数学建模答案(完整版)
数学建模试卷及参考答案
数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。
A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。
当矩形的面积最大时,求矩形的长和宽。
A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。
求该直线的方程。
A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。
A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。
假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。
求两辆车首次相遇的时间。
A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。
答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。
答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。
数学建模试卷及参考答案
数学建模 试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。
3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。
二、模型求证题(共2小题,每小题10分,本大题共20分)1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。
作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =(k x ,k y )定义为状态。
安全渡河条件下的状态集合称为允许状态集合,记做S 。
数学建模试题(带答案)
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
数学建模课后答案
数学建模课后答案数学建模课后答案【篇一:《数学模型》习题解答】t>1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑n=10的分配方案,p1?235,p2?333,p3?432,方法一(按比例分配)第二章(1)(2008年9月16日)pi?13i1000.q1?p1npi?132.35,q2?p2nipi?133.33, q3?p3nipi?134.32i分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)9个席位的分配结果(可用按比例分配)为:n1?2,n2?3, n3?4第10个席位:计算q值为235233324322q1??9204.17, q2??9240.75, q3??9331.22?33?44?5q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5方法三(d’hondt方法)此方法的分配结果为:n1?2,n2?3,n3?5此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).pi是ni每席位代表的人数,取ni?1,2,?,从而得到的pip中选较大者,可使对所有的i,i尽量接近. nini再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得vdt?(r?wkn)2?kdn,两边积分,得tvdt?2?k?(r?wkn)dnn2?rk?wk22n22vv《数学模型》作业解答第二章(2)(2008年10月9日)15.速度为v的风吹在迎风面积为s的风车上,空气密度是? ,用量纲分析方法确定风车获得的功率p与v、s、?的关系.解: 设p、v、s、?的关系为f(p,v,s,?)?0,其量纲表达式为: [p]=mlt 23, [v]=lt1,[s]=l,[?]=ml,这里l,m,t是基本量纲.2?3量纲矩阵为:1?2?10a=?3?1(p)(v)齐次线性方程组为:2?3?(l)01??(m) 00??(t)(s)(??2y1?y2?2y3?3y4?0y1?y4?03y?y?012?它的基本解为y?(?1,3,1,1) 由量纲pi定理得p?1v3s1?1,?p??v3s1?1 ,其中?是无量纲常数.16.雨滴的速度v与空气密度?、粘滞系数?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,g 的关系为f(v,?,?,g)=0.其量纲表达式为[v]=lmt,[?]=lmt,0-1-3[?]=mlt(ltl)l=mlltt=lmt,[g]=lmt,其中l,m,t是基本量纲.-2-1-1-1-2-2-2-1-10-2量纲矩阵为1?3?11?(l)?0?(m)110?a=? ???10?1?2(t)??(v)(?)(?)(g)齐次线性方程组ay=0 ,即y1-3y2-y3?y4?0?0 ?y2?y3-y-y-2y?034?1的基本解为y=(-3 ,-1 ,1 ,1) 由量纲pi定理得*v?3??1?g. ?v??3g,其中?是无量纲常数. ?16.雨滴的速度v与空气密度?、粘滞系数?、特征尺寸?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,?,g 的关系为f(v,?,?,?,g)?0.其量纲表达式为[v]=lmt,[?]=lmt,[?]=mlt(ltl)l=mlltt=lmt,[?]=lm0t0 ,[g]=lmt0-1-3-2-1-1-1-2-2-2-1-10-2其中l,m,t是基本量纲. 量纲矩阵为1?0a=1(v)齐次线性方程组ay=0 即(l)?(m)?00?1?2?(t)?(?)(?)(?)(g)1?3?10111y1?y2?3y3?y4?y5?0?y3?y4?0 ?y1?y4?2y5?0?的基本解为11?y?(1,?,0,0,?)?12231?y2?(0,?,?1,1,?)22?得到两个相互独立的无量纲量1?v??1/2g?1/23/2?1?1/2g??2??即 v?1) g?1,?3/2?g1/2??1??2?1. 由?(?1,?2)?0 , 得 ?1??(?2g?(?3/2?g1/2??1) , 其中?是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t,摆长l, 质量m,重力加速度g,阻力系数k的关系为f(t,l,m,g,k)?0其量纲表达式为:[t]?l0m0t,[l]?lm0t0,[m]?l0mt0,[g]?lm0t?2,[k]?[f][v]?1?mlt?2(lt 1 )1l0mt?1,其中l,m,t是基本量纲.量纲矩阵为0?0a=1(t)?(l)?(m)?00?2?1??(t)(l)(m)(g)(k)10011001齐次线性方程组y2?y4?0??y3?y5?0 ?y?2y?y?045?1的基本解为11?y?(1,?,0,,0)?122 ?11y2?(0,,?1,?,1)22?得到两个相互独立的无量纲量tl?1/2g1/2??11/2?1?1/2lmgk??2∴t?kl1/2l1, ?1??(?2), ?2?gmg1/2∴t?lkl1/2(1/2) ,其中?是未定函数 . gmg考虑物理模拟的比例模型,设g和k不变,记模型和原型摆的周期、摆长、质量分别为t,t;l?kl?1/2l,l;m,m. 又t() 1/2gm?g当无量纲量m?l?t?l?gl?时,就有 ?.mltgll《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k,其它假设及符号约定同课本.10 对于不允许缺货模型,每天平均费用为:【篇二:数学建模习题答案】t>中国地质大学能源学院华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?解:模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
数学建模答案(完整版)
1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。
在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3然后保存即可2 编写函数M 文件SQRT.M;函数 x=567.889与0.0368处的近似值(保留有()f x =效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2 x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算的值,其中a=2.3,b=4.89.()f x >> syms a b >> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans = 2.08644用matlab 计算函数在x=处的值.()f x =3π>> syms x >> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans = 12.09625用matlab 计算函数在x=1.23处的值.()arctan f x x =+>> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans = 1.78376 用matlab 计算函数在x=-2.1处的值.()()f x f x ==>> syms x >> x=-2.1;>> 2-3^x*log(abs(x))ans =1.92617 用蓝色.点连线.叉号绘制函数在[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x);>> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.ln 10y x =+[20,15]-->> syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线 虚线绘制函数在[-10,10]上步长为0.2的图像.sin(22x y π=->> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数在上步长为0.2的图像.sin(2)3y x π=+[0,4]πsin(2)sin()[0,4]322x y x y πππ=+=->> syms x y >> x=0:0.2:4*pi;y=sin(2*x+pi/3);>> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与.y =>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x));>> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加234,,y x y x y x ===各种标注.234,,y x y x y x ===>> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像2sin x t y t z t ⎧=⎪=⎨⎪=⎩>> syms x y t z >> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面在上的3维图像(1cos )cos (1cos )sin sin x u v y u v z u =+⎧⎪=+⎨⎪=⎩(0,2)(0,2)ππ⨯>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u);>> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right') ans = 216 求极限1201lim (3x x +→>> syms y x >> y=(1/3)^(1/(2*x));>> limit(y,x,0,'right') ans = 017求极限lim x >> syms x y >> y=(x*cos(x))/sqrt(1+x^3);>> limit(y,x,+inf) ans = 018 求极限21lim (1x x x x →+∞+->> syms x y >> y=((x+1)/(x-1))^(2*x);>> limit(y,x,+inf) ans = exp(4)19 求极限01cos 2lim sin x xx x →->> syms x y >> y=(1-cos(2*x))/(x*sin(x));>> limit(y,x,0) ans = 220 求极限 x →>> syms x y >> y=(sqrt(1+x)-sqrt(1-x))/x;>> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y >> y=(x^2+2*x+1)/(x^2-x+2);>> limit(y,x,+inf) ans = 122 求函数y=的导数5(21)arctan x x -+>> syms x y >> y=(2*x-1)^5+atan(x);>> diff(y) ans = 10*(2*x - 1)^4 + 1/(x^2 + 1)23 求函数y=的导数2tan 1x x y x=+>> syms y x>> y=(x*tan(x))/(1+x^2);>> diff(y)ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数的导数3tan x y e x -=>> syms y x >> y=exp^(-3*x)*tan(x)>> y=exp(-3*x)*tan(x) y = exp(-3*x)*tan(x) >> diff(y) ans = exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x)25 求函数y=在x=1的导数22ln sin 2x x π+>> syms x y >> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3 >> syms x y >> y=2*log(x)+sin(pi*x/2)^2;>> dxdy=diff(y) dxdy = 2/x + pi*cos((pi*x)/2)*sin((pi*x)/2)zhi=subs(dxdy,1)zhi = 226 求函数y=的二阶导数01cos 2lim sin x x x x →-11x x-+>> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y >> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2;>> diff(y) ans = (((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间()内求函数的最值.,-∞+∞43()341f x x x =-+>> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN y = NaN >> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf)x = NaN y = NaN29在区间(-1,5)内求函数发的最值.()(f x x =->> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =0.3750y = -0.3470>> >> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x = 4.9999y = -10.505930 求不定积分(ln 32sin )x x dx -⎰(ln 32sin )x x dx -⎰>> syms x y >> y=log(3*x)-2*sin(x);>> int(y) ans = 2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ⎰>> syms x y>> y=exp(x)*sin(x)^2;>> int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分 >> syms x y >> y=x*atan(x)/(1+x)^0.5;>> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x e dx --⎰>> syms x y >> y=1/exp(x^2)*(2*x-cos(x));>> int(y)Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分10(32)xe x dx -+⎰>> syms x y >> y=exp(-x)*(3*x+2);>> int(y,0,1) ans = 5 - 8*exp(-1)10(32)x e x dx -+⎰35.计算定积分0x →120(1)cos x arc xdx+⎰>> syms y x>> y=(x^2+1)*acos(x);>> int(y,0,1)ans =11/936.计算定积分10cos ln(1)x x dx +⎰>> syms x y >> y=(cos(x)*log(x+1));>> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;2122x x dx +∞++-∞⎰>> syms y x >> y=(1/(x^2+2*x+2));>> int(y,-inf,inf) ans = pi 38.计算广义积分;20x dx x e +∞-⎰>> syms x y>> y=x^2*exp(-x);>> int(y,0,+inf)ans =2。
数学建模答案
数学建模答案一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型模型指为了某种特定目的将原型的某一部分信息简化,压缩,提炼而构成的原型替代物。
如地图,苯分子图。
2.数学模型由数字、字母、或其他数学符号组成的,描述现实对象(原型)数量规律的数学结构。
具体地说,数学模型也可以描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些简化假设后,运用适当的数学工具,得到的一个数学结构称之为数学模型,如概率论的功利化定义3.抽象模型抽象模型也称为物理模型,主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律,如波浪水箱中的舰艇模型用来模拟波浪冲击下舰艇的航行性能,风洞中的飞机模型用来试验飞机在气流中的空气动力学特征。
二、简短回答问题(每个子问题满分8分,共24分)1.模型的分类根据模型替代原型的方式,模型可以简单地分为图像模型和抽象模型。
物理模型和分子模型;抽象模型:思维模型、符号模型、数学模型等2.数学建模的基本步骤1.建模准备:建立建模主题的过程;2、根据建模的目的对原型进行抽象、简化。
有目的性原则、简明性原则、真实性原则和全面性原则;3.模型构建:在建模假设的基础上,进一步分析建模假设的条件,选择合适的数学工具和模型构建方法对其进行表征,并根据已知条件和数据构建数学模型,分析模型的特征和模型的结构特征,设计或选择数学模型来解决模型并描述实际问题;4、模型求解:构造数学模型之后,方法和算法,并借助计算机完成对模型的求解;5.模型分析:根据建模的目的和要求,对模型求解的数字结果进行稳定性分析、系统参数敏感性分析、误差分析等。
6、模型检验:模型分析符合要求之后,还必须回到客观实际中去对模型进行检验,看它是否符合客观实际;7.模型应用:模型应用是数学建模的目的。
用于分析、研究和解决实际问题,充分发挥数学建模在生产和科研中的特殊作用。
(完整版)数学建模试卷(附答案)
2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。
二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。
(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。
(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。
随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。
后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。
谁料,DDT 同样杀死澳洲瓢虫。
结果,介壳虫增加起来,澳洲瓢虫反倒减少了。
试建立数学模型解释这个现象。
3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
数学建模试题答案
数学模型试题参考答案一、填空题1.物质模型(形象模型)和理想模型(抽象模型)2.机理分析和测试分析3.人口增长率.4.阻滞增长模型.5.MATLAB 和MATHEMATICA .二、问答题1.对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构.2.模型准备,模型假设,模型构成,模型求解,模型分析,模型检验,模型应用.3.逼真性与可行性,渐进性,强健性,可转移性,非预制性,条理性,技艺性,局限性.4.原型是指人们在现实世界里关心、研究或者从事生产、管理的实际对象.模型是指为了特定目的将原型的某一部分信息简缩、提炼而构成的原型替代物.三、建模题1.模型构成记第k 次渡河前此案的商人数为k x ,随从人数为k y ,,,2,1 =k 3,2,1,0,=k k y x .将二维向量),(k k k y x s =定义为状态,安全渡河条件下的状态集合称为允许状态集合,记作S . {}2,1;3,2,1,0,3;3,2,1,0,0|),(=======y x y x y x y x S ,不难验证,S 对此岸和彼岸都是安全的.记第k 次渡船上商人数为k u ,随从数为k v .将二维向量),(k k k v u d =定义为决策,允许决策集合记作D ,由小船的容量可知{}2,1,0,,21|),(=≤+≤=v u v u v u D .因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船从彼岸驶向此岸,所以状态k s 随决策k d 变化的规律为k k k k d s s )1(1-+=+上式称为状态转移率.这样,制定安全渡河方案归结为如下的多步决策模型:求决策D d k ∈),2,1(n k =,使状态S s k ∈按照状态转移率,由初始状态)3,3(1=s 经有限步n 到达状态)0,0(1=+n s .2.模型假设1. 椅子四条腿一样长,椅脚与地面接触处可视为一个点,四脚的连线呈正方形.2. 地面高度是连续变化的,沿任何方向都不会出现间断,即地面可视为数学上的连续曲面.3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置上至少有三只脚同时着地.模型构成首先要用变量表示椅子的位置.用旋转角度这一变量表示椅子的位置.对角线AC 与x 轴重合,椅子绕中心点O 旋转角度θ后,正方形ABCD 转至D C B A '''',所以对角线AC 与x 轴的夹角θ表示了椅子的位置.虽然椅子有四只脚,因而有四个距离,但是由于正方形的对称性,只要设两个距离函数就行了.记A ,C 两脚与地面距离之和为)(θf ,B ,D 两脚与地面距离之和为)(θg )0)(),((≥θθg f 由假设2,f 和g 都是连续函数.由假设3,椅子在任何位置至少有三只脚着地,所以对于任意的)(θf 和)(θg 中至少有一个为零.当0=θ时不妨设0)(=θg ,0)(>θf .这样,改变椅子的位置使四只脚同时着地,就归纳为证明如下的数学命题:已知)(θf 和)(θg 是θ的连续函数,对任意θ,0)()(=⋅θθg f ,且0)0(=g ,0)0(>f ,证明存在0θ,使0)()(00==θθg f .将椅子旋转90度,对角线AC 与BD 互换,由0)0(=g 和0)0(>f 可知0)2/(>πg 和0)2/(=πf .令)()()(θθθg f h -=,则0)0(>h 和0)2/(<πh .由f 和g 的连续性知h 也是连续函数.根据连续函数的基本性质,必存在0θ)2/0(0πθ<<使0)(0=θh ,即)()(00θθg f =,因为0)()(00=⋅θθg f ,所以0)()(00==θθg f .用数学解释了这个现象.。
数学建模练习答案
1.第6题第1题解释:非线性模型待数据拟合的函数模型关于某些待定参数是非线性的,就称为非线性模型。
第2题解释:线性模型待数据拟合的函数模型关于全体待定参数都是线性的,就称为线性模型。
第10题解释:数学模型数学模型(Mathematical Model)是由数字、字母或者其他数学符号组成的,描述现实量规律的数学公式、图形或算法.第11题词解释:一阶差分方程第3题在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到车完全停住汽车行驶的距车距离,车速越快,刹车距离越长. 请问刹车距离与车速之间具有怎样的数量关系?案:6.第5题7.第13题8.第14题9.第6题10.第9题根据按揭贷款的等额本息还款法的算法:每月利息=本月剩余本金×贷款月利率每月本金=本月剩余本金-下月剩余本金每月月供额=每月本金+每月利息建立数学模型,并推出已知本金总额和按揭年数时月供额的计算公式.11.第12题请详细阐述正比例函数模型进行最小二乘数据拟合的原理。
12.第15题13.第17题根据按揭贷款的等额本金还款法的算法:每月还本付息金额=每月本金+每月利息每月本金=本金总额/还款月数每月利息=(本金总额–累计已还本金)×月利率建立数学模型,并推出已知本金总额和按揭年数时月供额的计算公式.14.第4题写出以下公式:按照最小二乘法,由样本数据计算一元线性回归模型的回归系数的点估计.15.第7题MATLAB规定分号有哪些用途?命令之后加一个分号“;”,MATLAB只执行命令,不显示结果,这样可以屏蔽掉不需要的显示。
创建数值数组时,两行之间以分号或回车换行隔开。
16.第8题什么是灵敏性分析?为什么需要做灵敏性分析?哪些参数需要做灵敏性分析?哪些参数不需要做灵敏性分析?灵敏性(sensitivity)是指当数学模型的某个参数改变时模型解答的变化程度,变化越大,模型解答对该参数的就越灵敏.在建立数学模型解决实际问题的时候,人们自然期待模型解答对参数不算灵敏,因为在灵敏的情况下,一旦参数发生微小变化,模型的解答就会发生显著的变化,会给模型检验和模型应用带来困难. 但事实上,在科学技术各个领域广泛存在着灵敏性和临界值问题,在数学上很多数学模型也存在着灵敏性和临界值问题,当参数处于临界值附近时,模型解答会对参数高度灵敏. 人们对此非常关注又非常感兴趣. 所以不论建立什么样的数学模型,都需要仔细的做灵敏度分析.在数学建模的实践中,没必要对所有参数都进行灵敏度分析,需要对哪些参数进行灵敏度分析要从实际意义出发考虑参数的不确定程度. 有些参数实际上是稳定的,其观测值是准确可靠的;另一些参数实际上经常变动,观测、估计或预测所得的参数值往往会包含不小的误差. 显然,前一种参数没有做灵敏度分析的必要,而后一种参数的不确定性会影响模型解答的可信性,所以灵敏度分析非常有必要.17.第16题请说明MATLAB的变量名、M文件名和函数名的命名规则。
《数学建模》习题及参考答案 第一章 建立数学模型
第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
数学建模答案--完整版
验
目
的
4、用 MATLAB 计算函数 f ( x ) 实
sin x cos x 在 x= 处的值. 2 3 1 x
5、用 MATLAB 计算函数 f ( x) arctan x ln( x 1) 在 x=1.23 处的值.
验
15、求极限 lim
x 0
sin 2 x 1 cos x
过
>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x)); >> limit(y,x,0,‘right’) ans =
程
2
1 21x ( ) 16、求极限 lim x 0 3
>> syms x y >> y=(1/3)^(1/(2*x)); >> limit(y,x,0,'right') ans = 0 17、求极限 xlim
y x 2 , y x3 , y x 4 这三条曲线的
图形,并要求用两种方法加各种标注.
x t2 13、作曲线 y sin t 的 3 维图象. z t
实
x (1 cos u ) cos v 14、作环面 y (1 cos u ) sin v 在 (0, 2 ) (0, 2 ) 上的 3 维图象. z sin u
验
19、求极限 lim
1 cos 2 x x 0 x sin x
>> syms x y >> y=(1-cos(2*x))/(x*sin(x)); >> limit(y,x,0) 过 ans = 2 20、求极限 lim
数学建模试题(带答案)大全
(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0
bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2
数学建模教程课后答案
每人能划船条件下的一种安全过河方案
(共5次过渡)
师甲乙丙
① 甲丙过去, 接着甲回;
丙
师甲乙
② 师甲过去, 接着师回;
甲丙
师乙
③ 师乙过去.
师甲乙丙
#1-2①:对任何正整数n的n商n从安全 过河问题,不允许重复的解一定是有 限个.
证:对给定的正整数n,安全状态集的点数 是有限数3n+1.显然,经过有限个点,并按 跳棋规则从点(n,n)跳到点(0,0)的不重 复跳棋方案的个数一定有限.这就证明: 不重复安全过河方案必定是有限个.
#1-2②:在渡船至多容2人条件下,3商3从 安全过河问题,不允许重复解的个数是4.
证:下图给出一个无重复的解.仔细分析此 解不难看出:任何一个无重复的解的最先 2步除下图给出的方案外,还有且仅有另 一个方案是:”1商1从过去,接着1商回 来”.此外,其最后2步除下图给出的方案 外,还有且仅有另一个方案是:”1商回来, 接着1商1从过去”.
所以,锐,直,钝角三角形个数分别是 210=20; 410=40; 610=60.
#1-8② n=9时各类三角形个数
解:此时有
直角构形0个, ∴,n2=0; 钝角构形6个:(0,0,6),(0,1,5), (0,5,1),(1,1,4),(0,2,4),(0,4,2), ∴ n3=69=54;
n1=987/6-n2-n3=84-54=30. 答案:锐,直,钝角三角形个数分别是30,0
和54.
注:锐角构形有4个,其中一个为等边只乘3.
#1-9 证明n为偶数时有n3=3n1
解:前面已证明n=2k时有
n2 =n(n-2)/2;
nn31
=(n/2)(n/2-1)(n/2-2)=n(n-2)(n-4)/8; =Cn3-n2-n3
数学建模习题答案
数学建模习题答案中国地质⼤学能源学院华⽂静1.在稳定的椅⼦问题中,如设椅⼦的四脚连线呈长⽅形,结论如何?解:模型假设(1)椅⼦四条腿⼀样长,椅脚与地⾯接触处视为⼀点,四脚的连线呈长⽅形(2)地⾯⾼度是连续变化的,沿任何⽅向都不会出现间断(没有像台阶那样的情况),即从数学⾓度来看,地⾯是连续曲⾯。
这个假设相当于给出了椅⼦能放稳的必要条件(3)椅⼦在任何位置⾄少有三只脚同时着地。
为了保证这⼀点,要求对于椅脚的间距和椅腿的长度⽽⾔,地⾯是相对平坦的。
因为在地⾯上椅脚间距和椅腿长度的尺⼨⼤⼩相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是⽆法同时着地的。
模型建⽴在上述假设下,解决问题的关键在于选择合适的变量,把椅⼦四只脚同时着地表⽰出来。
⾸先,引⼊合适的变量来表⽰椅⼦位置的挪动。
⽣活经验告诉我们,要把椅⼦通过挪动放稳,通常有拖动或转动椅⼦两种办法,也就是数学上所说的平移与旋转变换。
然⽽,平移椅⼦后问题的条件没有发⽣本质变化,所以⽤平移的办法是不能解决问题的。
于是可尝试将椅⼦就地旋转,并试图在旋转过程中找到⼀种椅⼦能放稳的情形。
注意到椅脚连线呈长⽅形,长⽅形是中⼼对称图形,绕它的对称中⼼旋转180度后,椅⼦仍在原地。
把长⽅形绕它的对称中⼼旋转,这可以表⽰椅⼦位置的改变。
于是,旋转⾓度θ这⼀变量就表⽰了椅⼦的位置。
为此,在平⾯上建⽴直⾓坐标系来解决问题。
设椅脚连线为长⽅形ABCD,以对⾓线AC 所在的直线为x 轴,对称中⼼O 为原点,建⽴平⾯直⾓坐标系。
椅⼦绕O 点沿逆时针⽅向旋转⾓度θ后,长⽅形ABCD 转⾄A1B1C1D1的位置,这样就可以⽤旋转⾓)0(πθθ≤≤表⽰出椅⼦绕点O 旋转θ后的位置。
其次,把椅脚是否着地⽤数学形式表⽰出来。
当椅脚与地⾯的竖直距离为零时,椅脚就着地了,⽽当这个距离⼤于零时,椅脚不着地。
由于椅⼦在不同的位置是θ的函数,因此,椅脚与地⾯的竖直距离也是θ的函数。
由于椅⼦有四只脚,因⽽椅脚与地⾯的竖直距离有四个,它们都是θ的函数,⽽由假设(3)可知,椅⼦在任何位置⾄少有三只脚同时着地,即这四个函数对于任意的θ,其函数值⾄少有三个同时为0。
(完整版)数学建模试卷(附答案)
2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。
二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。
(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。
(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。
随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。
后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。
谁料,DDT 同样杀死澳洲瓢虫。
结果,介壳虫增加起来,澳洲瓢虫反倒减少了。
试建立数学模型解释这个现象。
3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
建模数学试题及答案
建模数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是线性方程的标准形式?A. \( ax + by = c \)B. \( ax^2 + by^2 = c \)C. \( ax^3 + by^3 = c \)D. \( ax + by + cz = d \)答案:A2. 函数 \( f(x) = x^2 \) 的导数是什么?A. \( 2x \)B. \( x^2 \)C. \( x \)D. \( 1 \)答案:A3. 以下哪个是二阶微分方程?A. \( y' = 2x \)B. \( y'' = 2x \)C. \( y = 2x \)D. \( y' + y = 2x \)答案:B4. 积分 \( \int x^2 dx \) 的结果是?A. \( \frac{x^3}{3} + C \)B. \( x^3 + C \)C. \( 2x^2 + C \)D. \( 3x^2 + C \)答案:A5. 以下哪个是矩阵?A. \( [a] \)B. \( (a, b) \)C. \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)D. \( \{a, b\} \)答案:C6. 以下哪个是概率论中的随机变量?A. 一个固定的数字B. 一个确定的函数C. 一个可能取不同值的变量D. 一个常数答案:C7. 以下哪个是线性代数中的基本概念?A. 函数B. 微分C. 向量空间D. 积分答案:C8. 函数 \( f(x) = \sin(x) \) 的不定积分是什么?A. \( -\cos(x) + C \)B. \( \cos(x) + C \)C. \( \sin(x) + C \)D. \( \tan(x) + C \)答案:B9. 以下哪个是微分方程?A. \( y = 2x \)B. \( y' = 2x \)C. \( y'' = 2x \)D. \( y''' = 2x \)答案:B10. 以下哪个是统计学中的基本概念?A. 函数B. 微分C. 样本D. 积分答案:C二、填空题(每题2分,共20分)1. 线性方程 \( ax + by = c \) 的斜率是 _______。
数学建模答案
数学建模1:[填空题]名词解释: 1.原型2.模型3.数学模型4.机理分析5.测试分析6.理想方法7.计算机模拟8.蛛网模型9.群体决策10.直觉11.灵感12.想象力13.洞察力14.类比法15.思维模型16.符号模型17.直观模型18.物理模型参考答案:1.原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。
2.模型:指为某个特定目的将原形的某一部分信息简缩、提炼而构造的原型替代物。
3.数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。
4.机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。
5.测试分析:将研究对象看作一个"黑箱”系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。
6.理想方法:是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理状态,以其更本质地揭示对象的固有规律。
7.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。
8.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。
9.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。
10.直觉:直觉是人们对新事物本质的极敏锐的领悟、理解或推断。
11.灵感:灵感是指在人有意识或下意识思考过程中迸发出来的猜测、思路或判断。
12.想象力:指人们在原有知识基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工、处理,创造出新形象,是一种形象思维活动。
13.洞察力:指人们在充分占有资料的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用那些方法解决面临的问题,以及不同方法的优劣作出判断。
14.类比法:类比法注意到研究对象与以熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。
数学建模答案(完整版)
数学建模答案(完整版)1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。
在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3 然后保存即可2 编写函数M 文件SQRT.M;函数()f x = x=567.889与0.0368处的近似值(保留有效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2x1=567.889;x2=0.368; s1=sqrt(x1);s2=sqrt(x2); zhi1=vpa(s1,4) zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算()f x =的值,其中a=2.3,b=4.89.>> syms a b>> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans =2.08644用matlab 计算函数()f x =在x=3π处的值. >> syms x>> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans =12.09625用matlab 计算函数()arctan f x x =在x=1.23处的值. >> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans =1.78376 用matlab 计算函数()()f x f x ==在x=-2.1处的值. >> syms x>> x=-2.1;>> 2-3^x*log(abs(x)) ans =1.92617 用蓝色.点连线.叉号绘制函数[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x); >> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数ln 10y x =+在[20,15]--上步长为0.2的图像. >> syms x y>> x=-20:0.2:-15;y=log(abs(x+10)); >> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线虚线绘制函数sin()22x y π=-在[-10,10]上步长为0.2的图像. >> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2); >> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数sin(2)3y x π=+在[0,4]π上步长为0.2的图像.sin(2)sin()[0,4]322x y x y πππ=+=- >> syms x y>> x=0:0.2:4*pi;y=sin(2*x+pi/3); >> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与y =.>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x)); >> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数234,,y x y x y x ===这三条曲线的图标,并要求用两种方法加各种标注.234,,y x y x y x === >> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线2sin x t y t z t ?=?=??=?的3维图像>> syms x y t z >> t=0:1/50:2*pi; >> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面(1cos )cos (1cos )sin sin x u v y u v z u =+??=+??=?在(0,2)(0,2)ππ?上的3维图像>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u); >> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y>> y=sin(2^0.5*x)/sqrt(1-cos(x)); >> limit(y,x,0,'right') ans = 216 求极限1201lim()3x x +→ >> syms y x>> y=(1/3)^(1/(2*x)); >> limit(y,x,0,'right') ans = 0 17求极限limx>> syms x y>> y=(x*cos(x))/sqrt(1+x^3); >> limit(y,x,+inf) ans = 0 18 求极限21lim ()1xx x x →+∞+- >> syms x y>> y=((x+1)/(x-1))^(2*x); >> limit(y,x,+inf) ans =exp(4)19 求极限01cos 2limsin x xx x→->> syms x y>> y=(1-cos(2*x))/(x*sin(x)); >> limit(y,x,0) ans = 220 求极限 0x →>> syms x y>> y=(sqrt(1+x)-sqrt(1-x))/x; >> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y>> y=(x^2+2*x+1)/(x^2-x+2); >> limit(y,x,+inf) ans = 1 22 求函数y=5(21)arctan x x -+的导数 >> syms x y>> y=(2*x-1)^5+atan(x); >> diff(y) ans =10*(2*x - 1)^4 + 1/(x^2 + 1) 23 求函数y=2tan 1x xy x=+的导数 >> syms y x>> y=(x*tan(x))/(1+x^2); >> diff(y) ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数3tan x y e x -=的导数>> syms y x>> y=exp^(-3*x)*tan(x) >> y=exp(-3*x)*tan(x) y =exp(-3*x)*tan(x)>> diff(y) ans =exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x) 25 求函数y=2 2ln sin2xx π+在x=1的导数>> syms x y>> y=(1-x)/(1+x); >> diff(y,x,2) ans =2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3>> syms x y>> y=2*log(x)+sin(pi*x/2)^2; >> dxdy=diff(y)dxdy =2/x + pi*cos((pi*x)/2)*sin((pi*x)/2) zhi=subs(dxdy,1)zhi =226 求函数y=01cos 2lim sin x x x x →-11xx-+的二阶导数>> syms x y>> y=(1-x)/(1+x); >> diff(y,x,2) ans =2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y>> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2; >> diff(y) ans =(((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间(,-∞+∞)内求函数43()341f x x x =-+的最值. >> f='-3*x^4+4*x^3-1'; >> [x,y]=fminbnd(f,-inf,inf) x =NaN y =NaN>> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf) x =NaN y =NaN29在区间(-1,5)内求函数发()(f x x =-.>> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5) x =0.3750 y =-0.3470 >>>> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5) x =4.9999 y =-10.505930 求不定积分(ln 32sin )x x dx -?(ln 32sin )x x dx -? >> syms x y>> y=log(3*x)-2*sin(x); >> int(y) ans =2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ?>> syms x y>> y=exp(x)*sin(x)^2; >> int(y) ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分>> syms x y>> y=x*atan(x)/(1+x)^0.5; >> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x edx --?>> syms x y>> y=1/exp(x^2)*(2*x-cos(x)); >> int(y) Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x) 34.计算定积分1(32)xex dx -+?>> syms x y>> y=exp(-x)*(3*x+2); >> int(y,0,1) ans =5 - 8*exp(-1)1(32)x e x dx -+?35.计算定积分0limx x→120(1)cos x arc xdx +?>> syms y x>> y=(x^2+1)*acos(x); >> int(y,0,1) ans =11/936.计算定积分1cos ln(1)x x dx+?>> syms x y>> y=(cos(x)*log(x+1)); >> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1) 37计算广义积分2122x x dx +∞++-∞?;>> syms y x>> y=(1/(x^2+2*x+2)); >> int(y,-inf,inf) ans = pi 38.计算广义积分20xdx x e+∞-?;>> syms x y>> y=x^2*exp(-x); >> int(y,0,+inf) ans = 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。
在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3然后保存即可2 编写函数M 文件SQRT.M;函数()f x = x=567.889与0.0368处的近似值(保留有效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算()f x a b=-的值,其中a=2.3,b=4.89. >> syms a b>> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans =2.08644用matlab 计算函数()f x =x=3π处的值. >> syms x>> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans =12.09625用matlab 计算函数()arctan f x x =在x=1.23处的值.>> syms x>> x=1.23;>> atan(x)+sqrt(log(x+1))ans =1.78376 用matlab 计算函数222sin cos ()()31a b x x f x f x a b xπ++==--在x=-2.1处的值. >> syms x >> x=-2.1;>> 2-3^x*log(abs(x))ans =1.92617 用蓝色.点连线.叉号绘制函数y=2x 在[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x);>> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数ln 10y x =+在[20,15]--上步长为0.2的图像. >> syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>> plot(x,y,'mx-')ln 10[20,15]y x x=+--9 用红色.加号连线 虚线绘制函数sin()22x y π=-在[-10,10]上步长为0.2的图像. >> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数sin(2)3y x π=+在[0,4]π上步长为0.2的图像.sin(2)sin()[0,4]322x y x y πππ=+=- >> syms x y >> x=0:0.2:4*pi;y=sin(2*x+pi/3);>> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=cos3x 与y x =.>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x));>> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数234,,y x y x y x ===这三条曲线的图标,并要求用两种方法加各种标注.234,,y x y x y x ===>> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线2sinx ty tz t⎧=⎪=⎨⎪=⎩的3维图像>> syms x y t z>> t=0:1/50:2*pi; >> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面(1cos)cos(1cos)sinsinx u vy u vz u=+⎧⎪=+⎨⎪=⎩在(0,2)(0,2)ππ⨯上的3维图像>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u); >> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y>> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right')ans =216 求极限1201lim ()3x x +→ >> syms y x>> y=(1/3)^(1/(2*x));>> limit(y,x,0,'right')ans =17求极限lim x>> syms x y>> y=(x*cos(x))/sqrt(1+x^3);>> limit(y,x,+inf)ans =18 求极限21lim ()1x x x x →+∞+- >> syms x y>> y=((x+1)/(x-1))^(2*x);>> limit(y,x,+inf)ans =exp(4)19 求极限01cos 2lim sin x x x x→->> syms x y>> y=(1-cos(2*x))/(x*sin(x));>> limit(y,x,0)ans =220 求极限 0x → >> syms x y>> y=(sqrt(1+x)-sqrt(1-x))/x;>> limit(y,x,0)ans =121 求极限2221lim 2x x x x x →+∞++-+ >> syms x y>> y=(x^2+2*x+1)/(x^2-x+2);>> limit(y,x,+inf)ans =122 求函数y=5(21)arctan x x -+的导数>> syms x y>> y=(2*x-1)^5+atan(x);>> diff(y)ans =10*(2*x - 1)^4 + 1/(x^2 + 1)23 求函数y=2tan 1x x y x=+的导数 >> syms y x>> y=(x*tan(x))/(1+x^2);>> diff(y)ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数3tan x y e x -=的导数>> syms y x>> y=exp^(-3*x)*tan(x)>> y=exp(-3*x)*tan(x)y =exp(-3*x)*tan(x)>> diff(y)ans =exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x)25 求函数y=22ln sin 2xx π+在x=1的导数>> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2)ans =2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3>> syms x y>> y=2*log(x)+sin(pi*x/2)^2;>> dxdy=diff(y)dxdy =2/x + pi*cos((pi*x)/2)*sin((pi*x)/2)zhi=subs(dxdy,1)zhi =226 求函数y=01cos 2limsin x x x x →-11x x-+的二阶导数 >> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2)ans =2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数; >> syms x y>> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2;>> diff(y)ans =(((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x -1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间(,-∞+∞)内求函数43()341f x x x =-+的最值.>> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaNy =NaN>> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf)x =NaNy =NaN29在区间(-1,5)内求函数发()(f x x =-的最值.>> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =0.3750y =-0.3470>>>> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =4.9999y =-10.505930 求不定积分(ln32sin )x x dx -⎰(ln32sin )x x dx -⎰ >> syms x y>> y=log(3*x)-2*sin(x);>> int(y)ans =2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ⎰>> syms x y>> y=exp(x)*sin(x)^2;>> int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分>> syms x y>> y=x*atan(x)/(1+x)^0.5;>> int(y)Warning: Explicit integral could not be found.ans =int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x e dx --⎰ >> syms x y>> y=1/exp(x^2)*(2*x-cos(x));>> int(y)Warning: Explicit integral could not be found.ans =int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分10(32)x e x dx -+⎰>> syms x y>> y=exp(-x)*(3*x+2);>> int(y,0,1)ans =5 - 8*exp(-1)10(32)x e x dx -+⎰35.计算定积分0lim x x→120(1)cos x arc xdx +⎰>> syms y x>> y=(x^2+1)*acos(x);>> int(y,0,1)ans =11/936.计算定积分10cos ln(1)x x dx +⎰>> syms x y>> y=(cos(x)*log(x+1));>> int(y,0,1)Warning: Explicit integral could not be found.ans =int(log(x + 1)*cos(x), x == 0..1)37计算广义积分2122x x dx +∞++-∞⎰;>> syms y x>> y=(1/(x^2+2*x+2));>> int(y,-inf,inf)ans =pi38.计算广义积分20x dx x e +∞-⎰; >> syms x y>> y=x^2*exp(-x);>> int(y,0,+inf)ans =2。