华东理工 大学物理答案 第七章

合集下载

大学物理课后习题答案 第七章

大学物理课后习题答案 第七章
解:(1)气体在高温热源等温膨胀吸热,故
Q
RT1
ln
V2 V1
8.31 400 ln 0.005 0.001
5.35 103 J
(2) 根据卡诺循环的效率公式可得
1 T2 A净 T1 Q吸
A净
(1
T2 T1
)Q吸
(1
300 ) 5.35 103 400
1.34 103 J
(3)由能量守恒 Q吸 A净 Q放 可得
Pa Va )
1 2 (Pb
Pa ) (Vb
Va )
9.5 102 J
A 100 10.5% Q吸 950
B
C 2 V (L)
62
大学物理上习题册参考解答
10、一定质量理想气体(摩尔热容比为 γ)的某循环过程的 T-V 图如下,其中 CA 为绝
热过程,状态 A(T1,V1)和状态 B(T2,V2)为已知,试问:
RT2
ln
VA VB
R(T1 T2) ln
VA VB
T2 T1 T2
14、一台家用冰箱放在室温为 300K 的房间内,做一盘 2.09105 J 的热量。设冰箱为理想卡诺制冷机。 (1)求做一盘冰块所需要的功;
℃的冰块需从冷冻室取走
(2)若此冰箱能以 2.09102 J / s 的速率取出热量,求冰箱的电功率。
mR mR
60
大学物理上习题册参考解答
6、某理想气体在 P-V 图上等温线与绝热线相交于 A
点(如图所示)。 已知 A 点的压强 P1=2×105Pa,体积 V1=0.5 P ×10-3m3 ,而且 A 点处等温线的斜率与绝热线斜率之比为
0.714,现使气体从 A 点绝热膨胀至 B 点,其体积 V2=1×10-3m3。

大学物理第7章习题解答

大学物理第7章习题解答

第七章7-1容器内装有质量为0.lkg 的氧气,其压强为l0atm(即lMPa),温度为47C 0。

因为漏气,经过若干时间后,压强变为原来的85,温度降到27C 0。

问:(1)容器的容积有多大?(2)漏去了多少氧气? 解:(1)由RT MmpV =把p =10atm, T=(47+273)K=320K.m =0.1kg, M=32×10-3kg R =8.31J ·mol -1·K -1代入.证V =8.31×10-3m 3(2) 设漏气后,容器中的质量为m ′,则漏去的氧气为kg 103.3kg 301kg )1511.0(2-⨯≈=-='-=m m m ∆ 7-2设想太阳是由氢原子组成的理想气体,其密度可当作是均匀的。

若此气体的压强为Pa 141035.1⨯,试估算太阳的温度。

已知氢原子的质量kg H 271067.1-⨯=μ,太阳半径m R S 81096.6⨯=,太阳质量kg M S 301099.1⨯=。

解: 太阳内氢原子数HSm M N =故氢原子数密度为由P =nkT 知)(1015.11038.1105.81035.17232914K nk p T ⨯=⨯⨯⨯⨯==- 7-3 一容器被中间隔板分成相等的两半,一半装有氮气,温度为1T ,另一半装有氧气,温度为2T ,二者压强相等,今去掉隔板,求两种气体混合后的温度。

解: 如图混合前:2221112222111O He T M m T M m RT M m pV RT M m pV =⇒⎪⎪⎭⎪⎪⎬⎫==气有对气有对 ① 总内能 222111212523RT M m RT M m E E E +=+=前 ② ①代入②证混合后:设共同温度为T()RT M m T T EF RT M m M m E 21210221125231,2523⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=式得又由后 ③ 题7-2图又后前E E =,故由(2)(3)知)/53(8211T T T T +=7-4 设有N 个粒子的系统,速率分布函数如习题7一4图所示,求:(1))(v f 的表达式;(2)a 与0v 之间的关系;(3)速率在之间的粒子数;(4)最概然速率;(5)粒子的平均速率;(6) 0.50v ~0v 区间内粒子的平均速率。

大学物理习题答案解析第七章

大学物理习题答案解析第七章

第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D )分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A ) (B ) (C ) (D )分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )r R B B 2=r R B B =r R B B =2r R B B 4=21==R r n n r R B r 2π2B r 2παB r cos π22αB r cos π2S B ⋅=m Φ(A ) ,(B ) ,(C ) ,(D ) ,分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )(B ) (C ) (D )分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。

大学物理第7章习题参考答案(钟韶 编)

大学物理第7章习题参考答案(钟韶 编)

第七章7-1 (1)由RT MmpV =把p =10atm, T=(47+273)K=320K.m =0.1kg, M=32×10-3kg R =8.31J ·mol -1·K -1代入.证V =8.31×10-3m 3(2) 设漏气后,容器中的质量为m ′,则T R M m V p ''=' 3201.0853*******⨯⨯='⇒⨯'=⇒R MR M m R Mm pV )kg (151='⇒m 漏去的氧气为kg 103.3kg 301kg )1511.0(2-⨯≈=-='-=m m m ∆ 7-2 太阳内氢原子数H Sm M N =故氢原子数密度为3827303)1096.6(341067.11099.134⨯⨯⨯⨯===-ππs H S R m M VN n)(105.8329-⨯=m由P =nkT 知)(1015.11038.1105.81035.17232914K nk p T ⨯=⨯⨯⨯⨯==- 7-3 如图混合前:2221112222111O He T M m T M m RT M m pV RT M m pV =⇒⎪⎪⎭⎪⎪⎬⎫==气有对气有对 ①总内能 222111212523RT M m RT M m E E E +=+=前 ② ①代入②证1114RT M m E =前 混合后:设共同温度为T题7-2图()RT M m T T EF RT M m M m E 21210221125231,2523⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=式得又由后 ③ 又后前E E =,故由(2)(3)知)/53(8211T T T T +=7-4 (1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤≤≤=000002020)(v v v v v av v v v av f (2)由归一化条件⎰∞=01d )(v v f 得020032123d d 000v a av v a v v v a v v v =⇒==+⎰⎰(3)4d d )(00002/02/Nv v v a N v v Nf N v v v v =⎪⎪⎭⎫ ⎝⎛==⎰⎰∆ (4)从图中可看出最可几速率为v 0~2v 0各速率. (5)⎰⎰⎰+⎪⎪⎭⎫ ⎝⎛==∞0002/000d d d )(v v v v va v v v av v v vf v020911611v av ==(6)02/02/097d d d )(d )(0002121v v v v a v v av v v v f v v vf v v v v v v v v v =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛==⎰⎰⎰⎰ 7-5 氧气未用时,氧气瓶中T T p L V V ====111,atm 130,32 V RTMp V RT Mp m 11111==① 氧气输出压强降到atm 102=p 时 V RTMp V RT Mp m 22222== ② 氧气每天用的质量 000V RTMP m =③L 400,atm 100==V P设氧气用的天数为x ,则021210m m m x m m xm -=⇒-= 由(1)(2)(3)知021021)(V p Vp p m m m x -=-=)(6.932400110130天=⨯⨯-=7-6 (1))(m 1041.23001038.110325235--⨯=⨯⨯==KT p n (2)(kg)103.51002.61032262330--⨯=⨯⨯==N M μ (3))kg/m (3.1103.51041.232625=⨯⨯⨯==-μρn (4)(m)1046.31041.21193253-⨯=⨯==nl(5)认为氧气分子速率服从麦克斯韦布,故 )(m s 1046.4103230031.86.16.11-23⨯=⨯⨯==-M RT v (6)122ms 1083.43-⨯==MRTv (7)(J)1004.13001038.12522023--⨯=⨯⨯⨯==KT i ε 7-7 3112310m 1006.12371038.1104---⨯=⨯⨯⨯==∴=kT p n nkTp )(cm 1006.135-⨯= 故1cm 3中有51006.1⨯个氮气分子.m101.21006.111d 43113-⨯≈⨯==n7-8 由课本P 257-258例7-4的结论知 )l n (0pp Mg RTh =(m)1096.1)8.01ln(8.9102930031.833⨯=⨯⨯⨯=- 7-9 (1) (J)1021.63001038.123232123--⨯=⨯⨯⨯==KT t (2)看作理想气体,则3132310101030028.16.16.1---⨯⨯⨯==μKTv 12ms 1003.1--⨯=7-10 (J)5.373930031.82323=⨯⨯===RT N E 平动平动ε (J)249330031.8122=⨯⨯===RT N E 转动转动ε内能(J)1023.630031.825253⨯=⨯⨯==RT E7-11 (1)由KTpn nKT p =⇒=∵是等温等压 ∴ 1:1:21=n n (2) MRT v 6.1=是等温,∴4:1322::1221====M M v v7-12317233102.33001038.11033.1---⨯=⨯⨯⨯==m KT P n m)(8.71033.110923001038.1d 2320232=⨯⨯⨯⨯⨯⨯==---ππλpKT7-13 (1)8000021042.56.1d 2⨯=⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫===z M RT v KT p n v n z π(2)由公式MTRK p M RTKT p v n z 222d 26.1d 2d 2πππ===知 z 与T 和P 有关,由于T 不变,故z 只与P 有关.则1854000071.01042.510013.11033.1::--=⨯⨯⨯⨯='='⇒'='s z p p z p p z z 7-14 (1)如图MRT v 32=∴A c A c T T v v ::22=又 C B →等温过程,故C B T T =. 由B A A B V V P P RT Mm pV ===2则A B T T 2= ∴1:2:22=A c V V(2)AAc c A c P T P T pKT ::d 22==λλπλ C B →等温过程 A C A A A C B B C C p p V p V p V p V p =⇒=⨯⇒=221:2:=∴A C7-15 (1)MRTv 73.12= )(ms 100.7102400031.873.1133--⨯=⨯⨯=(2)m 10210)31(2122101021--⨯=⨯+=+=d d d (3)325202210710401042d 2⨯⨯⨯⨯⨯⨯==-ππv n z110s 105-⨯= 7-16 (1)题7-14图MTR k p z KT pn M RT v v n z ππππ8d 28d 222=⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=== ① 又由mREMT RT M m RT M m E 3326=⇒==② 把②代入①知EmkMpKN E m kM pR z ππ3d 43d 4022== EmMpN π3d 402=(2) MRTv P 2=把②代入得mEmR EM M R V P 3232=⨯=(3)平均平动动能 0232323mN EMmR EM k kT t =⨯==ε。

大学物理课后答案第七章..

大学物理课后答案第七章..

第七章 静电场中的导体和电介质一、基本要求1.掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律; 2.学会计算电容器的电容;3.了解介质的极化现象及其微观解释; 4.了解各向同性介质中D 和E 的关系和区别; 5.了解介质中电场的高斯定理; 6.理解电场能量密度的概念.二、基本内容1.导体静电平衡(1)静电平衡条件:导体任一点的电场强度为零(2)导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。

(3)导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。

2.电容(1)孤立导体的电容 qC V=电容的物理意义是使导体电势升高单位电势所需的电量。

电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。

它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关. (2)电容器的电容BA V V qC -=q 为构成电容器两极板上所带等量异号电荷的绝对值。

B A V V -为A 、B 两极间电势差。

电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。

(3)电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之和。

等效电容由121111nC C C C =+++进行计算。

并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。

等效电容为12n C C C C =+++。

(4)计算电容的一般步骤①设两极带电分别为q +和q -,由电荷分布求出两极间电场分布。

②由BA B A V V d -=⋅⎰E l 求两极板间的电势差.③根据电容定义求BA V V qC -=3.电位移矢量D人为引入的辅助物理量,定义0ε=+D E P ,D 既与E 有关,又与P 有关.说明D 不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。

定义式无论对各向同性介质,还是各向异性介质都适用.对于各向同性电介质,因为0e χε=P E ,所以0r εεε==D E E 。

大学物理课后习题ch7

大学物理课后习题ch7
ox 轴竖直向下,试求振动方程。
解 (1)分析物体、滑轮、弹簧的受力情况(如图示) 因为系统处于静止状态,所以
mg T1 0
题 7.7 图
T1R T2 R 0
T2 kx0
其中 x0 为弹簧伸长量。联立求解上述方程,可得
T1 T2 mg 1.510 15 N
x0
T2 k
mg k
1.5 9.8 50
由 x Acos(t ) , v dx A s i n( t ) 可得 dt
vmax A 0.4 ms-1
又因为
a dv A cos(t ) , 所以 dt
amax A 2 4 ms-2
(2)当 x 0.02 m 时,回复力 f kx 50 0.02 1N,
加速度 a f 2 ms-2 m
第 7 章 振动学基础
7.1 一个弹簧振子的质量 m 0.5 kg,弹簧的劲度系数 k 50 N/m,振幅 A 0.04 m,
求 (1
(2)当振子对平衡位置的位移为 x 0.02 m
(3)以速度具有正的最大值时为计时起点,写出振动的表达式。
解(1) k 50 10 rads-1 m 0.5
2gh]1 2
Mg [1 k
2hk ]1 2 (M m)g
(3)初位相
M 2gh
arctan( v0 ) arctan
M m
arctan
x0
( Mg ) k
k (M m)
2kh M m
又因为
x0
A cos
Mg k
,所以
x0 0 ,即 cos 0
v0 Asin sin v0 (A) 0 , 所以 sin 0
7.9 弹簧下面悬挂质量为 50 g 的物体,物体沿竖直方向的运动学方程为 x 2sin10t ,

(完整版)大学物理学(课后答案)第7章

(完整版)大学物理学(课后答案)第7章

第七章课后习题解答、选择题7-1处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[](A)温度,压强均不相同(B)温度相同,但氦气压强大于氮气的压强(C)温度,压强都相同(D)温度相同,但氦气压强小于氮气的压强3分析:理想气体分子的平均平动动能 \ - kT,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。

又由理想气体的压强公式p nkT ,当两者分子数密度相同时,它们压强也相同。

故选( C)。

7-2理想气体处于平衡状态,设温度为T,气体分子的自由度为i,则每个气体分子所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为-kT (D)平均平动动能为-RT2 23分析:由理想气体分子的的平均平动动能 \ 3kT和理想气体分子的的平均动能2-丄kT,故选择(C)。

27-3三个容器A、B、C中装有同种理想气体,其分子数密度n相同,而方均根1/2 1/2 1/2速率之比为v A : v B : v C 1:2:4,则其压强之比为P A:P B:P c[](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1分析:由分子方均根速率公式厂2,又由物态方程p nkT,所以当三容器中得分子数密度相同时,得p1: P2: P3 T1 :T2 :T3 1: 4:16。

故选择(C)。

7-4图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。

如果V p O和V p H分别表示氧气和氢气的最概然速率,则[] O 2 H 2(A)图中a表示氧气分子的速率分布曲线且V p O/ V p H4质量M H 2 M O 2,可知氢气的最概然速率大于氧气的最概然速率,故曲线 M 1 ( ) i于氧分子的速率分布曲线。

又因16,所以盘4。

故选择(B )。

f(v)习题7-4图7-5在一个体积不变的容器中,储有一定量的某种理想气体,温度为T 。

大学物理学课后习题7第七章答案

大学物理学课后习题7第七章答案


q 6 0
对于边长 a 的正方形,如果它不包含 q
所在的顶点,则 e

q 24 0

如果它包含 q 所在顶点则 e 0 .
7.8 均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×
105 C·m-3求距球心5cm,8cm ,12cm 各点的场强.
解:
高斯定理 当 r 5 cm
均匀分布,其电势U

E

dr

R2
qdr R2 4π 0 r 2
q 4π 0 R
题 7.16 图
(2)外壳接地时,外表面电荷 q 入地,外表面不带电,内表面电荷仍
为 q .所以球壳电势由内球 q 与内表面 q 产生:
U

q 4π 0 R2
q 4π 0 R2
(2)同理
dEQ

1 4π 0
dx
x2

d
2 2
方向如题 7.6 图所示
由于对称性 l dEQx 0 ,即 EQ 只有 y 分量,

dEQy

1 4π 0
dx
x2

d
2 2
d2
x2

d
2 2
EQy

l dEQy
d2 4π 2
l 2
dx
l
3
2
(x2

d
2 2
)
2

l
1由于电荷均匀分布与对称性ab和cd段电荷在o点产生的场强互相抵消取?ddrl?则??ddrq?产生o点e?d如图由于对称性o点场强沿y轴负方向题714图??????cos4dd2220?????rreeyr04???2sin??2sin??r02????2ab电荷在o点产生电势以0??u?????ab200012ln44d4drrxxxxu??????同理cd产生2ln402???u半圆环产生00344??????rru0032142ln2?????????uuuuo715两个平行金属板ab的面积为200cm2a和b之间距离为2cmb板接地如图715所示

大学物理答案解析第7~8章

大学物理答案解析第7~8章

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。

解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。

7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。

(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。

解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(4002xL x x d E L--=-=⎰πελξξπελ =)(40L x x L-πελ方向沿ξ轴正向。

(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。

习题7-1图dq ξd ξ习题7-2 图ax θθπελθd y dE E x x ⎰⎰-=-=00sin 4xdx习题7-2 图byθθπελθd y dE E y y ⎰⎰==00cos 400sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。

解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。

大学物理课后答案第七章静电场中的导体和电介质(精)

大学物理课后答案第七章静电场中的导体和电介质(精)

习题727-2 三个平行金属板A,B和C的面积都是200cm,A和B相距4.0mm,A与C相距2.0 mm.B,C都接地,如题7-2图所示.如果使A板带正电3.0×-710C,略去边缘效应,问B板和C板上的感应电荷各是多少?以地的电势为零,则A板的电势是多少?解: 如题7-2图示,令A板左侧面电荷面密度为σ1,右侧面电荷面密度为σ2题7-2图(1)∵ UAC=UAB,即∴ EACdAC=EABdAB∴ σ1EACdAB===2 σ2EABdACqA S且σ1+σ2=得σ2=qA2q, σ1=A 3S3S而 qC=-σ1S=-2qA=-2⨯10-7C 3qB=-σ2S=-1⨯10-7C(2) UA=EACdAC= σ1dAC=2.3⨯103V ε07-3 两个半径分别为R1和R2(R1<R2)的同心薄金属球壳,现给内球壳带电+q,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电+q;球壳内表面带电则为-q,外表面带电为+q,且均匀分布,其电势题7-3图U=⎰∞R2 ∞E⋅dr=⎰qdrq= R24πεr24πε0R0(2)外壳接地时,外表面电荷+q入地,外表面不带电,内表面电荷仍为-q.所以球壳电势由内球+q与内表面-q产生:U=q4πε0R2-q4πε0R2=0(3)设此时内球壳带电量为q';则外壳内表面带电量为-q',外壳外表面带电量为-q+q' (电荷守恒),此时内球壳电势为零,且UA=q'4πε0R1-q'4πε0R2+-q+q'=0 4πε0R2得 q'=外球壳上电势 R1q R2-q+q'(R1-R2)q= 24πε0R24πε0R2UB=q'4πε0R2-q'4πε0R2+7-4 半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d=3R 处有一点电荷+q,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q',则球接地时电势UO=07-4图由电势叠加原理有:UO=q'q+=0 4πε0R4πε03Rq 3得 q'=-7-5有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为F0.试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.q2解: 由题意知F0= 24πε0r(1)小球3接触小球1后,小球3和小球1均带电q, 2小球3再与小球2接触后,小球2与小球3均带电3q''=q 4∴此时小球1与小球2间相互作用力 q'=32qq'q"3F1=-=F0 2284πε0r4πε0r(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为2q. 322qq4∴小球1、2间的作用力F2==F0 4πε0r297-6如题7-6图所示,一平行板电容器两极板面积都是S,相距为d,分别维持电势UA=U,UB=0不变.现把一块带有电量q的导体薄片平行地放在两极板正中间,片的面积也是S,片的厚度略去不计.求导体薄片的电势.解: 依次设A,C,B从上到下的6个表面的面电荷密度分别为σ1,σ2,σ3,由静电平衡条件,电荷守恒定律及维持UAB=Uσ4,σ5,σ6如图所示.可得以下6个方程题7-6图ε0UqA1⎧σ+σ==CU=20⎪1SSd⎪⎪σ+σ=q4⎪3S⎪⎨σ+σ=qB=-ε0U56⎪Sd⎪σ+σ=03⎪2⎪σ4+σ5=0⎪⎩σ1=σ2+σ3+σ4+σ5+σ6q解得σ1=σ6= 2Sσ2=-σ3=ε0Ud-q 2Sσ4=-σ5=ε0Ud+q 2S所以CB间电场E2=σ4Uq=+ ε0d2ε0Sd1qd=(U+) 222ε0SUC=UCB=E2注意:因为C片带电,所以UC≠UU,若C片不带电,显然UC= 227-7 在半径为R1的金属球之外包有一层外半径为R2的均匀电介质球壳,介质相对介电常数为εr,金属球带电Q.试求:(1)电介质内、外的场强;(2)电介质层内、外的电势;(3)金属球的电势.解: 利用有介质时的高斯定理D⋅dS=∑q S(1)介质内(R1<r<R2)场强Qr QrD=,E内=; 334πr4πε0εrr介质外(r<R2)场强Qr QrD=,E外= 334πr4πε0r(2)介质外(r>R2)电势U=⎰介质内(R1<r<R2)电势∞r E外⋅dr=Q 4πε0rU=⎰∞r ∞ E内⋅dr+⎰E外⋅drr=11Q (-)+4πε0εrrR24πε0R21ε-1(+r) 4πε0εrrR2Qq=(3)金属球的电势R2 ∞ U=⎰E内⋅dr+⎰E外⋅dr R1R2R2=⎰=Qdr4πε0εrr2Q(R+⎰∞R2Qdr 4πε0r24πε0εr1εr-1+) R1R27-8如题7-8图所示,在平行板电容器的一半容积内充入相对介电常数为εr的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题7-8图所示,充满电介质部分场强为E2,真空部分场强为E1,自由电荷面密度分别为σ2与σ1 由D⋅dS=∑q0得D1=σ1,D2=σ2而D1=ε0E1,D2=ε0εrE2E1=E2=∴ U dσ2D2==εr σ1D1题7-8图7-9 金属球壳A和B的中心相距为r,A和B原来都不带电.现在A的中心放一点电荷q1,在B的中心放一点电荷q2,如题8-30图所示.试求:(1) q1对q2作用的库仑力,q2有无加速度;(2)去掉金属壳B,求q1作用在q2上的库仑力,此时q2有无加速度.解: (1)q1作用在q2的库仑力仍满足库仑定律,即F=1q1q2 4πε0r2但q2处于金属球壳中心,它受合力为零,没有加速度...(2)去掉金属壳B,q1作用在q2上的库仑力仍是F=受合力不为零,有加速度.1q1q2,但此时q24πε0r2题7-9图 7-10 半径为R1=2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2=4.0cm和R3=5.0cm,当内球带电荷Q=3.0×10C 时,求: -8(1)整个电场储存的能量;(2)此电容器的电容值.解: 如图,内球带电Q,外球壳内表面带电-Q,外表面带电Q题7-10图(1)在r<R1和R2<r<R3区域E=0在R1<r<R2时E1= Qr 34πε0rr>R3时 E2=∴在R1<r<R2区域Qr 4πε0r3W1=⎰R2R11Qε0()24πr2dr 224πε0rQ2drQ211=(-) 8πε0r28πε0R1R2=⎰在r>R3区域 R2R11QQ2122W2=⎰ε0()4πrdr= 2R328πε0R34πε0r∞Q2111(-+) ∴总能量W=W1+W2=8πε0R1R2R3 =1.82⨯10-4J(2)电容器电容C=2W11=4πε/(-) 02R1R2Q=4.49⨯10-12F。

大学物理学第七章参考答案

大学物理学第七章参考答案

题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。

求它们之间的斥力。

题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。

题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。

证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。

题7.2分析:根据题意将电子作为经典粒子处理。

电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。

点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε= 由此出发命题可证。

证:由上述分析可得电子的动能为re mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324me E επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。

题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。

为方便计算可以利用晶格的对称性求氯离子所受的合力。

解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。

大学物理答案第七章

大学物理答案第七章

热为零,对外所作的功等于内能的减少.
解 两过程的p—V图如图7-15所示. (1)等温膨胀
绝热线
(2)绝热膨胀 7-16 0.1 mol单原子理想气体,由状态A经 O V1 V2 V
直线AB所表示的过程到状态B,如图7-16所 示,已知VA = 1 L,VB = 3 L,pA =,pB =。
图7-15
图7-6
热量和完成的功则与过程有关,在等压过程中吸收的热量为,在等体过
程中吸收的热量为,其中温度值可以利用状态方程代换为已知的压强和
体积参量.
解 (1)经ACB过程,即经等体和等压过程,气体吸热为
所作的功为
应用热力学第一定律,系统内能改变为
(2)经ADB过程,所作的功为
系统内能改变为
应用热力学第一定律,气体吸热为
压强p1 =,使之在下述条件下膨胀到V2 = 2 O V2 V1 V L,(1)等温膨胀;(2)绝热膨胀,试在同
一p-V图中作出两过程曲线,并分别计算两种
图7-14
情况下气体吸收的热量,所作的功及内能的变化.
分析 等温过程中气体内能不变,所吸收的 p 热量等于对外所作的功;绝热过程中气体吸 p1
等温线
V0 = 0.5 L,V1 = 1.5 L,V2 = 3.0 L,p0 = ,p1 =,=1.33,计算一
个循环的功(可利用题7-13的结果).
分析 从理论上讨论循环过程及其效率,要求系统经过一系列状态变
化过程后又回到原来的状态.但是,实际热机的工作物质不是恒定的,
一般都有吸入和排放过程,因此也不可能使系统还原到原来的状态.不
内能改变为
应用热力学第一定律,系统吸热为
(2)气体在等压过程da中作的功为

大学物理答案第7~8章

大学物理答案第7~8章

第七章 实空中的静电场之阳早格格创做7-1 正在边少为a 的正圆形的四角,依次搁置面电荷q,2q,-4q 战2q ,它的几许核心搁置一个单位正电荷,供那个电荷受力的大小战目标.解:如图可瞅出二2q 的电荷对于单位正电荷的正在效率力将相互对消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε目标由q 指背-4q. 7-2 如图,匀称戴电细棒,少为L ,电荷线稀度为λ.(1)供棒的延少线上任一面P 的场强;(2)供通过棒的端面与棒笔直上任一面Q 的场强.解:(1)如图7-2 图a ,正在细棒上任与电荷元dq ,修坐如图坐标,dq =d,设棒的延少线上任一面P 与坐标本面0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒正在P 面爆收的电场强度的大小为=)(40L x x L-πελ目标沿轴正背.q2q-4q2q习题7-1图dq ξd ξP习题7-2 图ax(2)如图7-2 图b ,设通过棒的端面与棒笔直上任一面Q 与坐标本面0的距离为y204rdxdE πελ=θπελcos 420rdxdE y =, 果θθθθcos ,cos ,2yr d y dx ytg x ===,代进上式,则)cos 1(400θπελ--=y=)11(4220Ly y +--πελ,目标沿x 轴背背.00sin 4θπελy ==2204Ly y L+πελ 7-3 一细棒直成半径为R 的半圆形,匀称分散有电荷q ,供半圆核心O 处的场强.解:如图,正在半环上任与d l =Rd 的线元,其上所戴的电荷为dq=Rd.对于称分解E y =0.θπεθλsin 420R Rd dE x =2022R qεπ=,如图,目标沿x 轴正背.7-4 如图线电荷稀度为λ1的无限少匀称戴电直线与另一少度为l 、线θθπελθd y dE E x x ⎰⎰-=-=00sin 40dq xdxP习题7-2 图bydEθy Qθ0d θθθdEx习题7-3图R电荷稀度为λ2的匀称戴电直线正在共一仄里内,二者互相笔直,供它们间的相互效率力.解:正在λ2的戴电线上任与一dq ,λ1的戴电线是无限少,它正在dq 处爆收的电场强度由下斯定理简单得到为,xE 012πελ=二线间的相互效率力为,ln 2021ala +πελλ如图,目标沿x 轴正背.7-5 二个面电荷所戴电荷之战为Q ,问它们各戴电荷几时,相互效率力最大?解:设其中一个电荷的戴电量是q ,另一个即为Q -q ,若它们间的距离为r ,它们间的相互效率力为相互效率力最大的条件为 由上式可得:Q=2q ,q=Q/27-6 一半径为R 的半球壳,匀称戴有电荷,电荷里稀度为σ,供球心处电场强度的大小.解:将半球壳细割为诸多细环戴,其上戴电量为dq 正在o 面爆收的电场据(7-10)式为λ1 习题7-4图习题7-6图304RydqdE πε=,θcos R y = )(sin sin 200θθεσπd ⎰=20202sin 2πθεσ=4εσ=.如图,目标沿y 轴背背.7-7 设匀强电场的电场强度E 与半径为R 的半球里对于称轴仄止,估计通过此半球里电场强度的通量.解:如图,设做一圆仄里S 1挡住半球里S 2,成为关合直里下斯,对于此下斯直里电通量为0, 即7-8 供半径为R ,戴电量为q 的空心球里的电场强度分散.解: 由于电荷分散具备球对于称性,果而它所爆收的电场分散也具备球对于称性,与戴电球里共心的球里上各面的场强E 的大小相等,目标沿径背.正在戴电球里里与中部天区分别做与戴电球里共心的下斯球里S 1与S 2.对于S 1与S 2,应用下斯定理,即先估计场强的通量,而后得退场强的分散,分别为04d 21==⋅=⎰r E S πψS E得 0=内E (r<R )rrˆ204q πε=外E (r>R)E习题7-7图r习题7-18图7-9 如图所示,薄度为d 的“无限大”匀称戴电仄板,体电荷稀度为ρ,供板内中的电场分散.解:戴电仄板匀称戴电,正在薄度为d/2的仄分街里上电场强度为整,与坐标本面正在此街里上,修坐如图坐标.对于底里积为A ,下度分别为x <d/2战x >d/2的下斯直里应用下斯定理,有1d ερψAxEA S ==⋅=⎰S E 得 )2( 01d x i x E <=ερ7-10 一半径为R 的无限少戴电圆柱,其体电荷稀度为分散.)(0R r r ≤=ρρ,ρ0为常数.供场强解: 据下斯定理有R r ≤时:⎰'''=rr ld r r krl E 022πεπ⎰''=rr d r lk22επR r >时:⎰'''=Rr ld r r krl E 022πεπ⎰''=Rr d r lk202επ7-11 戴电为q 、半径为R 1的导体球,其中共心底搁一金属球壳,球壳内、中半径为R 2、R 3.(1)球壳的电荷及电势分散;(2)把中球交天后再绝缘,供中球壳的电荷及球壳内中电势分散;(3)再把内球交天,供内球的电荷及中球壳的电势.习题7-9图x习题7-10图r解:(1)静电仄稳,球壳内表面戴-q ,中表面戴q 电荷.据(7-23)式的论断得:),)(111(4132101R r R R R q V ≤+-=πε );)(111(4213202R r R R R r qV ≤≤+-=πε (2)),)(11(412101R r R R q U ≤-=πε (3分散设静电仄稳,内球戴q //q /-q.得:21313221R R R R R R qR R q +-='7-12 一匀称、半径为R 的戴电球体中,存留一个球形空腔,空腔的半径r(2r<R),试说明球形空腔中任性面的电场强度为匀强电场,其目标沿戴电球体球心O 指背球形空腔球心O /.说明:利用补缺法,此空腔可视为共电荷稀度的一个完备的半径为R 的大球战一个半径为r 与大球电荷稀度同号完备的小球组成,二球正在腔内任性面P 爆收的电场分别据〔例7-7〕截止为3ερ11r E =, 03ερ22r E -= E =E 1+E 2=03ερ1r 03ερ2r -q习题7-11图上式是恒矢量,得证.7-13 一匀称戴电的仄里圆环,内、中半径分别为R 1、R 2,且电荷里稀度为σ.一量子被加速器加速后,自圆环轴线上的P 面沿轴线射背圆心O.若量子到达O 面时的速度恰佳为整,试供量子位于P 面时的动能E K .(已知量子的戴电量为e ,忽略沉力的效率,OP=L )解:圆环核心的电势为 圆环轴线上p 面的电势为量子到达O 面时的速度恰佳为整有p k eV eV E -=0=21()2e R R σε=-2222210()2eR L R L σε-+-+7-14 有一半径为R 的戴电球里,戴电量为Q ,球里中沿直径目标上搁置一匀称戴电细线,线电荷稀度为λ,少度为L (L>R ),细线近端离球心的距离为L.设球战细线上的电荷分散牢固,试供细线正在电场中的电势能.解:正在戴电细线中任与一少度为dr 的线元,其上所戴的电荷元为dq=dr ,据(7-23)式戴电球里正在电荷元处爆收的电势为rQ V 04πε=电荷元的电势能为:rdrQ dW 04πελ=R 2o R 1xp习题7-13图orQdr习题7-14图细线正在戴电球里的电场中的电势能为:*7-15 半径为R 的匀称戴电圆盘,戴电量为Q.过盘心笔直于盘里的轴线上一面P 到盘心的距离为L.试供P 面的电势并利用电场强度与电势的梯度关系供电场强度.解:P 到盘心的距离为L ,p 面的电势为)(222220220L L R L r R -+=+=εσεσ 圆盘轴线上任性面的电势为 利用电场强度与电势的梯度关系得:i xR x R Q i dx dV x E )1(2)(22220+-=-=πεP 到盘心的距离为L ,p 面的电场强度为:i L R LRQ L E)1(2)(22220+-=πε7-16 二个共心球里的半径分别为R 1战R 2,各自戴有电荷Q 1战Q 2.供:(1)各区乡电势分散,并绘出分散直线;(2)二球里间的电势好为几?解:(1)据(7-23)式的论断得各区乡电势分散为),( )(411221101R r R Q R Q V ≤+=πε (2)二球里间的电势好为7-17 一半径为R 的无限少戴电圆p习题7-15图习题7-16图柱,其里里的电荷匀称分散,电荷体稀度为ρ,若与棒表面为整电势,供空间电势分散并绘出电势分散直线. 解: 据下斯定理有R r ≤时:R r =时,V=0,则 R r ≤时:⎰=R r rdr V 02ερ)(4220r R -=ερ R r >时:空间电势分散并绘出电势分散直线大概如图.7-18 二根很少的共轴圆柱里半径分别为R 1、R 2,戴有等量同号的电荷,二者的电势好为U ,供:(1)圆柱里单位少度戴有几电荷?(2)二圆柱里之间的电场强度.解:设圆柱里单位少度戴电量为,则二圆柱里之间的电场强度大小为rE 02πελ=二圆柱里之间的电势好为 由上式可得:120ln 2R R U =πελ所以n e r E 02πελ=)( ln 2112R r R e rR R Un <<⋅= 习题7-10图roRoV习题7-18图ro7-19 正在一次典型的闪电中,二个搁电面间的电势好约为109V ,被迁移的电荷约为30库仑,如果释搁出去的能量皆用去使00C 的冰熔化成00C 的火,则可融化几冰?(冰的熔 ×105J ﹒kg -1)解:二个搁电面间的电势好约为109V ,被迁移的电荷约为30库仑,其电势能为上式释搁出去的能量可融化冰的品量为:=⨯⨯=∆591034.31030m ×104kg7-20 正在玻我的氢本子模型中,电子沿半径为a 的玻我轨讲上绕本子核做圆周疏通.(1)若把电子从本子中推出去需要克服电场力做几功?(2)电子正在玻我轨讲上疏通的总能量为几?解:电子沿半径为a 的玻我轨讲上绕本子核做圆周疏通,其电势能为(1)把电子从本子中推出去需要克服电场力做功为:ae W W p 024πε=-=外(2)电子正在玻我轨讲上疏通的总能量为:k p E W W +=221mv W p += 电子的总能量为:221mv W W p +=a e 024πε-=a e 028πε+ae 028πε-=第八章 静电场中的导体与电介量8-1 面电荷+q 处正在导体球壳的核心,壳的内中半径分别为R l 战R 2,试供,电场强度战电势的分散.解:静电仄稳时,球壳的内球里戴-q 、中球壳戴q 电荷正在r<R 1的天区内rr q ˆ4E 201πε=,)111(42101R R r qU +-=πε 正在R 1<r<R 2的天区内 正在r>R 2的天区内:.ˆ4E 203r r πεq=.403rq U πε= 8-2 把一薄度为d 的无限大金属板置于电场强度为E 0的匀强电场中,E 0与板里笔直,试供金属板二表面的电荷里稀度.解:静电仄稳时,金属板内的电场为0,金属板表面上电荷里稀度与紧邻处的电场成正比 所以有8-3 一无限少圆柱形导体,半径为a ,单位少度戴有电荷量1,其中有一共轴的无限少导体圆简,内中半径分R 2R 1习题 8-1图q-qqE 0 E 0习题 8-2图σ1 σ2别为b 战c ,单位少度戴有电荷量2,供(1)圆筒内中表面上每单位少度的电荷量;(2)供电场强度的分散.解:(1)由静电仄稳条件,圆筒内中表面上每单位少度的电荷量为;,21λλλ+-(2)正在r<a 的天区内:E=0正在a<rb 的天区内:E r012πελ=e n正在r>b 的天区内:E r0212πελλ+=e n8-4 三个仄止金属板A 、B 战C ,里积皆是200cm 2,A 、B 相距,A 、C 相距,B 、C 二板皆交天,如图所示.如果A 板戴正电×10-7C ,略去边沿效力(1)供B 板战C 板上感触电荷各为几?(2)以天为电势整面,供A 板的电势.解:(1)设A 板二侧的电荷为q 1、q 2,由电荷守恒本理战静电仄稳条件,有A q q q =+21(1)1q q B -=,2q q C -=(2)依题意V AB =V AC ,即101d S q ε=202d Sqε112122q q d d q ==→代进(1)(2)式得习题 8-3图A BC习题 8-4图d 12q 1=×10-7C ,q 2×10-7C ,q B ×10-7C ,q C =-q 2×10-7C ,(2)101d S q U A ε==202d Sq ε==⨯⨯⨯⨯⨯⨯----312471021085810200102.×103V 8-5 半径为R 1=l.0cm 的导体球戴电量为×10-10C ,球中有一个内中半径分别为R 2=战R 3=的共心导体球壳,壳戴有电量Q=11×10-10C ,如图所示,供(1)二球的电势;(2)用导线将二球连交起去时二球的电势;(3)中球交天时,二球电势各为几?(以天为电势整面)解:静电仄稳时,球壳的内球里戴-q 、中球壳戴q+Q 电荷 (1))(4132101R Qq R q R q U ++-=πε代进数据 )41113111(101085.814.34100.1212101++-⨯⨯⨯⨯⨯=---U=×102V=×102V(2)用导线将二球连交起去时二球的电势为2024R Q q U πε+=4)111(101085.814.34100.121210+⨯⨯⨯⨯⨯=---=×102V (3)中球交天时,二球电势各为)(412101R qR q U -=πε)3111(101085.814.34100.1212101-⨯⨯⨯⨯⨯=---U =60V 8-6 说明:二仄止搁置的无限大戴电的习题 8-5图q-qq+Q2 ABq 1 q 3 4仄止仄里金属板A 战B 相背的二里上电荷里稀度大小相等,标记好同,相背的二里上电荷里稀度大小等,标记相共.如果二金属板的里积共为100cm 2,戴电量分别为Q A =6×10-8 C 战Q B =4×10-8C ,略去边沿效力,供二个板的四个表面上的电里稀度.证:设A 板戴电量为Q A 、二侧的电荷为q 1、q 2,B 板板戴电量为Q B 、二侧的电荷为q 3、q 4.由电荷守恒有A Q q q =+21(1)B Q q q =+43(2)正在A 板与B 板里里与二场面,金属板里里的电场为整有020122εεS q S q -0220403=--εεS qS q ,得04321=---q q q q (3) 020122εεS q S q +0220403=-+εεS qS q ,得04321=-++q q q q (4) 联坐上头4个圆程得:241B A Q Q q q +==,232B A Q Q q q -=-=即相背的二里上电荷里稀度大小相等,标记好同,相背的二里上电荷里稀度大小等,标记相共,本题得证.如果二金属板的里积共为100cm 2,戴电量分别为Q A =6×10-8 C 战Q B =4×10-8C ,则=⨯⨯⨯+==--844110101002)46(σσ×10-6C/m 2, =⨯⨯⨯-=-=--843210101002)46(σσ×10-6C/m 2 8-7 半径为R 的金属球离大天很近,并用细导线与天相联,正在与球心相距离为D=3R 处有一面电荷+q ,试供金属球上的感触电荷.解:设金属球上的感触电荷为Q ,金属球交天电势为整,即8-8 一仄止板电容器,二极板为相共的矩形,宽为a ,少为b ,间距为d ,今将一薄度为t 、宽度为a 的金属板仄止天背电容器内拔出,略去边沿效力,供拔出金属板后的电容量与金属板拔出深度x 的关系.解:设如图左边电容为C 1,左边电容为C 2安排电容并联,总电容即金属板后的电容量与金属板拔出深度x 的关系,为=)(0td tx b da -+ε 8-9 支音机里的可变电容器如图(a )所示,其中公有n 块金属片,相邻二片的距离均为d ,奇数片联正在所有牢固没有动(喊定片)奇数片联正在起而可一共转化(喊动片)每片的形状如图(b )所示.供当动片转到使二组片沉叠部分的角度为时,电容器的电容.解:当动片转到使二组片沉叠部分的角度 为时,电容器的电容的灵验里积为此结构相称有n-1的电容并联,总电容为td bx习题 8-8图(a) (b)习题 8-9图qQD=3RRd S n C 0)1(ε-==dr r n 360)()1(21220--θπε8-10 半径皆为a 的二根仄止少直导线相距为d (d>>a ),(1)设二直导线每单位少度上分别戴电十战一供二直导线的电势好;(2)供此导线组每单位少度的电容.解:(1)二直导线的电电场强度大小为rE 022πελ⨯= 二直导线之间的电势好为(2)供此导线组每单位少度的电容为VC λ==aa d -lnπε8-11 如图,C 1=10F ,C 2=5F ,C 3=5F ,供(1)AB 间的电容;(2)正在AB 间加上100V 电压时,供每个电容器上的电荷量战电压;(3)如果C 1被打脱,问C 3上的电荷量战电压各是几?解:(1)AB 间的电容为20155)(321213⨯=+++=C C C C C C C =F ;(2)正在AB 间加上100V 电压时,电路中的总电量便是C 3电容器上的电荷量,为C CV q q 4631073.31001073.3--⨯=⨯⨯===o(3)如果C 1被打脱,C 2短路,AB 间的100V 电压齐加正在C 3上,即V 3=100V ,C 3上的电荷量为8-12 仄止板电容器,二极间距离为l.5cm ,中加电压39kV ,若气氛的打脱场强为30kV/cm ,问此时电容器是可会被打脱?现将一薄度为的玻璃拔出电容器中与二板仄止,若玻璃的相对于介电常数为7,打脱场强为100kV/cm ,问此时电容器是可会被打脱?截止与玻璃片的位子有无关系?解:(1)已加玻璃前,二极间的电场为 没有会打脱(2)加玻璃后,二极间的电压为气氛部分会打脱,今后,玻璃中的电场为cm kV cm kV E /100/1303.039>==,玻璃部分也被打脱.截止与玻璃片的位子无关.8-13 一仄止板电容器极板里积为S ,二板间距离为d,其间充以相对于介电常数分别为r1、r2,的二种匀称电介量,每种介量各占一半体积,如图所示.若忽略边沿效力,供此电容器的电容.解:设如图左边电容为C 1,左边电容为C 2dS C r 2/101εε=安排电容并联,总电容为V习题 8-12图εr1εr2习题 8-13图8-14 仄止板电容器二极间充谦某种介量,板间距d 为2mm ,电压600V ,如坚决启电源后抽出介量,则电压降下到1800V .供(1)电介量相对于介电常数;(2)电介量上极化电荷里稀度;(3)极化电荷爆收的场强.解:设电介量抽出前后电容分别为C 与C /8-15 圆柱形电容器是由半径为R 1的导体圆柱战与它共轴的导体圆筒组成.圆筒的半径为R 2,电容器的少度为L ,其间充谦相对于介电常数为r的电介量,设沿轴线目标单位少度上圆柱的戴电量为+,圆筒单位少度戴电量为-,忽略边沿效力.供(1)电介量中的电位移战电场强度;(2)电介量极化电荷里稀度.解:8-16 半径为R 的金属球被一层中半径为R /的匀称电介量包裹着,设电介量的相对于介电常数为r ,金属球戴电量为Q,供(1)介量层内中的电场强度;(2)介量层内中的电势;(3)金属球的电势.解:8-17 球形电容器由半径为R 1的导体球战与它共心的导体球壳组成,球壳内半径为R 2,其间有二层匀称电介量,分界里半径为r ,电介量相对于介电常数分别为r1、r2,如图所示.供(1)电容器的电容;(2)当内球戴电量为+Q 时各介量表面上的束缚电荷里稀度.R 1 R /习题 8-16图U 1 U 2U 0 E 1 E 2解:1221221212220102010221022011021211221221(1)4,4,441111()()444()(r r r r rR R rr r r r r r r Q D ds D r Q D D r D D Q QE E r r Q Q U E dl E dl r R R rR R r QC U R R r R R ππεεεεπεεπεεπεεπεεπεεεεεεε⋅=⋅=∴==∴====∴=⋅+⋅=-+-∴==-+-⎰⎰⎰取同心高斯球面,由介质的高斯定理得1110112211112342221222)11(1)(1),(1)44111(1),(1),(1)444r r r r r r Q Q D E R R Q Q Q r r R σεσεεππσσσεεεπππ=-=-∴=--=-=--=-8-18 一仄止板电容器有二层介量(如图),r1=4,r2=2,薄度为d 1=,d 2=,极板里积S=40cm 2,二极板间电压为200V .(1)供每层电介量中的能量稀度;(2)估计电容器的总能量;(3)估计电容器的总电容.解:8-19 仄板电容器的极板里积S=300cm 2二极板相距d 1=3mm ,正在二极板间有一个与天绝缘的仄止金属板,其里积与极板的相共,薄度d 1=1mm.当电容器被充电到600V 后,拆去电源,而后抽出金属板,问(1)电容器间电场强度是可变更;(2)抽出此板需做几功?解:8-20 半径为R 1=的导体球,中套有一共心的导体球壳,球壳内中半径分别为R 2=、R 3=.球与壳之间是气氛,壳中也是气氛,当内球戴电荷为×10-8C 时,供(1)所有电场R 1 R 2r习题 8-17图习题 8-18图贮存的能量;(2)如果将导体球壳交天,估计贮存的能量,并由此供其电容.解:。

大学物理课后习题答案第七章 a

大学物理课后习题答案第七章 a

第七章 电磁感应选择题7-1 在闭合导线回路的电阻不变的情况下,下述正确的是 ( B ) (A) 穿过闭合回路所围面积的磁通量最大时,回路中的感应电流最大; (B) 穿过闭合回路所围面积的磁通量变化越快,回路中的感应电流越大; (C) 穿过闭合回路所围面积的磁通量变化越大,回路中的感应电流越大; (D) 穿过闭合回路所围面积的磁通量为零时,回路中的感应电流一定为零.7-2 导体细棒ab 与载流长直导线垂直.在如图所示的四种情况中,细棒ab 均以与载流导线平行的速度v 平动,且b 端到长直导线的距离都一样.在(a)、(b)和(c)三种情况中,细棒ab 与光滑金属框保持接触.设四种情况下细棒ab 上的感应电动势分别为a E 、b E 、c E 和d E ,则 ( C )(A) a b c d ==<E E E E ; (B) a b c d ==>E E E >E ; (C) a b c d ===E E E E ;(D) a b c d >>>E E E E .7-3 如图所示,半圆周和直径组成的封闭导线,处在垂直于匀强磁场的平面内.磁场的磁感应强度的大小为B ,直径AB 长为l .如果线圈以速度v 在线圈所在平面内平动, v 与AB 的夹角为θ,则 ( A )(A) 线圈上的感应电动势为零,AB 间的感应电动势sin AB Bl θ=E v ; (B) 线圈上的感应电动势为零,AB 间的感应电动势cos AB Bl θ=E v ;(C) 线圈上的感应电动势为i 2sin Bl θ=E v ,AB 间感应电动势为sin AB Bl θ=E v ; (D) 线圈上的感应电动势为i 2cos Bl θ=E v ,AB 间感应电动势为cos AB Bl θ=E v . 7-4 一个面积210cm S =的圆线圈,其电阻0.10R =Ω,处于垂直于匀强磁场的平面内,若磁感应强度的大小随时间的变化率1d 10T s d Bt-=⋅,则线圈中的感应电流的大小为( D )(A) 3i 1.010A I -=⨯; (B) 2i 1.010A I -=⨯; (C) 2i 1.010A I =⨯; (D) 1i 1.010A I -=⨯.7-5 导线元d l 在磁感应强度为B 的磁场中以速度v 运动时,其上的动生电动势为()i d d =⨯⋅B l E v( D ) (A) 当v 与d l 垂直时,一定有i d d B l =E v ; (B) 当v 与B 垂直时,一定有i d d B l =E v ; (C) 当d l 与B 垂直时,一定有i d d B l =E v ;(D) 只有在v 、B 和d l 三者相互垂直时,才有i d d B l =E v 或i d d B l =-E v .7-6 下述正确的是 ( C )(A) 静电场和感生电场的电场线都不闭合;(B) 静电场的电场线是闭合的,感生电场的电场线不闭合; (C) 感生电场的电场线是闭合的,静电场的电场线不闭合; (D) 静电场和感生电场的电场线都是闭合的.7-7 静止的导体中产生涡电流的原因是 ( C ) (A) 导体处于不均匀的稳恒磁场中; (B) 导体处于不均匀的静电场中; (C) 导体处于随时间变化磁场中; (D) 导体处于通有稳恒电流的线圈内. 7-8 在自感线圈中,电流i 随时间t 的变化曲线如图(a)所示.若以i 的正流向为正方向,则线圈中自感电动势L E 随时间t 的变化曲线应为图(b)中的 ( D )7-9 尺寸相同的铜环和铝环,穿过它们所围面积的磁通量的变化率相同.设铜环上的感应电动势和感应电流分别为1E 和1I ,铝环上的感应电动势和感应电流分别为2E 和2I ,则( C )(A) 12=E E , 12I I =; (B) 12>E E , 12I I >; (C) 12=E E , 12I I >; (D) 12>E E , 12I I =.7-10 如图所示,若一块磁铁沿着一根竖直放置的长铜管的轴线,自管口竖直下落,如果忽略空气阻力,则 ( C )(A) 磁铁越落越快,最后速度趋于无限大; (B) 磁铁越落越慢,最后速度趋于零; (C) 磁铁越落越快,最后达到一恒定速度; (D) 磁铁越落越慢,最后达到一恒定速度;计算题7-11 一个匝数100N =的导线圈,通过每匝线圈的磁通量41510sin10πΦt =⨯,式中1Φ的单为Wb ,t 的单位为s .求:(1) 任意时刻线圈上的感应电动势;(2) 在10s t =时,线圈上的感应电动势的大小.解 (1) 根据法拉第电磁感应定律,任意时刻线圈上的感应电动势为()41i d d100510sin10π0.5πcos10πd d ΦNt t t t-=-=-⨯=-E 式中t 的单位为s ,i E 的单位为V .(2) 10s t =时,线圈上的感应电动势为()i 0.5πcos 10π10 V 1.57 V =-⨯=-i E大小为i 1.57 V =i E7-12 若在一方向不变的磁场中,有一面积为20.03m 的平面线圈,线圈所在平面的法线与磁场的夹角为θ,磁感强度的大小为510B t =+,式中B 的单位为T ,t 的单位为s .求:(1) 当π3θ=时,线圈中的感应电动势的大小; (2) 当π2θ=,2s t =时,线圈中的感应电动势的大小; 解 穿过线圈所围平面的磁通量为()()cos 5100.03cos 0.150.3cos BS t t Φθθθ==+⨯=+线圈中的感应电动势为()i d d0.150.3cos 0.3cos d d t t tΦθθ=-=-+=-E (1) 在π3θ=的情况下,线圈中的感应电动势为 i π0.3cos V 0.15V 3⎛⎫=-=- ⎪⎝⎭E其大小为0.15V(2) 在π2θ=的情况下,2s t =时,线圈中的感应电动势为 i π0.3cos V 02⎛⎫=-= ⎪⎝⎭E7-13 如图所示,一正方形线圈与载流长直导线共面,线圈的匝数为N ,边长为a ,其两边与长直导线平行,与长直导线之间的最小距离为b .长直导线中的电流为I .(1) 求通过线圈的磁通量;(2) 若100N =,20cm a =,10cm b =,当长直导线中的电流I 以12A s -⋅的变化率增长时,求线圈中的感应电动势.解 (1) 坐标选取如图所示.以顺时针为线圈回路的正方向, 则线圈所围平面的法向单位矢量n e 垂直纸面向里.在线圈平面上,长直载流导线的磁感应强度为0n 2πIaxμ=B e .在x 处取面元dS d a x =,则面元矢量为n d d a x =S e .穿过面元的磁通量为0d d d 2πIaΦx xμ=⋅=B S穿过线圈所围平面的磁通量为00d d ln2π2πa bSaIaNIaa bΦN N x xbμμ++=⋅==⎰⎰B S(2) 若100N =,20cm a =,10cm b =,则7064π101000.200.200.10ln ln Wb2π2π0.10 4.4010WbNIaa b I Φb I μ--⎛⎫+⨯⨯⨯⨯+== ⎪⎝⎭=⨯ 线圈中的感应电动势为()666i d d 4.4010 4.40102 V 8.8010 V d d ΦIt t--=-=-⨯=-⨯⨯=-⨯E i 0<E ,表明线圈中的感应电动势沿逆时针方向.7-14 如图所示,矩形导线框ABCD 与载流为I 的长直导线共面,边长分别为b 和l ,AB 与长直导线平行.矩形线框以速度v 在其平面内向右运动,v 与直导线垂直.在时刻t ,AB 与长直导线间的距离为a .求此时线框上的感应电动势.解 在长直导线右侧的线框平面上,到长直导线的距离为r 的点上,载流长直导线的磁场,方向垂直于纸面向里,磁感应强度的大小为02πIB rμ=以顺时针为导线回路的正方向,线圈中的感应电动势为()()()()()i d d d d d ABCDAAB BC CD DA =⨯⋅=⨯⋅+⨯⋅+⨯⋅+⨯⋅⎰⎰⎰⎰⎰B l B l B l B l B lv v v v v E 在BC 和DA 段上,d l v ,()d 0⨯⋅=B l v ,因此积分为零.在时刻t ,AB 处的磁感应强度大小为012πIB aμ=,CD 处的磁感应强度大小为()022πIB a b μ=+.于是()()()i 1200000d d d d d d 11 2π2π2πAB CD AB CD llB l B lI lI l Il a a b a a b μμμ=⨯⋅+⨯⋅=+-⎛⎫=-=- ⎪++⎝⎭⎰⎰⎰⎰⎰⎰B l B l E v v v v v v vi 0>E ,表明线圈中的感应电动势沿顺时针方向.7-15 如图所示,匀强磁场的磁感应强度的大小为B ,方向垂直纸面向外.有一根长为L 的金属棒MN ,可绕点O 在纸面内逆时针旋转,角速度为ω,4LOM =.求金属棒两端之间的电动势.那一端的电势较高?解 如图所示,在棒MN 上,到点O 的距离为l 处,沿径向取位移元d l .d l 的速度v 的方向如图,既垂直于d l ,也垂直于B ,大小为l ω=v .d l 上的动生电动势为()i d d d Bl l ω=⨯⋅=B l dE vMN 上的动生电动势为32441d 4L L MN Bl l BL ωω==⎰E0MN >E ,表明动生电动势的方向为从M 到N ,N 端电势较高.7-16 如图所示,矩形导线框ABCD 与载流长直导线共面,AB 与长直导线平行,相互间的距离为a ,导线框的边长分别为b 和l .如果长直导线上的电流为0πcos 3I I t ω⎛⎫=+ ⎪⎝⎭,式中0I 和ω为常量.求在0t =时,导线框上的感应电动势.解 坐标选取如图所示.以ABCDA ,即顺时针为线框回路的正方向,则平面ABCD 的法向单位矢量n e 垂直纸面向里.在平面ABCD 上,长直载流导线的磁感应强度为0n 2πIx μ=B e .由于0πcos 3I I t ω⎛⎫=+ ⎪⎝⎭,因此B 的具体指向随时间变化.在x 处取面元dS d l x =,则面元矢量为n d d l x =S e .穿过面元的磁通量为0d d d d 2πIlΦB S x xμ=⋅==B S穿过线框所围平面的磁通量为00d d ln2π2πa bSaIlIla bΦx xaμμ++=⋅==⎰⎰B S 矩形线框ABCD 上的感应电动势为0i 0000d d ln d 2πd d ππ ln cos ln sin 2πd 32π3l a b I t a tl I l a b a b I t t a t a μΦμμωωω+=-=-+⎡⎤+⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦E0t =时0000i πlnsin ln2π34πI lI l a b a b a aμωω++==E i 0>E ,表明此时线框上的感应电动势沿顺时针方向.7-17 在一个长为0.6m 、直径为5.0cm 的纸筒上,密绕1200匝线圈.求这个长直螺线管的自感.解 长直螺线管的自感为()2220027223π44π101200π 5.010H 5.9210H40.6N SN d L llμμ---==⨯⨯⨯⨯⨯==⨯⨯7-18 一螺线管的自感为21.010H -⨯,流过的电流为2.0A .求其储存的磁场能.解 载流螺线管储存的磁场能为2222m 11 1.010 2.0J 2.010J 22W LI --⎛⎫==⨯⨯⨯=⨯ ⎪⎝⎭7-19 一个直径为0.01m 、长为0.10m 的长直密绕螺线管,共1000匝线圈,总电阻为7.76Ω.若把螺线管接到电动势为2V 的电池上,求电流稳定后,螺线管中储存的磁能和管内的磁能密度.解 长直螺线管的自感为()2220027223π44π101000π 1.010H 9.8710H40.1N SN d L llμμ--==⨯⨯⨯⨯⨯==⨯⨯线圈上稳定电流的强度为2A 0.258A 7.76U I R === 电流稳定后,螺线管中储存的磁能为2325m 119.87100.258J 3.2810J 22W LI --⎛⎫==⨯⨯⨯=⨯ ⎪⎝⎭载流螺线管中磁能密度为()533m m m 22244 3.2810J m 4.18J m ππ1.0100.1W W V d l ---⨯⨯===⋅=⋅⨯⨯w 7-20 在真空中,若一匀强电场中的电场能量密度与一0.5T 的匀强磁场的能量密度相等,求该电场的电场强度.解 设电场强度为E 的匀强电场的能量密度与0.5T B =的匀强磁场的能量密度相等,则有22001122B E εμ=由此可得181m 1.5010 V m E --==⋅=⨯⋅。

大学物理学(课后答案)第7章

大学物理学(课后答案)第7章

第七章课后习题解答、选择题7-1处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[](A) 温度,压强均不相同(B)温度相同,但氦气压强大于氮气的压强(C)温度,压强都相同(D)温度相同,但氦气压强小于氮气的压强3分析:理想气体分子的平均平动动能τk= kT,仅与温度有关,因此当氦气和氮2气的平均平动动能相同时,温度也相同。

又由理想气体的压强公式p =nkT ,当两者分子数密度相同时,它们压强也相同。

故选( C)O7-2理想气体处于平衡状态,设温度为T,气体分子的自由度为i ,则每个气体分子所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为^kT (D)平均平动动能为^RT分析:由理想气体分子的的平均平动动能3 kT和理想气体分子的的平均动能2T二丄kT ,故选择(C)O27-3三个容器A、B、C中装有同种理想气体,其分子数密度n相同,而方均根1/2 1/2 1/2速率之比为V A : V B : V C 1:2:4 ,则其压强之比为P A : P B : P C[](A) 1:2:4 (B) 1:4:8 (C) 1 : 4 : 16 (D) 4:2:1分析:由分子方均根速率公式= J3RT,又由物态方程p = nkT ,所以当三容器中得分子数密度相同时,得p1: P2: P3 =T1 :T2 :T3 =1:4:16 O故选择(C)O7-4图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。

如果(VP O和(V P 分别表示氧气和氢气的最概然速率,则[](A)图中a表示氧气分子的速率分布曲线且V P O z V P H= 4(B) 图中a表示氧气分子的速率分布曲线且V P O/ V P H? =1/4(C) 图中b表示氧气分子的速率分布曲线且V P O / V P H=1/4(D) 图中b表示氧气分子的速率分布曲线且V P O/ V P H2 =4分析:在温度相同的情况下,由最概然速率公式'..P=I j2RT及氢气与氧气的摩尔质量M H2£M o2,可知氢气的最概然速率大于氧气的最概然速率,故曲线a对应于氧分子的速率分布曲线。

大学物理第七章和第八章习题答案

大学物理第七章和第八章习题答案

变。故总能量 We
1 CU 2 增大 。 2
] d
10. 一空气平行板电容器, 极板间距为 d, 电容为 C, 若在两板中间平行插入一块厚度为 d/3 的金属板,则其电容值变为 [ C (A)C (C)3C/2 (B)2C/3 (D)2C
d
3
、500V(耐压值)和 300pF、900V, 11.C1 和 C2 两个电容器,其上分别标明 200pF(电容量) 把它们串连起来在两端加上 1000V 电压,则 [ C (A)C1 被击穿,C2 不被击穿。 (C)两者都被击穿。 ]
-3
-6
E
q
4 0 R 2
8. 将一空气平行板电容器接到电源上充电到一定电压后,断开电源,再将一块与板面积相 同的金属板平行地插入两极板之间, 则由于金属板的插入及其所放位置的不同, 对电容器储 能的影响为:[ A ] (A)储能减少,但与金属板位置无关。 (B)储能减少,且与金属板位置有关。 (C)储能增加,但与金属板位置无关。 (D)储能增加,且与金属板位置无关。 9. 两个完全相同的电容器 C1 和 C2,串联后与电源连接,现将一各向同性均匀电介质板插入

R2
R1
Q ( R2 R1 ) dr Q 1 1 ( ) 2 r 4 0 R1 R2 4 0 R1 R2
(3) 电容
C
4 0 R1 R2 Q U 12 R2 R1
(4)电场能量
W
QU12 2 0 r R1 R2U12 2 2 R2 R1
(5) C ' r C
(B)C2 被击穿,C1 不被击穿。 (D)两者都不被击穿。
12. 一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性,均匀电 介质,则电场强度的大小 E、电容 C、电压 U、电场能量 W 四个量各自与充入介质前相比较, 增大(↑)或减小(↓)的情形为:[ B ] (A)E↑,C↑,U↑,W↑ (C)E↓,C↑,U↑,W↓ (B)E↓,C↑,U↓,W↓ (D)E↑,C↓,U↓,W↑

基础物理学第七章(静电场)课后习题答案

基础物理学第七章(静电场)课后习题答案
习题 7-1 一导线 ab 弯成如图的形状(其中 cd 是一半圆,半径 r =0.10m,ac 和 db 两段的长度 均为 l =0.10m),在均匀磁场(B =0.50T)绕轴线 ab 转动,转速 n =60rev/s 。设电路的 总电阻(包括电表 M 的内阻)为 1,000?,求导线中的感应电动势和感应电流,它们的最大值 各是多大?
解:两根长直导线在它们之间所产生的磁场沿 y 轴正方向,该磁场的大小为 .
忽略导线内部磁通量,一对导线长为 l 的一段的自感为 . 7-14 一螺线管的自感系数为 0.010H,通过它的电流为 4A,试求它贮藏的磁场能量。 解:
7-15 一无限长直导线,截面各处的电流密度相等,总电流为 I,试证:每单位长度导线内 所贮藏的磁能为 ?????????。 解: 载流长直导线内磁场线是以对称轴为圆心的一系列同心圆,取半径为的圆为安培环路 L,有 在长直导线内取半径为,厚度为,高为单位长的薄壁圆筒体积元,如图所示,体积元内磁能 密度为 直导线内总磁能为
(1) 又因为 (2) (1)、(2)两式右边相同, 故
7-12 一螺绕环,横截面的半径为 a ,中心线的半径为 R,R " a ,其上由表面绝缘的导线 均匀地密绕两个线圈,一个 N1 匝,另一个 N2 匝。试求: (1)两线圈的自感 L1 和 L2; (2)两线圈的互感 M; (3)M 与 L1 和 L2 的关系。 解:(1)设线圈 1 中通有电流,因为 R " a,故螺线管内的磁场近似为匀强磁场,磁感应强 度为,通过某个横截面的磁通量为
因,则通过圆平面的位移电流为 (*)
(2)分析表明,运动电荷的磁场具有对称性,磁场线是垂直于轴线圆心在轴上的一系列同心 圆。设圆边缘某点 P 的磁感应强度为 B,磁场强度为 H,以给定圆为积分回路 L,应用全电流 定理和(*)式,得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 热力学基础1、一定量气体吸热800J ,对外作功500J ,由状态A 沿路径(1)变化到状态B ,问气体的内能改变了多少?如气体沿路径(2)从状态B 回到状态A 时,外界对气体作功300J ,问气体放出热量多少? 解:(1)J 300500800A Q E 11=-=-=∆(2)J 600300300A E Q 22-=--=-∆-=2、1mol 氢,在压强为1大气压,温度为200C 时,体积为V 0,今使其经以下两个过程达到同一状态,试分别计算以下两种过程中吸收的热量,气体对外作功和内能的增量,并在p-V 图上画出上述过程。

(1)先保持体积不变,加热使其温度升高到800C ,然后令其作等温膨胀,体积变为原体积的2倍; (2)先使其等温膨胀到原体积的2倍,然后保持体积不变,加热到800C 。

解:由题意知 T 1=273+20=293K ,T 2=273+80=353K(1)J 12466031.825)T T (C E E E 12v 12=⨯⨯=-=-=∆J 20332ln 35331.8V V 2ln RT A A 0o223=⨯⨯===J327920331246A E Q =+=+∆=(2)J16872ln 29331.8V V 2lnRT A A 00112=⨯===J 12466031.825E E E '23=⨯⨯=-=∆J 293312461687E A Q =+=∆+=P V P(atm)003、容器内贮有刚性多原子分子理想气体,经准静态绝热膨胀过程后,压强减为初压强的一半,求始末状态气体内能之比。

解:由绝热方程122111P T P T -γγ--γγ-=可得γ-γ-⎪⎪⎭⎫⎝⎛=11221P P T T所以19.121P P T T RT 2i RT 2i E E 34134112212121=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛==νν=--γ-γ-4、如图所示,1mol 的氦气由状态A (p 1,V 1)沿p-V 图中直线变化到状态B(p 2,V 2),设AB 延长线通过原点,求:(1)这过程内能的变化,吸收的热量和对外作的功; (2)气体的热容量; (3)多方指数。

解:(1))V P V P (23)T T (R 23T C Mm E 112212v -=-=∆=∆)V V )(P P (21A 1221-+=)V P k (V P V P 2211==)V P V P (21A 1122-=∴)V P V P (2)V P V P (21)V P V P (23A E Q 112211221122-=-+-=+∆=(2)PdVdT C dA dE dQ V +=+=由理想气体方程得 R d T V d P P d V =+又 P=kV , dP=kdVR d T P d V 2k V d V P d V V d P P d V ==+=+∴即dT2R PdV =R d T 2R d T 21R d T 23P d V dT C dQ V =+=+=热容量 R 2dTdQC ==(3)过程方程kV P = 即 k PV 1=-多方指数 n=-12)5、为测定气体的比热容比vP C C =γ,有时可用下面方法:将开始的温度、体积和压力分别为T 0,V 0和P 0的一定量气体,在一定时间内通以电流的铂丝加热,而且每次加热供应气体的热量相同。

第一次维持V 0不变,此时气体达到温度T 1和压力P 1。

第二次维持压力P 0不变,而温度变到T 2,体积变到V 1,试证明:01001P )V V (V )P P ( --=γ证: )T (T C M m Q 01V V -=)T T (C Mm Q 02p p -=根据题意 p V Q Q =及RT M m PV =01001002200110201Vp P )V V (V )P P (mRV M P mRV M P mRV M P mR V M P T T T T C C --=--=--==γ∴6、某理想气体在P-V 图上等温线与绝热线相交于A 点(如图所示)。

已知A 点的压强P 1=2×105Pa ,体积V 1=0.5×10-3m 3,而且A 点处等温线的斜率与绝热线斜率之比为0.714,现使气体从A 点绝热膨胀至B点,其体积V 2=1×10-3m 3。

求: (1)B 点处的压强;(2)在此过程中气体对外作的功。

解:(1)等温线的斜率VP dVdP CT -==绝热线的斜率VPdVdP CQ γ-==根据题意知714.01dVdP dV dPCQ CT =γ=== 4.1714.01==γ∴由绝热方程可得γγ=2211V P V PPa1058.7102)101105.0(P )V V (P 454.1331212⨯=⨯⨯⨯⨯==--γ(2)J5.6014.11011058.7105.01021V P V P A 34352211=-⨯⨯⨯-⨯⨯⨯=-γ-=--PP 1OV 1 V 2 V7、试证明:1mol均动能的增量为()1N AA-γ,式中γ为比热容比,N A 证明:设膨胀前后的体积为V 1、V 2,温度为T 1、T 2,压强P 根据等压膨胀作功可得 )T T (R )V V (P A 1212-=-=气体分子的比热容比i2i 2i22i C C Vp +=+==γ12i -γ=∴气体分子的平均动能的增量)1(N A A N 1212RA k2i )T T (k 2i A A12K -γ=-γ==-=ε∆8、如图,体积为30升的园柱形容器内,有一能上下自由滑动的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔,温度为1270C 的单原子分子理想气体。

若容器外大气压强为1标准大气压,气温为270C 。

求当容器内气体与周围达到平衡时需向外放热多少? 解:设开始时气体体积331m 1030V -⨯=,K 400273127T 1=+=5111P Pa 10108.1V RT P >⨯==所以气体降温过程分两个阶段:等容降温,直至气体的压强P 2=P 0,此时温度为T 2放热Q 1;第二阶段等压降温,直至温度T 3=T 0=300K ,放热Q 2 由 K7.365T P P T T P T P 11222211==⇒=J 428)T T (R 23)T T (C Q 1212V 1-=-=-=J 1365)T T (R 25)T T (C Q 2323p 2-=-=-=总计放热:J1079.1Q Q Q321⨯=+=9、一定质量的单原子理想气体,从初始状态a 出活塞53 b1 c 0 12 V (l )发,经过图中的循环过程又回到状a ,其中过程ab 是直线,试求:(1)在整个循环过程中,系统对外界所作的净功; (2)循环的效率。

解:(1)acbc 21A ⋅=J1001011022135=⨯⨯⨯⨯=-(2)AE Q Qab +∆==吸)V V )(P P (21)T T (C M ma b a b a b V -++-=J 105.9)V V ()P P (21)V P V P (232a b a b a a b b ⨯=-++-=%5.10950100Q A ===η吸10、图中所示为一定质量理想气体的一个循环过程的T-V 图,其中CA 为绝热过程,状态A(T 1,V 1)和状态B (T 2,V 2)为已知,试问: (1)各分过程是吸热还是放热?(2)状态C 的V 、T 值是多少?(γ,m 已知) (3)这个循环是不是卡诺循环? (4)这循环的效率为多少? 解:(1)把T-V 改画为P-V 图,如右图所示 AB 等温膨胀—吸热BC 等容降温—放热 CA 绝热过程不吸放热 (2)2c V V =1121C 1CC 1AA T )V V (T V T V T ⋅=⇒=-γ-γ-γ(3)不是卡诺循环。

(4)121c 1V V V lnRT Mm )T T (C M m1Q Q 1--=-=η吸放121211211211V V V ln)V V (1111V V lnRT ])V V (1[T C 1-γ-γ-⋅-γ-=--=11、1mol 理想气体在T 1=400K 的高温热源与T 2=300K 的低温热源间作卡诺循环(可逆的)。

TP ,V 2) V在400K 的等温线上起始体积为V 1=0.001m 3, 终止体积为V 2=0.005m 3。

试求此气体在每一循环中(1)从高温热源吸收的热量Q 1; (2)气体所作的净功A ;(3)气体传给低温热源的热量Q 2。

解:(1)气体在高温热源等温膨胀吸热,故J1035.5001.0005.0ln40031.8V V lnRT Q 3121⨯=⨯==(2) 根据卡诺循环的效率公式可得吸净Q A T T 112=-=ηJ1034.11035.5)4003001(Q )T T 1A 3312⨯=⨯⨯-=-=∴吸净((3)由能量守恒放净吸Q A Q +=可得J1001.41034.11035.5A Q Q 333⨯=⨯-⨯=-=净吸放或者J1001.41035.5400300Q T T Q T T 1Q Q 1352121⨯=⨯⨯==⇒-=-=η吸放吸放12、一台家用冰箱放在气温为300K 的房间内,做一盘-13℃的冰块需从冷冻室取走J 1009.25⨯的热量。

设冰箱为理想卡诺制冷机。

(1)求做一盘冰块所需要的功。

(2)若此冰箱能以s /J 1009.22⨯的速率取出热量,求所要求的电功率是多少瓦? (3)做冰块需时多少? 解:(1)卡诺循环制冷系数5.6260300260T T T 212=-=-=ωAQ 2=ωJ 1022.35.61009.2Q A 452⨯=⨯=ω=(2)电功率W2.325.61009.2q dtdA P 2=⨯=ω==(3)做冰块所需要的时间)s (101009.21009.2q Q t 3252=⨯⨯==。

相关文档
最新文档