案
用待定系数法确定一次函数的表达式教案教学目标 1.用待定系数法求一次函数的解析式;(重点) 2.从题目中获取待定系数法所需要的两个点的条件.(难点)教学过程 一、情境导入已知弹簧的长度y (厘米)在一定的限度内是所挂重物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式. 一次函数解析式怎样确定?需要几个条件? 二、合作探究 探究点:用待定系数法求一次函数解析式【类型一】 已知两点确定一次函数解析式已知一次函数图象经过点A (3,5)和点B (-4,-9). (1)求此一次函数的解析式;(2)若点C (m ,2)是该函数图象上一点,求C 点坐标. 解析:(1)将点A (3,5)和点B (-4,-9)分别代入一次函数y =kx +b (k ≠0),列出关于k 、b 的二元一次方程组,通过解方程组求得k 、b 的值;(2)将点C 的坐标代入(1)中的一次函数解析式,即可求得m 的值.解:(1)设一次函数的解析式为y =kx +b (k 、b 是常数,且k ≠0),则⎩⎪⎨⎪⎧5=3k +b ,-9=-4k +b ,∴⎩⎪⎨⎪⎧k =2,b =-1,∴一次函数的解析式为y =2x -1;(2)∵点C (m ,2)在y =2x -1上,∴2=2m -1,∴m =32,∴点C 的坐标为(32,2).方法总结:解答此题时,要注意一次函数的一次项系数k ≠0这一条件,所以求出结果要注意检验一下.【类型二】 由函数图象确定一次函数解析式如图,一次函数的图象与x 轴、y 轴分别相交于A ,B 两点,如果A 点的坐标为(2,0),且OA =OB ,试求一次函数的解析式.解析:先求出点B 的坐标,再根据待定系数法即可求得函数解析式.解:∵OA =OB ,A 点的坐标为(2,0),∴点B 的坐标为(0,-2).设直线AB 的解析式为y =kx +b (k ≠0),则⎩⎪⎨⎪⎧2k +b =0,b =-2,解得⎩⎪⎨⎪⎧k =1,b =-2,∴一次函数的解析式为y =x -2. 方法总结:本题考查用待定系数法求函数解析式,解题关键是利用所给条件得到关键点的坐标,进而求得函数解析式. 【类型三】 由三角形的面积确定一次函数解析式如图,点B 的坐标为(-2,0),AB 垂直x 轴于点B ,交直线l 于点A ,如果△ABO 的面积为3,求直线l 的解析式.解析:△AOB 面积等于OB 与AB 乘积的一半.根据OB 与已知面积求出AB 的长,确定出A 点坐标.设直线l 解析式为y =kx ,将A 点坐标代入求出k 的值,即可确定出直线l 的解析式.解:∵点B 的坐标为(-2,0),∴OB =2.∵S △AOB =12OB ·AB =3,∴12×2×AB =3,∴AB =3,即A (-2,-3).设直线l 的解析式为y =kx ,将A 点坐标代入得-3=-2k ,即k =32,则直线l 的解析式为y =32x .方法总结:解决本题的关键是根据直线与坐标轴围成三角形的面积确定另一个点的坐标.【类型四】 利用图形变换确定一次函数解析式已知一次函数y =kx +b 的图象过点(1,2),且其图象可由正比例函数y =kx 向下平移4个单位得到,求一次函数的解析式.解析:根据题设得到关于k ,b 的方程组,然后求出k 的值即可.解:把(1,2)代入y =kx +b 得k +b =2.∵y =kx 向下平移4个单位得到y =kx +b ,∴b =-4,∴k -4=2,解得k =6.∴一次函数的解析式为y =6x -4.方法总结:一次函数y =kx +b (k 、b 为常数,k ≠0)的图象为直线,当直线平移时k 不变,当向上平移m 个单位,则平移后直线的解析式为y =kx +b +m .【类型五】 由实际问题确定一次函数解析式已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm) 4.2 … 8.2 9.8体温计的读数y (℃)35.0…40.042.0 (1)求y 关于x 的函数关系式(不需要写出函数自变量的取值范围);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.解析:(1)设y 关于x 的函数关系式为y =kx +b ,由统计表的数据建立方程组求出k ,b 即可;(2)当x =6.2时,代入(1)的解析式就可以求出y 的值.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35.0=4.2k +b ,40.0=8.2k +b ,解得⎩⎪⎨⎪⎧k =1.25,b =29.75,∴y =1.25x +29.75.∴y 关于x 的函数关系式为y =1.25x +29.75;(2)当x =6.2时,y =1.25×6.2+29.75=37.5.答:此时体温计的读数为37.5℃. 方法总结:本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.【类型六】 与确定函数解析式有关的综合性问题如图,A 、B 是分别在x 轴上位于原点左右侧的点,点P (2,m )在第一象限内,直线P A 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S △AOP =12.(1)求点A 的坐标及m 的值; (2)求直线AP 的解析式;(3)若S △BOP =S △DOP ,求直线BD 的解析式.解析:(1)S △POA =S △AOC +S △COP ,根据三角形面积公式得到12×OA ×2+12×2×2=12,可计算出OA =10,则A 点坐标为(-10,0),然后再利用S △AOP =12×10×m =12求出m ;(2)已知A 点和C 点坐标,可利用待定系数法确定直线AP 的解析式;(3)利用三角形面积公式由S △BOP =S △DOP 得PB =PD ,即点P 为BD 的中点,则可确定B 点坐标为(4,0),D 点坐标为(0,245),然后利用待定系数法确定直线BD 的解析式.解:(1)∵S △POA =S △AOC +S △COP ,∴12×OA ×2+12×2×2=12,∴OA =10,∴A点坐标为(-10,0).∵S △AOP =12×10×m =12,∴m =125;(2)设直线AP 的解析式为y =kx +b ,把A (-10,0),C (0,2)代入得⎩⎪⎨⎪⎧-10k +b =0,b =2,解得⎩⎪⎨⎪⎧k =15,b =2,∴直线AP 的解析式为y =15x +2;(3)∵S △BOP =S △DOP ,∴PB =PD ,即点P为BD 的中点,∴B 点坐标为(4,0),D 点坐标为⎝⎛⎭⎫0,245.设直线BD 的解析式为y =k ′x +b ′,把B (4,0),D ⎝⎛⎭⎫0,245代入得⎩⎪⎨⎪⎧4k ′+b ′=0,b ′=245,解得⎩⎨⎧k ′=-65,b ′=245,∴直线BD 的解析式为y =-65x +245.三、板书设计1.待定系数法的定义2.用待定系数法求一次函数解析式 教学反思 教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长.。
12.2.4解析式教案
12.2.4待定系数法求一次函数解析式教学目标(一)教学知识点1.学会用待定系数法确定一次函数解析式.2.具体感知数形结合思想在一次函数中的应用(二)能力训练目标1.经历待定系数法应用过程,提高研究数学问题的技能.2.体验数形结合,逐步学习利用这一思想分析解决问题.教学重点:待定系数法确定一次函数解析式.教学难点:灵活运用有关知识解决相关问题.教学方法归纳总结教具准备多媒体演示.教学过程一.提出问题,创设情境我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢?这将是我们这节课要解决的主要问题,大家可有兴趣?二.导入新课[活动]活动设计内容:已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式.联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗?活动设计意图:通过活动掌握待定系数法在函数中的应用,进而经历思考分析,归纳总结一次函数解析式与图象之间转化规律,增强数形结合思想在函数中重要性的理解.教师活动:引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法.学生活动:在教师指导下经过独立思考,研究讨论顺利完成转化过程.概括阐述一次函数解析式与图象转化的一般过程.活动过程及结论:分析:求一次函数解析式,关键是求出k、b值.因为图象经过两个点,所以这两点坐标必适合解析式.由此可列出关于k、b的二元一次方程组,解之可得.设这个一次函数解析式为y=kx+b.因为y=k+b 的图象过点(3,5)与(-4,-9),所以解之,得故这个一次函数解析式为y=2x-1。
结论:像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.三、课堂练习:1.已知一次函数y=kx+2,当x=5时y 的值为4,求k 值.2.已知直线y=kx+b 经过点(9,0)和点(24,20),求k 、b 值.四、课堂小结这节课你有什么收获?五、作业布置:1. 已知一次函数y=3x-b 的图象经过点P(1,1),则该函数图象必经过点( )A.(-1,1)B.(2,2)C.(-2,2)D.(2,-2)2. 若一次函数y=2x+b 的图像与坐标轴围成的三角形的面积是9,求 b 的值.3.点M (-2,k )在直线y=2x+1上,求点M 到x 轴的距离d 为多少?六、教学反思 3549k b k b +=⎧⎨-+=-⎩21k b =⎧⎨=-⎩函数解析式 选取 满足条件的两定点 画出 一次函数的图象y=kx+b 解出 (x1,y1)与(x1,y2) 选取 直线L。
人教版八年级下册数学教案19.2.2用待定系数法求一次函数的解析式
19.2.2一次函数--------第三课时:用待定系数法求一次函数的解析式.学习目标:1.学会用待定系数法确定一次函数的解析式.2.了解两个条件确定一个一次函数的解析式,一个条件确定一个正比例函数的解析式.3.掌握一次函数的简单应用.教学重难点重点:运用待定系数法求一次函数解析式.难点:能利用一次函数图象解决有关的实际问题.教学过程一、情镜引入思考:正比例函数y=kx(k≠0)解析式中,如果确定了k的值,正比例函数的解析式就确定了,那么必须知道什么样的条件?学生思考讨论交流后总结方法,学生回答:只需知道正比例函数的一对对应值或正比例函数图象上的一个点坐标代入解析式求出k的值.,本节课就是解决这一问题.(同时展示本节课的教学目标)二、新知探究,合作交流1.提问:当x=0时,y=6;当x=4时,y=7.2.你将如何求出上述问题中的函数关系式?学生独立完成后,交流展示:解:设y与x的函数关系式为y=kx+b.所以解得k=0.3 b=6因此这个一次函数的解析式为y=0.3x+6.方法总结:先设一次函数解析式,然后把两对对应值分别代入一次函数解析式,得到两个关于k,b的方程,构成方程组,解方程组求出k,b的值即可确定一次函数的解析式,这就是我们本节课要学习的求一次函数解析式的方法——待定系数法.2.用待定系数法求一次函数的解析式提问:用待定系数法确定函数解析式的一般步骤是怎样的?学生归纳:(1)设出函数解析式的一般形式为y=kx+b.(2)把自变量x与函数y的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组.(3)解方程或方程组,求出待定系数的值.(4)写出所求函数的解析式.例1.已知一次函数y=kx+b,当x=5时,y=4,当x=-2时,y=-3,求这个一次函数的解析式.分析:由于一次函数y=kx+b有k和b两个待定系数,因此用待定系数法,把x = 5时,y = 4和x=-2时,y=-3分别代入函数解析式,得到两个关于k和b的二元一次方程组成的二元一次方程组.解方程组后就能确定一次函数的解析式.解:由题意可知解得∴这个一次函数的解析式为y=x-1.例2.黄金1号”玉米种子的价格为5元∕kg,如果一次购买2 kg以上的种子,超过2 kg 部分的种子价格打8折.(1)填写下表:购买量∕kg0.5 11.522.533.54 …付款金额∕元…(2)写出付款金额关于购买量的函数解析式,并画出函数图象.探究:(1)付款金额与什么有关?种子价格是固定的吗?它与什么有关?种子的价格是如何确定的?(2)函数的图象是一条直线吗?为什么?学生独立思考,交流讨论,总结:(1)付款金额与种子价格相关.问题中种子价格不是固定不变的,它与购买量有关. 设购买种子数量为x kg,当0≤x≤2时,种子价格为5元/kg;当x>2时,其中有2 kg种子按5元/kg 计价,其余的(x-2)kg即超出2 kg的部分种子按4元/kg(即8折)计价.因此,写函数解析式与画函数图象时,应对0≤x≤2和x>2分段讨论.(2)在画实际问题中的一次函数图象时,要考虑自变量的取值范围,画出的图象往往不再是一条直线.学生完成解题过程,教师点评:解:(1)购买量∕kg0.5 11.522.533.54 …付款金额∕元2.5 57.510 12 14 16 18 …(2)设购买种子数量为x kg,付款金额为y元.当0≤x≤2时,y=5x;当x>2时,y=4(x-2)+10=4x+2. 函数图象如图所示.进一步引导学生根据函数图象思考:(1)一次购买1.5 kg种子,需付款多少元?(2)一次购买3 kg种子,需付款多少元?三.巩固练习1.已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.2.已知一次函数y=kx+b的图象如图所示,则它的函数关系式为.3.已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4.求这个一次函数的解析式. 四.总结拓展1.课堂小结:学生讨论交流回答下面的四个问题(1).求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入,得二元一次方程组,③解方程组求出k和b的值,④写出答案. (2).一次函数解析式的确定通常有下列几种情况:①利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.②根据图象上两点坐标求出一次函数的解析式.2.拓展延伸一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线与y轴的交点是.3.作业布置教材P99页习题7,8,9题.五.课堂效果测评1.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,则此函数的解析式为( )A.y=x+1B.y=2x+3C.y=2x-1D.y=-2x-52.A(1,4),B(2,m),C(6,-1)在同一条直线上,则m的值为( )A.2B.3C.4D.53.已知一次函数y=kx+b的图象经过点A(2,4)和点B(-2,-8),这个一次函数的解析式为.4.已知一次函数y=kx+b,当x=-4时y=9,当x=6时y=-1,则此函数的解析式为.5.已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4.求这个一次函数的解析式.6.A(1,4),B(2,m),C(6,-1)在同一条直线上,则m的值为( )A.2B.3C.4D.57.已知一条直线经过点A(0,6),且平行于直线y=-2x+1.(1)求这条直线的函数解析式;(2)若这条直线经过点B(m,2),求m的值.六.评价与反思(引导学生自己总结)1.你今天学习了什么?学到了什么?还有什么疑惑?有什么感受?在学生回答的基础上,教师点评并板书2.教学反思本节课主要学习了待定系数法及一次函数的应用,由前面的学习知道两点确定一条直线,以已知两点怎样确定这条直线即怎么样求出它的解析式.。
人教版数学七年级上册《用待定系数法求一次函数解析式》教学设计
人教版数学七年级上册《用待定系数法求一次函数解析式》教学设计一. 教材分析人教版数学七年级上册中,用待定系数法求一次函数解析式的教学内容安排在第一章“一次函数与不等式”中。
这部分内容是学生学习一次函数的基础知识,为后续学习一次函数图像和应用打下基础。
教材从实际问题出发,引导学生通过待定系数法求解一次函数的解析式,培养学生的数学思维能力和问题解决能力。
二. 学情分析七年级的学生已经掌握了初中数学的基础知识,对于函数的概念和一次函数的图像有一定的了解。
但在实际问题中,如何运用待定系数法求解一次函数解析式,将数学知识应用于解决实际问题,对学生来说还是一个新的挑战。
因此,在教学过程中,需要引导学生从实际问题中提炼出数学模型,运用待定系数法求解,并解释其实际含义。
三. 教学目标1.理解待定系数法的原理,学会用待定系数法求解一次函数的解析式。
2.能够将实际问题抽象为一次函数模型,并用待定系数法求解。
3.培养学生的数学思维能力和问题解决能力。
四. 教学重难点1.重难点:待定系数法的原理和运用。
2.难点:如何将实际问题抽象为一次函数模型,如何选择合适的待定系数。
五. 教学方法1.讲授法:讲解待定系数法的原理和步骤。
2.案例教学法:通过具体案例,引导学生学会用待定系数法求解一次函数的解析式。
3.讨论法:分组讨论,分享解题思路和方法。
4.实践教学法:让学生在实际问题中运用待定系数法,巩固所学知识。
六. 教学准备1.教学PPT:制作详细的PPT,展示待定系数法的原理、步骤和案例。
2.教学案例:准备几个实际问题,作为教学案例。
3.练习题:准备一些练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一次函数的实际应用场景,引导学生关注一次函数在实际问题中的应用。
2.呈现(10分钟)讲解待定系数法的原理和步骤,让学生了解待定系数法的基本概念。
3.操练(10分钟)分组讨论,让学生用待定系数法求解给定的实际问题,分享解题思路和方法。
一次函数——用待定系数法求一次函数的解析式 教学设计 人教版八年级数学下册
一次函数——用待定系数法求一次函数的解析式 教学设计一、教学目标: 1.知识与技能:①会用待定系数法求一次函数的解析式.②了解一个条件确定正比例函数解析式,两个条件确定一次函数的解析式. ③掌握一次函数的简单应用. 2.过程与方法:通过引入待定系数法的过程,向学生渗透转化的思想,培养学生分析问题,解决问题的能力. 3.情感态度价值观:通过自我探究得出数学结论,增强学好数学的信心。
二、教学重难点1.重点:会用待定系数法求一次函数的解析式2.难点:掌握一次函数的简单应用. 三、教学方法: 讲授法、练习法 四、 教学过程: (一)复习回顾1.正比例函数表达式的一般形式为 ; 一次函数表达式的一般形式为 .2.一次函数是一条 .3.一次函数图像上任意一点M (x ,y )均满足解析式y =kx +b(k ≠0) (二) 新课讲授1.如何画出一次函数图像?列表、描点、连线——两点确定一条直线画出列表:描点、连线:2、反过来,如果知道一次函数的图象,选取图象上的两个点,是否能够求出一次函数的解析式呢?正比例函数:将图像上的两点(0,0)(1,3)代入y 1=k 1x (k 1≠0),实际只需要一个方程求出常数k 1一次函数:将图像上的两点(0,2)(1,4)代入y 1=k 2x +b (k 2≠0),实际需要个方程求出两个常数k2、b 的值。
3.结论:①确定正比例函数需要一个条件,实质:求出k 1,即找到在图像上的一个点坐标; ②确定一次函数需要两个条件,实质:求出k 2,b ,即找到在图像上的两个点坐标。
(三)例题讲解(1)已知正比例函数y =kx(k ≠0)的图象经过点(1,−2),求正比例函数的解析式。
解:将点(1,−2)代入y =kx (k ≠0)中得:−2=k∴ y =−2x(2)已知一次函数的图象经过点(−2,−1)和(1,2),求一次函数的解析式。
解:设一次函数表达式为y =kx +b(k ≠0)将点(-2,-1),(1,2)代入y =kx +b(k ≠0)中得: −1=−2k +b2=k+bk=1∴ b=1∴y=x+1(四)总结归纳:(1)用待定系数法求一次函数解析式像这样,通过先设定函数解析式(确定函数模型),再根据条件确定解析式中的未知数系数,从而求出函数解析式的方法称为待定系数法。
待定系数法求一次函数表达式教案
待定系数法求一次函数表达式教案用待定系数法求一次函数表达式教案一、教学目标根据课标要求和学生认知特点,制定以下三维教学目标:1.知识与技能了解两个条件确定一个一次函数和一个条件确定一个正比例函数。
理解待定系数法,会用待定系数法确定一次函数的表达式。
2.过程与方法通过探索求解一次函数表达式的过程,感悟数学中数与形的结合,培养学生分析和解决问题的能力。
3.情感、态度与价值观渗透数形结合的思想,培养良好的自我尝试和大胆创新的精神。
二、教学重点与难点:1.重点:用待定系数法确定一次函数的表达式。
2.难点:用待定系数法解决抽象的函数问题。
3.教学关键:根据所给信息,找出两个条件,进而求出一次函数表达式。
三、教学方法采用高效6+1教学模式,让学生在自主、合作、探究中研究。
四、教学过程一、导入(创设情景,导入新课)1.如果两个变量x和y之间的关系是正比例函数,那么它的表达式是什么?它的图像是什么?2.如果两个变量x和y之间的关系是一次函数,那么它的表达式是什么?它的图像是什么?3.画出函数y=x+3的图像。
师生活动:提出问题,让学生回答,然后再提出问题,从而成功导入新课。
设计意图:复正比例函数和一次函数的定义,以及画一次函数和正比函数的图像,为研究本节内容铺垫,并初步体会从数到形的思想。
出示本节研究目标)设计意图:让学生根据研究目标使研究更有针对性。
二、研究自学课本96、97页的“观察与思考”和例1,独立完成以下三个题目:1.已知一次函数的图像经过点(3,5)和(-4,-9),求这个一次函数的表达式。
2.已知正比例函数的图像过点(3,4),求这个正比例函数的表达式。
3.XXX将父母给的零用钱按月相等的存放在储蓄盒内,准备捐给希望工程。
第2个月XXX的储蓄盒内有80元,第4个月XXX的储蓄盒内有120元。
已知盒内钱数与存钱月数之间是一次函数关系。
①求出盒内钱数y(元)与存钱月数x(月)之间的函数关系式。
②根据关系式计算,XXX经过几个月才能存够200元?三、总结1.请举例说明如何用待定系数法确定一次函数的表达式。
人教版数学八下19.2.2《一次函数(3)待定系数法求一次函数解析式专题》教案
-熟练运用一次函数模型解决实际问题。
举例解释:在教学过程中,教师应重点关注学生对待定系数法的基本理解和运用。例如,通过讲解和练习,确保学生明白如何将实际问题转化为数学模型,特别是如何选取未知数,列出方程组,并正确使用待定系数法求解。
2.教学难点
-理解待定系数法背后的数学思想,即通过设定未知系数来构建方程组。
4.培养学生的团队协作和交流能力:通过小组讨论、合作解决问题,促进学生之间的交流与合作,提高团队协作能力。
本节课将紧紧围绕这些核心素养目标,结合课本内容,设计教学活动,确保学生在掌握知识的同时,提高学科素养。
三、教学难点与重点
1.教学重点
-理解并掌握待定系数法的概念及原理。
-学会运用待定系数法求解一次函数的解析式。
1.培养学生的逻辑推理能力:通过待定系数法求解一次函数解析式的过程,让学生体会从特殊到一般、从具体到抽象的推理方法,提高逻辑思维水平。
2.提升学生的数据分析能力:使学生能够根据实际问题提炼出一次函数模型,通过数据处理和方程组构建,求解出函数解析式,从而解决实际问题。
3.增强学生的数学建模素养:培养学生运用数学知识构建一次函数模型解决实际问题的能力,提高数学应用意识。
五、教学反思
在今天的教学中,我带领学生们学习了待定系数法求解一次函数解析式的内容。回顾整个教学过程,我觉得有几个方面值得反思。
首先,我发现学生们在理解待定系数法的概念和原理上存在一定难度。虽然我在课堂上通过生动的案例进行了讲解,但可能还需要在今后的教学中进一步加强引导,让学生更加直观地感受到这一方法的应用价值。或许可以尝试引入更多生活中的实例,让学生认识到待定系数法在解决实际问题中的重要性。
19.2.2用待定系数法求一次函数解析式(教案)
1.理论介绍:首先,我们要了解一次函数解析式及其待定系数法的基本概念。一次函数解析式是表示线性关系的一种数学表达形式,而待定系数法是一种求解这种关系的有效方法。它是数学建模和解决实际问题的有力工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何根据给定的点来求解一次函数解析式,以及它如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调一次函数一般形式和待定系数法的步骤这两个重点。对于难点部分,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如根据物体移动的时间和距离来求解速度和初始位置。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数在实际情境中的建模过程。
至于学生小组讨论环节,我觉得这是一个很好的互动机会,让学生们充分表达自己的观点和想法。但在讨论过程中,我也发现有些学生较为内向,不太愿意主动参与讨论。为了解决这个问题,我打算在接下来的教学中,多设置一些开放性问题,并给予积极发言的学生一定的奖励和鼓励,激发他们的积极性。
最后,在总结回顾环节,我觉得可以进一步优化。比如,让学生来总结课堂所学,谈谈他们对一次函数解析式求解方法的理解和感悟。这样既能检验学生对知识点的掌握情况,又能锻炼他们的表达能力。
其次,在新课讲授环节,我重点强调了待定系数法的步骤和一次函数的一般形式。在讲解过程中,我注意到有些学生对解方程组的步骤掌握不够熟练,导致在后续的实际应用中出现困难。因此,我计划在下一节课前,先帮助学生复习一下解方程组的方法,以便他们在学习待定系数法时能够更好地理解和掌握。
在实践活动环节,我发现学生们在分组讨论时,有些小组能够迅速找到问题解决方案,而有些小组则陷入了困境。这让我意识到,在今后的教学中,我要更加关注学生的个体差异,尽可能在小组讨论环节给予他们更多的指导和支持。此外,在实验操作环节,可以尝试让学生动手操作,亲身体验数学建模的过程,从而加深他们对知识点的理解。
待定系数法求一次函数的解析式--教案
教学设计
(1)设:设一次函数的一般形式;
(2)代:把图象上的点(x 1,y 1)(x 2,y 2),代入一次函数的解析式,组成二元一次方程组; (3)解:解二元一次方程组得k,b ; (4)写:把k,b 的值代入一次函数的解析式.
练习:已知一次函数y=kx+b 的图象经过点(-1, 1)和点(1,-5) , 求这个函数解析式,并求当x=5时,函数y 的值.
练习:小明根据某个一次函数关系式填写了下表:
其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是多少?
练习:一次函数的图象经过点(2,1)和点(1,5),则这个一次函数是( )
A.y=4x+9
B. y=4x -9
C. y=-4x+9
D. y=-4x -9
练习:若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m 的值是( )
A.8
B.4
C.-6
D.-8
练习:一次函数的图象如图所示,则k 、b 的值分别为( ) A.k=-2,b=1 B.k=2,b=1 C.k=-2,b=-1 D.k=2,b=-1
练习:已知一次函数的图像经过点(9,0)和点(24,20),求
这个一次函数的解析式.
练习:若一次函数的图象与直线y=-3x+2交y 轴于同一点,且过点(2,-6),求此函数解析式
x -2 -1 0 1 y
3
1
1
1 2
1
x
y。
八年级下册数学教案《待定系数法求一次函数的解析式》
八年级下册数学教案《待定系数法求一次函数的解析式》学情分析一次函数是初中阶段学习的三种基本函数中最简单的一种函数形式,本节内容是在学生学习了变量与函数、一次函数的概念等基础上,继续对某些特殊的变量关系的考察和认识。
从知识衔接的角度看,有着承上启下的作用,符合学生的认知规律。
确定一次函数解析式,关键在于确定出一次函数y = kx+b中的k、b的值,用待定系数法确定一次函数解析式,不仅要求学生能正确地确定出解析式,还重在让学生对一次函数式与函数图象、函数式中的变量与函数图象上点的坐标之间关系的理解,将数与形联系起来,形成数形结合的数学思想意识。
为后面学习反比例函数、二次函数夯实基础。
教学目的1、会用待定系数法,确定一次函数的解析式。
2、了解两个条件确定一个一次函数的解析式,一个条件确定一个正比例函数的解析式。
3、掌握一次函数的简单应用。
教学重点用待定系数法确定一次函数的解析式。
教学难点灵活运用有关知识解决问题。
教学方法讲授法、演示法、启发式教学法、讨论法、练习法教学过程一、导入上节课我们学习了一次函数的图像与性质,在给定解析式的前提下,我们可以容易地画出函数图像,并说出它的有关性质,那反过来,如果已知一次函数图象的某些特征,能否确定函数解析式呢?这将是本节课我们要研究的问题。
二、待定系数法求一次函数解析式已知一次函数的图象经过点(3,5)与(-4,-9),求这个一次函数的解析式。
(学法指导:因为一次函数的图象是直线,所以要求直线的解析式,只需要找到直线上两个点的坐标,并将点的坐标代入一次函数解析式,得到关于k,b的二元一次方程组,即可求出系数k,b的值,进而确定一次函数的解析式)解:设这个一次函数的解析式为y = kx+b(k≠0)因为y = kx+b的图象过点(3,5)与(-4,-9),所以3k+b= 5-4k+b = -9解方程组得k = 2b = -1这个一次函数的解析式为y = 2x - 1总结:先设函数解析式,再根据条件确定解析式中未知数的系数,从而得到函数解析式的方法,叫做待定系数法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)设直线AP的解析式为y=kx+b,把A(-10,0),C(0,2)代入得 解得 ∴直线AP的解析式为y= x+2;
(3)∵S△BOP=S△DOP,∴PB=PD,即点P为BD的中点,∴B点坐标为(4,0),D点坐标为 .设直线BD的解析式为y=k′x+b′,把B(4,0),D 代入得 解得 ∴直线BD的解析式为y=- x+ .
【类型六】与确定函数解析式有关的综合性问题
如图,A、B是分别在x轴上位于原点左右侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=12.
(1)求点A的坐标及m的值;
(2)求直线AP的解析式;
(3)若S△BOP=S△DOP,求直线BD的解析式.
解析:(1)S△POA=S△AOC+S△COP,根据三角形面积公式得到 ×OA×2+ ×2×2=12,可计算出OA=10,则A点坐标为(-10,0),然后再利用S△AOP= ×10×m=12求出m;(2)已知A点和C点坐标,可利用待定系数法确定直线AP的解析式;(3)利用三角形面积公式由S△BOP=S△DOP得PB=PD,即点P为BD的中点,则可确定B点坐标为(4,0),D点坐标为(0, ),然后利用待定系数法确定直线BD的解析式.
解:∵点B的坐标为(-2,0),∴OB=2.∵S△AOB= OB·AB=3,∴ ×2×AB=3,∴AB=3,即A(-2,-3).设直线l的解析式为y=kx,将A点坐标代入得-3=-2k,即k= ,则直线l的解析式为y= x.
方法总结:解决本题的关键是根据直线与坐标轴围成三角形的面积确定另一个点的坐标.
【类型四】利用图形变换确定一次函数解析式
已知一次函数y=kx+b的图象过点(1,2),且其图象可由正比例函数y=kx向下平移4个单位得到,求一次函数的解析式.
解析:根据题设得到关于k,b的方程组,然后求出k的值即可.
解:把(1,2)代入y=kx+b得k+b=2.∵y=kx向下平移4个单位得到y=kx+b,∴b=-4,∴k-4=2,解得k=6.∴一次函数的解析式为y=6x-4.
方法总结:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.
【类型五】由实际问题确定一次函数解析式
已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.
二、合作探究
探究点:用待定系数法求一次函数解析式
【类型一】已知两点确定一次函数解析式
已知一次函数图象经过点A(3,5)和点B(-4,-9).
(1)求此一次函数的解析式;
(2)若点C(m,2)是该函数图象上一点,求C点坐标.
解析:(1)将点A(3,5)和点B(-4,-9)分别代入一次函数y=kx+b(k≠0),列出关于k、b的二元一次方程组,通过解方程组求得k、b的值;(2)将点C的坐标代入(1)中的一次函数解析式,即可求得m的值.
三、板书设计
1.待定系数法的定义
2.用待定系数法求一次函数解析式
教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长.
方法总结:本题考查用待定系数法求函数解析式,解题关键是利用所给条件得到关键点的坐标,进而求得函数解析式.
【类型三】由三角形的面积确定一次函数解析式
如图,点B的坐标为(-2,0),AB垂直x轴于点B,交直线l于点A,如果△ABO的面积为3,求直线l的解析式.
解析:△AOB面积等于OB与AB乘积的一半.根据OB与已知面积求出AB的长,确定出A点坐标.设直线l解析式为y=kx,将A点坐标代入求出k的值,即可确定出直线l的解析式.
如图,的坐标为(2,0),且OA=OB,试求一次函数的解析式.
解析:先求出点B的坐标,再根据待定系数法即可求得函数解析式.
解:∵OA=OB,A点的坐标为(2,0),∴点B的坐标为(0,-2).设直线AB的解析式为y=kx+b(k≠0),则 解得 ∴一次函数的解析式为y=x-2.
第
1.用待定系数法求一次函数的解析式;(重点)
2.从题目中获取待定系数法所需要的两个点的条件.(难点)
一、情境导入
已知弹簧的长度y(厘米)在一定的限度内是所挂重物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式.
一次函数解析式怎样确定?需要几个条件?
解:(1)设y关于x的函数关系式为y=kx+b,由题意,得 解得 ∴y=1.25x+29.75.∴y关于x的函数关系式为y=1.25x+29.75;
(2)当x=6.2时,y=1.25×6.2+29.75=37.5.
答:此时体温计的读数为37.5℃.
方法总结:本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.
水银柱的长度x(cm)
4.2
…
8.2
9.8
体温计的读数y(℃)
35.0
…
40.0
42.0
(1)求y关于x的函数关系式(不需要写出函数自变量的取值范围);
(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.
解析:(1)设y关于x的函数关系式为y=kx+b,由统计表的数据建立方程组求出k,b即可;(2)当x=6.2时,代入(1)的解析式就可以求出y的值.
解:(1)设一次函数的解析式为y=kx+b(k、b是常数,且k≠0),则 ∴ ∴一次函数的解析式为y=2x-1;
(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m= ,∴点C的坐标为( ,2).
方法总结:解答此题时,要注意一次函数的一次项系数k≠0这一条件,所以求出结果要注意检验一下.
【类型二】由函数图象确定一次函数解析式